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Variational description of multifluid hydrodynamics: Uncharged fluids
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We present a formalism for Newtonian multifluid hydrodynamics derived fromreonstrained/ariational
principle. This approach provides a natural way of obtaining the general equations of motion for a wide range
of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to
spatial variations we use “time shifts” in the variational principle, which allows us to describe dissipative
processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative
forces. The resulting framework incorporates the generalization oéritr@inmenteffect originally discussed
in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy
and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of
Ertel's theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally
conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conduct-
ing fluids are found to be more general than the standard description, as the effect of entrainment usually seems
to be overlooked in this context. In the case of superfltiig we recover the Landau-Khalatnikov equations
of the two-fluid model via a translation to the “orthodox” framework of superfluidity, which is based on a
rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipa-
tion via mutual friction and also “transfusion” vig@ reactions between the neutron fluid and the proton-
electron fluid.
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[. INTRODUCTION where &(p) represents the internal energy density of the
fluid. We note that the internal energy defines the chemical
The main purpose of this work is to develop a formalismpotential, and the pressure as
that allows one to derive the equations of motion for a gen-
eral class of multi-constituent systems of interacting charged dé=ndp and P+E=pp.
and uncharged fluids, such as conducting and non-
conducting fluids, multi-fluid plasmas, superfluids and superThe corresponding action is defined in the usual way as

conductors. For the sake of clarity of presentation we restricIEfAdth and the variationsA of the Lagrangian density
ourselves here to uncharged fluids, while the case of charged

fluids and their coupling to the electromagnetic field will be
treated in a subsequent papét. — o0 Sv 4+ (02/2— T,
Long after the completion of classical Hamiltonian par- OA=pv- Sut(v/2=p) dp.
ticle mechanics, the quest of finding a variatiot@ “Ham- Requiring the actiorf to be stationary with respect feee

litonian”) description of hydrodynamics has surprisingly , 4 ations 5p and év is immediately seen to be useless, as
been a long-standing problem, which started only a few de;, '

cades ago to be fully understood. The reason for this can btg IS IeadE to ';he over-congtramed equations of mopen
traced to the nature of the hydrodynamic equations, whict=0 and u=v*/2. In fact, it has been showj2] that an

are most commonly expressed in their Eulerian form in termginconstrained variational principle wighandv as the fun-

of the densityp andvelocityv, where the information about damental variables cannot produce the Eulerian hydrody-
the underlying flow lines has been hidden. Fluid particle tra-namic equations. The reason for this is rather intuitive, as it
jectories, i.e. flow lines, can still be recovered by integratingis evident that free variations of density and velocity probe
the velocity field, but they are not independent quantities ofonfigurations with different massése. different numbers
the Eulerian description. However, it turns out that theof particles, which is not an actual degree of freedom of the
“true” fundamental field variables of Hamiltonian hydrody- dynamics of the system. Therefore the variational principle
namics are the flowlines, which determipeandv as de- has to be constrained or reformulated in some way in order
rived gquantities. to restrict the variations to the physically meaningful degrees

Consider as an example the Lagrangian dengitgle-  of freedom.
scribing a barotropic perfect fluid, which in analogy to clas-  The historic approach to this problem in Newtonian phys-

sical mechanics one would postulate to be ics has been to supplement the Lagrangian with appropriate
constraints using Lagrange multipliers. This method was pio-

neered by Zilse]3] in the context of the two-fluid model for
superfluid *He, who used the constraints of conserved par-
ticles(i.e. masgand entropy. However, as pointed out by Lin
[4], this is generally insufficient, as it results in equations of
*Electronic address: Reinhard.Prix@aei.mpg.de motion restricted tarrotational flow in the case of uniform

1
Alp,w)=5pv®=E(p),
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entropy. Lin showed that one has to add a further constraintation” of the covariant convective formalism into a Newton-
namely the “conservation of identity” of fluid particles in ian framework(albeit using a spacetime-covariant language
order to obtain the most general hydrodynamic equationg:lose to general relativilyis also availabl¢15,16. The con-
We can label particles by their initial positioas and so we  vective approach in relativity has independently been devel-
can write their flowlines as=x(a,t). The famous “Lin con-  oped by Kijowski[17], and Hamiltonian formulations have
straint” is d;a+v-Va=0, i.e. the identity or label of a par- Deen constructed by Comer and Langlpls$] and Brown
ticle is conserved under its transport. For reviews of thid19]- Here we are using the convectiver “hybrid” ) varia-
approach and its relation to the “Clebsch representation” wdional principle in order to derive the Newtonian multi-fluid
refer the reader t§5—7], and references therein. equations, and our notation and formalism follows most
Although this method produces the correct equations OFIoser the framework developed by C_arter. . .
motion, it does not seem very natural due to the rasigenoc We conclude our example of the simple barotropic fluid
introdu,ction of constraints, and the need for unphysical auxp y using the convective variational principle to derive the
iliary fields (the L ' ltiliens It . de b Euler equation. The expressions f@&ulerian variations of
Hary '? BS (h € hagLrange muttip leys wa; pmgel‘ ou fy density and velocityinduced by infinitesimal spatial dis-
erive [8] that the agrangianas oppose to Eulerian for- lacements¢ of the flow lines are well known(e.g., see
mulation of hydrodynamics results in a much more natura
o o . 20]), namely,
variational description, and this approach was further devel-
op_ed and clarified by Seliger an_d Whithdi@. Insteac_] of op=—V(pé) and Sv=3aé+(v-V)é— (& V)v.
usingp andv as fundamental variables, hydrodynamics can
also be understood as a field theory in terms offtbv lines  Inserting these expressions into the variation of the action
x(at), or equivalentlya=a(x,t). It turns out that this for- 0Z=JJdAdVdtwith SA given above, and after some inte-
mulation allows for a perfectly naturainconstrainedvaria- ~ grations by parts and dropping total divergences and time
tional principle. This seems rather intuitive considering thatderivatives(which vanish due to the boundary conditians
hydrodynamics is a smooth-averaged description of a many¥€ find
particle system, which is described by a variational principle

based on the particle trajectories, ig. andxy . oI= —f §'[p(z9t+v'V)v+pV;L+v{z9tp
We can express the velocity and density in terms of the
flowlines asv = d;x(a,t) andp(x,t) =po(a)/det(7";), where +V.(pv)}]dVvdt

J'j=0x'19al is the Jacobian matrix corresponding to the
map a— x(a,t)between the physical spageand the “mate-  If we assume conservation of masse. d;p+ V- (pv)=0,
rial space”a. Any further comoving quantities like the en- then stationarity of the actiofi.e. §Z=0) under free varia-
tropy s are determined in terms of their initial valsg(a). tions & directly leads to Euler’s equation, namely,
Substituting these expressions into the Lagrangianone
obtains an unconstrained variational principle for the field
X(a,t), which results in the correct equations of motion. It is
interesting to note that this approach implicitly satisfies Lin’s
constraint, as we are varying the particle trajectoxi@st), where we have used the thermodynamic identdztyﬁ
along whicha is a constant by construction. Also, we do not =V P. This shows that an unconstrained convective varia-
need to impose aa priori constraint on the conservation of tional principle produces to the correct hydrodynamic equa-
mass, as it is automatically satisfied by these “convective’tions of motion in a surprisingly simple and straightforward
variations: shifting around flow lines obviously conserves theyay.
number of flow lines, and therefore the number of particles. The spatia| Variationf have three degrees of freedom,
One can actuallyerive the Lin constraint by transforming resulting in one vector equation, which represents the con-
this Lagrangian framework back into a purely Eulerian varia-servation of momentum. In order to complete the description
tional principle[5,6], which shows that these two approacheswe will need a fourth variational degree of freedom to pro-
are formally equivalent. duce the missing energy equation. This can be achieved by
As pointed out by Brethertof®], one can even more con- considering time shifts, which are a natural part of the cova-
veniently use a “hybrid” approach, in which the Lagrangian riant relativistic approach, but which we have to be consid-
is expressed in terms of the Eulerian hydrodynamic quantiered explicitly in the conventional “81” language of New-
tiesv, p, s, etc., but one consider them as functions of thetonian space-time. These time-shift variations allow us to
underlying flow lines. Their variations are therefore naturallytake this formalism to its full generality, as we can now

inducedby variations§ of the flow linesx(a,t). In general  describe even dissipative processes with entropy creation,
relativity the same idea was pioneered by Tal®|, and has

subsequently been largely developed and extended by Carter———

[11-13, who also coined the term “convective variational 1a generalization of these expressions to include time shifts is
principle” for this approach. Carter and Khalatnikgt4] derived in Appendix A.

have further demonstrated the formal equivalence of the con-2This will be seen to be a consequence of the variational principle
vective approach and the more common Clebsh formulationather than ara priori assumption when time-shift variations are
that results from an Eulerian variational approach. A “trans-included.

1
(dtv-V)o+ ZVP=0,
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particle transformationgi.e. chemical reactions resistive  viscosity and friction due to particle collisions on the micro-

frictional forces, etc. These dissipative systems are of coursecopic level can effectively bind constituents together on

still conservativeas long as one includes entropy, which is very short time scales. We therefore distinguish between the

why they can be described by an action principle. The secnotions of constituents Xcharacterizing classes of micro-

ond law of thermodynamics, however, is obviously not con-scopic particles, andluids which are sets of constituents

tained in the action principle and has to be imposed as awith a common velocity.

additional equation on the level of the equations of motion. We note that in this framework entropy can be described
We note that the equations we derive here do not explicvery naturally as a constituent for which we reserve the label

itly include shear- and bulk-viscosity effects. However, theX=s, and we write

currentform of the equations is in principle general enough

to allow for both of these effects: bulk viscosity is caused by Ns=S, )

heat flow or chemical reactions due to thermal or chemical . . . L .
disequilibrium, both of which can already be described in thewher_es Is the entropy density. In this contextitis instructive
y o think of the entropy as a gas of particle-like thermal exci-

current formulation. Shear viscosity, on the other hand, ha%ations(e honons, rotons, excwhich makes its descrip-
to be introduced as an “external” force; the problem there- 9. P ' ’ P

fore consists of prescribing a physically reasonable model fo on as a constituent on _the same footing with particle num-
er densities quite intuitive.

a multi-fluid generalization of the shear stresses. Includin
viscosity should therefore not be a matter of actuakyend- )
ing the current framework but rather of appropriately apply- B. Dynamics

ing it in order to describe such processes. An explicit discus- The dynamics of the system is governed by an acfion
sion of this is postponed to future work. Further work is alsodefined as
necessary in order to extend this formalism to include elas-

ticity (as pioneered in the relativistic framewdr&1]), and

especially to allow for an elastic medium interpenetrated by

fluids as encountered in the inner neutron star crust, or any

type of conducting solid. As shown [22], a Kalb-Ramond in terms of the hydrodynamic Lagrangidn,. The Lagrang-
type extension is required for the macroscopic treatment oftn densityAy depends on the kinematic variables, which
quantized vortices in superfluids. With the present formalisnre the densitiesny and the currentsny, ie. Ay
we can describe superfluids either on the local irrotational= Ap(Nx,ny). The total differential ofA defines thedy-
level, or on the smooth-averaged macroscopic level by neramical quantities pé (“energy”) and p* (“momentum”)
glecting the (generally smajl anisotropy induced by the per fluid particle as the canonically conjugate variablesyo
guantized vortices. andny, namely,

The plan of this paper is as follows. In Sec. Il we derive
the general form of the equations of motion for multi- _ X X X_
constituent systems using the convective variational pringAH_2 (Podny+p™-dny), SO pp=
ciple. In Sec. Ill we show the conservation of energy and
momentum implied by these equations. In Sec. IV we derive )
conserved quantities under transport by the flow, namely the . .

o . ; Iy : Where here and in the following the sum over repeated con-
vorticity and helicity. We then give the explicit functional stituent indices is exolicitly indicated by . ie. n to-
form of the Lagrangian density for hydrodynamic systems in___ . ; plcitly cated by 4, 1.€. no auto
Sec. V, and in Sec, VI we discuss several applications of th([:‘natm summation convention applies to constituent indices.
foregoing formalism to particular physical systems.

I=J~AHdth (3)

oAw ., 9An
any’ p_anx’

C. The convective variational principle

Il. VARIATIONAL DESCRIPTION As we have seen in the Introduction, one cannot apply the
OF MULTI-CONSTITUENT SYSTEMS standard variational principle ta, in terms of the Eulerian
_ _ hydrodynamics variablesy andny. From Eq.(4) it is ob-
A. Kinematics vious that allowingfree variations of densitie$ny and cur-

We want to describe systems consisting of several conkents dny would lead to the trivial equations of motiquy
stituents distinguished by suitably chosen labels, and we use 0 andp*=0. Instead, we consider the Lagrangian to be a
capital lettersX,Y, . .. as indices which run over these con- functional of the underlyingflowlines x*=x*(a*,t), and
stituents labels. As the fundamental quantities of the kinetherefore admit only variation8ny , dny that areinducedby
matic description we choose the constituent densitigand  infinitesimal displacements of the flow lines. These “convec-
the associated transport currents, which are related to the tive” variations naturally conserve the number of particles
respective velocitiesy as (i.e. the number of flow linesand no constraints are required

in the variational principle as was discussed in more detail in
ny=nyvy, Where Xe{constituent labels (1)  the Introduction.
We apply infinitesimal spatial displacemerds and time
Not all constituents can necessarily move independentlghifts 7« to the flow lines of the constituett The resulting
from each other, i.e. not all velocities; have to be different: induced variations of density and current have been derived
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in Appendix A, namely, the density variatigA18) for con-
stituentX is

ony=—V-[nyé&x]+[ny- Vrx—7xdinx], 5

while the current variationsny is given by Eq.(A20) and
reads as

oNny=nxdiéx+ (Nx- V) & —(&x- V)Nny
—Nx (V- &) — di(ny7x). (6)

Inserting these expressions into the variation of the Lagran
ian (4) and integrating by parts, we can rewrite the induce

variation A in the form

SAy=2, (Fry— % &)+ R+V-R. 7)

The time derivative and divergence terms will vanish in the
action integratior(3) by the appropriate boundary conditions
(i.,e. £=0 and7=0) and are irrelevant as far as the varia-
tional principle is concerned, but for completeness we not

that their explicit expressions are

R=2, (nyp- &—ny- P, (8)

R=2, [ny(pa+p*- &)

— &(nypd+ny-p]. 9

The induced action variation therefore has the form

8T=, f (g¥ry—fX- &)dVdt, (10)

where the force densitiés® (actingon the constituentand
the energy transfer rateg’ (into the constituentare found
explicitly as

fX=ny(ap*—Vpy) —nxX (VXp)+p Ty, (1D

g¥=vx- (F*=p*T'y)—p3Tx,

whereT'y is the particle creation rate for the constitueqt
ie.

(12

FXEatnx+V'nx. (13)

e
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FX=F4+pTx, (15)

gx=vx~f>H<—p(>)<Fx. (16)

D. The equations of motion

Up to this point we have developed only purely math-
ematical identities without a specific physical content. The
equations of motion are obtained by imposing which type of
invariance the actioff should satisfy under certain infinitesi-
mal variations. The most general equations are obtained by
‘equiring that acommondisplacementy= £ and time shift
Tx= 7 of all constituents should result in an action variation
of the form

ﬂ:f (Gexi™— fexe §)dVdt, (17)

where fq,; and ge,; are interpretable as the external force
density and energy transfer rate. This generalizes the more
common action principle ofsolated systems, in which the
external influenced,,; and g, vanish and therefore the
equations of motion are obtained by requiring the action to
beinvariantunder small variations. “External” here is meant

in the sense of not being included in the total Lagrangian,
which could also mean, for example viscous or gravitational
forces. The resulting minimal equations of motion obtained
from comparing with Eq(10) are therefore found as

D fX=foe and > g¥=gex (18)

Together with Eqs(11) and (12) this represents the Euler-
Lagrange equations associated with this variational principle.
If all constituentsX form a single fluid, namely all constitu-
ents have a common velocity, then only common displace-
ments of all constituents make sense in the variational prin-
ciple. For this class ohon-conductingmodels, Eqs.(18)
represent the full equations of motion obtainable from the
variational principle. In order to complete the model, one has
to specify the hydrodynamic Lagrangiaky,, the external
interactionsf,; and gy, and the creation ratds, as func-
tions of the kinematic variables.

In the case ofconductingmodels, at least some of the
constituents are allowed to move independently, the system
therefore consists of more than one fluid. This increases cor-
respondingly the number of degrees of freedom, and more
equations of motion are required. They are obtained very

The force densityf X is the total momentum change rate of naturally from the variational principle, as independent dis-

the constitueni, and we see that the last term in Eql),

placementgin space and timeare permitted foeach fluid

i.e. the “rocket term”p*T'y, represents a contribution that is Therefore the resulting force acting on each fluid can be
purely due to the change of the particle number. Therefore iprescribed by the model, subject to the restriction only of
will be convenient to define the purely “hydrodynamic satisfying the minimal equations of motiga8).

force” £, as
fi=ny(d; P*—Vpy) —nyX (VX p%). (14)

With this definition we can now write the force densityl)
and energy transfer raté2) in the form

As an example, consider the case of a simple conducting
model consisting of two fluids, whebéandY are constituent
indices running only over the respective constituent labels,
i.e. Xe{fluid 1} andY e{fluid 2}. We then have the respec-
tive force densities acting on each of the two fluidsfasg
=3y f* andf,=3f ", which by Eq.(18) have to satisfy
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f(1y+f(2)=fexe. Therefore there are now exactly two force and we see from Eqs4) that the last sum simply represents
densities(e.g. f;) andfe,) freely specifiable in the model, dAy. We can therefore rewrite the energy equatid8) in
corresponding to the additional degrees of freedom of twdhe form of a conservation law, namely,

fluids. In this casé ;) could, for example, represent a mutual E 4V _
force the two fluids exert on each other, e.g. a resistive fric- HERT V- Qu=Gext

tion force.

Ill. CONSERVATION OF ENERGY AND MOMENTUM

Using the explicit expressiofill) for the force density
X, we can write

S #=a| 3 |+ 7| 3 nie
=2 (NkVpg+nkvp}). (19

We define the “generalized pressur@" via the total Leg-
endre transformation ok y, namely,

W=Ay— D, (nypa+ny-pY), (20)

which is seen from Eqg4) to result in the total differential

dW=—2 (nydpg+ny-dp), (21)

and therefore the last sum in EQ.9) is simply V¥'. We can
now cast the force equatidid8) in the form of a conserva-
tion law for the total momentum, namely,

y iH"'VjTil-jl:fot’ (22

where the hydrodynamic momentum density and stress
tensorT}, are defined as

J=2 nxp* and TY=2X nipXi+wgl, (23

(25

where the hydrodynamic energy dendity and energy flux
Qy are given by

Ey=2 nx-p*~Ay and Qu=2 (—pp)nk. (26

We see that the energy densify, has quite naturally the
form of a Hamiltonian, i.eHy(ny,p*)=Ey, as it is the
Legendre transforme@vith respect to the momentaf the
LagrangianA .

IV. CONSERVATION ALONG FLOW LINES

In addition to the total energy-momentum conservation,
derived in the previous section, we can find further con-
served quantities for individual constituents, for which con-
servation holds under transport by the fluid flow. Because the
following derivations apply to individual constituents instead
of the sum over all constituents, we will omit the constituent
index X in this section in order to simplify the notation.

Transport of a quantity by the fluid flow is closely related
to the Lie derivative with respect to the fluid velocity; there-
fore, these conservation laws are most easily derived using
the language and theorems of differential forms instead of
vectors. We will use this formalism in deriving the transport-
conservation laws, but we also give the essential steps and
results translated in the more common vector and index no-
tation, so that familiarity with exterior calculus should not be
necessaryalbeit helpfu) for reading this section.

A. Kelvin-Helmholtz vorticity conservation

We define the vorticity 2-fornw (with componentsw;;)
as the exterior derivativedenoted byd) of the momentum
1-form p (with component;), namely,

WEdp, i.e. WijEZV[ipj], (27)

and whereg;; are the components of the metric tensor deteryhere [ij] denotes antisymmetric averaging, i.eAB;;

mining the relation between physical distamtieand coordi-
nate intervalsdx', i.e. dlzzgijdx'dxl. In Cartesian coordi-
nates this is simplyg;; = &;; . A proof of the symmetry of the

stress tenso'll'i,j together with a more elegant derivation of
momentum conservation as a Noether identity of the varia-

tional principle is given in Appendix B.
Using expressiongll) and(12), we can further show that

> g*=> [nx- dp*—ny- Vpg—T'xpa]
:(ﬁtE nx-px)—V-(Z nxp§>

— 2 (p§any+p<- ainy), (24)

=AiBj—AB;. In three dimensions we can define the more
common vorticityvector W as thedual (with respect to the
volume forme;;) of the 2-formw, namely,

1 )
W= ze'kajkz(VXp)'. (28)
The volume form is defined as

€= Vali.j. k], (29)

whereg=det(g;;) and[i,j,k] is the sign of the permutation
of {1,2,3}, which is zero if two indices are equal. The duality
betweernw andW implies

Wij = € WK, (30)
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due to the Poincarproperty (namely,dd=0), the exterior C=

which is easily verified by inserting E@28). We note that j
derivative of the vorticity 2-form vanishes identically, i.e.

1 ) )
w= ELWijdx'/\de, (39

and the more familiar dual expression is found by inserting

dyzo <=V-W=0. (31 Eq. (30):
We can rewrite the expressiai4) for the hydrodynamic
force f, in the language of forms as C= LW-dS, (40)
1 :
atp—i—dep—de:ﬁfH, (32  where the surface normal elemedS is dS=3e;;dxX

/AdxX. Using Eq.(35) the comoving time derivative of the

- . . circulationC yields
where| indicates summation over adjacent vector and form y

indices, i.e. in this case;(ldp)i=2viV[jpi] . In the following dc d
it will be convenient to separate the force per patrticle into its gt at i; p= % (+E,)p= % S,
non-conservative pa@ and a conservative contributiahp, 2= - -
namely, -

(41)

which is known as Kelvin's theorem of conservation of cir-
1 culation. As we have already seen before, strict conservation
—fu=do+3. (33 only applies if the non-conservative force per partiglean-
n— z . hl

ishes.

The Cartan formula for the Lie derivative ofoeform applied

to the 1-formp yields B. Vorticity and superfluids

The hydrodynamics of superfluids is characterized by two

£,p=v|dp+d(v]|p), (39 fundamental properties: on one hand by the absence of dis-
- - - sipative mechanisms like friction or viscosity, and on the
which in explicit index notation reads as,[£=2vjV[jpi] other hand by irrotational flow. As we will see now, the hy-
+Vi(v'p;). Using this identity and Eq(33) we rewrite the  drodynamic description of superfluids is therefore a natural
force equation(32) more conveniently as subclass within the more general framework of multi-
constituent hydrodynamics presented here. Let us assume
(6i+£,)p=dQ+7, (35  that a constituenX=S is superfluid, with particle density

ns, velocity vs and masam®. The absence of microscopic
where the scala® is given byQ=py+wv|p. Lie derivatives dissipative mechanisms implies that the superfluid is not
and partial time derivatives commute with exterior deriva-bound to any other constituents, i.e. it is a perfect conductor
tives, so we can apply an exterior derivative to EBF) and  in the sense that it can flow freely even in the presence of
obtain the Helmholtz equation of vorticity transport, namely,other constituents. Dissipation-free flow is characterized by

the absence of non-conservative forces acting on the’ biilk

(d+£,)W=dF, (36)  superfluid, i.e.

which shows that the vorticity is conserved under transport §>=o0. (42)
by the fluid if and only if the hydrodynamic force per particle
acting on the fluid is purely conservative, i.eJiE0. In its
more common dual form, this equation can be written as

As a consequence of Eq§36) and (41) we see that the
vorticity (and therefore circulatiorof a superfluid is strictly
conserved. The second constraint, which distinguishes a su-
perfluid from a perfect fluid, is that a superfluid is locally

HW=VX (0 XW)=VXF. 37 irrotational, i.e. its vorticity is zero, so

The_ Helmholtz vorticity conservatipn expresses the con- WwS=0, & WS=0. (43)
servation of angular momentum of fluid particles and we can —

equivalently derive it in its integrated form, namely the con-
servation of circulation as first shown by Kelvin. We con-
sider a 2-surfac& and define the circulatiod around its
boundarygs, as

Due to the vorticity conservation of superfluids, this con-
straint remains automatically satisfied if it is true at some
instantt, i.e. it is consistent with the hydrodynamic evolu-
tion.

C= é p= % pidx'. (39
%= 9% SHowever, therecan be a non-conservative force acting on the
superfluid at a vortex core if the vortex is pushed by another fluid.
Using Stoke’s theorem, we see that the circulation aroid  This mechanism gives rise to the so-called effect of “mutual fric-
is equivalent to the vorticity flux through the surfake i.e.  tion.”
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The formulation most commonly found in the literature been shown by Cartg28,13,29, and generalizations have
on superfluids and superconductors is based on the concempten discussed by Bekenst¢B0].
of the so-called “superfluid velocity,” which is constrained  We define the helicity 3-fornH (with componentdH;j, )
to be irrotationa[23,24. If one interpreted this as the actual as the exterior product of the momentum 1- fopnwnh the
transport-velocity s, such a constraint would generally not yorticity 2-form w, ie.
be consistent with the equations of motion, contrary to the
natural conservation of thenomentum vorticitywS. This H=p/Aw, (46)
“orthodox” formulation of superfluidity, which goes back to -
Landau’s two-fluid model fo*He, is therefore a rather un- which in components reads B, = 3p[iwjy; . A 3-form in a
fortunate misinterpretation of physical quantities, as the so3-dimensional manifold is dual toscalar, so we can define
called “superfluid velocity” is necessarily to be interpreted the helicity densityh as
as the rescaleduperfluid momenturim order to make this
constraint consistent with hydrodynamics. The fact that in Hije=heijc. (47)
Newtonian single-fluid contexts the particle momentum only
differs by a constant mass factor from the velocity has un-
fortunately led to a less than careful distinction between
these fundamentally different quantities. This simple identi-
fication no longer holds true in more general contexts, such 1 1
as in the case of mult_|—1_‘lu.|d€e.g. supen‘lum)sor even in tne h= yel Hij=pi Ee”"wjk:pJWZ p-(VXp). (48
case of a single relativistic perfect fluid. The velocity circu- -
Ietion is generallynqt cons_erved, contrary to the conserva- Using Eqs.(35) and(36), the comoving time derivative cHi
tion of momentum circulatiof41). The orthodox framework

. . : . . can be expressed as

of superfluid hydrodynamics will be discussed in more detail

From the duality relation together with the definitig#6),
we see that the helicity scalar has the following explicit ex-
pression:

in Sec. VID. I+ EHH=[(d+E£,)p] \W+pA[(d+E,)W
In addition to the superfluid constraints of being (% v)— L v)E] — E L v)—]
dissipation-free and irrotational, there is a further important =(dQ+F)Aw+pAdF

restriction, namely the quantization of circulation. An irrota-
tional flow can still carry non-zero circulation in the presence
of topological defectgsuch as vortices In order to see this
we note thatas a consequence of E¢.3)) we can write the
superfluid momenturrp as the gradient of ghase ¢,

=d(Qw) +[d(p/\§) +2dF/\p]. (49)

We see that, not surprisingly, the vanishing of the non-
conservative force§ is a necessaryalbeit not sufficient

namely, condition for the conservation of helicity. We introduce the
pS=hde, ie. pPS=fiVe. (44) total helicity 1 of a volumeV as

The circulation(38) can therefore be non-zerod® encloses Hzf H :f hdV, (50)

a topological defect inp, i.e. a region where (andp®) is — Jv

not defined, as for example in the case of flow inside a torus.

While in the case of a perfect irrotational fluid the resulting@nd, assuming'=0, we find for the comoving time deriva-
circulation could have any value, the superfluid phasis  tive of H:

restricted to change only by a multiple ofr2after a com-

plete tour around the defect. The resulting circulation is d_H:f 9+E VH= j; _ j; W-ds 51
therefore quantized as dt v( HEH (serw an - GD)

C=2N7h with NeZ, (45 The helicity H of a volumeV is therefore conserved under
transport by the fluid if, in addition t§=0, the vorticityW

which gives rise to the well-known quantized vortex StruC-\ - nishes on the surfacd/ surrounding this volume.

ture of superfluids.

- . V. HYDRODYNAMICS
C. Helicity conservation

Contrary to the conservation laws derived in the preced- A. The Lagrangian of hydrodynamics

ing sections, which have been known for more than a cen- In the preceding sections we have derived the most gen-
tury, there is a further conserved quantity, namely the soeral form of the Euler-Lagrange equatio(is8) associated
called helicity, whose existence in hydrodynamics has onlywith the convective variational principle, together with the
been pointed out comparatively recently by Moffab]. This  force densitief11) and energy transfer ratd42). We are
quantity is analogous to the magnetic helicity conservatiomow interested in a particular class of Lagrangian densities
found in magneto-hydrodynamid®6], and it is related to Ay, namely those which describe Newtonian hydrodynam-
the topological structure of the vorticity, i.e. its “knotted- ics. One can postulate the general form of the hydrodynamic
ness”[27]. The relativistic analogue of this conservation hasLagrangianA 4 in analogy to canonical particle mechanics as
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n2 whereAyy is the relative velocity between flul and fluid
x_X .
An(ng,ny) =2 m on. & (52) Y, ie.
Nx
wheref is a thermodynamic potential related to the internal AXYEvX_vYZE_& 61)

energy(or “equation of state} of the system. We therefore Ny Ny’
find the following general form for the conjugate momenta

pf)( andpX as defined in Eq): We note that a functiod of the form(60) satisfies the iden-

tity
X_1 X2 o€ Y o€
Po 2m vx+&nx, p*=m"vy e’ (53 2 nxa—g=0, 62
Ny
We want to identify these conjugate momenta with the actual
physical energy and momentum per fluid particle, which im-Which can be used together with EG3) to show that the
plies that under a Galilean boostV inducing the transfor- hydrodynamic momentum densit¢3) satisfies
mations

(54) ‘]H:E nprZE man:pv (63)

vy=vx+V, ny=ny, &'=6—V-V,

these momenta should transfofmg. sed23,31)) as i.e. the hydrodynamic momentum densily is equal to the
total mass currenp as a consequence of Galilean invariance.
In addition to the requirement of Galilean invariance we
will restrict our attention to systems of “perfect” multi-
(55  constituent fluids in the sense that their energy functios
isotropic. This means that we consider only equations of
One can verify that in this case the hydrodynamic force denstate of the form
sities f),j defined in Eq.(14) are invariant under Galilean
boosts as one should expect. The particle creation lates E(nx,AXY)ZS(nX,AiY). (64
defined in Eq.(13) are also Galilean invariant, so that the
transformation of the total force densitié$ of Eq. (11) is ~ Summarizing we can now write the hydrodynamic Lagrang-

1
—py'=—py+V-p*+ EmXV2 and p*'=p‘+m*v.

seen to be ian density(52) for this class of perfect multi-fluid systems
as
X =X+ vm*Ty. (56) ,
Ny
The equations of motions of an isolated system, L€ An(ny,ny) =2, mxﬁ—g(nx,Aiy)- (65
=0, are therefore Galilean invariant if and only if the total %
mass is conserved, i.e. if It is interesting to note that contrary to the relativistic case,
which is governed by a fully covariant hydrodynamic La-
> mXTy=0. (57)  grangian densitye.g. se¢13]), the Newtonian Lagrangian

(65) is not strictly Galilean invariant because of the kinetic

. energy term. The violation is sufficiently weak, however, that

(Bl)IG)UE’Iar.]r?SE)?‘;;Sz)Swe can show that the energy transfer ratesls does not affect the Galilean invariance of the resulting
equations of motion.

V2
g =g+ V- P+ mXFX?, (58 B. Conjugate momenta and entrainment effect

The total differential of the energy functiaﬁ(nx,AiY)

and due to mass conservati’) the total energy change represents the first law of thermodynamics for the given sys-
rate therefore satisfies tem, namely,

, 1
2 g =2 gF Ve, (59 de=>, pidng+ 5 XEY a*YdAZ,, (66)

so that the total energy conservation of an isolated system
Galilean invariant.

In general the transformation properti&) are only con-
sistent with the conjugate momen&g) if £ is itself Galilean
invariant, which is shown in Appendix C. This implies that
the velocity dependence éfcan only be of the form 20XV

X=Xy —
E(ny,ny) = E(Ny, Axy), (60) P Ux 2 e

[®hich defines the chemical potentials’ and the symmetric
entrainmentmatrix «*Y as the thermodynamical conjugates
to ny and A)Z(Y. The conjugate moment®3) are therefore
explicitly found as

Axy, (67)
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U>2( actual “internal energy,” we have to construct the thermody-
—pa=pX—mX* = 4oy p. (68)  namic potential that depends on the relative momenta instead
of Ayy. We therefore define the “entrained” relative mo-

2
The expressioli67) for the momenta in terms of the veloci- mentad*" as
ties is interesting, as it shows that in general the momenta are
not aligned with the respective fluid velocities, which is the
so-called entrainment effe¢The simple single-fluid case, in
which the momentum is jugb=muv, is only recovered if
there is no entrainment between the fluids. o*¥=0) or if
all constituents move togethére. Ayy=0). This phenom-
enon is well known(albeit not under the name entrainment
in solid-state physics; for example, the electron momentum
in a crystal lattice is connected to its velocity by efifiective
mass-tensofe.g. se¢33]). For a more detailed discussion of ) o )
the explicit relation between effective masses and entrainJsing this definition of*", the first law(66) now takes the
ment in a two-fluid model we refer the reader{8#]. In the ~ form
context of superfluid mixtures the importance of the interac-
tion and the entrainment effect has first been recognized by
Andreev and Bashkif35], although expressed in the con-
ceptually more confused orthodox framework of superfluid-

ity. Substituting Eq.(65) together with Eqs(68) and (67)  \we can therefore introduce the internal energy der&ias
into Eq(20), we can now relate the “generalized pressure” he Legendre transformeuith respect to the moment&")

F=2a"YAyy, (73
representing the momentum exchange between constituents
X andY due to entrainment, namely by using E7) the
momentum density of the constitueXtcan be written as

npr=nmevX—2 XY, (74)

1
de=>, wXdny+ EXZY FYdAyy . (75)

¥ directly to the energy functiod, namely,

E+W =2 nyp, (69)

and with Eq.(66) the total differential of W (u*,A%,) is
found as

1
dW =" nydu*— EXZY aXYdAZ,,. (70)

We can further express the hydrodynamic force dendity
more explicitly as

fA=ny(d+oy V)P + nxvﬂx—g 2a*YA L Vuy;,
(77)

and for the conserved hydrodynamic energy den&6y we
find

2
v
EHIZ mxnxix‘i‘g_z C(XYAg(Y. (72)
XY

X

of the energy functior€, namely,

- 1
E(ny , I =€— EXEY XY Agy, (76)
with the associated total differential
Ta X 1 XY
d&=2, pXdny— EXEY AyydIXY, 77

We note that€ and € only differ in systems where the en-

trainment effect is present. Traditionally the quanttyis
what one might call the actual “internal energy” density,
which is a function of the momenta, while the conjugate
thermodynamic potentiaf does not seem to have a well
established name in the literature. We see that in terms of the

internal energy€, the total energy densit§72) does indeed
have the expected form of “kinetic plus internal” energy,
namely,

2

v ~
EH:E mxnx_x+(€.

2 5 (78)

This relation can be used to clarify the physical meaning of

the thermodynamic potentidl One might have expected to
find the total energy density simply as the sum of kinetic

energies plu<. It is to be noted, though, thd,, which
represents the Hamiltoniafty(ny,p*) of the system, is

C. Entropy and temperature

As noted earlier, entropy can be included quite naturally
in this framework as a constituent. The corresponding den-

naturally a function of the fluid momenta’ as opposed to Sity and current ar@;=s and ns=svs in terms of the en-

the velocities. Similarly it turns out that in order to find the ropy densitys and its transport velocitys. The entropy is
naturally massless, i.e°=0. The thermodynamically con-

jugate variable to the entropjts “chemical potential’) is

. .

“Sometimes also referred to as “drag” in the superfluid literature.t€ temperature, i.g.>=T, so Eq.(66) can be written as
But as pointed out ii32], this is rather misleading, as entrainment
is a purely non-dissipative effect, whereas “drag” in physics usu-

S (79
ally refers to a resistive drag.

1
de=Tds+ >, wdny+= > o*YdAZ,.
XZs 2 5y
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The thermal momentpi=©, and p°=0 of the entropy The explicit expression for the force densiti@d) and en-

constituent are found from Eq&7) and (68), namely, ergy transfer rategl6) are found as

2a5Y fX=nym*(d+v- Vo +nVu*+m* Ty,  (88)
O=— z Ay, (80) X t XV M X
Y S .
X=p X+ Typ—m* 5Ty, 89
) (81 grmv b m g ®9
We see that although the entropy has zero rest mass, it can f S=sVT, (90)
acquire a non-zero dynamical momenténdue to entrain-

ment. This can also be interpreted as the entropy having a g°=v-f3+TI. (91

non-zero “effective mass.” The hydrodynamic entropy force
densityf }, and energy change ratf defined in Eqs(14) If we allow for an external forcd,,; and energy exchange

and (16) yield rate gey, the equations of motiofil8) of the system are
f3=sVT+s(d+vs V)O— D, 2a°"AL Vo, (82 5+ P=foq and g+ 0"=gex. (92
g =vef 3+ (T+vs Ok (83) Inserting Eqs(88)—(91) and using mass conservati¢s),

we find the explicit equations of motion
We see that the temperature gradient is a driving force of the

entropy constituent, as would be expected. We also recognize iy +£ _ }
the termTTg in the expression of the energy transfer rgte (d+v-V)v P vP pfexf’ (93
which represents the heat creatiohdS”

VI. APPLICATIONS Tl 2 W Tx=Gex— 0 fexts (94)

A. Single perfect fluids where we have used the thermodynamic relat®@®) in or-

As the first application of the foregoing formalism, we der to rewrite the momentum equation in the familiar Euler
consider a single perfect fluid consisting of several comovingorm. The energy equation expresses the heat credtign
constituents. This multi-constituent fluid is described by theby chemical reactiond’y. For anisolated system, where
densitiesny which move with a single velocityy=v, and  feq=0 andge,=0, that entropy can only increase due to the
so the currents aray=nyv. Obviously all the relative ve- second law of thermodynamics, 5g=0. From Eq.(94) we
locities vanish in this case, i.Ayxy=0, and therefore there therefore obtain a constraint on the direction of the chemical
is no entrainment. Here we will explicitly write the entropy reactions, namely,
with its densitys, and we do not include it in the constituent

index set labeled by, i.e. X#s. The Lagrangian(65) for X
this system is 2 Tyu=o0. 9
X v? If we consider, for example, the case of two constituents of
Ay=2 m nX?—é’(s,nx), (84) equal mass, so that the mass conservatf implies I';

+I',=0, then this constraint now reads as
and the energy and pressure differenti@6) and (70) sim- L
ply read as Fi(p™—p) =<0, (96)

X X which shows that chemical reactions only proceeds in the
de=Tdst+ >, w*dny and dP=sdT+ 2 nydu*, direction of the lower chemical potential as would be ex-

(85) pected.

where in the case of a single fluid, the generalized pressure g «pgtential vorticity” conservation: Ertel’s theorem

¥ simply reduces to the usual fluid pressi®eThe fluid ) ] ] ) )
momenta(67) and (68) are We now consider the case without chemical reactions, in

which the general perfect fluid discussed in the foregoing
X X section can be described effectively as a fluid consisting only
pr=mi and —po=ui+mi, (86)  of a single matter constituent and entropy. In this case we can
show that the vorticity is generally not conserved, but that a
while for the entropy constituent we have with E¢80) and ~ Weaker form of the vorticity conservation still holds. The
(81): fluid is described by the particle number dengifythe mass
per particlem and a comoving entropy densisy Mass con-
0=0 and —0,=T. (87) servation(57) in this case reduces 16=0. If we assume the

2
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system to be isolated, i.&+f =0, then the only force per C. Thermally conducting fluids

partiCle (33) aCting on the matter constituent is the “thermal We have so far on|y considered perfect fluids, which are
force” (90), namely, perfect heat insulators as the entropy is strictly carried along

1 by fluid elements and no heat is exchanged between fluid

—fy=—sVT, (97)  elements. Itis quite straightforward to extend this to ther-

n mally conducting fluids simply by dropping the assumption

_ _ that the entropy flux is bound to the matter fluid flow, i.e. we

wheres=s/n is the specific entropy. I is constant every- just have to allow ¢ # v, wherev, andv are the velocities
where, then this “thermal force” is conservative, i§=0  of the entropy fluid and the matter fluid, respectively. For
and by Eq.(41) the circulation is therefore conserved. In the simplicity we consider only a single matter constituent, de-
non-uniform case, however, we find scribed by its particle number densitywhich by Eq.(57) is
automatically conserved, i.€=0.

From the general expressio81) and (80) we see that
the “entropy fluid” acquires a non-zero momentum due to
the interaction with the matter fluid, via entrainment. How-
which vanishes only if we integrate along a path that lies ~ ever, this aspect does not usually seem to be taken into ac-
completely in a surface of constaaitWe can also see this in count in the traditional description of heat-conducting fluids

the Helmholtz formulation, namely by applying an exterior (6-9- S€¢23)). The aim of the present section is only to show
derivative to Eq(97), one obtains how to recover the standard equations for a heat-conducting

fluid, and we therefore simply assume the entrainment to be
dZ=—dS\dT, ie. VXZ=—VSxVT, (99) ne_gligible, i.e.a=0. _It is certainly an inte.res_ti.ng question if
- this neglect of entrainment is physically justified in all cases.
With this assumption, the force densii§2) and energy rate
n@3) of the entropy reduce to

dc

a = [72§: - ﬁ;z sd T, (98)

and it follows therefore from Eq36) that the vorticity is no
longer generally conserved in this case. However, the qua

tity ds/\dg, or its equivalent dual expressidns- (VX 3), fS=sVT and gs=v,-f S+TT. (106
still vanishes identically. Based on this observation we con-
struct the “potential vorticity” 3-formZ as As in the (isolated perfect fluid case discussed previously,
o the equations of motion are agdiri+f=0 andg®+g=0.
Z=ds/\w, (1000  This time, however, one force densify; say, can be speci-
- - fied by the model due to the increased number of degrees of
and the dual scalaris freedom, so we set it th°=fg, wherefy is a resistive force

acting against the entropy flow. We obtain the Euler equation
1. ~ in the same form as in E¢93), but now the energy equation
Zijk:ZEijk and = aEIJkZijk:VS'(VXp), takes the form
(101

where the last expression was found using Ef). The
evolution of the potential vorticity 3-fornE under transport By the second law of thermodynamics, namély=0, we

TIs=(v—vy)-fr. (207

by the fluid is can constrain the form of the resistive forfgeto
and thereforez is conserved for isentropic flow, i.e. if i.e. the friction force acting on the entropy fluid is always
_ opposed to its flow relative to the matter fluid. Obviously the
Fs=0<(9+£,)s=0. (103  value of the resistivityy is not restricted to be a constant but

_ _ will generally depend on the state of the system. Following
The dual version of Eq(102), namely the conservation of the traditional descriptiorie.g.[23]) we introduce the heat
the scalarz, is then found as flux densityq relative to the matter fluichs

&z+V-(zv)=0. (104 =Ts(vs—v). (109

Traditionally this conservation law is often expressed in
terms of the scalasr=z/p, which then results in the follow-
ing form of the conservation law:

By combining this with Eqs(106) and(108), we see that the
heat flux current is constrained by the second law to be of the
form

(6i+v-V)a=0, (105 _p
which is generally known as “Ertel's theorent36,37]. 4=—«VT with  «= 720’ (119

043001-11



REINHARD PRIX PHYSICAL REVIEW D69, 043001 (2004

where is thethermal conductivityWith Eq. (109 we can  where the energy functiofi determines the first laW66) as
express the velocity of the entropy fluid, in terms of the )
heat fluxq and the matter velocity, so the entropy creation dé=pdn+Tds+ adA”, (117

ratel’s can be expressed as . . . . 4
which defines the chemical potential of “He atoms, the

temperatureT and the entrainmen&. The conjugate mo-

q
I's=as+V-|sv+). (11)  menta(67), (68) of the “He atoms are
We further find for the hydrodynamic energy flux vec@y p=mo + Z_QA, (118
of Eq. (26): n
X v’ 1,
Qu=2 (—py)nx= ptm—nv+sTos ~Po=p—5;Mmu+wp, (119
02 _ while for the entropy fluid Eqs(80) and(81) yield
=no| m—+u+sT|+q, (112
2a
) . _ 0=—-—A, (120
where the last equality was found using Ef09). We intro- S
duce the specific enthalpy as=u+sT, and using the first
y pech Py @&= 4 using the A —0y=T+vy- 0. (121)

law,> namelyd P=ndu +sdT, we find the total variation of

the specific enthalpy as The conservation of mags7) implies

-1
dw="Tds+ ~dP, (113 I'=gn+V-n=0. (122

) In the absence of vortices, there are no direct forces acting
and so we recover the standard expresséog. cf.[23]) for  petween the two fluids, so the equations of motion in the

the energy flux: absence of external forcése. fo,,=0) are simply

2

QH=nv(m%+w)+q. (114

f=f,=0 and fN=0. (123

The energy equations age=0 andgN=g.,, and with Eq.

D. The two-fluid model for superfluid “He (83) this leads to

We now consider the example of superfldide at a non- —Oex=1's(OgtvN-O)=—TIY, (1249
zero temperaturd. Let n be the number density ofHe
atoms ands be the entropy density. ThéHe atoms move Where we have inserted E(L21). We see that this equation
with a velocityo, while the entropycarried by a thermal gas  describes the rate of entropy creation by an external heat
of excitations such as phonons and rofotransports heat source, namely,
without friction (i.e. fg=0) at the velocityv, so the rela-
tive velocity isA=vy—wv. In this context the entropy fluid is
often referred to as the “normal fluid” as opposed to the
superfluid mass flow. The two transport currents, namely that
of “*He atoms and of entropy, are, respectively, As discussed in Sec. IV B, the superfldide is (locally)

irrotational, i.e.

1
d;s+V-(svy)= fgext- (125

n=nv and s=svy. (115
W|J:2V[|pJ]:0C>W:VXp:0 (126)
The *He atoms have mass), so the mass density ig
=nm, and the hydrodynamic Lagrangian dengi®p) reads Using Eq.(14), the equation of motiorf123) for the super-
as fluid therefore reduces to

1 d,p—Vpo=0, 12
Ay=5nm?—&(n,s,A2), (116 P~ VPo (129

and with the explicit momentél19 and (118 this yields

~ 1,
Lt v tev-A

5In the absence of entrainment the entropy fluid does not carry d(v+eA)+V 5

momentum; therefore, the matter fluid defines a unique frame in
which the stress tensdR3) is purely isotropic. In this case the . .
generalized pressufg is identical with the usual perfect fluid no- Where we introduced the entrainment numbeand the spe-

tion of the pressur®. cific chemical potential. as

=0, (128

043001-12



VARIATIONAL DESCRIPTION OF MULTIFLUID . .. PHYSICAL REVIEW D 69, 043001 (2004

2 - u where we used the definitiofi29 of the entrainment num-
8= and u=-_. (129 bere. With this substitution, the total mass currgntwhich
is equal to the total momentum densily as seen in Eq.

The entropy fluid is governed by the momentum equatiorf63), can be written in the form
fN=0, and with Eq.(82) and the entropy momentd21)

. — &
and (120, we find Ju=po=| 1 |vs+ 1_Z o, (134)
2 o . a
(at+vN'V)(?A) ~VT+ A Vopt 2TA=0. which suggests to introduce a “superfluid densitya and a
(130 “normal density” g as
The two equationgl28 and(130) represent the “canonical” P _ T Ep
formulation of the two-fluid model for superfluitHe. These 0s=71, and  on= 1-¢’ (139

equations do not seem to bear any obvious relation to the
“orthodox” formulation of Landau’s two-fluid model found such that total mass densipyand mass currernp=J, can
in all textbooks on the subjece.g. sed31,23,24). Never-  now be written as
theless, these equations are equivalent to the orthodox frame-
work, as we will show now, but it is important to note that p=0stoy and Jy=0svstonvn- (136
the orthodox formulation is based on a rather unfortunate
confusion between the velocity and momentum of the superi is now obvious that this split is completely artificial, and
fluid which is inherent in the historic definition of the super- g\ and o5 are onlypseudo-densitiesas they do not repre-
fluid velocity by Landau. sent the density of anfconservedphysical quantity and are
We demonstrate the equivalence of these formulations byot even necessarily positive. In fact neither of the two
explicitly translating the canonical formulation into the or- pseudo densities and currents are conserved individually,
thodox language. The starting point of Landau’s model is theontrary to the physical currentd15). We note that even
statement that the superfluid velocity is irrotational. We writeLandau warned against taking too literally the interpretation
vs for the superfluid velocity, which is not to be confused of superfluid*He as a “mixture” of these twdpseud® “flu-
with the actual velocityw of “He atoms, so the starting point ids” [23]. Contrary to the artificial orthodox split, however,
is the separation into entropy fluid and tiele mass flow is
physically perfectly meaningful, and the superflwdn be
VXws=0. (13D  regarded as a two-fluid system in the literal sense in the
canonical framework. The pseudo “mass densitgy,
From the general discussion about vorticity conservation ifyhich the normal fluid seems to carry in the orthodox de-
Sec. IV A and its particular role in superfluidSec. IVB  scription, is due to the fact that entrainment provides the
we have already seen that contrary to the momentum vorticentropy fluid with a non-vanishinghomentun(120) in the
ity W=VXp, the velocity-rotationVxXv is generallynot  presence of relative motion, even though it does not transport
conserved by the fluid flow, and in particular not in the pres-any mass. This lack of careful distinction between mass cur-
ence of more than one fluid as is the case in superfitid  rent and momentum leads to the paradoxical picture of the
at T>0. The only possible interpretation we can gmgin  “superfluid counterflow”: for example, in the simple case of
order for the constraint131) to be consistent with hydrody- heat flow through a static superfluid, the normal fluid asso-
namics and to remain true for all times is that it is really theciated with the heat flow carries a pseudo mass current
rescaled superfluichomentunp, so the “key” to our trans- o, v,. But because there is no net mass current there has to

lation is the ansatz be some superfluid “counterflow” of pseudo mass current
0svs= —@nvn - This apparently strange behavior is solely

_— p (132 due to an awkward choice of variables and a loss of direct

Sm contact between the quantities used in the orthodox descrip-

tion and the actual conserved physical quantitie$tdé.
While this would be equivalent to the fluid velocity in a  Further, following the traditional orthodox framework, we
single perfect fluid, as seen in E@6), this has no interpre- define the relativépseudo velocity ¢ as
tation as the velocity of either the mass or the entropy in the
case of the present two-fluid model as we can see in Eq. O =vn— Vs, (137
(118. Therefore we callg a pseudo velocityas it is ady-
namic combination of both fluid velocities governed by the which, using Eq(133), can be expressed in terms &fas
entrainmenta between the superfluidHe and its excita-

tions. With the explicit entrainment relatiofi18 we can O =(1—-¢)A. (138
now express the velocity of the “He fluid in terms of the
pseudo-velocityws and the normal-fluid velocity as In order to relate the canonical thermodynamic quantities to
the orthodox language, we follow Khalatnikp®&1] and Lan-
v=(1-28) Yws—evy), (133y  dau[23] and consider the energy density in the “superfluid
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frame” Ko, which is defined byl¥=0. In this frame, the
momentum density(HO) expressed in Eq136) is

J9=0wM=0y0=-20A4, (139
and the transport velocity of the superfluid*He atoms in
this frame can be expressed using Egi0) as

On (O)ZEJ(HO).

v@=p— VS=7vN (140

The hydrodynamic energy densiBy, of the fluid system is
given by Eq.(72), which reads in this case

E L 2+ E-2aA? (141
H va a ’
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E. A two-fluid model for the neutron star core

Here we consider &implified model for the matter in-
side a neutron star core, which mainly consists ¢€lzarge
neutra) plasma of neutrons, protons and electrons. We focus
on superfluid models, in which the neutrons are assumed to
be superfluid, which allows them to freely traverse the fluid
of charged components due to the absence of viscosity. As
discussed in Sec. IV B, this also implies some extra compli-
cations due to the quantization of vorticity into microscopic
vortices. Here we are interested in a macroscopic description,
i.e. we consider fluid elements that are small compared to the
dimensions of the total system, but which contain a large
number of vortices. On this scale we can work with a smooth
averaged vorticity instead of having to worry about indi-
vidual vortices. One effect of the presence of the vortices
will be a slight anisotropy in the resulting smooth averaged
fluid [38,22,39, which can be ascribed to the tension of vor-

and using the previous translations together with the first laW{c€S; and which we will neglect here for simplicity. The

(117), we can write the total variatiodE(®) of the energy
density inK, as

dE@=Tds+ ugdp+ ¢ -dI®, (142

which defines the “superfluid chemical potentizik"s as

- 1 )
ps=p— 5 (v—wg)". (143

second effect of the vortex lattice is that it allows a direct
force between the superfluid and the normal fluid, mediated
by the respective vortex interactions, and which is naturally
described in the context of the two-fluid model as a mutual
force. The model assumptions used here are fairly common
to most current studies of superfluid neutrons starg. see
[40-42,39).

The model therefore consists of comoving constituents
Xe{e,ps}, corresponding to the electrons, protons and en-
tropy, and we will label this fluid with “c.” The second fluid
consists only of the superfluid neutrons, iX=n. Charge

Using these quantities, the canonical equation of motion Ecgonservation implies

(128 can now be translated into the orthodox form as

2

atVSJFV =0.

(144

VS ~
—+
2 Ms

One can equally verify that the generalized pressure, defined

=Ty, (148

and for simplicity we will assume locaharge neutralityi.e.

Ne=Np. (149

in (69), is expressible in terms of the orthodox quantities A assume the electrons and protons to be strictly moving

V=—E+put+sT=—ED+Ts+pugt ¢-IO,
(149

in exact agreement with the expressions found3m,23.

together in this modeli.e. we consider time scales longer
than the plasma oscillation time scalso we can neglect
electromagnetic interactions altogether. Another physical
constraint isbaryon conservationi.e. we must have

For the remaining momentum equation, the total momentum
conservation(22) is traditionally preferred over the equation
of motion (130 of the entropy fluid. We therefore conclude g5ng together with mass conservatitsy), this leads to the
this section by the appropriate translation of the stress tens?équiremerﬁ
(23) into the orthodox language. The canonical expression

for the stress tensor of superflufie is

Iy+1,=0, (150

m"=mP+ me=m. (151

Ty=n'p +s0I+¥g, (146 we can therefore write the mass densities of the two fluids as
and inserting the previous expressions for the explicit mo-
menta and the translations to orthodox variables, one can

write this in the form The first law(66) of this model reads as

pn=mn, and pc,=mn,. (152

Ti= ekt onviok+¥g', (147)
. ' 5This relation is of course not exactly satisfied in reality, which
which concludes our proof of equivalence between the cashows a well-known shortcoming of Newtonian physics: mass has

nonical and orthodox descriptions. to be conserved separately from energy.
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dé=Tds+ u"dn,+ puédne+ uPdn,+ a®dAZ + aPdA?, and therefore
sn 2 ~ ~
TaTdAgy (153 0°=—ve T - Toe (P"—p) —pS]-TsO,. (166
Obviously there is only one independent relative velodty o ) ) )
namely, Substituting this and the extended version of B9 into
the energy-rate equatidi64), we find
A=v.—v = A= Apn: Asn, (159
—_A.FN n_.e_ .p (p"— ne— P

and we define the total entrainmemtas THs=A-f p+ Tl po—Po—Potve (P—p™—p )],(167)

a=a®*™+ o'+ o™ (155

where we have used the explicit fori®1) of ®,. In addition
In the case of the neutron star model, we are obviously alsto the external force, the two-fluid model allows one to pre-
interested in including the effects of gravitation. We canscribe one of the fluid force densities. In the present case it is
therefore not assume the system is isolated and we includeost convenient to specify the extended hydrodynamic force
the effect of the gravitational potentigb as an external f ! on the neutrons. As this force can only originate from the
force. The minimal equations of motidi8) therefore read  second fluid, we will refer to it as theutual forcef,,, so
as we set
Ny fc— _ "4 o= —p- P
f+f pV® and g"+g p-VO, (156 fng (169
where the force and energy rate of the c-fluid are naturally
given by f °=f P+f ®+f S and g°=gP+g°+g°. With Egs.  Substituting the explicit conjugate momer(67) and (68),
(148 and (150 we can write the respective force densitieswe obtain the final expression for the entropy creation rate

more explicitly as (167 as
—_f£N
f n_f H+Fn pn1 (157) TFS: A.fmut+ Fnﬁ (169)
fe=fL—T(p*+p°) + 10, (158

The first term on the right hand side is the work done by the
mutual force, and the second term is the entropy created by
beta reactions between the two fluids, for which the term
“transfusion” has been coine[B2]. The deviation from beta
g"=v,-f R—Tpd, (159  equilibrium characterized bg is found as

where we naturally defined,=f },+f §+f . Similarly we
can write the energy ratg46) as

gC:vc']c CH+Fn(p8+ pg)_rsG)O- (160

4a
1- p—) A2, (170

n

1
B=pPt puf—p = om
Because the gravitational acceleration is the same for all

tbhOd'es(".?'tﬂu'd?’ vvte ctar: p(iwtf]lmglyf.a.?.sorb ftr?,e ?ffegt gf where the last term gives the correction to the chemical equi-
€ gravitational potential info the definition of "extended™ iy im due to relative motiom of the two fluids. The sec-

forcesf and energy rateg which simply incorporate the nd jaw of thermodynamics for an isolated system states that
respective gravitational force density and work rate, i.e. W&ntropy can only increase, i.E¢=0. In order for this to be
define identically true in Eq.(169), the mutual forcef,,, and the
reaction ratd’,, have to be of the form

FX=f X4 py VD, (161)

R r.==2 with E=0,

fX=tX+pyV, (162 n= =P

. fou= 7A+KXA with =0,
gXEgX+vax'V(D. (163) mut (171)

With these redefinitions, the minimal equations of motion

(156) again take the form of an isolated system, i.e. where k is an arbitrary vector characterizing a non-

dissipative Magnus-type force orthogonal to the relative ve-
frife=0 and g"+g°=0, (164) locity. Further substituting the conjugate momenta in the ex-
pression for the hydrodynamic force densitiéd), we find
while for Egs.(157)—(160) we obtain exactly the same form, their explicit form
just for all forces and energy rates replaced by their “ex-
tended” version. Using the foregoing equations, we obtain 2 .
h=n(d+v, V)| mo,+ n—A +n,Vu"+2aA;Vol,
n

fo=—f"+I,p°~ IO, (165 (172
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. 2(a®™+ P This introduces a time-dependent map “pull-back”) be-
fr=ng(d+ Uc'V)( Mo~ —————A+nV(uP+1%  tween the “material spaced’ and physical space, and the
P associated Jacobian mattikis
sn
—2aA;Vol-s(d+v. V) S A) +sVT. (173 axi

jijzﬁf . (A3)
We now make the simplifying assumption that we can ne- ‘

glect the entrainment of entropy, i.e. we assume that all thgye consider the variations of fluid variables inducedaay
entrainment between the two ﬂwd_s is due to the neutrongye infinitesimal spatial displacement&(x,t) and temporal
proton and neutron-electron contributions, so we 88t gpifis ~(x,t) of the fluid particle flow linegA1), namely,
=0, which implies®=0. Using Eq.(67) we find
x'(at)=x(at)+&(xt) and t'=t+7(xt).

piHpP—p'=m(l-e,—eo)A, (174 (Ad)

where we have defined the entrainment numbers We note that the transformatio®4) not only shifts flow

2w 2w lines in space, but also in time. A physical quantity of the
ep=—  and e.=—. (175  flow, Q(x,t) say, is changed tQ’(x’,t"), and we define the
Pn Pec correspondindEulerian and Lagrangianvariations a$

Putting all the pieces together, we obtain the momentum -0 _ A
equationg(168) and (165 in the form 9Q=Q"(xH=Qx), (AS)
5 1 AQ=Q'(at’)—Q(at)=Q'(x',t")—Q(x,t). (AB6)
(0t v V) (vt end) +V(u"+ D)+ A Vol=—f,,
Pn By expandingAQ to first order using the definitiofA4) of
(176 J , A :
x'"andt’, we find the relation

~ .S :
(0t ve V)(ve—eA)+V(u+P)—eAVol+ p—VT AQ=6Q+ &V,Q(x,t)+ 79, Q(x,1). (A7)
c
1 r, Let us consider the inducefirst ordey variation of the ve-
= —p—fmut+ (1-&c— 8n)mp_Aa (177 locity v'=0x'(a,t), namely,
c C

ri N=243., ri "N=3., i i
with the specific chemical potentialg"=x"m and u° vi(at)=dux"(at’)=dx(at)+aé(at)

=(uP+p/m.

: at i
— | 1
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and with Eq.(A7) the Eulerian variation is found as

APPENDIX A: EVALUATION OF CONVECTIVE . e o . -
VARIATIONS ov'=[0&+v Vi =&V - [d(v' ) +v'v V7]
(A10)
We write the particle flow lines as

xX'=x(at), (A1) "Contrary to the Eulerian variation, the Lagrangian variation can
) be defined in differentnon-equivalentways. The definition used
where the “particle coordinatesd' are used to label indi- here is based on Comparing the quanmyin different points by
vidual particles and can be taken, for example, to be theiparallel transport. Another common definitiqe.g. see[11,20)
initial position, i.e. consists of using the Lie-transported quantity instead. Both defini-
o tions are equivalent for scalars but differ for vectors and higher
a'=x'(a,0). (A2) order tensors.
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From the conservation of mass one can derive an expression

for the particle densityn in terms of the JacobiaA3),
namely,

~ No(a)
~ dets’

n(x,t) (A11)

whereng(a) =n(a,0) is the initial density at=0. Using Eq.
(A3), the change of the Jacobian matgkinduced by the
flow line variation(A4) can be found as

j’i-(at’)=0xri(a't’)=aXi(a't) E_
J ! (;)al (?a] ¢ (9aJ
axi(a,t)+axi(a,t) ot 9E
= 2| Toal
Jal gt oal|, da
=7 (at ia7+a§i Al12

with the resulting Lagrangian variatid@\6) expressible as

AT =T (ME—v'Vi7). (A13)

PHYSICAL REVIEW D 69, 043001 (2004

APPENDIX B: NOETHER IDENTITIES
OF THE VARIATIONAL PRINCIPLE

In addition to the flow line variations considered so far,
we will now also allow formetric variationség;; . Although
we only consider Newtonian physics here, there ipriori
no reason to restrict ourselves to flat space. Most impor-
tantly, however, including metric variations allows us to ob-
tain the form of the stress tens®f, and the associated mo-
mentum conservation22) directly from the variational
principle as a Noether identity, as opposed to constructing it
from the equations of motion as we have done in Sec. lll.
Therefore we extend the variatigd) of the Lagrangian to

dA
SAy=2, pRdny+ px-énXJrﬁ(Sgij. (B1)
ij

Next consider the density changa” induced by a metric
variation 8g;; at constant flow lines, i.e. constagt; . First
we note that we can express the Jacobian as
det7= Eijkjiljjzjkg, (B2)
and using Eq(A14) the variation of the volume forn;j,
=/g[ijk] induced by metric changes is expressible as

The derivative of a determinant d&twith respect to a ma- 1
trix elementA; is given by 5€ijk=§€ijkg'm5g|m- (B3)
a(;j:tA =de(A)(A~ Y, (Al14) Therefore we have
ij
and therefore we can write the Lagrangian variation of the odetg) _1 det( 7)g'l, (B4)
Jacobian determinant as 99ij J 2
A(det7)=de{ (T~ 1)jiAjij ) (A15) and using Eq9/A11) and(A18) we can write the variation of

the density induced by spatial displaceme&tand metric

The flow line variation(A4) therefore induces the Lagrang- variationsdg;; as

ian change of the Jacobian

Adetd) o
dey Ve vVt

(A16)

Using Eq.(A11), the induced density variation is therefore

found as

An=-nV&+nv'Vr, (A17)

and with Eq.(A7) the corresponding Eulerian expression is

found as

on=—-V(n&)+[nv'V,r— r4,n]. (A18)

By combining the results for velocity and density variations

we find the variations of the current=nv' as
An'=[naé (x,t)+n'V& —n'V&-n'o,r,  (A19)

sn'=[na & (x,t) +n'g = V(n'é)]—d(n'7).
(A20)

5n=—V|(n§'>—%ng”59n’ (BS)

1
Anz—nV@'—Eng”ﬁgij, (86)

where we have used the fact that with our definition of the

Lagrangian variatioriA7) we have
Agij=8g;j+ £ Vigi;= 59jj , (B7)

as the metric is by definition constant under parallel trans-
port. A metric change with fixed flow lines does not change

the local velocityv'; therefore, the current variation can be
written using Eqs(B5) and (A20) as

) ) ) ) 1 .
an'=[nag (x ) +n'Vig - Vi(n'¢éh]->n'g og;,

(B8)
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oAn 1

= nkp¥. (B19)

. . S 1. .
i i | i_ i 1M Zhinli . T
An'=[nag (x,t) +n'Gié —n'vd]- Fnighsg, . 7, 2

(B9)
The left-hand side is manifestly symmetriciimndj, there-

When allowing for metric variations it is convenig@tg. see fore we see that
[39]) to introduce the “diamond variation® A as

1 1 2 nipXI=2 nkp*, (B19
OAn=—=8(VgAW) =SAu+ 5 A" 69, (B1O)

\/6 and we can now write thésymmetrig stress tenso(B13)
explicitly as
such that the variation of the acti¢8) can now be written as
noting thatdV= \gd®x i i -
(noting vae) =3 ol g (820)
5Z=f OApdVvdt (B11)  This tensor is identical to the expressit#8) found earlier

by construction from the equations of motion. It remains to

Substituting Eqs(B1), (B5) and (B8) and integrating by € shown, however, how the momentum conservation law
parts, O A, can be cast in the form (22) is directly obtainable as a Noether identity from the

variational principle. Using Eq¥B17), (A7) and (B12) we
1 can explicitly express the diamond variation as
OAy=—2 Fre+STog;+ iR+ 4R, (B12) _
2 OAw=—(a3)E—N(Au) +a(Iné),  (B2D)

where the canonical fOde& have the eXpIiCit eXpreSSion which has to be identical to the expresstﬁ]_Z) for a com-

(11) and we defined the tensat) as mon displacemené of the whole system, which after some
N partial integrations takes the form
9 y
Tii=2—"+wg, (B13) _ .
99 OAp=| =2 FI+VTHE+V(.. ) +a(...).
using our earlier definitiorf20) of the generalized pressure (B22)

v,

system including the background metric, which induces
metric change

The requirement that the previous two expressions have to be
identical(up to divergences and time derivatiyésads to the
Noether identity

Now consider a common displacemegtof the whole

ItV Th=fl, B23
805 = —2V£) . (B14) YT Tex (623

which is the momentum conservation 1d22).

where (j) indicates symmetric averaging, i.e.AgB;

=A;B;+A;B;. The corresponding Lagrangian variations APPENDIX C: GALILEAN INVARIANCE OF &
(B9) and(B6) are found as

In this section we show that requiring the conjugate mo-

Any=0, (B15)  mentapy andp® of Eq. (53) to transform as Eq(55) under
_ ‘ . Galilean boost$54) implies that the internal energyhas to
An'x=nx((9t§'+v'xV|§'). (B16) be Galilean invariant. We assume tlgny ,ny) transforms

into &' (ny,ny) under a Galilean boost, where

Substituting this into Eq(B1), the inducedA A is

Ny=Nyx+NyxV. (Cy

. OA _
AA = E n'xpxl—zﬁ—f| Vi§j+J'H(9t§i ., (B17) Therefore the conjugate momen&B) in the frame moving
9i with speed—V are of the form

where we have used the definitig83) of the momentum 1

densityJy,. It is well known that contrary to the fully cova- —py'= %mxvfﬁ m*vy-V+ %mXVZJr&—, (C2
riant Lagrangian for relativistic hydrodynamig¢s.g. [13]), INx

the Newtonian Lagrangian is not strictly Galilean invariant )

under boosts. This is due to the velocity dependence of the P’ =m¥v +va—£ (C3)
kinetic energy, as can be seen in the explicit fd58). We x an)’('

can therefore only demand strict invariance, e\ =0,
for time-independent displacements, namel§=0, which  Using Eg. (53) to eliminate all terms containingy, we
leads to the Noether identity arrive at
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dE 9 & 1

———+V-d—x]|, X=—\—0,,NANg, (D2)

Ny Ny n c
(CH

1
—py'=—py+V: px+§mXV2+

and so generall\ .o,= A ¢o(Na,Ng,X). Instead ofx we can
equivalently choose as a third independent quantity the com-

aE o' P
P’ =p+mXV+ _ _ (C5) bination
anX (?n% 2 2
A NaNg
. . . : . —=1- . (D3)
By comparing with the required transformation properties c X2

(55) we see that a necessary and sufficient condition for this ) ) _
is the vanishing of the terms in brackets in E¢84) and e are interested here only in the purely hydrodynamic con-
(C5). We can rewrite the partial derivatives of the energytent of this framework, so we assume a flat space-time, i.e. a

function as follows: metric of the form
ds?=g,,dx*dx"= —c?dt?+dx?, (D4)
9 9E any A& _ _ N )
T o T e (C6) with the time coordinate” =t and sogoo= —c“. When tak-
dny X dny ny X ing the Newtonian limit ag—«, the metric becomes singu-
lar. The reason for this singular limit obviously lies in the
and fact that a locally Lorentzian theory reduces to a Galilean
invariant theory, therefore the Lorentz invariance has to be
o 9 IE Iny o 9 broken in the limit. As the non-invertible metric no longer
— = — — |y == -V-—. fully determines the space-time, we now havectmosé a
INx|™x dnx ny Iy N[ Ik ny Inx preferred time coordinatd, say, in which to take the limit

(C7)  and which will reduce to the Newtonian absolute time.
The relation between the scalar rest-frame particle densi-
Inserting these identities into Eq&C4) and(C5), the invari-  tiesny and the densitieay in the preferred-time frame can

ance requirement can be expressed as be expressed from Eq&D2) and (D4):
2
€ &' & I 1\/7 1 [ny
. - - — 2/~0\2_ 2 _ 0 I -4
| ol e an forall X, (C9 Ny c Co(Ny)“—ng=ny| 1 e ) +0(c™7),
X
(DY)

therefore&’ can only differ from& by a constant, which is
unimportant because the absolute value of the energy scale
arbitrary. This shows that energy functiéhhas to be Gal-
ilean invariant under the above assumptions.

where (1x)'=n), is the spatial part of the 4-currenf in the
6?eferred time frame. We see from this equation that if we
choose the densitiesy to represent the Newtonian particle
number densities independent®fthen in the limit we find

P — 0
APPENDIX D: NEWTONIAN LIMIT OF THE lim ny=ny. (D6)
RELATIVISTIC LAGRANGIAN e

We further note that the quantity introduced in Eq(D3)

As sh in th lativisticall iant f k X 2 X e
s shown in the relativistically covariant framework by reduces to the relative velocity in the Newtonian limit,

Carter[13], the equations of motion for conducting multi-

constituent fluids can be derived from a covariant Lagrang-n amely,
ian density of the form _ na ng\?2
limA%= n— _n— (D?)
Acov: - PCZ, (D1) o A ®

) ) We now turn to the covariant Lagrangian.,, of Eq. (D1)
where the scalap is now the total mass-energy density of which can quite generally be written as
the system. For simplicity we consider here a two-fluid sys-

tem, as generalizations to more fluids are straightforward Aco/=—(NaMa+NgMg)c?—E(Na,Ng,A%)+O(c™Y),
while making the notation more cumbersome. The two flu- (D8)

idﬂs, Aﬂand B say, are described by the;w0#4-current densitie§here the first term represents the rest-mass energy in the
i, Ng, and therefore the scaldre,(ny,ng) can only de-  fid frame, while& contains the “equation of state,” i.e. the

pend on the three independent scalar combinations of theggternal-energy function of the fluid at ordé}(c®). When

two currents, for example, we write this in the preferred time frame using EB5), we
1 1 obtain
nA:E\/—gpdvnlALnZ' nB:EV_guvnlBLnE’

8See[16] for a more detailed discussion of this limit and how to
and construct a fully space-time covariant Newtonian framework.
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2 2
n n

A B
Agov= = (NMa+NZMg)c3+my — +mg—
2 2n3
A B

Arer=A oyt (NRMA+NgMg) €2, (D10)

In Aen We have explicitly broken Lorentz invariance by
choosing a preferred time frame, and when taking the New-

. . : . . tonian limit we obtain the finite Lagrangian
We see that this Lagrangian obviously diverges in the New-

tonian limit c— due to the rest-mass energia%mxcz.
Before we can take this limit, we therefore have to renormal-
ize the Lagrangian density by subtracting a finite counter-
term that will make the limit finite. The most natural choice
is obviously to subtract the mass energy in the preferred time
frame that will determine the Newtonian absolute time. Wewhich corresponds exactly to the Newtonian hydrodynamic

—&(n8,n3,A%)+O(c™ ). (D9)

2 2
. A B 2
M A o= Mp 5 + Mg =— —
CILwAI’en A2nA anB g(nAvnB!A )! (Dll)

therefore define the renormalized Lagrangian density, as

LagrangianA , of Eq. (65).
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