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Formation of a galaxy with a central black hole in the Lematre-Tolman model
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We construct two models of the formation of a galaxy with a central black hole, starting from a small initial
fluctuation at recombination. This is an application of previously developed methods to find @reefiadman
model that evolves from a given initial density or velocity profile to a given final density profile. We show that
the black hole itself could be either a collapsed object, or a nonvacuum generalization of a full Schwarzschild-
Kruskal-Szekeres wormhole. Particular attention is paid to the black hole’s apparent and event horizons.
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I. AIM AND MOTIVATION halo—together containing more mass than the disk—are
quite close to it, so the LT model is not a bad first approxi-
It has become generally accepted that most large galaxigsation.

contain central black holege.g. [1-19]). This is due to The present state of the galaxy is defined by a mass dis-
mounting evidence for very high luminosities within very tribution that consists of two parts:
small radii at the center of our Galaxy and many others, as (1) The part outside the apparent horizor at-for which
well as high orbital velocities of stars very close to the cene use an approximation to the observationally determined
ter, and is bolstered by observations of radio and optical jetjensity profile of the M87 galaxy. This part extends inward
as well as Seyfert galaxies and quasars at large redshiftg, 5 sphere of masdl g, whereM g, is the observationally
Since the “very small” radii accessible by current observa-yetermined mass of the black hole in the M87 galaxy.
tions are still well outside the horizons of the putative black (2) The part inside the apparent horizontat Since, for

2gIt;a:t,ethelljoex:cérnat:_rnec,eantdhgvemnetgﬁlr s:lr?:'atnceﬁlss' d%petr;]mndamental reasons, no observational data at all exist for
L wever, st . 6 3' y2 NS Fhis region apart from the value dflg,, we were free to

ho”z?” of a glaCk hOI.e 1SPs= 3¢/32mG™M = 1.845 choose any geometry. We chose two examples:

x107/(Ms/M)? glen?, it is difficult to see how black (2a) A simple subcase of the LT model, discussed in Sec.

hole collapse can be avoided above 30 . Il F as an illustrative example of properties of horizons. In
The Lematre-Tolman(LT) model describes the behavior |, . P properties ot t L
his model, the black hole does not exist initially and is

of a spherically symmetric dust distribution and has been ) :

very fruitful source of models of inhomogeneous cosmology, ormed in the course of evolution. o
smaller scale structure formation, and even black holes and (2P) A preexisting wormhole, also chosen arbitrarily for
naked singularities. simplicity of the calculations. o _

In paper 1[20], we considered the problem of finding a The boundary between the “inside” and “outside” at
spherically symmetric model that evolved from a given ini- times other tham, goes along a comoving mass shell, so that
tial density profile to a given final density profile. We showedat t<t, the apparent horizon resides in the inside part.
that this can always be done with an LT model, and we For the initial state, at; = [the last scattering of the cos-
developed an alogorithm to find the arbitrary functions ofmic microwave backgroun@CMB) radiatior], no usable ob-
such an LT model from the given profiles. A numerical ex-servational data are available either, but hopefully only tem-
ample produced an Abell cluster from a density fluctuation aporarily. The expected angular size on the CMB sky of a
recombination. perturbation that will develop into a single galaxy (0.004°)

In paper 11[21], we generalized to finding LT models that is much smaller than the current best resolution (0.2°).
evolve from a given velocity profile to a given density pro- Therefore we tried an exactly homogeneous initial density
file, the converse, and also between two velocity profilesand a homogeneous initial velocity. The former turned out to
Several numerical examples, including the evolution of dead to an unacceptable configuratiort-ata collapsing hy-
void, demonstrated the usefulness of the method. perbolic model with no Big Bang in the past. Consequently,

We now utilize these methods to consider the formation ofwe settled on the homogeneous initial velocity, which then
a galaxy with a central black hole, a task for which the LTimplied the amplitude below I for the initial density per-
model is particularly well suited. Although spiral galaxies areturbation.
not exactly spherically symmetric, both the core and the These two states, d andt,, uniquely define the LT

model that evolves between them, as shown in paper Il. The

3D surface graphs of density as a function of mass and time
*Electronic address: akr@camk.edu.pl show that the evolution proceeds without shell crossings, and
"Electronic address: cwh@maths.uct.ac.za so the model is acceptable, at least qualitatively.
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IIl. BASIC PROPERTIES OF THE LEMAI TRE-TOLMAN
MODEL

The Lematre-Tolman(LT) model[22,23 is a spherically
symmetric nonstatic solution of the Einstein equations with a
dust source. Sef4] for an extensive list of properties and

other work on this model. Its metric is
R/ 2
Ldr
1+2E(r)
—R?(t,r)(d9?+ sirfdde?),

ds?=dt?— 2

(2.7

where E(r) is an arbitrary function of integrationR’
=JR/dr, andR(t,r) obeys

: 2M A
R?=2E+ — + 7 R?

R 13 (2.2

whereR=gR/dt and A is the cosmological constant. Equa-
tion (2.2) is a first integral of the Einstein equations, and
M=M(r) is another arbitrary function of integration. The

mass-density is

2M’ o 87G 23
= s wnere k= ——. .
R°R’ c*

Kp

In the following, we will assumeé\ =0. Then Eq.(2.2) can
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and whenE>0 (hyperbolic evolution
R _M hp—1 2.6
(t.r)=5g (coshy—1), (2.6a

2E 3/2
( M) [t—ta(r)],

sinhnp—n= (2.6b

wheretg(r) is one more arbitrary integration functidthe
bang timg. Note that all the formulas given so far are cova-

riant under arbitrary coordinate transformatiomsg(r), and
so r can be chosen at will. This means one of the three
functionsE(r), M(r) andtg(r) can be fixed at our conve-
nience by the appropriate choice @fWe can define a scale
radius and a scale time for each worldline with

B 2M
P(r)= 126 2.7
27M
T(r)= 267 (2.9

and it is evident from Eq(2.4) that, for the elliptic case,
these are the maximuiR and the lifetime for each value.
The crunch time is then

be solved explicitly, and the solutions are as follows: when

E<O0 (elliptic evolution,

M
R(t,r)= (_ZE)(l—cosn), (2.439
. (_ZE)3/2
n=siny=—g—[t=tg(r)], (2.4b

where » is a parameter; wheBR=0 (parabolic evolutiol

9 1/3
R(t,r>=[§M[t—tB<r)12} : 2.9

=t +—M 1+—2ER
=g o) arcco v

M —ER ER
t:tB+(2—E)3/2[7T+arCCO%_1_v)+2 T(1+V)]' T <2,

for the expanding and collapsing elliptic cases, and

te(r)=tg(r)+T(r). (2.9
Writing Eq. (2.4b) at =2, wheret=t, i.e. at the Big
Crunch, and then dividing the two equations we obtain
7]_Sin ﬂZZW(t_tB)/(tC_tB), (21@
so largery means only that the dust particle has completed a
larger fraction of its lifetime between the Bang and the
Crunch.

The parametric solution@.4) and(2.6) can also be writ-
ten

) —ER( ER) _
-2 T 1+V y 0\7]\7T, (211)
2ER
(2.12
(2.13

. M [2ER - 2ER 14 2ER
=tg (ZE)3/2 M M arcos ™
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for the hyperbolic caséexpanding. R=B(1)M¥3+04(M)
Apart from extended parabolic regions, there are also
parabolic boundaries between elliptic and hyperbolic re- along constant, (2.183
gions, whereE—0, butE’#0. The limiting forms of Egs. 23
(2.4) and (2.6) are found by requiring well behaved time E=yM“+Oz5(M), (2.18
evolution and settin
g tg=70,(M), c>1/3, (2.189
n=nE (2.14 kp=6/83+0y(M), (2.189
so that7 is finite if (t—tg) is. M(re)=0. (2.18¢
The Friedmann models are contained in the LT class as ) i
the limit We also need-<0 to avoid shell crossings.
tg=const, |E|3/2/M = const, (2.15 B. Shell crossings, maxima, and minima

Shell crossings, where a constarghell collides with its
and one of the standard radial coordinates for the Friedmanmeighbor, are loci oR’=0 that are not regular maxima or
model results if the coordinates in Eq2.4—(2.6) are addi- minima of R. They create undesireable singularities where

tionally chosen so that the density diverges and changes sign. The conditions on the

3 arbitrary functions that ensure none be present anywhere in
M=Mgr? — E=Eqr? (216 an LT model, as well as those for regular maxima and

minima in spatial sections, were given [ig6], and will be

with M, andE, being constants. used below.

In constructing our galaxy model, it will be convenient to

useM(r) as the radial coordinatg.e.r =M /(r)]—because IIl. APPARENT AND EVENT HORIZONS

in most sections we shall not need to pass through any IN THE LT MODEL

‘necks” or “bellies.” Thus, M(r) will be a strictly growing We will be modelling a galactic black hole, so it will be

function in the whole region under consideration. In some ofsefy| to consider its horizons. Apparent and event horizons
Ehe sectlonﬁ we shall consider a black hole W|.th a “neck” or ot LT models were studied if27], in which LT models that

wormhole,” but even there, because of spherical symmetrygeneralize the Schwarzschild-Kruskal-Szekeres topology to
we will consider only one side of the wormhole, whéd€r)  nonyacuum were demonstrated. It was shown that, when

is also increasing. there is matter present, the light rays get even less far
Then withR=R(t,M) through the wormhole than in the vacuum case. The diversity
of possible topologies was discussed. We lay out further de-
2 6 1 tails of the apparent horizon here.
P LIR AR 24 -
aM aM A. Definitions and basic properties

Let us write the evolution equatiof2.2) with A=0 as

In the present paper we will apply the LT model to a
problem related to that considered in papers | and Il: Con- R=¢ /ﬂ+2E
necting, by an LT evolution, an initial state of the Universe, R '

defined by a mass-density or velocity distribution, to a final

state defined by a density distribution that contains a black where [{): +1 inthe expanding phase,

(3.9

hole. £=—1 inthe collapsing phase.

Th ial light t i try:
A. Origin conditions e radial light rays must be geodesics by symmetry

An origin, or center of spherical symmetry, occursrat 0= —dt2+ (R")? dr2 3.2
=r. if R(t,r;)=0 for all t. The conditions for a regular 1+2E " ° '
center have been derived [ia5] from the requirements that,

away from the bang and crunch, and in the limitr, (i) »  and this may be written as

in Egs.(2.4) and(2.6) must be finite if (—tg) is finite; (ii)

the density(2.3) and the Kretschmann scalar are nondiver- ,_dt| _ jR’ H j=+1 foroutgoing rays,
gent, and the density is not zero; afiid) on a constant time """ dr| J1+2E’ where j=—1 forincoming rays,
slice dp/dR=0. " 3.3

In the equations below, the symbOL(M) will denote a
function that has the property lig,o[ Og(M)/M9%]=0. The  whose solution we write as=t,(r,tno), Or often justt,(r)
resulting conditions for the neighborhood f are ort,.
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1. Apparent horizons

Along a ray we have

Ro=R(ty.r1), (3.9
(Rn)’=Rg—: +R’
n
\/2M+2E
= ejR—+1 R (3.5
Vi+2E

The apparent horizofAH) is the hypersurface in spacetime
where the rays are momentarily at constent

[2Mm
(R)'=0 = ?+2E=—€j\/1+2E = (3.6

PHYSICAL REVIEW D 69, 043502 (2004

In the vacuum casep=0, which impliesM’=0, we have
dt/dr |,y =dt/dr|, sincefj=—1. Note thatM’ =0 could be
only local, so the AH would only be null in that region. In
the Schwarzschild metric, whelM’'=0 everywhere, this is
consistent withR=2M being the locus of the event hori-
zons; and in this case they coincide with the apparent hori-
zons.

Recall that in the Schwarzschild spacetime the future and
past event horizons, EHand EH ", cross in the neck at the
moment it is widest(Call this event O. This holds for LT
models too. For hyperbolic regions, with=0 along each
dust worldline, there is either only expansion or only col-
lapse, i.e. only one AHeither AH" or AH™) can occur. The
AHs can thus cross only in an elliptiE<0 region. At the
neck of a LT wormhole, whereR=—1, M is a minimum,
andtg is maximum, the moment of maximum expansion is

. 2M
_ R?=0=—7-~1 — RpaMmn)=2M. (3.12
{j=—-1, and R=2M. (3.7
h in fact t t hori _ At all other E values in an elliptic region- 1<2E<0, we
ere are in fac ) WO apparent Nofizons. find R=0 — Rya=2M/(—2E)>2M. Thus R=2M has
The future AH: (AH"), where : , ) )
two solutions—one in the expanding phase and one in the
collapsing phase. So the AHand AH meet at the neck
j=+1 (outgoing rays maximum(event Q. - '
B . . (3.83 To establish whether AH is timelike, null or spacelike, we
¢=-1 (inacollapsing phase compare the slope of the AHwith the outgoing light rayor
the AH™ with the incoming light ray, i.e. €j=—1:
and the past AH: (AH), where
. . . dt dt
j=—1 (incoming ray$ B= a a
B . . (3.8b UINT M
¢{=+1 (in an expanding phagse
o 2M7) 2M’
We find dt/dr along the AH by differentiating3.7): =—0(1- R | |\ r 313
Rdt+R’dr=2M"dr, (3.9 but below, we will actually calculate
giving
— [ R’ JR
dt| 2M'-R 2M'-R' B=\w Y Tlam Tt
tAH:— = - = , (31@ AH*E AH=
dr|,, R 2M
t\/—=t2E 1+B dt
R :ﬁ=1—€\/1+2Ed—:/r (3.19
and, sinceR=2M on the AH,
where we have used Eq(3.11) and written R'/M’
dt €(2M'—R") =JR/IM and ti/M'=dtg/dM, sinceM’>0. Now since
—| = (3.1)  the conditions for no shell crossing&6] require M'=0
dr iy V1+2E whereR’>0 and vice-versa, we have
Bmax=1, B=+%— AH™ outgoing null (when M’"=0, p=0),
1>B>-1, +o>B>0— AH' spacelike (for most M’),
B=-1, B=0— AH* incoming null (for large M'/R"),

—1>B>-», 0>B>-1- AH" incoming timelike (for verylarge M'/R’),

(3.15
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so an outgoing timelike AH is not possible. This means The functionF =t,,-—tg of the argument =2E, defined
outgoing light rays that reach the AHalways fall inside in Eq.(3.18 has the following properties:
AH™, except wherdVl’ =0, in which case they move along

it. The possibility that AH is timelike B<0) holds if F(=1)=Mm, F(0)=4M/3, (319
dF
dit 1 hull _
AH (3.16 df<0 for —1<f<0,

M Ti2E
i.e. it is decreasing. These properties mean that the AH does
This means that the small&ris, the steeper the locus of the ot touch the Big Bang anywhere except at a cenfér,
AH must be to make it timelike. =0, even ifE=0.

The argument is similar for light rays at AH except that Along all worldlines with E>—1/2, even parabolic
“incoming” should be swopped with “outgoing.” If ingoing  woridlinesE=0 andM #0, the dust particles emerge from
light rays reach the AH, they pass out of it or run along it. AH~ g finite time after the Big Bangz=0) and a finite

Since this is true for every point on AHand AH", radial  tjme before maximum expansiom& 7). In order to find

light rays in dense wormholes are more trapped and go evegpe slope of AH', we differentiate Eq(3.18 with respect to
less far than in vacuum. In particular?ip>0 where £ 1 to obtain

=—1, light rays starting at O fall inside AHto the future
and inside AH to the past. dt - 1 3M dE
IV (—2E)3’2+ (—2E)5’2d_M arccosl+4E)

2. Event horizons

The event horizon is the very last ray to reach future null 1 M(3+2E) dE ditg
infinity (EH™), or the very first one to come in from past +=V1I+2E- —F——=—-—+—. (3.20
infinity ( ) very firs i pas E 2E?J112E OM ' M

null infinity (EH™). If we have vacuum N1'=0) every-
where, then light rays travel alonB=2M, and the EHs
coincide with the AHs. If there is matteM’'>0, on any  ,<es it will be possible.

worldline, then the incoming light rays emerge from AH So although Eq(3.17 shows wordlines with large exit
and outgoing light rays fall into AH at thatr value, and SO AH- 4t 4 |ater stage of evolution, this may not correspond to
the EHs split off from the AHgsee[27]). a later timet, or even to a longer time ¢ tg) since the bang.
It is not at all necessary th&t is a monotonically decreasing
B. Locating the apparent horizons in elliptic regions function ofr in an elliptic region; in general it can increase
and decrease again any number of times.

In general, this is very difficult to analyze, but for special

1. AH™ during expansion

We shall first consider the expansion phase of an elliptic 2. AH™ near an origin
model, where & =< andE<O0, so we haveg=+1 and
only AH™ is present. SincR=2M on an AH, we have from
Eqg. (2.43

On the AH™ in the neighborhood of a regular center, we
obtain from Eqgs(3.17 and(2.18h to lowest order

_ _ 23
cosyay=1+4E, (3.17) 1-cosyan=—4yM“"+0z5(M) (3.20)

and consequentlyya-—0 asr—r, i.e. AH™ touches the
gfSig Bang set at the center. Sinégr.)=0 andE<O in the
neighborhood of the center, it follows thit (r;)<0, and,
via Eq. (3.17), that the dust particles with larger(smaller

and thus, along a given worldline, the proper time of passin
through the AH, counted from the Bang tintg, can be
calculated from Eq(2.11) with R=2M to be

E) exit AH™ with larger values ofy.
—2y- : , ,
tay-—tg= arcco¢l +4E) -2y~ 2E(1+2E) _ To show the behavior of AH nearr is not unique, we
(—2E)%? take the following example foE(M):
(3.18

E=MZ3(y+y,M%), d>2/3, y#0, y,#0. (3.22

Putting Egs.(3.22 and (2.189 in Eq. (3.20 we find? ne-

1 ; : .
Note that Eq.(3.16 can be equivalently written as follows: glecting powers oM that are necessarily positive,

’

— !

iy >——xs==M,
A1+ 2E
) o 3SinceM*? is a natural measure of proper radius near an origin,
where M is the sum of all the rest masses within the {hao slope of AH is zero:

r=const sphere, equal to 7 §\—g(t,x)dx=4m[{[R3(t,x)

XR'(t,x)/y2E+1]dx, while M=4x[;R?(t,x)R’(t,x)dx is the dtan- ~3cTMS B+4M?B+ | ~0.
active gravitational massee[28] for a detailed discussion dm13

2Since a regular minimum or maximuR{ =0 requires all oM, Away from the center, the sign ot g, /dM* depends on whether
E’ andtg to be locally zerop>0=M"/R">0. or notc>1, as7<0 for no shell crossingg26].
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dt - 4 by letting E—0 asr—o [27], with both bang and crunch
aM ~CcTMC 1+ 3 (3.23  times diverging We also see the slope and the causal nature
of AH™ are uncertain here.

and from Eq.(3.14) with £=+1 and Eq.(3.23 we see that .
4. AH™ during collapse

~ g 1 This can be obtained from the above by replacing (

B~—crM™ =gt (29 ¢y with (te—t), 5 with (27— »), flipping the signs of

andj, and swopping “incoming” with “outgoing.” However,
The behavior of the apparent horizon in the vicinity of thekeepingtg as our arbitrary function, we have< n<2.
center is not unigue; each of the cases listed in(B45 can  Equation(3.17) still applies, but instead of Eq$3.18 and
occur, depending on whether>1. This nonuniqueness of (3.20, we now obtain
behavior is connected with the shell-focusing singularities
that appear in some LT models. Various stud2%-37 have (t—tg)an-+
shown that outgoing light rays may emerge from the central
point of the Big Crunch and even reach infinity. Moreover, m+arcco$—1—4E)+2\—2E(1+2E)
even though, in those cases, this central poiritere the Big =M 32 '
. ) S 4 (—=2E)

Crunch first formg appears to be a single point in comoving
coordinates, it is in fact a finite segment of a null line in the (3.2
Penrose diagram, sg@9]. At the Big Bang, we have the
reverse—in_coming light rays may reach the (_:entral point of it g+ 1 3aM  dE
the bang singularity. Any radial light ray emitted from the = + —
center of symmetry that falls into the Big Crunch must first dM | (-2E)¥ (-2E)52dM
increase itk value, and then decrease, i.e. must cross the
AH™" in between. In consequence, the Aldannot touch the

X[7+arcco$—1—4E)]

center of BC earlier than the null singularity does. Similarly, 1 M(3+2E) dE dtg
the AH™ cannot touch the center of BB later than the null - =J1+2E+ —/———— —+ —
singularity does. E 2E%2J1+2EdM dM

_ o (3.27
3. AH™ in the parabolic limit
A shell of parabolic worldlines occurs at the boundaryand Eq.(3.14 applies with¢=—1. The special cases all
between elliptic and hyperbolic regions, whefe-0, but  follow in the same way. Near an origin, we again find nonu-
E’'#0 and M>0. From Egs.(3.17), (3.18, (2.9, (3.20 nique behavior, one of the possibilities this time being light

and(3.14 with €=+1, we see that rays escaping the crunch atbefore AH" forms. At a regu-
lar extremum wher& = —1/2, ya,+— 7 and AH" crosses
70 (3.258  AH™. In the parabolic limit,ay+—0, tc—tay+—4M/3,
and
4M
tan-"le g7y (3.250 dtap+ 4 4M dE dtc
—o 2t T o T (3.283

dte 1 4M dE dic

(3.250 §AH+E‘> -5t

dt - . 4_4M dE 4
-0 3 5 dM dM’

dM E-~03 5 dv dM

(3.28b

= 1,4M dE _dtg
B 20 737 5 am v (3.25¢ wheretc is given by Eqs(2.9) and(2.8).

so AH™ never touches the bang here, despjtbeing zero. C. Apparent horizons in parabolic regions

The divergence of the worldline lifetim@ suggests that ei- The corresponding results in an expandig 0, E'=0
ther the bang time or the crunch time recedes to infinity, a$ T model follow from Sec. Ill B Jor directly from Eq.(2.5)
would be expected in a hyperbolic region. There is in fact avith R=2M]. In particular Eqs(3.250 and(3.25¢ become
third possibility, as there is no reason why both times should

not diverge. Indeed, an asymptotically flat model is achieved thH*_ 4  dtg
==+ 5 (3.293

M 3 dM
“Elliptic and parabolic regions are not possible fdr=0. SAnother example of this kind will be discussed in Sec. Il F.
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_ 1 dtg

BAH—Z—g—d—M. (3296

Despite the no shell crossing conditiotgddM <0, AH™
may still exhibit all possible behaviors of E¢3.15 with
“outgoing” and “incoming” interchanged. In a collapsing
parabolic model, time reversed results apply.

t=now

D. Locating apparent horizons in hyperbolic regions

Using the same methods as for expanding elliptic regions, _ :
we find the behavior of the AH in expanding hyperbolic
regions is qualitatively the same. There is of course only one ‘ : :
AH, no maximum expansion, and loci whee=—1/2 are ! center Ms! Mbh |
not possible. But the results for origins and for the parabolic 't M=0) : ;
limit both carry over. Collapsing hyperbolic regions are es- i
sentially like collapsing elliptic regions.

E. Locating the event horizon T o

In general, locating the EH involves integrating E8.3), I
which cannot be done analytically becatSeis not a simple time
expression. In addition, we must find the last outgoing ray to
escape the crunch, or the first incoming ray to avoid the mass
bang. For a particular model, EHis located numerically ban‘g‘r\\
using a compactified coordinate representation of the space-

time in Sec. Il F 3.
FIG. 1. Evolution leading to a black hole in ti&Ee<0 LT model

of Egs.(3.30 and (3.3)). The final state is defined at the instant
=t,=now. Worldlines of dust particles are vertical straight lines,

We shall illustrate several properties of the LT model andeach has a constant mass-coordinate. Intersections of the line
of its apparent horizons on a simple example. In the presentt, with the lines representing the Big Crunch and the future ap-
subsection, we will use this model with unrealistic parameteparent horizon determine the mas#és andMg,, respectively.
values, chosen in such a way that all the figures are easily

F. An illustration—A simple recollapsing model

readable. Later, in Sec. IV, we will use the same model for 1/ 27M |23
modelling a galaxy with a black hole at the center, with E(M):_i(t 3 )
parameters chosen to fit observational data. c 'B
2\ 1/3 2/3
1. Definition - _(W_ M ) (3.32
2] (aM®+bM2+Ty)*

We take anE<0 LT model with a regular center, whose

Big Bang functiontg(M) is
Note that asM —o, we havetg— —», tc—+o and E

—0. Hence, the space contains infinite mass and has infinite
tg(M)=—bM?+tg,, (3.30 volume. Unlike in the Friedmann models, positive space cur-
vature does not imply finite volume; this has been known
since long ag926,38§|.
and whose Big Crunch function is
2. Description

te(M)=aM3+Ty+tgg, (3.3) The main features of this model are shown in Fig. 1. Note
that the AH" first appears not at the center, but at a finite
distance from the center, where the functign+(M) has its
where the parametél, is the lifetime of the central world- minimum, and at a timé,<t(0).
line whereM =0. The numerical values of the parameters At all times after the crunch first formd>t-(0), the
used in the figures will ba=2x10%, b=200, tgo=5, T, massM g already swallowed up by the singularity is neces-
=0.05. Their values were chosen so as to make the figuresarily smaller than the madd gy that disappeared into the
readable and illustrative, at this point they are unrelated téAH". So for an object in which the black hole already exists,
any astrophysical quantities. Sintet; at =2, we find  the timet=now must be taken aftdys and in Fig. 1 it is
from Eq.(2.4) also greater thain:-(0). ThemassMg cannot even be esti-
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mated by astronomical methods.

The situation is similar, but reversed in time, for the Big
Bang singularity and the AH.

The evolution of our model can be visualized more
graphically in a 3D diagran(Fig. 2), which shows the value radius
of the areal radiuR at each timet and each value oM.
Figure 3 shows the “topographic map” of the surface from
Fig. 2. It contains contou?sof constantR (the thinner
curves inscribed into Fig. 1(The other curves are outgoing
radial null geodesics, and we shall discuss them further be-
low.)

Remembering that in theeM diagram the slopes of the
incoming/outgoing radial light rays are each other’s mirror
images about vertical lines, it is evident from Fig. 3 that
AH™* are spacelike everywhere except possibly in a neigh- fime
borhood of the central linM =0 and at future null infinity. g{n
From Eqs(3.32 and(3.30 we havee=8/3 andc=2 in Eq. ass
(3.24), so we findBy-—1 at the origin. Similarly by Eq.
(3.3) we havec=3, andBuy+—1. Therefore AH are
both spacelike at the origin too.

Figure 3 also shows several outgoing radial null geode- |G, 2. 3D graph of the black hole formation process from Fig.
sics. Each geodesic has a vertical tangent at the center. ThiSthe areal radius as a function b andt. Each shell of constant
is a consequence of usirg as the radial coordinate. Since mass evolves in a plane given M= const. It starts aR=0, then
dt/dM =9R/dM/\/1+2E on each geodesic anBxM?3  gets out of the past apparent horizon AHhen reaches maximum
close to the center, sat/diM <M~ and d¢/dM —~ asM R, then falls into the future apparent horizon AHand finally hits
— 0. Each geodesic proceeds to higher valueR béfore it  the Big Crunch. Note that the surface intersects fe0 plane
meets the apparent horizon AHAt AH™, it is tangent to an  perpendicularly all along th®=0 contour. The apparent horizons
R=const Contour, then proceeds toward smakevalues. are intersections of thR(M,t) surface with the pIanR=2M.
The future event horizon consists of those radial null geodetHence, it is easy to figure out how they would look in te0
sics that approach the AHasymptotically. In the figure, it Friedmann model, wheretg=const, tc=const and all the
lies between the geodesics no. 5 and 6, counted from thB(!)m=constCUrves are identicd.

lower right corner of the figure; we shall discuss its location . . ) )
in more detail in Sec. lll F 3. shift and blueshift were first made by Szeke[89]. Like-

Geodesic no. 5 from the lower right emanates from thé/vis_;e, the geodesics meet the Big Crunch with their tangents
centerM =0, where the Big Bang function has a local maxi- P€ing vertical.
mum. The tangent to the geodesic is horizontal there. This BY the time the crunch forms at=t¢(0), thefuture ap-

means that the observer receiving it sees the light infinitefParent horizon already exis{see Figs. 1 and)3The shells
redshifted, as in the Friedmann models. Geodesics to th@f Progressively greater values bffirst go through the AH,

right of this one all begin with a vertical tangent, which and then hit the singularity at=tc(M). We assume that at

implies an infinite blueshift. These observations about redthe timet=t,, the singularity has already accumulated the
massM g, while the mass hidden inside the apparent horizon

at the same time M g,>Mg. Both of them grow with time,
SFigure 3 can be used to explain some properties of shell crosUt at fixedt; they are constants. From the definitionshog

ings. Since the worldlines of the dust source are condtatines ~ andMagy it follows that
(i.e. vertical straight lings they can never intersect intaM dia-

gram, even at shell crossings. A shell crossing would show in this to=tc(Mg)=tan+(Mpp). (3.33
picture as a point where a const&eontour has a horizontal tan-
gent.(No such points exist in this case, because the functions of the 3. Location of the event horizon

LT model had been chosen appropriatelyjhe figure graphically . . . .
explains why, for avoiding shell crossings away from a neck or Now we shall discuss the location of the event horizon in

belly, it is necessary that the Big Bang is a decreasing function 0¥he spacetime model considered in Sec. Il F It will follow
M, and the Big Crunch is an increasing functior\if The center of ~ that, even though the model has a rather simple geometry,
symmetry, the Big Crunch and the Big Bang together form Rhe this is quite a complicated te_lsk th_at requires complete k_n(_)wl-
=0 contour. Contours of small constaRt must have a similar €dge of the whole spacetime, including the null infinity.
shape. Hence, if either of the two conditions were not fulfilled, HeNce, in a real Universe, where our knowledge is limited to
either the upper branch or the lower branch of some contours woul@ relatively small neighborhood of our past light cone and
be a nonmonotonic function, whose derivativeMywould change ~ our past worldline, and the knowledge is mostly incomplete
sign somewhere. At the changeover points, the tangents to the coand imprecise, the event horizon simply cannot be located by
tours would be horizontal, and these would be the shell crossingsastronomical observations.
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FIG. 4. The spacetime diagram of Fig. 1 compactified according
to Eq.(3.34). The whole region shown in Fig. 1 is squeezed into the
point where the three lines meet at thaxis. The worldlines of the

FIG. 3. Contours of constaf-value (thinner lineg and outgo-  dust source would still be vertical straight lines here. The upper
ing radial null geodesics inscribed into the spacetime diagram o€urve is the future apparent horizon and the Big Crunch singularity,
Fig. 1. TheR-values on consecutive contours differ by always thethey seem to coincide at the scale of this picture. The lower curve is
same amount. the past apparent horizon and the Big Bang singularity, again coin-

ciding only spuriously. The horizontal straight line is the now

The future event horizon is formed by those null geode-ime. Inset: a closeup view of the imafje the coordinatesy, 7)]
sics that fall into the future apparent horizon “as late asof the region shown in Fig. 1. The thicker line is the event horizon.
possib|e,” i.e. approach it asymptotica”y_ Hence’ in order tolt does not really hit the central pOint of the Blg Bang; the apparent
locate the event horizon, we must issue null geodesics bacleoincidence is just an artifact of the scale. More explanation in the
ward in time from the “future end point” of the AH. This ~ text.
cannot be done in theM,t) coordinates used so far because
the spacetime and the AHare infinite. Hence, we must first the future apparent horizon runs so close to it that it seems to
compactify the spacetime. The most convenient compactificoincide with it” The horizontal line is the=now line. The
cation for ConSidering null geOdeSiCS at a null |nf|n|ty iS, lower curve is the B|g Bang and the past apparent horizon,
theoretically, a Penrose transform because it spreads the nihain running one on top of the other. The point ontfexis
infinities into finite sets. However, in order to find a Penroseyhere the three lines meet is the image of khe=0 line of
transformation, one must first choose null coordinates, and ipig. 1, squeezed here into a point because of the scale of this
the LT model this has so far proven to be an impossible taslzﬁgure_
see Refs[40,41]. Hence, we will use a less convenient com- ~ The theoretical method to locate the future event horizon
pactification that will squeeze the null infinities into single jn Fig. 4 would now be to run a radial null geodesic back-

points in the 2-dimensiondtime-radiug spacetime diagram. \yard in time from the point &, 7) = (/2,7/2), i.e. from the
It is provided by the transformation

M=tan(u), t=tan7). (3.34 "As can be verified from Eq(3.26), the time-difference between
the crunch and the AHgoes to infinity wherM — . However, the
In these coordinates, the*x R} space of Figs. 1-3 be- ratio of this time-difference to the crunchtime goes to zero, which
comes the finit¢ — 7/2,77/2] X[ 0,77/2] rectangle, see Fig. 4. explains why the two curves in Fig. 4 meet at the image of the
The upper curve in the figure is the Big Crunch singularity;infinity. The same is true for the Big Bang and the AH
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5.14 T T - T ' ' - Finally, the event horizon had to be transformed back to
the (M,t)-coordinates and written into the frame of Figs.
1-3. This is done in Fig. 5. As stated earlier, the event hori-
zon is located between the geodesics no. 5 and 6 from the
right in Fig. 3. By accidentcaused by our choice of numeri-
51F crunc cal values in this examplethe EH hits the center very close
to the central point of the Big Bang, but does not coincide
with it.
508 - AH T This whole construction should make it evident that there
is no chance to locate the event horizon by astronomical
506 t=now observations, even approximately. It only makes sense, in the
' / observational context, to speak about an upper limit on the
mass inside thapparent horizonThis is why we identified

5.04 - the observed mass of a black hole with the AH in Sec. I¥/ D.
center Ms Mbh
| M=0) IV. THE GALAXY PLUS BLACK HOLE

512 N

FORMATION MODEL

Our aim is to model the formation of a galaxy with a
central black hole, starting from an initial fluctuation at re-

AH- combination. Our model consists of two parts joined together

498 ) time \ across a comoving boundal=Mpgy, with Mgy the esti-
mated present day mass inside the black hole horizon. In the
mass

dl

exterior part, we take existing observational data for the
present day density profile, and the initial fluctuation is made
compatible with CMB observations. For the interior, no ob-
494 . . . . ; . . servational constraints exist, so we propose a couple of pos-

0 0002 0004 0006 0008 001 0012 0014 0016 sible descriptions, as detailed below. These are both LT mod-
els, and represent a collapsing body, and a dense Kruskal-
Szekeres wormhole in the sense[d7].

o

o

=3
1

FIG. 5. The event horizofthicker ling written into the frame of
Fig. 1. Its intersection with thé1 =0 axis does not coincide with
the central point of the Big Bang, this is only an illusion created by
the scale. A. The black hole interior

Astronomical observations do not say anything about that

image of the future end of the AH However, for the most Portion of galactic matter that had already fallen inside the
part, the AH" runs so close to the crunch singularity, and the@Pparent horizon by the time the electromagnetic signal that
geodesics intersecting the AHare SO near'y tangent to would reach the observer was emitted. What can be seen in
AH*, that numerical instabilities crash any such geodesidhe sky are only electromagnetic waves emitted by objects
into the singularity instantly, even if the initial point is cho- that were still outside the AH at the time of emission. Con-
sen well away from €/2,7/2). This happens all the way sequently, we are not constrained in any way in choosing a
down tou=0.5 at single precision and all the way down to model for the matter in the interior of a black hole, except for
n=1.1 at double precision. We did succeed, with doublethe need to match it smoothly to a galaxy model.

precision, only atu=1.0, and a null geodesic could be The term “black hole” is used in two distinct ways.
traced from there to the center at=0. At the scale of Fig. Firstly, there is the Schwarzschild-Kruskal-Szekeres black
4, this whole geodesic seems to coincide with the crunch anHole, which has the topology of two universes joined by a
the AH". However, it is well visible if one closes in on the temporary wormhole, and begins its life as a white hole. This
image of the area shown in Fig. 1, the closeup is shown ifvas generalized to a matter-filled version[#V]. Secondly,

the inset. ~there is the black hole formed by the collapse of a massive
Actually, to make sure that we located the event horizon

with an acceptable precision, we ran three different null geo

desics backward in time; one from the pojat=1.0.;7= 7o 8Note that this model in which the event horizon has been found,
=7a+(1.0) right on the apParem hprlzon, another one fromWiII actually only be used for the interior of our galaxy model—i.e.
u=1.0;7=7;, wherer, was in the middle between the AH  for that part of the galaxy that is invisible to outside observers
and the crunch singularity, and the third one fram=1.07  pecause of its proximity to the black hole horizon. The model of the
= 75, wherer, was below the AH, with the time-difference yisible part of the galaxy will be different, and to locate the event
To— T,=T71— 7o. All three ran so close to each other that horizon there, the whole constructigimtegrating a null geodesic
they actually coalesced along the way and reached the centgsickward in time from future null infinitywould have to be re-

as one curve; their coincidence in the inset in Fig. 4 is thupeated. But, of course, the model of a single galaxy does not extend
not an artifact of scale, but actual coincidence at double preto infinity. Hence, it hardly makes sense to even speak of an event
cision. horizon in this context.
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FIG. 6. The LT model for the wormhole interior of Sec. IV C with parame(Br8), in geometric units. The second graph shows the neck
of the wormhole magnified about 1€@mes. Only on this scale are the apparent horizons distinguishable from the bang and crunch. The bang
does actually curve downwards, but its variation is much less than that of the crunch. The neck is at the left where the mass reaches a
minimum (M ,,=Mg). The apparent horizons cross in the neck at the moment of maximum expansion. The second sheet is not shown. It
could be a mirror image of this sheet, or it could be quite different. The boundary with the exterior (@odgl,=0.03) is defined to be
wheret,=t,, . Recombinatiort, is indistinguishable from the bang in the first graph, and far to the future in the second.

body, which has an ordinary topology without a wormhole.we might already be inside the event horizon and will never
Only in their late stagegafter the closure of the wormhgle see any signature of it. Hence, the horizons whose signatures
do these two become essentially the same. Both of these cave have any chance to sékke disappearance of matter
be reproduced by an LT model, and we consider them in turfrom sight, or a large mass being contained in a small vol-
below. ume are apparent horizons-they are local entities, detect-

At this point, we must make a digression about the relazple in principle at any instariailthough with the difficulty
tion between model black holes such as those considerggantioned in pointi)]. Even in our simple model considered
here, and real collapsed objects that are called “black holesj, the previous section, it was rather difficult to determine
by astronomers. There are two important points to be rememne nosition of the event horizon, and it could be done only
bered: _ , numerically.

(i) The matter proceeding toward a black hole disappears |, the following we will identify the estimated black hole

from the field of view of any real observer before it hits the 1,455 obtained by fitting a model to present day observa-
horizon, whatever horizon is meansee below For ex-  iong with Mg, the mass within the apparent horizon at
ample, the event horizon is the boundary of the field of view;j,e t, [see Eq(3.33].

for an observer at future null infinity, i.e. one who is infi-

nitely distant from the black hole and infinitely far into the

future. Therefore, the observationally determined “mass of a

black hole” is in fact only an upper limit of the mass that has  For this example of the interior, we use the model of Sec.

actually fallen within the horizon; the latter can never belll F, but with different values of the parameters. We will

measured in realityModelsof black holes allow us te@al-  assume thatc(M) is an increasing function, to be able to

culate better estimates of that mass, and even if the arithcreate a black hole, and to prevent shell crossings we assume

metic difference between a model calculation and an obsetg(M)<0 in addition. The functions have already been cho-

vational limit is small, it is important to understand the sen so that the origin conditions are satisfied.

conceptual difference. To assure a smooth match to the exterior model, we re-
(i) It is incorrect to speak about the event horizon in thequire the continuity of the LT arbitrary functions and their

context of observations. We may know where the event hoderivatives at M= Mgy, . Given Egs.(3.30 and(3.32, we

rizon is only in amodel In practice, we would have to be

able to take into account the future fate of every piece of —

matter, including those pieces that have been outside our®The Darmois junction conditions for matching an LT model to

field of view up to now—an obviously impossible task. itself across a comovindconstantr) surface only require the

Worse still, if the real Universe is to recollapse in the future,matching ofE andtg at the sameé.

B. A collapsed body
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solve for the constants, b, T andtgy, so thatk, tg, dE/dM
and dg/dM are matched at the boundary:

M dtg

tsoz[ts_?m , (4.13

M=Mgy

1 dtg
- ‘[mm : (4.15

M=Mgy,

M dty  4mM 27M2  dE
I 6 dM 3(—2E)3/2 (—2E)5/2 dMm

)
M=Mgy

(4.10

3M2dM - 3M2(—2E)%?

21 dE

+—M(—2E)5/2W (4.10

M=Mgy

PHYSICAL REVIEW D 69, 043502 (2004

C. Awormhole

Since we have no way of knowing anything about the
matter and spacetime interior Mgy, we can equally well
fit in a dust-filled wormhole of the Kruskal-Szekeres type,
constructed with the LT metric. The essential requirement is
that, at the middle of the wormhol®| must have a minimum
value M i, and E(M ;i) = —1/2. The minimum lifetime
(time from past to future singularityof the wormhole is then
27 M in- We choose the following functions:

tg=tgo— b(M—Myn)?, (4.2a
E=—y +alM=Mpyp).
(4.2b

From these, the conditions for matching to an exterior at
some giverM value are

M min= MZdE+M 1+\/1+2E+|\/|2 dE\* 4.3

min— W — W . , (3
=MpH

_|1eE_ 1 1+\/1 2E+M? o i 4.3b

lzav am| TN G ) (430
—VIBH

b=| 2o /Hom M—dE+\/1+2E+M2(—dE 2 4.3

~ldm dm — M/ | (4.39

=MgH
too=1 tat 2 Lo M—dE+\/1+2E+M2 & )* 4.3
BOT|"BT 2 dM | dM dM/ ) (439
—VIBH

This model was chosen for simplicity, and so is not veryblack hole[42], and the density profile for its outer part had

flexible. The matching fixes the value bf,,,, which deter-

mines the lifetime of the wormhole. A model with more pa-
rameters would allow the wormhole lifetime to be a free
parameter. The apparent horizons and singularities for this

model with the parameter$.2) used below are illustrated in
Fig. 6.

D. The exterior galaxy model

1. The final density profile

As our example for the density profile of the final state,
we choose the galaxy M87. It is believed to contain a large D =

been proposed some time agt8]:

p(S)=pol(1+bs?+cs*+dsd)", (4.4

wherepy=1.0x10" % g/cn?, b=0.9724,c¢=3.810<10 3,
d=2.753<10 8, n=0.59. The distance from the centsris
measured in arcmin, i.e. it is dimensionless, and is related to
the actual distance by

r 21600
S=— —:=r9,

(4.5
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0.01 - - - - T — and we make it singular at=0 by adding a constaiil g to
8(x) = M(r) (this is the samé s as defined before—the mass that
0.009 b 4 had already fallen into the singularity @t so far this is still
an arbitrary constajit
008 [ - 12
000 M(r)=Ms+ 5 mpor¥%5~*2 4.9
0.007 7 Hence,r =[5(M—Mg) 6"¥12mp,]%®, and

- ] p(M)=(127/5)*5p 56 125 M —Mg) "5 (4.9
In principle, the value op near toM = Mgy should be mea-
sureable, but in this regime the difference between the New-
tonian and LT definitions of density becomes too pronounced
(because of the nonflat geometryio infer p(Mgy) in a
. sensible way, the results of observations should be consis-
tently reinterpreted within the LT scheme, and such results
are not, and will not be available for a long time. Conse-
quently, we will have to give up on this bit of information.
From Eq.(2.17), we find the correspondin@(M) via
- R3=(3/4w) fmsdx/p(x), which is

0.005 R q

0.004
0.003
0.002

5 3/5
0.001 . R(M)= ( —) 5™(M—Mg)®® (4.10

12mp,

——— = Now we can determine the constavity by the requirement

0

0 B4 thatR=2M atM=Mpgy, i.e.

FIG. 7. Comparison of the profilet.4) [marked ag (x)] with 5 a5
Eqg. (4.6) [marked asg(x)]. The p on the vertical axis is mass ( ) S5 M an— Ma)35=2M 4.1
density in units of 1022 g/cn?, thex on the horizontal axis is the 12mpg (Men s BH- (4.19
distance from the center in arc minutes, just as in R43]. The .
values of parameters are given below E4). From here we find
where D is the distance from the Sun to the galax@f Mo Moo 127TP0(2M )53 (4.12
course, no galaxy and no real black hole is spherically sym- STUBH g 543 BRI :

metric, so we cannot model any actual galaxy with the LT

solution. However, we wish to make our illustrative exampleit follows, as it should, tham g<<Mpg,, . However, this result
as close to reality as possible, and this is why we stick to afnakes sense only if thMg thus defined is positive. The
actual objec). For our purposes, we need density expresse¢onditionM >0 is equivalent to

as a function of mass, and a profile that goes to infinity at

r—0, to allow for the singularity inside the black hdfe. (24 32 2Mgh

52

The mass profile corresponding to E4.4) is not an elemen- T 7Po <1 (4.13
tary function. However, it turns out that the following very
simple profile is a close approximation to E@.5) in the

region considered in Ref43] (see Fig. T:

For checking this inequality, all quantities have to be ex-
pressed in geometric units. The black hole in M87 is be-
B s lieved to have masMgy=3X10°M, [44,45, and its dis-
p(r)=pol(6r)™, (46 tance from the Sun i®=43x 1¢f light years. In geometric
units, with 1 year31 557 600 s, c=3x10° cm/s, G
with the same value gf,. The corresponding mass distribu- =6.6726<10 8 cm®/gs and My=1.989<10*% g, this
tion is makes Mgy =4.424< 10" cm, §=5.067X10 22cm %, pg
=0.741x 10 >3 cm 2, and the left-hand side of E¢4.13

N 12 comes out to be 4.0%510 2%, which is very safely within
5/3 o—4/3
M(r)= 5 mpor>>6" ™, (4.7 the limit.

2. The initial fluctuation

%Even though we will use the interior model near the center, this In order to define a model uniquely, we only need one
requirement assists in joining interior and exterior smoothly. more profile for the regioM =Mz, e.g. a density or ve-

043502-13



A. KRASINSKI AND C. HELLABY PHYSICAL REVIEW D 69, 043502 (2004

locity profile att=t;<t, or a specific choice oE(M) or a=—4.7475< 108, b=0.012409,
tg(M). Apart from the density profile at=t,, there are no
other observational constraints in the regidr=M g —the tso=0.0017385, M =2.0562<10 L (5.2

time by which galaxies started forming is not well known,

and presumably different for each galaxy, nothing is known S )

about the initial density or velocity distribution in the proto- LUSINg the + sign in Eq. (4.2) gives M y,=0.06>Mgy
galaxy at that time. =0.03, which is not acceptabldrigures 10 and 11 show the

Since the only quantities that are to some degree COjg\rbitrary functions and the behavior of the combined model

strained by the observations are the density and velocity pr tor :.h's sc?garlo:tBec3usezl th.’i extterlors %r.e |ctj-3nt|calt, t.r&e fluc-
files at the recombination epoch, it will be most natural to uations of density and velocity at recombinatiag) (outside

use these fot.. Even so. there is a broblem: no numerical Mgy are again well within CMB limits. The wormhole mass
L ' b ) (minimum in M) is M,;,=2.0562M, and the future sin-

data are available for amplitudes of the temperature fluctua:

: 2 gularity first forms atT,=6.3613< 10 ° sec after the past
tions of the CMB radiation at such small scales. We Conseéingularity. (The future and past black hole singularities are

guently chose a zero velocity fluctuation for one case and fhe extension of the crunch and bang into the middle of the
zero density fluctuation for another. However it turned OUt\NormhoIe) The very short lifetime of the wormhole is a
that the latter was not suitable, since the solution required Bonsequence of the need fBrto go from —1/2 all the way
collapsing hyperbolic region nedgy, in the exterior model. 5 19 —1.7669< 10" ° and arrive there with a negative gra-
dient. [Even at constanM, Eg. (2.8) implies T(Mgy)/To
>10', and the nonzero change M only increases this
V. NUMERICAL EVOLUTION OF THE MODELS factor)
Th itten f Land |1 dapted t Though models could no doubt be found with quite dif-
' N€ programs writien for papers 1 and [l were adapted 1qq ot \wormhole lifetimes, this example very effectively
faC|I_|tate this two-step model construction. F_lrst the eXter'orhighlights the fact that the nature of the central black hole is
profiles were used as input to solve numerically B(M)  essentially unknown. By recombinatiot,), this black hole
and tg(M) for Mg <=M=<1. The values oft andtg and a5 accretdd 246200M, within the apparent horizon,

their derivatives aMg, were extracted, and the parametersyhich is only 0.0048586 AU across. Any effect this might
of the interior model calculated from them. Then the fUnC'have on the CMB will not be observable for a |ong time.

tions E andtg were numerically extended into the interior
model, down toM=0 or M=M,,,. From these data, the
model evolution was reconstructed using existing programs.

Our first model uses the final density profile of Sec. VD \we have demonstrated the nonlinear evolution of an ini-
for the galaxy at time,=14 Gyr, and a flat initial velocity tial density perturbation at recombination into a galaxy with
profile at timet,;=10° y, both exterior taVig. The interior  a central black hole at the present day, using the spherically
of Mgy is a black hole formed by collapse, as described bysymmetric LT model. This is an application of the methods
Egs. (3.30 and (3.32, with parameters determined by the developed in papers | and Il, in which an initial and a final
matching (4.1). Geometric units were chosen such thatstate—each a density profile or a velocity profile—can be
10' M, is the mass unit. In these units, the parameters argsed to derive the arbitrary functions of an LT model that

evolves from one to the other. To correctly describe this pro-
cess, a relativistic approach is necessary because Newtonian
a=9.0662<10* b=0.0124009, models are inadequate for the description of black holes and
their use inevitably leads to conceptual inconsistencies and
contradictions. The LT model is ideal for this purpose, as it
has both Schwarzschild and Robertson-Walker limits, and a
single model can describe a cosmology containing a black
hole.

Th i bit functi d the behavi fth For the final state at,=14x 10° years=today, we chose
€ resufting arbitrary functions an € behavior of €y, model of the mass distribution in the M87 galaxy used in

combined model are shown in Figs. 8 and 9. Notice that th@ gy onomical literature, Eq¢4.4) and (4.5). More exactly,
fluctuations of both density and velocity at recombination are, approximated this mass distribution by a more elemen-
well within 3x10°° and 10°“. The black hole singularity  tary function whose values do not differ much in the range of
forms at timeT=13.618 Gyr(sincetgo=2.7126<10"°y nterest, Eq(4.6), so thatp can be calculated as an elemen-
is negligiblg, so it is 400 million years old by today. tary explicit function of the mass within a sphere of radius
Our second model uses the identical exterior, but the inM87 was chosen since it is believed to contain a large black
terior is a full Kruskal-Szekeres type black hole containing ahole around its center, and several of its parameters have
temporary “wormhole,” as described by E¢.2), with pa-
rameters determined by the matchi@g3). The same geo-
metric units were used, and, using the *sign in Eq. (4.3), The mass within the AH &t is found by numerical root finding,
the parameters are using Eq.(3.33 with t; instead oft, and Eq.(3.26.

VI. SUMMARY AND CONCLUSIONS

tgo=0.0017385, T,=8.7279< 10, (5.1
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FIG. 8. The LT model for the formation of a galaxy that develops a central black hole. Shown are the model-defining LT fe&(&4ipns
and tg(M), the p;(M) and b;(M) fluctuations, thep,(M) and b,(M) variations. Theb,(M) variation is zero, and only very small
numerical error shows. Note that the graphs have been clipped &®)#@( logb)=15 and logf)=—5 (geometric units The “EC”
indicates the range considered is an elliptic region that is collapsirtg. by

been measured or calculated. The initial fluctuation, at thetate. The resulting evolution of the LT model was found to
recombination epocht{=10° years), was chosen to be con- be entirely reasonable—the implied initial density amplitude
sistent with limits from the CMB, even though the smallestwas well within the observationally allowed limit of 16,
scales currently observable are much larger than those rednd the model was elliptic and already recollapsing bin
evant to galaxy formation. We assumed zero initial velocitythe whole range of interest. Assuming the presence of a cen-
perturbation, i.e. a Friedmannian velocity profile. This wastral black hole today, these profiles were taken to be valid for
sufficient for a unique numerical identification of an LT the exterior of the horizon, and a black hole model was
model that evolves the given initial state into the given finalsmoothly joined on as the interior.
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¢==+1 for AH™ and M is the sum of rest masses of par-
ticles within ther-sphere. For the Friedmann models, the AH
is timelike everywhere.

The event horizonEH) does not always exist; for ex-
ample it is absent in thd =0 Friedmann models. When it
exists, the EH (EH™) is the collection of those future-
directed outgoing(ingoing radial null geodesics that ap-
proach the AH (AH™) asymptotically ast— +o (t
— —o). The equation of null geodesics is in general intrac-
table by exact methods, and so locating the EH inevitably
requires numerical integration. This can only be done case by
case, for specific forms of the LT functiolgr) andtg(r).

With a space of infinite volume, the numerical identification
of the EH can most easily be done after the spacetime is
compactified so that the futuras) edge of the AH
(AH™) has finite time and radial coordinates.

Then we calculated all the characteristic quantities of a
black hole(the past and future singularity, both Ald, radial
null geodesics and the EH in a simple illustrative toy
model withE<<0 and displayed them in spacetime diagrams.
The model is recollapsing, has infinite total mass and vol-
ume, and a duration between bang and crunch that is finite at
every finite mass, but goes to infinity 8— o~ andE— 0.

Since no observational data exigind, presumably, will
not exist for a long timgconcerning the interior of the ho-
rizon, two distinct forms of this central black hole—both LT
models—were considered: firstly a condensation that col-
lapses to a singularity, and secondly a full Schwarzschild-

FIG. 9. The evolution of the LT model for the formation of a Kruskal-Szekeres type wormhole topology. The parameters
galaxy that develops a central black hole. Shown are the evolutioRT these models were determined by matching their LT func-
of R(t,M) and ofp(t,M) for run ViOpf30. In theR(t,M) graph,  tions to those of the exterior galaxy-forming model. In the

the origin R(t,0)=0 is on the left, and expansion to a maximum case of collapse to a black hole, the central singularit_y is
occurs as time increases towards the “north-west.” At the initial =4 10° years old by now. For the wormhole case, the final

time, t;=recombinationR>0 except at the origin. In the(t,M) singularity forms almost immediately after the Big Bang
graph the view has been rotated by 180° relative toRitgM) (6.36x 10 ° sec), and is by today about as old as the matter
graph for clarity, so that the origin is on the right and time increasesn the galaxy. In this model, the black hole accretes mass
towards the “south-east.” By,=today, the innermost region has very quickly into a very small volume, so that by recombi-
collapsed to a black hole of masx30® M, . Note that the graphs nation it had swallowed up 246 380 in a region of di-
have been clipped at l0g(=0 and logp)=—5 (geometric units ameter 0.00486 AU. However, all the numbers are strongly
model-dependent, and there are no reliable observational
constraints for model selection. The initial black hole is too
A theoretical model of a black hole must necessar"y in-Sma” to have an observable effect on the CMB. Therefore
clude the accompanying entities: the final singularity, the apWe find both types of black hole are possible. Perhaps small
parent horizon anéwhenever appropriat¢he event horizon. black holes, that a\(0|d evaporation by rapid accretion, may
We first discussed the general properties of the apparent h§€€d galaxy formation.
rizon. It must necessarily exist in every LT model. The future _In fact, existing observgtlonal data do not have the reso-
apparent horizon AH exists in every collapsing model, the lution to constram the initial data for our modeI: For ex-
past apparent horizon AH exists in every expanding LT ample, as shown in paper |, the perturbations of isotropy of

. . the CMB temperature corresponding to single galaxies
model; the expanding and recollapsing model has both AthouId have thpe angular size ;4xlgfg degreges \?vhile

that can mtt_arsect each other only if there exists a neck %he most precise current measurements have a resolution of
belly at whichR"'=M'=E"=tg=0, E=—1/2. In every oo
case, the AH is given by the equati®&2M that implicitly Then, in the vicinity of the apparent horizon, the geom-
defines a function=t,u(r). We discussed whether the AH etry of spacetime becomes measureably non-Minkowskian,
can be timelike, null or spacelike while going in or out. It while all the observational data, available on mass distribu-
turned out that only two cases are excluded: outgoing timetion within galaxies were calculated by purely Euclidean re-
like for AH* and ingoing timelike for AH. The condition  duction methods. We also stressed that what can be inferred
for the AH to be nontimelike i€dt,y/dr<dM/dr, where from observations is only the upper limit of the mass inside

In(rho)
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FIG. 10. The LT model for the formation of a galaxy around a preexisting central black hole. Shown are the model-defining LT functions
E(M) andtg(M), thep,(M) andb;(M) fluctuations, thep,(M) andb,(M) variations[Again theb,(M) variation is pure numerical errgr.
Note that the graphs have been clipped at®g(, logb)=15 and logp)=—5 (geometric units

the apparent horizon at a given time. It does not make sensaodel is the lack of rotation, which slows collapse and sta-
to even speak of an event horizon in the observational corbilizes structures. Thus the model is good for much of the

text.

evolution into the nonlinear regime, but becomes less realis-

In view of the paucity of data, our approach was the firsttic as collapse sets in.
exploratory step into an uncharted territory rather than an Our results show that the LT model is a very useful tool

actual model to be compared with observations.

for this kind of investigation. However, for its parameters to

The main limitation of the spherically symmetric LT be fine-tuned to results of observations, the observational
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M=Mgr3, 2E=-—kr? tg=const, R=rS(t), (Al)

My>0 andk>0 being arbitrary constants, arg{t) being
the scale factor. The apparent horizon, whBre2M, has
the equation

S(t)=2Mr?, (A2)

so by Egs(3.13), (3.3) and(3.14) we obtain

2M’
B=1- =-2, (A3)
RI
ti=j S (A4)
n~ 1—kr?’

4
th = —==2€j (1)) pany*-
AH* 1kr? J(ty) A

In(rho)

(A5)

Hence, in the Friedmann limit both branches of the AH are
entirely timelike(outgoing in the expansion phase, incoming
in the collapse phageand monotonic withr. The derivatives
thy. andt, seem to become infinite at=1/\k. This is a
coordinate effect. As seen from the metric

dr?
+r2dw? |,
kr?

FIG. 11. The evolution of the LT model for the formation of a 1-
galaxy around a preexisting central black hole. Shown are the evo-

lutions of R(t,M) and of p(t,M) for run ViOpf30. In the R(t,M) there is a coordinate singularity it 1/\k. Both derivatives
graph, on the left there is no origin, rather a wormhole with a tinybecome finite when the coordinates are changed so that e.g.
lifetime recollapses to zero size. The thin flat wedge along the left is = sinr’. The quantityB in Eq. (A3) does not depend on the
the growing singularity(The apparent ripples are small numerical choice ofr.

variations overemphasized by the graphics programthe p(t,M) For a completely general Robertson-Walker mo@e.

graph, again with the view rotated by 180° relative to R@,M)  not justp=0), repeating the whole reasoning, we obtain for
graph, the density diverges towards the singularity, and the flaghe slope

wedge represents the part that has already collapseth-Bypday,

dszzdtz—Sz(t)(

the black hole mass has increased t& ®° M. Note that the ('SZ_H()
graphs have been clipped at 180 and logp)=—5 (geometric = —, (AB)
units). SS

which, after making use of thA =0 Einstein equations, is

. . equivalent to
data would have to be reinterpreted against the backgroundq

of the LT geometries. —2p
B= 357, (A7)
ACKNOWLEDGMENT This makes the AHs timelike for 1£8p/p>—1/3, but

spacelike forp/p>1/3, or for p/p<—1. (Note thatB=0
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Einstein equations is ordinary matter known from a labora-
APPENDIX: THE FRIEDMANN LIMIT tory (no cosmological constant or other self-accelerating me-

dium), we will have S<0. Consequently, by EqA6), B
We briefly specialize the above results to the Friedmann<0, which means that the AH will be outgoing in the ex-
limit, where pansion phase and incoming in the collapse phase.
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