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Formation of a galaxy with a central black hole in the Lemaı̂tre-Tolman model
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We construct two models of the formation of a galaxy with a central black hole, starting from a small initial
fluctuation at recombination. This is an application of previously developed methods to find a Lemaıˆtre-Tolman
model that evolves from a given initial density or velocity profile to a given final density profile. We show that
the black hole itself could be either a collapsed object, or a nonvacuum generalization of a full Schwarzschild-
Kruskal-Szekeres wormhole. Particular attention is paid to the black hole’s apparent and event horizons.
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I. AIM AND MOTIVATION

It has become generally accepted that most large gala
contain central black holes~e.g. @1–19#!. This is due to
mounting evidence for very high luminosities within ve
small radii at the center of our Galaxy and many others
well as high orbital velocities of stars very close to the ce
ter, and is bolstered by observations of radio and optical j
as well as Seyfert galaxies and quasars at large redsh
Since the ‘‘very small’’ radii accessible by current observ
tions are still well outside the horizons of the putative bla
holes, their exact nature, and even their existence, is ope
debate. However, since the mean density inside
horizon of a black hole isrs53c6/32pG3Ms

251.845
31017/(Ms /M ()2 g/cm3, it is difficult to see how black
hole collapse can be avoided above 107 M ( .

The Lemaıˆtre-Tolman~LT! model describes the behavio
of a spherically symmetric dust distribution and has bee
very fruitful source of models of inhomogeneous cosmolo
smaller scale structure formation, and even black holes
naked singularities.

In paper I @20#, we considered the problem of finding
spherically symmetric model that evolved from a given i
tial density profile to a given final density profile. We show
that this can always be done with an LT model, and
developed an alogorithm to find the arbitrary functions
such an LT model from the given profiles. A numerical e
ample produced an Abell cluster from a density fluctuation
recombination.

In paper II@21#, we generalized to finding LT models tha
evolve from a given velocity profile to a given density pr
file, the converse, and also between two velocity profil
Several numerical examples, including the evolution o
void, demonstrated the usefulness of the method.

We now utilize these methods to consider the formation
a galaxy with a central black hole, a task for which the
model is particularly well suited. Although spiral galaxies a
not exactly spherically symmetric, both the core and
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halo—together containing more mass than the disk—
quite close to it, so the LT model is not a bad first appro
mation.

The present state of the galaxy is defined by a mass
tribution that consists of two parts:

~1! The part outside the apparent horizon att2—for which
we use an approximation to the observationally determi
density profile of the M87 galaxy. This part extends inwa
to a sphere of massMBH , whereMBH is the observationally
determined mass of the black hole in the M87 galaxy.

~2! The part inside the apparent horizon att2. Since, for
fundamental reasons, no observational data at all exist
this region apart from the value ofMBH , we were free to
choose any geometry. We chose two examples:

~2a! A simple subcase of the LT model, discussed in S
III F as an illustrative example of properties of horizons.
this model, the black hole does not exist initially and
formed in the course of evolution.

~2b! A preexisting wormhole, also chosen arbitrarily fo
simplicity of the calculations.

The boundary between the ‘‘inside’’ and ‘‘outside’’ a
times other thant2 goes along a comoving mass shell, so th
at t,t2 the apparent horizon resides in the inside part.

For the initial state, att15 @the last scattering of the cos
mic microwave background~CMB! radiation#, no usable ob-
servational data are available either, but hopefully only te
porarily. The expected angular size on the CMB sky o
perturbation that will develop into a single galaxy (0.004
is much smaller than the current best resolution (0.2
Therefore we tried an exactly homogeneous initial dens
and a homogeneous initial velocity. The former turned ou
lead to an unacceptable configuration att2: a collapsing hy-
perbolic model with no Big Bang in the past. Consequen
we settled on the homogeneous initial velocity, which th
implied the amplitude below 1025 for the initial density per-
turbation.

These two states, att1 and t2, uniquely define the LT
model that evolves between them, as shown in paper II.
3D surface graphs of density as a function of mass and t
show that the evolution proceeds without shell crossings,
so the model is acceptable, at least qualitatively.
©2004 The American Physical Society02-1
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II. BASIC PROPERTIES OF THE LEMAI ˆTRE-TOLMAN
MODEL

The Lemaıˆtre-Tolman~LT! model@22,23# is a spherically
symmetric nonstatic solution of the Einstein equations wit
dust source. See@24# for an extensive list of properties an
other work on this model. Its metric is

ds25dt22
~R8!2

112E~r !
dr 2

2R2~ t,r !~dq21sin2qdw2!, ~2.1!

where E(r ) is an arbitrary function of integration,R8
5]R/]r , andR(t,r ) obeys

Ṙ252E1
2M

R
1

L

3
R2, ~2.2!

whereṘ5]R/]t andL is the cosmological constant. Equ
tion ~2.2! is a first integral of the Einstein equations, a
M5M (r ) is another arbitrary function of integration. Th
mass-density is

kr5
2M 8

R2R8
, where k5

8pG

c4
. ~2.3!

In the following, we will assumeL50. Then Eq.~2.2! can
be solved explicitly, and the solutions are as follows: wh
E,0 ~elliptic evolution!,

R~ t,r !5
M

~22E!
~12cosh!, ~2.4a!

h2sinh5
~22E!3/2

M
@ t2tB~r !#, ~2.4b!

whereh is a parameter; whenE50 ~parabolic evolution!,

R~ t,r !5F9

2
M @ t2tB~r !#2G1/3

; ~2.5!
a

n

and whenE.0 ~hyperbolic evolution!,

R~ t,r !5
M

2E
~coshh21!, ~2.6a!

sinhh2h5
~2E!3/2

M
@ t2tB~r !#, ~2.6b!

where tB(r ) is one more arbitrary integration function~the
bang time!. Note that all the formulas given so far are cov
riant under arbitrary coordinate transformationsr̃ 5g(r ), and
so r can be chosen at will. This means one of the th
functionsE(r ), M (r ) and tB(r ) can be fixed at our conve
nience by the appropriate choice ofg. We can define a scale
radius and a scale time for each worldline with

P~r !5
2M

u2Eu
~2.7!

T~r !5
2pM

u2Eu3/2
~2.8!

and it is evident from Eq.~2.4! that, for the elliptic case,
these are the maximumR and the lifetime for eachr value.
The crunch time is then

tC~r !5tB~r !1T~r !. ~2.9!

Writing Eq. ~2.4b! at h52p, wheret5tC , i.e. at the Big
Crunch, and then dividing the two equations we obtain

h2sinh52p~ t2tB!/~ tC2tB!, ~2.10!

so largerh means only that the dust particle has complete
larger fraction of its lifetime between the Bang and t
Crunch.

The parametric solutions~2.4! and~2.6! can also be writ-
ten
t5tB1
M

~22E!3/2H arccosS 11
2ER

M D22A2ER

M S 11
ER

M D J , 0<h<p, ~2.11!

t5tB1
M

~22E!3/2H p1arccosS 212
2ER

M D12A2ER

M S 11
ER

M D J , p<h<2p, ~2.12!

for the expanding and collapsing elliptic cases, and

t5tB1
M

~2E!3/2HA2ER

M S 21
2ER

M D2arcoshS 11
2ER

M D J ~2.13!

043502-2
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FORMATION OF A GALAXY WITH A CENTRAL BLACK . . . PHYSICAL REVIEW D 69, 043502 ~2004!
for the hyperbolic case~expanding!.
Apart from extended parabolic regions, there are a

parabolic boundaries between elliptic and hyperbolic
gions, whereE→0, but E8Þ0. The limiting forms of Eqs.
~2.4! and ~2.6! are found by requiring well behaved tim
evolution and setting

h5h̃AE ~2.14!

so thath̃ is finite if (t2tB) is.
The Friedmann models are contained in the LT class

the limit

tB5const, uEu3/2/M5const, ~2.15!

and one of the standard radial coordinates for the Friedm
model results if the coordinates in Eqs.~2.4!–~2.6! are addi-
tionally chosen so that

M5M0r 3 → E5E0r 2 ~2.16!

with M0 andE0 being constants.
In constructing our galaxy model, it will be convenient

useM (r ) as the radial coordinate@i.e. r̃ 5M (r )]—because
in most sections we shall not need to pass through
‘‘necks’’ or ‘‘bellies.’’ Thus, M (r ) will be a strictly growing
function in the whole region under consideration. In some
the sections we shall consider a black hole with a ‘‘neck’’
‘‘wormhole,’’ but even there, because of spherical symme
we will consider only one side of the wormhole, whereM (r )
is also increasing.

Then withR5R(t,M )

kr5
2

R2
]R

]M

[
6

]~R3!

]M

. ~2.17!

In the present paper we will apply the LT model to
problem related to that considered in papers I and II: C
necting, by an LT evolution, an initial state of the Univers
defined by a mass-density or velocity distribution, to a fin
state defined by a density distribution that contains a bl
hole.

A. Origin conditions

An origin, or center of spherical symmetry, occurs ar
5r c if R(t,r c)50 for all t. The conditions for a regula
center have been derived in@25# from the requirements that
away from the bang and crunch, and in the limitr→r c , ~i! h
in Eqs.~2.4! and ~2.6! must be finite if (t2tB) is finite; ~ii !
the density~2.3! and the Kretschmann scalar are nondiv
gent, and the density is not zero; and~iii ! on a constant time
slice dr/dR50.

In the equations below, the symbolOd(M ) will denote a
function that has the property limM→0@Od(M )/Md#50. The
resulting conditions for the neighborhood ofr c are
04350
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R5b~ t !M1/31O1/3~M !

along constantt, ~2.18a!

E5gM2/31O2/3~M !, ~2.18b!

tB5tOc~M !, c.1/3, ~2.18c!

kr56/b31O0~M !, ~2.18d!

M ~r c!50. ~2.18e!

We also needt,0 to avoid shell crossings.

B. Shell crossings, maxima, and minima

Shell crossings, where a constantr shell collides with its
neighbor, are loci ofR850 that are not regular maxima o
minima of R. They create undesireable singularities whe
the density diverges and changes sign. The conditions on
3 arbitrary functions that ensure none be present anywhe
an LT model, as well as those for regular maxima a
minima in spatial sections, were given in@26#, and will be
used below.

III. APPARENT AND EVENT HORIZONS
IN THE LT MODEL

We will be modelling a galactic black hole, so it will b
useful to consider its horizons. Apparent and event horiz
of LT models were studied in@27#, in which LT models that
generalize the Schwarzschild-Kruskal-Szekeres topology
nonvacuum were demonstrated. It was shown that, w
there is matter present, the light rays get even less
through the wormhole than in the vacuum case. The diver
of possible topologies was discussed. We lay out further
tails of the apparent horizon here.

A. Definitions and basic properties

Let us write the evolution equation~2.2! with L50 as

Ṙ5,A2M

R
12E,

where H ,511 in the expanding phase,

,521 in the collapsing phase.
~3.1!

The radial light rays must be geodesics by symmetry:

052dt21
~R8!2

112E
dr2, ~3.2!

and this may be written as

tn85
dt

dr U
n

5
jR8

A112E
, where H j 511 for outgoing rays,

j 521 for incoming rays,
~3.3!

whose solution we write ast5tn(r ,tn0), or often justtn(r )
or tn .
2-3
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1. Apparent horizons

Along a ray we have

Rn5R~ tn ,r !, ~3.4!

~Rn!85Ṙ
dt

dr U
n

1R8

5S , j

A2M

R
12E

A112E
11D R8. ~3.5!

The apparent horizon~AH! is the hypersurface in spacetim
where the rays are momentarily at constantR:

~Rn!850 ⇒ A2M

R
12E52, jA112E ⇒ ~3.6!

, j 521, and R52M . ~3.7!

There are in fact two apparent horizons:
The future AH: (AH1), where

j 511 ~outgoing rays!

,521 ~in a collapsing phase!,
~3.8a!

and the past AH: (AH2), where

j 521 ~incoming rays!

,511 ~in an expanding phase!.
~3.8b!

We find dt/dr along the AH by differentiating~3.7!:

Ṙdt1R8dr52M 8dr, ~3.9!

giving

tAH8 5
dt

dr
U

AH

5
2M 82R8

Ṙ
5

2M 82R8

,A2M

R
12E

, ~3.10!

and, sinceR52M on the AH,

dt

dr U
AH

5
,~2M 82R8!

A112E
. ~3.11!
04350
In the vacuum caser50, which impliesM 850, we have
dt/dr uAH5dt/dr un since, j 521. Note thatM 850 could be
only local, so the AH would only be null in that region. I
the Schwarzschild metric, whereM 850 everywhere, this is
consistent withR52M being the locus of the event hor
zons; and in this case they coincide with the apparent h
zons.

Recall that in the Schwarzschild spacetime the future
past event horizons, EH1 and EH2, cross in the neck at the
moment it is widest.~Call this event O.! This holds for LT
models too. For hyperbolic regions, withE>0 along each
dust worldline, there is either only expansion or only co
lapse, i.e. only one AH~either AH1 or AH2) can occur. The
AHs can thus cross only in an ellipticE,0 region. At the
neck of a LT wormhole, where 2E521, M is a minimum,
and tB is maximum, the moment of maximum expansion

Ṙ2505
2M

R
21 → Rmax~Mmin!52M . ~3.12!

At all other E values in an elliptic region21,2E,0, we
find Ṙ50 → Rmax52M /(22E).2M . Thus R52M has
two solutions—one in the expanding phase and one in
collapsing phase. So the AH1 and AH2 meet at the neck
maximum~event O!.

To establish whether AH is timelike, null or spacelike, w
compare the slope of the AH1 with the outgoing light ray~or
the AH2 with the incoming light ray!, i.e. , j 521:

B5
dt

dr U
AH
Y dt

drU
n

52, j S 12
2M 8

R8
D 5S 12

2M 8

R8
D , ~3.13!

but below, we will actually calculate

B̄5S R8

M 8
21D

AH6

5S ]R

]M
21D

AH6

5
11B

12B
512,A112E

dtAH

dM
~3.14!

where we have used Eq.~3.11! and written R8/M 8
5]R/]M and tB8 /M 85dtB /dM , since M 8.0. Now since
the conditions for no shell crossings@26# require M 8>0
whereR8.0 and vice-versa, we have
Bmax51, B̄51` → AH1 outgoing null ~when M 850, r50!,

1.B.21, 1`.B̄.0 → AH1 spacelike ~for most M 8!,

B521, B̄50 → AH1 incoming null ~for large M 8/R8!,

21.B.2`, 0.B̄.21 → AH1 incoming timelike ~for very large M 8/R8!, ~3.15!
2-4
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so an outgoing timelike AH1 is not possible. This mean
outgoing light rays that reach the AH1 always fall inside
AH1, except whereM 850, in which case they move alon
it. The possibility that AH6 is timelike (B̄,0) holds if1

,
dtAH

dM
.

1

A112E
. ~3.16!

This means that the smallerE is, the steeper the locus of th
AH must be to make it timelike.

The argument is similar for light rays at AH2, except that
‘‘incoming’’ should be swopped with ‘‘outgoing.’’ If ingoing
light rays reach the AH2, they pass out of it or run along it

Since this is true for every point on AH1 and AH2, radial
light rays in dense wormholes are more trapped and go e
less far than in vacuum. In particular, if2 r.0 where 2E
521, light rays starting at O fall inside AH1 to the future
and inside AH2 to the past.

2. Event horizons

The event horizon is the very last ray to reach future n
infinity (EH1), or the very first one to come in from pa
null infinity (EH2). If we have vacuum (M 850) every-
where, then light rays travel alongR52M , and the EHs
coincide with the AHs. If there is matter,M 8.0, on any
worldline, then the incoming light rays emerge from AH2

and outgoing light rays fall into AH1 at thatr value, and so
the EHs split off from the AHs~see@27#!.

B. Locating the apparent horizons in elliptic regions

1. AHÀ during expansion

We shall first consider the expansion phase of an ellip
model, where 0<h<p andE,0, so we have,511 and
only AH2 is present. SinceR52M on an AH, we have from
Eq. ~2.4a!

coshAH5114E, ~3.17!

and thus, along a given worldline, the proper time of pass
through the AH, counted from the Bang timetB , can be
calculated from Eq.~2.11! with R52M to be

tAH22tB5M
arccos~114E!22A22E~112E!

~22E!3/2
.

~3.18!

1Note that Eq.~3.16! can be equivalently written as follows:

,tAH8 .
M8

A112E
5M8,

where M is the sum of all the rest masses within th
r 5const sphere, equal to 4p*0

r A2g(t,x)dx[4p*0
r @R2(t,x)

3R8(t,x)/A2E11#dx, while M54p*0
r R2(t,x)R8(t,x)dx is the

active gravitational mass~see@28# for a detailed discussion!.
2Since a regular minimum or maximumR850 requires all ofM 8,

E8 and tB8 to be locally zero,r.0⇒M 9/R9.0.
04350
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The functionF5tAH22tB of the argumentf 52E, defined
in Eq. ~3.18! has the following properties:

F~21!5Mp, F~0!54M /3, ~3.19!

dF

df
,0 for 21, f ,0,

i.e. it is decreasing. These properties mean that the AH d
not touch the Big Bang anywhere except at a center,M
50, even ifE50.

Along all worldlines with E.21/2, even parabolic
worldlinesE50 andMÞ0, the dust particles emerge from
AH2 a finite time after the Big Bang (h50) and a finite
time before maximum expansion (h5p). In order to find
the slope of AH2, we differentiate Eq.~3.18! with respect to
M to obtain

dtAH2

dM
5F 1

~22E!3/2
1

3M

~22E!5/2

dE

dM Garccos~114E!

1
1

E
A112E2

M ~312E!

2E2A112E

dE

dM
1

dtB

dM
. ~3.20!

In general, this is very difficult to analyze, but for spec
cases it will be possible.

So although Eq.~3.17! shows wordlines with largerE exit
AH2 at a later stage of evolution, this may not correspond
a later timet, or even to a longer time (t2tB) since the bang.
It is not at all necessary thatE is a monotonically decreasin
function of r in an elliptic region; in general it can increas
and decrease again any number of times.

2. AHÀ near an origin

On the AH2 in the neighborhood of a regular center, w
obtain from Eqs.~3.17! and ~2.18b! to lowest order

12coshAH524gM2/31O2/3~M ! ~3.21!

and consequently,hAH2→0 asr→r c , i.e. AH2 touches the
Big Bang set at the center. SinceE(r c)50 andE,0 in the
neighborhood of the center, it follows thatE8(r c)<0, and,
via Eq. ~3.17!, that the dust particles with largerr ~smaller
E) exit AH2 with larger values ofh.

To show the behavior of AH2 nearr c is not unique, we
take the following example forE(M ):

E5M2/3~g1g2Md!, d.2/3, gÞ0, g2Þ0. ~3.22!

Putting Eqs.~3.22! and ~2.18c! in Eq. ~3.20! we find,3 ne-
glecting powers ofM that are necessarily positive,

3SinceM1/3 is a natural measure of proper radius near an orig
the slope of AH2 is zero:

dtAH2

dM1/3
'3ctMc21/314M2/31 . . . '0.

Away from the center, the sign of dtAH2 /dM1/3 depends on whethe
or not c.1, ast,0 for no shell crossings@26#.
2-5
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dtAH2

dM
'ctMc211

4

3
, ~3.23!

and from Eq.~3.14! with ,511 and Eq.~3.23! we see that

B̄'2ctMc212
1

3
1•••. ~3.24!

The behavior of the apparent horizon in the vicinity of t
center is not unique; each of the cases listed in Eq.~3.15! can
occur, depending on whetherc.1. This nonuniqueness o
behavior is connected with the shell-focusing singularit
that appear in some LT models. Various studies@29–37# have
shown that outgoing light rays may emerge from the cen
point of the Big Crunch and even reach infinity. Moreov
even though, in those cases, this central point~where the Big
Crunch first forms! appears to be a single point in comovin
coordinates, it is in fact a finite segment of a null line in t
Penrose diagram, see@29#. At the Big Bang, we have the
reverse—incoming light rays may reach the central poin
the bang singularity. Any radial light ray emitted from th
center of symmetry that falls into the Big Crunch must fi
increase itsR value, and then decrease, i.e. must cross
AH1 in between. In consequence, the AH1 cannot touch the
center of BC earlier than the null singularity does. Similar
the AH2 cannot touch the center of BB later than the n
singularity does.

3. AHÀ in the parabolic limit

A shell of parabolic worldlines occurs at the bounda
between elliptic and hyperbolic regions, whereE→0, but
E8Þ0 and4 M.0. From Eqs.~3.17!, ~3.18!, ~2.8!, ~3.20!
and ~3.14! with ,511, we see that

h →
E→0

0 ~3.25a!

tAH22tB →
E→0

4M
3

~3.25b!

T →
E→0

` ~3.25c!

dtAH2

dM
→

E→0

4
3

2
4M
5

dE
dM

1
dtB

dM
~3.25d!

B̄AH2 →
E→0

2
1
3

1
4M
5

dE
dM

2
dtB

dM
~3.25e!

so AH2 never touches the bang here, despiteh being zero.
The divergence of the worldline lifetimeT suggests that ei
ther the bang time or the crunch time recedes to infinity,
would be expected in a hyperbolic region. There is in fac
third possibility, as there is no reason why both times sho
not diverge. Indeed, an asymptotically flat model is achie

4Elliptic and parabolic regions are not possible forM50.
04350
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by letting E→0 as r→` @27#, with both bang and crunch
times diverging.5 We also see the slope and the causal nat
of AH2 are uncertain here.

4. AH¿ during collapse

This can be obtained from the above by replacingt
2tB) with (tC2t), h with (2p2h), flipping the signs of,
andj, and swopping ‘‘incoming’’ with ‘‘outgoing.’’ However,
keeping tB as our arbitrary function, we havep<h<2p.
Equation~3.17! still applies, but instead of Eqs.~3.18! and
~3.20!, we now obtain

~ t2tB!AH1

5M
p1arccos~2124E!12A22E~112E!

~22E!3/2
,

~3.26!

dtAH1

dM
5F 1

~22E!3/2
1

3M

~22E!5/2

dE

dM G
3@p1arccos~2124E!#

2
1

E
A112E1

M ~312E!

2E2A112E

dE

dM
1

dtB

dM

~3.27!

and Eq.~3.14! applies with,521. The special cases a
follow in the same way. Near an origin, we again find non
nique behavior, one of the possibilities this time being lig
rays escaping the crunch atr c before AH1 forms. At a regu-
lar extremum whereE521/2, hAH1→p and AH1 crosses
AH2. In the parabolic limit,hAH1→0, tC2tAH1→4M /3,
and

dtAH1

dM
→

E→0
2

4

3
1

4M

5

dE

dM
1

dtC

dM
, ~3.28a!

B̄AH1 →
E→0

2
1

3
1

4M

5

dE

dM
1

dtC

dM
,

~3.28b!

wheretC is given by Eqs.~2.9! and ~2.8!.

C. Apparent horizons in parabolic regions

The corresponding results in an expandingE50, E850
LT model follow from Sec. III B 3@or directly from Eq.~2.5!
with R52M ]. In particular Eqs.~3.25d! and~3.25e! become

dtAH2

dM
5

4

3
1

dtB

dM
~3.29a!

5Another example of this kind will be discussed in Sec. III F.
2-6
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B̄AH252
1

3
2

dtB

dM
. ~3.29b!

Despite the no shell crossing condition dtB /dM,0, AH2

may still exhibit all possible behaviors of Eq.~3.15! with
‘‘outgoing’’ and ‘‘incoming’’ interchanged. In a collapsing
parabolic model, time reversed results apply.

D. Locating apparent horizons in hyperbolic regions

Using the same methods as for expanding elliptic regio
we find the behavior of the AH in expanding hyperbo
regions is qualitatively the same. There is of course only
AH, no maximum expansion, and loci whereE521/2 are
not possible. But the results for origins and for the parabo
limit both carry over. Collapsing hyperbolic regions are e
sentially like collapsing elliptic regions.

E. Locating the event horizon

In general, locating the EH involves integrating Eq.~3.3!,
which cannot be done analytically becauseR8 is not a simple
expression. In addition, we must find the last outgoing ray
escape the crunch, or the first incoming ray to avoid
bang. For a particular model, EH1 is located numerically
using a compactified coordinate representation of the sp
time in Sec. III F 3.

F. An illustration—A simple recollapsing model

We shall illustrate several properties of the LT model a
of its apparent horizons on a simple example. In the pres
subsection, we will use this model with unrealistic parame
values, chosen in such a way that all the figures are ea
readable. Later, in Sec. IV, we will use the same model
modelling a galaxy with a black hole at the center, w
parameters chosen to fit observational data.

1. Definition

We take anE,0 LT model with a regular center, whos
Big Bang functiontB(M ) is

tB~M !52bM21tB0 , ~3.30!

and whose Big Crunch function is

tC~M !5aM31T01tB0 , ~3.31!

where the parameterT0 is the lifetime of the central world-
line whereM50. The numerical values of the paramete
used in the figures will bea523104, b5200, tB055, T0
50.05. Their values were chosen so as to make the fig
readable and illustrative, at this point they are unrelated
any astrophysical quantities. Sincet5tC at h52p, we find
from Eq. ~2.4!
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E~M !52
1

2 S 2pM

tC2tB
D 2/3

52S p2

2 D 1/3 M2/3

~aM31bM21T0!2/3
. ~3.32!

Note that asM→`, we havetB→2`, tC→1` and E
→0. Hence, the space contains infinite mass and has infi
volume. Unlike in the Friedmann models, positive space c
vature does not imply finite volume; this has been kno
since long ago@26,38#.

2. Description

The main features of this model are shown in Fig. 1. N
that the AH1 first appears not at the center, but at a fin
distance from the center, where the functiontAH1(M ) has its
minimum, and at a timeths,tC(0).

At all times after the crunch first forms,t.tC(0), the
massMS already swallowed up by the singularity is nece
sarily smaller than the massMBH that disappeared into th
AH1. So for an object in which the black hole already exis
the time t5now must be taken afterths and in Fig. 1 it is
also greater thantC(0). ThemassMS cannot even be esti

FIG. 1. Evolution leading to a black hole in theE,0 LT model
of Eqs.~3.30! and ~3.31!. The final state is defined at the instantt
5t25now. Worldlines of dust particles are vertical straight line
each has a constant mass-coordinate. Intersections of the lt
5t2 with the lines representing the Big Crunch and the future
parent horizon determine the massesMS andMBH , respectively.
2-7
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 043502 ~2004!
mated by astronomical methods.
The situation is similar, but reversed in time, for the B

Bang singularity and the AH2.
The evolution of our model can be visualized mo

graphically in a 3D diagram~Fig. 2!, which shows the value
of the areal radiusR at each timet and each value ofM.
Figure 3 shows the ‘‘topographic map’’ of the surface fro
Fig. 2. It contains contours6 of constant R ~the thinner
curves! inscribed into Fig. 1.~The other curves are outgoin
radial null geodesics, and we shall discuss them further
low.!

Remembering that in thet-M diagram the slopes of th
incoming/outgoing radial light rays are each other’s mir
images about vertical lines, it is evident from Fig. 3 th
AH6 are spacelike everywhere except possibly in a nei
borhood of the central lineM50 and at future null infinity.
From Eqs.~3.32! and~3.30! we havee58/3 andc52 in Eq.
~3.24!, so we findB̄AH2→1 at the origin. Similarly by Eq.
~3.31! we havec53, and B̄AH1→1. Therefore AH6 are
both spacelike at the origin too.

Figure 3 also shows several outgoing radial null geo
sics. Each geodesic has a vertical tangent at the center.
is a consequence of usingM as the radial coordinate. Sinc
dt/dM5]R/]M /A112E on each geodesic andR}M2/3

close to the center, so dt/dM}M 21/3 and dt/dM→` as M
→ 0. Each geodesic proceeds to higher values ofR before it
meets the apparent horizon AH1. At AH1, it is tangent to an
R5const contour, then proceeds toward smallerR values.
The future event horizon consists of those radial null geo
sics that approach the AH1 asymptotically. In the figure, it
lies between the geodesics no. 5 and 6, counted from
lower right corner of the figure; we shall discuss its locati
in more detail in Sec. III F 3.

Geodesic no. 5 from the lower right emanates from
centerM50, where the Big Bang function has a local max
mum. The tangent to the geodesic is horizontal there. T
means that the observer receiving it sees the light infini
redshifted, as in the Friedmann models. Geodesics to
right of this one all begin with a vertical tangent, whic
implies an infinite blueshift. These observations about r

6Figure 3 can be used to explain some properties of shell cr
ings. Since the worldlines of the dust source are constantM lines
~i.e. vertical straight lines!, they can never intersect in at-M dia-
gram, even at shell crossings. A shell crossing would show in
picture as a point where a constant-R-contour has a horizontal tan
gent.~No such points exist in this case, because the functions of
LT model had been chosen appropriately.! The figure graphically
explains why, for avoiding shell crossings away from a neck
belly, it is necessary that the Big Bang is a decreasing function
M, and the Big Crunch is an increasing function ofM. The center of
symmetry, the Big Crunch and the Big Bang together form theR
50 contour. Contours of small constantR must have a similar
shape. Hence, if either of the two conditions were not fulfille
either the upper branch or the lower branch of some contours w
be a nonmonotonic function, whose derivative byM would change
sign somewhere. At the changeover points, the tangents to the
tours would be horizontal, and these would be the shell crossin
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shift and blueshift were first made by Szekeres@39#. Like-
wise, the geodesics meet the Big Crunch with their tange
being vertical.

By the time the crunch forms att5tC(0), thefuture ap-
parent horizon already exists~see Figs. 1 and 3!. The shells
of progressively greater values ofM first go through the AH,
and then hit the singularity att5tC(M ). We assume that a
the time t5t2, the singularity has already accumulated t
massMS , while the mass hidden inside the apparent horiz
at the same time isMBH.MS . Both of them grow with time,
but at fixedt2 they are constants. From the definitions ofMS
andMBH it follows that

t25tC~MS!5tAH1~MBH!. ~3.33!

3. Location of the event horizon

Now we shall discuss the location of the event horizon
the spacetime model considered in Sec. III F. It will follo
that, even though the model has a rather simple geom
this is quite a complicated task that requires complete kno
edge of the whole spacetime, including the null infini
Hence, in a real Universe, where our knowledge is limited
a relatively small neighborhood of our past light cone a
our past worldline, and the knowledge is mostly incomple
and imprecise, the event horizon simply cannot be located
astronomical observations.

s-

is

e

r
f

,
ld

n-
s.

FIG. 2. 3D graph of the black hole formation process from F
1: the areal radius as a function ofM and t. Each shell of constan
mass evolves in a plane given byM5const. It starts atR50, then
gets out of the past apparent horizon AH2, then reaches maximum
R, then falls into the future apparent horizon AH1, and finally hits
the Big Crunch. Note that the surface intersects theR50 plane
perpendicularly all along theR50 contour. The apparent horizon
are intersections of theR(M ,t) surface with the planeR52M .
@Hence, it is easy to figure out how they would look in thek.0
Friedmann model, wheretB5const, tC5const and all the
R(t)uM5const curves are identical.#
2-8
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FORMATION OF A GALAXY WITH A CENTRAL BLACK . . . PHYSICAL REVIEW D 69, 043502 ~2004!
The future event horizon is formed by those null geod
sics that fall into the future apparent horizon ‘‘as late
possible,’’ i.e. approach it asymptotically. Hence, in order
locate the event horizon, we must issue null geodesics b
ward in time from the ‘‘future end point’’ of the AH1. This
cannot be done in the (M ,t) coordinates used so far becau
the spacetime and the AH1 are infinite. Hence, we must firs
compactify the spacetime. The most convenient compac
cation for considering null geodesics at a null infinity
theoretically, a Penrose transform because it spreads the
infinities into finite sets. However, in order to find a Penro
transformation, one must first choose null coordinates, an
the LT model this has so far proven to be an impossible ta
see Refs.@40,41#. Hence, we will use a less convenient com
pactification that will squeeze the null infinities into sing
points in the 2-dimensional~time-radius! spacetime diagram
It is provided by the transformation

M5tan~m!, t5tan~t!. ~3.34!

In these coordinates, theR13R1
1 space of Figs. 1–3 be

comes the finite@2p/2,p/2#3@0,p/2# rectangle, see Fig. 4
The upper curve in the figure is the Big Crunch singulari

FIG. 3. Contours of constantR-value~thinner lines! and outgo-
ing radial null geodesics inscribed into the spacetime diagram
Fig. 1. TheR-values on consecutive contours differ by always t
same amount.
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the future apparent horizon runs so close to it that it seem
coincide with it.7 The horizontal line is thet5now line. The
lower curve is the Big Bang and the past apparent horiz
again running one on top of the other. The point on thet-axis
where the three lines meet is the image of theM50 line of
Fig. 1, squeezed here into a point because of the scale of
figure.

The theoretical method to locate the future event horiz
in Fig. 4 would now be to run a radial null geodesic bac
ward in time from the point (m,t)5(p/2,p/2), i.e. from the

7As can be verified from Eq.~3.26!, the time-difference between
the crunch and the AH1 goes to infinity whenM→`. However, the
ratio of this time-difference to the crunchtime goes to zero, wh
explains why the two curves in Fig. 4 meet at the image of
infinity. The same is true for the Big Bang and the AH2.

of

FIG. 4. The spacetime diagram of Fig. 1 compactified accord
to Eq.~3.34!. The whole region shown in Fig. 1 is squeezed into t
point where the three lines meet at thet-axis. The worldlines of the
dust source would still be vertical straight lines here. The up
curve is the future apparent horizon and the Big Crunch singula
they seem to coincide at the scale of this picture. The lower curv
the past apparent horizon and the Big Bang singularity, again c
ciding only spuriously. The horizontal straight line is thet5now
time. Inset: a closeup view of the image@in the coordinates (m,t)]
of the region shown in Fig. 1. The thicker line is the event horizo
It does not really hit the central point of the Big Bang; the appar
coincidence is just an artifact of the scale. More explanation in
text.
2-9
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 043502 ~2004!
image of the future end of the AH1. However, for the most
part, the AH1 runs so close to the crunch singularity, and t
geodesics intersecting the AH1 are so nearly tangent t
AH1, that numerical instabilities crash any such geode
into the singularity instantly, even if the initial point is cho
sen well away from (p/2,p/2). This happens all the wa
down tom50.5 at single precision and all the way down
m51.1 at double precision. We did succeed, with dou
precision, only atm51.0, and a null geodesic could b
traced from there to the center atm50. At the scale of Fig.
4, this whole geodesic seems to coincide with the crunch
the AH1. However, it is well visible if one closes in on th
image of the area shown in Fig. 1, the closeup is shown
the inset.

Actually, to make sure that we located the event horiz
with an acceptable precision, we ran three different null g
desics backward in time; one from the pointm51.0,t5t0
ªtAH1(1.0) right on the apparent horizon, another one fr
m51.0,t5t1, wheret1 was in the middle between the AH1

and the crunch singularity, and the third one fromm51.0,t
5t2, wheret2 was below the AH1, with the time-difference
t02t25t12t0. All three ran so close to each other th
they actually coalesced along the way and reached the ce
as one curve; their coincidence in the inset in Fig. 4 is th
not an artifact of scale, but actual coincidence at double p
cision.

FIG. 5. The event horizon~thicker line! written into the frame of
Fig. 1. Its intersection with theM50 axis does not coincide with
the central point of the Big Bang, this is only an illusion created
the scale.
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Finally, the event horizon had to be transformed back
the (M ,t)-coordinates and written into the frame of Fig
1–3. This is done in Fig. 5. As stated earlier, the event h
zon is located between the geodesics no. 5 and 6 from
right in Fig. 3. By accident~caused by our choice of numer
cal values in this example!, the EH hits the center very clos
to the central point of the Big Bang, but does not coinci
with it.

This whole construction should make it evident that the
is no chance to locate the event horizon by astronom
observations, even approximately. It only makes sense, in
observational context, to speak about an upper limit on
mass inside theapparent horizon. This is why we identified
the observed mass of a black hole with the AH in Sec. IV D8

IV. THE GALAXY PLUS BLACK HOLE
FORMATION MODEL

Our aim is to model the formation of a galaxy with
central black hole, starting from an initial fluctuation at r
combination. Our model consists of two parts joined toget
across a comoving boundaryM5MBH , with MBH the esti-
mated present day mass inside the black hole horizon. In
exterior part, we take existing observational data for
present day density profile, and the initial fluctuation is ma
compatible with CMB observations. For the interior, no o
servational constraints exist, so we propose a couple of p
sible descriptions, as detailed below. These are both LT m
els, and represent a collapsing body, and a dense Krus
Szekeres wormhole in the sense of@27#.

A. The black hole interior

Astronomical observations do not say anything about t
portion of galactic matter that had already fallen inside
apparent horizon by the time the electromagnetic signal
would reach the observer was emitted. What can be see
the sky are only electromagnetic waves emitted by obje
that were still outside the AH at the time of emission. Co
sequently, we are not constrained in any way in choosin
model for the matter in the interior of a black hole, except
the need to match it smoothly to a galaxy model.

The term ‘‘black hole’’ is used in two distinct ways
Firstly, there is the Schwarzschild-Kruskal-Szekeres bla
hole, which has the topology of two universes joined by
temporary wormhole, and begins its life as a white hole. T
was generalized to a matter-filled version in@27#. Secondly,
there is the black hole formed by the collapse of a mass

8Note that this model in which the event horizon has been fou
will actually only be used for the interior of our galaxy model—i.
for that part of the galaxy that is invisible to outside observ
because of its proximity to the black hole horizon. The model of
visible part of the galaxy will be different, and to locate the eve
horizon there, the whole construction~integrating a null geodesic
backward in time from future null infinity! would have to be re-
peated. But, of course, the model of a single galaxy does not ex
to infinity. Hence, it hardly makes sense to even speak of an e
horizon in this context.
2-10
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FIG. 6. The LT model for the wormhole interior of Sec. IV C with parameters~5.2!, in geometric units. The second graph shows the n
of the wormhole magnified about 109 times. Only on this scale are the apparent horizons distinguishable from the bang and crunch. Th
does actually curve downwards, but its variation is much less than that of the crunch. The neck is at the left where the mass
minimum (Mmin5M0). The apparent horizons cross in the neck at the moment of maximum expansion. The second sheet is not s
could be a mirror image of this sheet, or it could be quite different. The boundary with the exterior model~at MBH50.03) is defined to be
wheret25tAH . Recombinationt1 is indistinguishable from the bang in the first graph, and far to the future in the second.
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body, which has an ordinary topology without a wormho
Only in their late stages~after the closure of the wormhole!
do these two become essentially the same. Both of these
be reproduced by an LT model, and we consider them in t
below.

At this point, we must make a digression about the re
tion between model black holes such as those consid
here, and real collapsed objects that are called ‘‘black ho
by astronomers. There are two important points to be rem
bered:

~i! The matter proceeding toward a black hole disappe
from the field of view of any real observer before it hits t
horizon, whatever horizon is meant~see below!. For ex-
ample, the event horizon is the boundary of the field of vi
for an observer at future null infinity, i.e. one who is infi
nitely distant from the black hole and infinitely far into th
future. Therefore, the observationally determined ‘‘mass o
black hole’’ is in fact only an upper limit of the mass that h
actually fallen within the horizon; the latter can never
measured in reality.Modelsof black holes allow us tocal-
culate better estimates of that mass, and even if the ar
metic difference between a model calculation and an ob
vational limit is small, it is important to understand th
conceptual difference.

~ii ! It is incorrect to speak about the event horizon in t
context of observations. We may know where the event
rizon is only in amodel. In practice, we would have to b
able to take into account the future fate of every piece
matter, including those pieces that have been outside
field of view up to now—an obviously impossible tas
Worse still, if the real Universe is to recollapse in the futu
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we might already be inside the event horizon and will ne
see any signature of it. Hence, the horizons whose signat
we have any chance to see~like disappearance of matte
from sight, or a large mass being contained in a small v
ume! are apparent horizons—they are local entities, detect
able in principle at any instant@although with the difficulty
mentioned in point~i!#. Even in our simple model considere
in the previous section, it was rather difficult to determi
the position of the event horizon, and it could be done o
numerically.

In the following we will identify the estimated black hol
mass, obtained by fitting a model to present day obse
tions, with MBH , the mass within the apparent horizon
time t2 @see Eq.~3.33!#.

B. A collapsed body

For this example of the interior, we use the model of S
III F, but with different values of the parameters. We w
assume thattC(M ) is an increasing function, to be able t
create a black hole, and to prevent shell crossings we ass
tB8 (M ),0 in addition. The functions have already been ch
sen so that the origin conditions are satisfied.

To assure a smooth match to the exterior model, we
quire the continuity of the LT arbitrary functions and the
derivatives9 at M5MBH . Given Eqs.~3.30! and ~3.32!, we

9The Darmois junction conditions for matching an LT model
itself across a comoving~constant r ) surface only require the
matching ofE and tB at the sameM.
2-11
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solve for the constantsa, b, T andtB0, so thatE, tB , dE/dM
and dtB /dM are matched at the boundary:

tB05F tB2
M

2

dtB

dM G
M5MBH

, ~4.1a!

b52F 1

2M

dtB

dM G
M5MBH

, ~4.1b!

T05FM

6

dtB

dM
1

4pM

3~22E!3/2
2

2pM2

~22E!5/2

dE

dM G
M5MBH

,

~4.1c!

a5F 1

3M2

dtB

dM
1

2p

3M2~22E!3/2

1
2p

M ~22E!5/2

dE

dM G
M5MBH

. ~4.1d!
ry

a-
ee
th

te
rg

04350
C. A wormhole

Since we have no way of knowing anything about t
matter and spacetime interior toMBH , we can equally well
fit in a dust-filled wormhole of the Kruskal-Szekeres typ
constructed with the LT metric. The essential requiremen
that, at the middle of the wormhole,M must have a minimum
value Mmin , and E(Mmin)521/2. The minimum lifetime
~time from past to future singularity! of the wormhole is then
2pMmin . We choose the following functions:

tB5tB02b~M2Mmin!
2, ~4.2a!

E5
2Mmin

2M
1a~M2Mmin!.

~4.2b!

From these, the conditions for matching to an exterior
some givenM value are
Mmin5H M2
dE

dM
1M F16A112E1M2S dE

dM D 2G J
M5MBH

, ~4.3a!

a5H 1

2

dE

dM
2

1

2M F16A112E1M2S dE

dM D 2G J
M5MBH

, ~4.3b!

b5S dtB

dMY H 2M FM
dE

dM
6A112E1M2S dE

dM D 2G J D
M5MBH

, ~4.3c!

tB05H tB1
M

2

dtB

dM FM
dE

dM
6A112E1M2S dE

dM D 2G J
M5MBH

. ~4.3d!
d

d to
This model was chosen for simplicity, and so is not ve
flexible. The matching fixes the value ofMmin , which deter-
mines the lifetime of the wormhole. A model with more p
rameters would allow the wormhole lifetime to be a fr
parameter. The apparent horizons and singularities for
model with the parameters~5.2! used below are illustrated in
Fig. 6.

D. The exterior galaxy model

1. The final density profile

As our example for the density profile of the final sta
we choose the galaxy M87. It is believed to contain a la
is

,
e

black hole@42#, and the density profile for its outer part ha
been proposed some time ago@43#:

r~s!5r0 /~11bs21cs41ds6!n, ~4.4!

wherer051.0310225 g/cm3, b50.9724,c53.81031023,
d52.75331028, n50.59. The distance from the center,s, is
measured in arcmin, i.e. it is dimensionless, and is relate
the actual distancer by

s5
r

D

21600

p
ªrd, ~4.5!
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FORMATION OF A GALAXY WITH A CENTRAL BLACK . . . PHYSICAL REVIEW D 69, 043502 ~2004!
where D is the distance from the Sun to the galaxy.~Of
course, no galaxy and no real black hole is spherically sy
metric, so we cannot model any actual galaxy with the
solution. However, we wish to make our illustrative examp
as close to reality as possible, and this is why we stick to
actual object.! For our purposes, we need density expres
as a function of mass, and a profile that goes to infinity
r→0, to allow for the singularity inside the black hole.10

The mass profile corresponding to Eq.~4.4! is not an elemen-
tary function. However, it turns out that the following ve
simple profile is a close approximation to Eq.~4.5! in the
region considered in Ref.@43# ~see Fig. 7!:

r~r !5r0 /~dr !4/3, ~4.6!

with the same value ofr0. The corresponding mass distribu
tion is

M̃ ~r !5
12

5
pr0r 5/3d24/3, ~4.7!

10Even though we will use the interior model near the center,
requirement assists in joining interior and exterior smoothly.

FIG. 7. Comparison of the profile~4.4! @marked asr (x)] with
Eq. ~4.6! @marked asg(x)]. The r on the vertical axis is mas
density in units of 10223 g/cm3, thex on the horizontal axis is the
distance from the center in arc minutes, just as in Ref.@43#. The
values of parameters are given below Eq.~4.4!.
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and we make it singular atr 50 by adding a constantMS to
M̃ (r ) ~this is the sameMS as defined before—the mass th
had already fallen into the singularity att2; so far this is still
an arbitrary constant!:

M ~r !5MS1
12

5
pr0r 5/3d24/3. ~4.8!

Hence,r 5@5(M2MS)d4/3/12pr0#3/5, and

r~M !5~12p/5!4/5r0
9/5d212/5~M2MS!24/5. ~4.9!

In principle, the value ofr near toM5MBH should be mea-
sureable, but in this regime the difference between the N
tonian and LT definitions of density becomes too pronoun
~because of the nonflat geometry!. To infer r(MBH) in a
sensible way, the results of observations should be con
tently reinterpreted within the LT scheme, and such res
are not, and will not be available for a long time. Cons
quently, we will have to give up on this bit of information

From Eq. ~2.17!, we find the correspondingR(M ) via
R35(3/4p)*MS

M dx/r(x), which is

R~M !5S 5

12pr0
D 3/5

d4/5~M2MS!3/5. ~4.10!

Now we can determine the constantMS by the requirement
that R52M at M5MBH , i.e.

S 5

12pr0
D 3/5

d4/5~MBH2MS!3/552MBH . ~4.11!

From here we find

MS5MBH2
12pr0

5d4/3
~2MBH!5/3. ~4.12!

It follows, as it should, thatMS,MBH . However, this result
makes sense only if theMS thus defined is positive. The
conditionMS.0 is equivalent to

S 24

5
pr0D 3/2

•

2MBH

d2
,1. ~4.13!

For checking this inequality, all quantities have to be e
pressed in geometric units. The black hole in M87 is b
lieved to have massMBH533109M ( @44,45#, and its dis-
tance from the Sun isD5433106 light years. In geometric
units, with 1 year531 557 600 s, c533109 cm/s, G
56.672631028 cm3/g s2 and M (51.98931033 g, this
makesMBH54.42431014 cm, d55.067310222 cm21, r0
50.741310253 cm22, and the left-hand side of Eq.~4.13!
comes out to be 4.075310221, which is very safely within
the limit.

2. The initial fluctuation

In order to define a model uniquely, we only need o
more profile for the regionM>MBH , e.g. a density or ve-

s
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locity profile at t5t1,t2 or a specific choice ofE(M ) or
tB(M ). Apart from the density profile att5t2, there are no
other observational constraints in the regionM>MBH—the
time by which galaxies started forming is not well know
and presumably different for each galaxy, nothing is kno
about the initial density or velocity distribution in the prot
galaxy at that time.

Since the only quantities that are to some degree c
strained by the observations are the density and velocity
files at the recombination epoch, it will be most natural
use these fort1. Even so, there is a problem: no numeric
data are available for amplitudes of the temperature fluc
tions of the CMB radiation at such small scales. We con
quently chose a zero velocity fluctuation for one case an
zero density fluctuation for another. However it turned o
that the latter was not suitable, since the solution require
collapsing hyperbolic region nearMBH in the exterior model.

V. NUMERICAL EVOLUTION OF THE MODELS

The programs written for papers I and II were adapted
facilitate this two-step model construction. First the exter
profiles were used as input to solve numerically forE(M )
and tB(M ) for MBH<M<1. The values ofE and tB and
their derivatives atMBH were extracted, and the paramete
of the interior model calculated from them. Then the fun
tions E and tB were numerically extended into the interio
model, down toM50 or M5Mmin . From these data, th
model evolution was reconstructed using existing progra

Our first model uses the final density profile of Sec. IV
for the galaxy at timet2514 Gyr, and a flat initial velocity
profile at timet15105 y, both exterior toMBH . The interior
of MBH is a black hole formed by collapse, as described
Eqs. ~3.30! and ~3.32!, with parameters determined by th
matching ~4.1!. Geometric units were chosen such th
1011 M ( is the mass unit. In these units, the parameters

a59.066231014, b50.012409,

tB050.0017385, T058.727931011. ~5.1!

The resulting arbitrary functions and the behavior of t
combined model are shown in Figs. 8 and 9. Notice that
fluctuations of both density and velocity at recombination
well within 331025 and 1024. The black hole singularity
forms at timeT0513.618 Gyr~since tB052.712631025 y
is negligible!, so it is 400 million years old by today.

Our second model uses the identical exterior, but the
terior is a full Kruskal-Szekeres type black hole containin
temporary ‘‘wormhole,’’ as described by Eq.~4.2!, with pa-
rameters determined by the matching~4.3!. The same geo-
metric units were used, and, using the ‘‘2 ’’ sign in Eq. ~4.3!,
the parameters are
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a524.747531028, b50.012409,

tB050.0017385, Mmin52.0562310211. ~5.2!

@Using the 1 sign in Eq. ~4.2! gives Mmin50.06.MBH
50.03, which is not acceptable.# Figures 10 and 11 show th
arbitrary functions and the behavior of the combined mo
for this scenario. Because the exteriors are identical, the fl
tuations of density and velocity at recombination (t1) outside
MBH are again well within CMB limits. The wormhole mas
~minimum in M ) is Mmin52.0562M ( , and the future sin-
gularity first forms atT056.361331025 sec after the pas
singularity.~The future and past black hole singularities a
the extension of the crunch and bang into the middle of
wormhole.! The very short lifetime of the wormhole is
consequence of the need forE to go from21/2 all the way
up to 21.766931029 and arrive there with a negative gra
dient. @Even at constantM, Eq. ~2.8! implies T(MBH)/T0
.1013, and the nonzero change inM only increases this
factor.#

Though models could no doubt be found with quite d
ferent wormhole lifetimes, this example very effective
highlights the fact that the nature of the central black hole
essentially unknown. By recombination (t1), this black hole
has accreted11 246200M ( within the apparent horizon
which is only 0.0048586 AU across. Any effect this mig
have on the CMB will not be observable for a long time.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated the nonlinear evolution of an
tial density perturbation at recombination into a galaxy w
a central black hole at the present day, using the spheric
symmetric LT model. This is an application of the metho
developed in papers I and II, in which an initial and a fin
state—each a density profile or a velocity profile—can
used to derive the arbitrary functions of an LT model th
evolves from one to the other. To correctly describe this p
cess, a relativistic approach is necessary because Newto
models are inadequate for the description of black holes
their use inevitably leads to conceptual inconsistencies
contradictions. The LT model is ideal for this purpose, as
has both Schwarzschild and Robertson-Walker limits, an
single model can describe a cosmology containing a bl
hole.

For the final state att25143109 years'today, we chose
the model of the mass distribution in the M87 galaxy used
astronomical literature, Eqs.~4.4! and ~4.5!. More exactly,
we approximated this mass distribution by a more elem
tary function whose values do not differ much in the range
interest, Eq.~4.6!, so thatr can be calculated as an eleme
tary explicit function of the mass within a sphere of radiusr.
M87 was chosen since it is believed to contain a large bl
hole around its center, and several of its parameters h

11The mass within the AH att1 is found by numerical root finding,
using Eq.~3.33! with t1 instead oft2 and Eq.~3.26!.
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FIG. 8. The LT model for the formation of a galaxy that develops a central black hole. Shown are the model-defining LT functionE(M )
and tB(M ), the r1(M ) and b1(M ) fluctuations, ther2(M ) and b2(M ) variations. Theb2(M ) variation is zero, and only very sma
numerical error shows. Note that the graphs have been clipped at log(R)50, log(b)515 and log(r)525 ~geometric units!. The ‘‘EC’’
indicates the range considered is an elliptic region that is collapsing byt2.
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been measured or calculated. The initial fluctuation, at
recombination epoch (t15105 years), was chosen to be co
sistent with limits from the CMB, even though the smalle
scales currently observable are much larger than those
evant to galaxy formation. We assumed zero initial veloc
perturbation, i.e. a Friedmannian velocity profile. This w
sufficient for a unique numerical identification of an L
model that evolves the given initial state into the given fin
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state. The resulting evolution of the LT model was found
be entirely reasonable—the implied initial density amplitu
was well within the observationally allowed limit of 1025,
and the model was elliptic and already recollapsing byt2 in
the whole range of interest. Assuming the presence of a c
tral black hole today, these profiles were taken to be valid
the exterior of the horizon, and a black hole model w
smoothly joined on as the interior.
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A theoretical model of a black hole must necessarily
clude the accompanying entities: the final singularity, the
parent horizon and~whenever appropriate! the event horizon.
We first discussed the general properties of the apparen
rizon. It must necessarily exist in every LT model. The futu
apparent horizon AH1 exists in every collapsing model, th
past apparent horizon AH2 exists in every expanding LT
model; the expanding and recollapsing model has both A
that can intersect each other only if there exists a neck
belly at which R85M 85E85tB850, E521/2. In every
case, the AH is given by the equationR52M that implicitly
defines a functiont5tAH(r ). We discussed whether the AH
can be timelike, null or spacelike while going in or out.
turned out that only two cases are excluded: outgoing tim
like for AH1 and ingoing timelike for AH2. The condition
for the AH to be nontimelike is,dtAH /dr<dM/dr , where

FIG. 9. The evolution of the LT model for the formation of
galaxy that develops a central black hole. Shown are the evolu
of R(t,M ) and ofr(t,M ) for run Vi0rf30. In theR(t,M ) graph,
the origin R(t,0)50 is on the left, and expansion to a maximu
occurs as time increases towards the ‘‘north-west.’’ At the init
time, t15recombination,R.0 except at the origin. In ther(t,M )
graph the view has been rotated by 180° relative to theR(t,M )
graph for clarity, so that the origin is on the right and time increa
towards the ‘‘south-east.’’ Byt25today, the innermost region ha
collapsed to a black hole of mass 33109 M ( . Note that the graphs
have been clipped at log(R)50 and log(r)525 ~geometric units!.
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,561 for AH7 and M is the sum of rest masses of pa
ticles within ther-sphere. For the Friedmann models, the A
is timelike everywhere.

The event horizon~EH! does not always exist; for ex
ample it is absent in theL50 Friedmann models. When i
exists, the EH1 (EH2) is the collection of those future
directed outgoing~ingoing! radial null geodesics that ap
proach the AH1 (AH2) asymptotically as t→1` (t
→2`). The equation of null geodesics is in general intra
table by exact methods, and so locating the EH inevita
requires numerical integration. This can only be done case
case, for specific forms of the LT functionsE(r ) and tB(r ).
With a space of infinite volume, the numerical identificatio
of the EH can most easily be done after the spacetim
compactified so that the future~past! edge of the AH1

(AH2) has finite time and radial coordinates.
Then we calculated all the characteristic quantities o

black hole~the past and future singularity, both AH2s, radial
null geodesics and the EH1! in a simple illustrative toy
model withE,0 and displayed them in spacetime diagram
The model is recollapsing, has infinite total mass and v
ume, and a duration between bang and crunch that is finit
every finite mass, but goes to infinity asM→` andE→0.

Since no observational data exist~and, presumably, will
not exist for a long time! concerning the interior of the ho
rizon, two distinct forms of this central black hole—both L
models—were considered: firstly a condensation that c
lapses to a singularity, and secondly a full Schwarzsch
Kruskal-Szekeres type wormhole topology. The parame
of these models were determined by matching their LT fu
tions to those of the exterior galaxy-forming model. In t
case of collapse to a black hole, the central singularity
'43108 years old by now. For the wormhole case, the fin
singularity forms almost immediately after the Big Ban
(6.3631025 sec), and is by today about as old as the ma
in the galaxy. In this model, the black hole accretes m
very quickly into a very small volume, so that by recomb
nation it had swallowed up 246 380M ( in a region of di-
ameter 0.00486 AU. However, all the numbers are stron
model-dependent, and there are no reliable observati
constraints for model selection. The initial black hole is t
small to have an observable effect on the CMB. Theref
we find both types of black hole are possible. Perhaps sm
black holes, that avoid evaporation by rapid accretion, m
seed galaxy formation.

In fact, existing observational data do not have the re
lution to constrain the initial data for our model. For e
ample, as shown in paper I, the perturbations of isotropy
the CMB temperature corresponding to single galax
should have the angular size of'431023 degrees, while
the most precise current measurements have a resolutio
0.2°.

Then, in the vicinity of the apparent horizon, the geo
etry of spacetime becomes measureably non-Minkowsk
while all the observational data, available on mass distri
tion within galaxies were calculated by purely Euclidean
duction methods. We also stressed that what can be infe
from observations is only the upper limit of the mass ins

n

l
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FIG. 10. The LT model for the formation of a galaxy around a preexisting central black hole. Shown are the model-defining LT fu
E(M ) andtB(M ), ther1(M ) andb1(M ) fluctuations, ther2(M ) andb2(M ) variations.@Again theb2(M ) variation is pure numerical error.#
Note that the graphs have been clipped at log(R)50, log(b)515 and log(r)525 ~geometric units!.
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the apparent horizon at a given time. It does not make se
to even speak of an event horizon in the observational c
text.

In view of the paucity of data, our approach was the fi
exploratory step into an uncharted territory rather than
actual model to be compared with observations.

The main limitation of the spherically symmetric L
04350
se
n-

t
n

model is the lack of rotation, which slows collapse and s
bilizes structures. Thus the model is good for much of
evolution into the nonlinear regime, but becomes less rea
tic as collapse sets in.

Our results show that the LT model is a very useful to
for this kind of investigation. However, for its parameters
be fine-tuned to results of observations, the observatio
2-17
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data would have to be reinterpreted against the backgro
of the LT geometries.
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APPENDIX: THE FRIEDMANN LIMIT

We briefly specialize the above results to the Friedma
limit, where

FIG. 11. The evolution of the LT model for the formation of
galaxy around a preexisting central black hole. Shown are the
lutions of R(t,M ) and ofr(t,M ) for run Vi0rf30. In theR(t,M )
graph, on the left there is no origin, rather a wormhole with a t
lifetime recollapses to zero size. The thin flat wedge along the le
the growing singularity.~The apparent ripples are small numeric
variations overemphasized by the graphics program.! In ther(t,M )
graph, again with the view rotated by 180° relative to theR(t,M )
graph, the density diverges towards the singularity, and the
wedge represents the part that has already collapsed. Byt25today,
the black hole mass has increased to 33109 M ( . Note that the
graphs have been clipped at log(R)50 and log(r)525 ~geometric
units!.
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M5M0r 3, 2E52kr2, tB5const, R5rS~ t !, ~A1!

M0.0 andk.0 being arbitrary constants, andS(t) being
the scale factor. The apparent horizon, whereR52M , has
the equation

S~ t !52M0r 2, ~A2!

so by Eqs.~3.13!, ~3.3! and ~3.14! we obtain

B512
2M 8

R8
522, ~A3!

tn85 j
S

A12kr2
, ~A4!

tAH68 5,
4M0r 2

A12kr2
52, j ~ tn8!AH6.

~A5!

Hence, in the Friedmann limit both branches of the AH a
entirely timelike~outgoing in the expansion phase, incomin
in the collapse phase! and monotonic withr. The derivatives
tAH68 and tn8 seem to become infinite atr 51/Ak. This is a
coordinate effect. As seen from the metric

ds25dt22S2~ t !S dr 2

12kr2
1r 2dv2D ,

there is a coordinate singularity atr 51/Ak. Both derivatives
become finite when the coordinates are changed so that
r 5sinr8. The quantityB in Eq. ~A3! does not depend on th
choice ofr.

For a completely general Robertson-Walker model~i.e.
not justp50), repeating the whole reasoning, we obtain
the slope

B5
~Ṡ21k!

SS̈
, ~A6!

which, after making use of theL50 Einstein equations, is
equivalent to

B5
22r

3p1r
. ~A7!

This makes the AHs timelike for 1/3.p/r.21/3, but
spacelike forp/r.1/3, or for p/r,21. ~Note thatB50
requiresr50 or divergentp.! Hence, it cannot be decide
whether the AH is timelike or not without knowing the pre
cise shape of the functionS(t) ~i.e. knowing the equation o
state!. It can only be said that as long as the source in
Einstein equations is ordinary matter known from a labo
tory ~no cosmological constant or other self-accelerating m
dium!, we will have S̈,0. Consequently, by Eq.~A6!, B
,0, which means that the AH will be outgoing in the e
pansion phase and incoming in the collapse phase.
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