
PHYSICAL REVIEW D 69, 043001 ~2004!
Variational description of multifluid hydrodynamics: Uncharged fluids

Reinhard Prix*
Department of Mathematics, University of Southampton, SO17 1BJ, United Kingdom

~Received 4 March 2003; published 6 February 2004!

We present a formalism for Newtonian multifluid hydrodynamics derived from anunconstrainedvariational
principle. This approach provides a natural way of obtaining the general equations of motion for a wide range
of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to
spatial variations we use ‘‘time shifts’’ in the variational principle, which allows us to describe dissipative
processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative
forces. The resulting framework incorporates the generalization of theentrainmenteffect originally discussed
in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy
and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of
Ertel’s theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally
conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conduct-
ing fluids are found to be more general than the standard description, as the effect of entrainment usually seems
to be overlooked in this context. In the case of superfluid4He we recover the Landau-Khalatnikov equations
of the two-fluid model via a translation to the ‘‘orthodox’’ framework of superfluidity, which is based on a
rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipa-
tion via mutual friction and also ‘‘transfusion’’ viab reactions between the neutron fluid and the proton-
electron fluid.

DOI: 10.1103/PhysRevD.69.043001 PACS number~s!: 47.10.1g, 44.10.1i, 47.37.1q, 95.30.Lz
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I. INTRODUCTION

The main purpose of this work is to develop a formalis
that allows one to derive the equations of motion for a g
eral class of multi-constituent systems of interacting char
and uncharged fluids, such as conducting and n
conducting fluids, multi-fluid plasmas, superfluids and sup
conductors. For the sake of clarity of presentation we res
ourselves here to uncharged fluids, while the case of cha
fluids and their coupling to the electromagnetic field will
treated in a subsequent paper@1#.

Long after the completion of classical Hamiltonian pa
ticle mechanics, the quest of finding a variational~or ‘‘Ham-
litonian’’ ! description of hydrodynamics has surprising
been a long-standing problem, which started only a few
cades ago to be fully understood. The reason for this ca
traced to the nature of the hydrodynamic equations, wh
are most commonly expressed in their Eulerian form in ter
of thedensityr andvelocityv, where the information abou
the underlying flow lines has been hidden. Fluid particle t
jectories, i.e. flow lines, can still be recovered by integrat
the velocity field, but they are not independent quantities
the Eulerian description. However, it turns out that t
‘‘true’’ fundamental field variables of Hamiltonian hydrody
namics are the flowlines, which determiner and v as de-
rived quantities.

Consider as an example the Lagrangian densityL de-
scribing a barotropic perfect fluid, which in analogy to cla
sical mechanics one would postulate to be

L~r,v !5
1

2
rv22E~r!,
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where E(r) represents the internal energy density of t
fluid. We note that the internal energy defines the chem
potentialm̃ and the pressureP as

dE5m̃dr and P1E5rm̃.

The corresponding action is defined in the usual way aI
[*LdVdt, and the variationdL of the Lagrangian density
is

dL5rv•dv1~v2/22m̃ !dr.

Requiring the actionI to be stationary with respect tofree
variations dr and dv is immediately seen to be useless,
this leads to the over-constrained equations of motionrv
50 and m̃5v2/2. In fact, it has been shown@2# that an
unconstrained variational principle withr andv as the fun-
damental variables cannot produce the Eulerian hydro
namic equations. The reason for this is rather intuitive, a
is evident that free variations of density and velocity pro
configurations with different masses~i.e. different numbers
of particles!, which is not an actual degree of freedom of t
dynamics of the system. Therefore the variational princi
has to be constrained or reformulated in some way in or
to restrict the variations to the physically meaningful degre
of freedom.

The historic approach to this problem in Newtonian phy
ics has been to supplement the Lagrangian with appropr
constraints using Lagrange multipliers. This method was p
neered by Zilsel@3# in the context of the two-fluid model fo
superfluid 4He, who used the constraints of conserved p
ticles~i.e. mass! and entropy. However, as pointed out by L
@4#, this is generally insufficient, as it results in equations
motion restricted toirrotational flow in the case of uniform
©2004 The American Physical Society01-1
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entropy. Lin showed that one has to add a further constra
namely the ‘‘conservation of identity’’ of fluid particles in
order to obtain the most general hydrodynamic equatio
We can label particles by their initial positionsa, and so we
can write their flowlines asx5x(a,t). The famous ‘‘Lin con-
straint’’ is ] ta1v•¹a50, i.e. the identity or label of a par
ticle is conserved under its transport. For reviews of t
approach and its relation to the ‘‘Clebsch representation’’
refer the reader to@5–7#, and references therein.

Although this method produces the correct equations
motion, it does not seem very natural due to the ratherad hoc
introduction of constraints, and the need for unphysical a
iliary fields ~the Lagrange multipliers!. It was pointed out by
Herivel @8# that theLagrangianas opposed to Eulerian for
mulation of hydrodynamics results in a much more natu
variational description, and this approach was further de
oped and clarified by Seliger and Whitham@6#. Instead of
usingr andv as fundamental variables, hydrodynamics c
also be understood as a field theory in terms of theflow lines
x(a,t), or equivalentlya5a(x,t). It turns out that this for-
mulation allows for a perfectly naturalunconstrainedvaria-
tional principle. This seems rather intuitive considering th
hydrodynamics is a smooth-averaged description of a ma
particle system, which is described by a variational princi
based on the particle trajectories, i.e.xN and ẋN .

We can express the velocity and density in terms of
flowlines asv5] tx(a,t) andr(x,t)5r0(a)/det(J i

j ), where
J i

j5]xi /]aj is the Jacobian matrix corresponding to t
mapa°x(a,t)between the physical spacex and the ‘‘mate-
rial space’’a. Any further comoving quantities like the en
tropy s are determined in terms of their initial values0(a).
Substituting these expressions into the LagrangianL, one
obtains an unconstrained variational principle for the fi
x(a,t), which results in the correct equations of motion. It
interesting to note that this approach implicitly satisfies Li
constraint, as we are varying the particle trajectoriesx(a,t),
along whicha is a constant by construction. Also, we do n
need to impose ana priori constraint on the conservation o
mass, as it is automatically satisfied by these ‘‘convectiv
variations: shifting around flow lines obviously conserves
number of flow lines, and therefore the number of particl
One can actuallyderive the Lin constraint by transforming
this Lagrangian framework back into a purely Eulerian var
tional principle@5,6#, which shows that these two approach
are formally equivalent.

As pointed out by Bretherton@9#, one can even more con
veniently use a ‘‘hybrid’’ approach, in which the Lagrangia
is expressed in terms of the Eulerian hydrodynamic qua
ties v, r, s, etc., but one consider them as functions of t
underlying flow lines. Their variations are therefore natura
inducedby variationsj of the flow linesx(a,t). In general
relativity the same idea was pioneered by Taub@10#, and has
subsequently been largely developed and extended by C
@11–13#, who also coined the term ‘‘convective variation
principle’’ for this approach. Carter and Khalatnikov@14#
have further demonstrated the formal equivalence of the c
vective approach and the more common Clebsh formula
that results from an Eulerian variational approach. A ‘‘tran
04300
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lation’’ of the covariant convective formalism into a Newton
ian framework~albeit using a spacetime-covariant langua
close to general relativity! is also available@15,16#. The con-
vective approach in relativity has independently been de
oped by Kijowski@17#, and Hamiltonian formulations hav
been constructed by Comer and Langlois@18# and Brown
@19#. Here we are using the convective~or ‘‘hybrid’’ ! varia-
tional principle in order to derive the Newtonian multi-flui
equations, and our notation and formalism follows mo
closely the framework developed by Carter.

We conclude our example of the simple barotropic flu
by using the convective variational principle to derive t
Euler equation. The expressions for~Eulerian! variations of
density and velocityinduced by infinitesimal spatial dis-
placementsj of the flow lines are well known1 ~e.g., see
@20#!, namely,

dr52¹~rj! and dv5] tj1~v•¹!j2~j•¹!v.

Inserting these expressions into the variation of the ac
dI5*dLdVdt with dL given above, and after some inte
grations by parts and dropping total divergences and t
derivatives~which vanish due to the boundary conditions!,
we find

dI52E j•@r~] t1v•¹!v1r¹m̃1v$] tr

1¹•~rv !%#dVdt.

If we assume conservation of mass,2 i.e. ] tr1¹•(rv)50,
then stationarity of the action~i.e. dI50) under free varia-
tions j directly leads to Euler’s equation, namely,

~] t1v•¹!v1
1

r
¹P50,

where we have used the thermodynamic identityr¹m̃
5¹P. This shows that an unconstrained convective va
tional principle produces to the correct hydrodynamic eq
tions of motion in a surprisingly simple and straightforwa
way.

The spatial variationsj have three degrees of freedom
resulting in one vector equation, which represents the c
servation of momentum. In order to complete the descript
we will need a fourth variational degree of freedom to pr
duce the missing energy equation. This can be achieved
considering time shifts, which are a natural part of the co
riant relativistic approach, but which we have to be cons
ered explicitly in the conventional ‘‘311’’ language of New-
tonian space-time. These time-shift variations allow us
take this formalism to its full generality, as we can no
describe even dissipative processes with entropy crea

1A generalization of these expressions to include time shifts
derived in Appendix A.

2This will be seen to be a consequence of the variational princ
rather than ana priori assumption when time-shift variations a
included.
1-2
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VARIATIONAL DESCRIPTION OF MULTIFLUID . . . PHYSICAL REVIEW D 69, 043001 ~2004!
particle transformations~i.e. chemical reactions!, resistive
frictional forces, etc. These dissipative systems are of co
still conservativeas long as one includes entropy, which
why they can be described by an action principle. The s
ond law of thermodynamics, however, is obviously not co
tained in the action principle and has to be imposed as
additional equation on the level of the equations of motio

We note that the equations we derive here do not exp
itly include shear- and bulk-viscosity effects. However, t
currentform of the equations is in principle general enou
to allow for both of these effects: bulk viscosity is caused
heat flow or chemical reactions due to thermal or chem
disequilibrium, both of which can already be described in
current formulation. Shear viscosity, on the other hand,
to be introduced as an ‘‘external’’ force; the problem the
fore consists of prescribing a physically reasonable mode
a multi-fluid generalization of the shear stresses. Includ
viscosity should therefore not be a matter of actuallyextend-
ing the current framework but rather of appropriately app
ing it in order to describe such processes. An explicit disc
sion of this is postponed to future work. Further work is a
necessary in order to extend this formalism to include e
ticity ~as pioneered in the relativistic framework@21#!, and
especially to allow for an elastic medium interpenetrated
fluids as encountered in the inner neutron star crust, or
type of conducting solid. As shown in@22#, a Kalb-Ramond
type extension is required for the macroscopic treatmen
quantized vortices in superfluids. With the present formali
we can describe superfluids either on the local irrotatio
level, or on the smooth-averaged macroscopic level by
glecting the ~generally small! anisotropy induced by the
quantized vortices.

The plan of this paper is as follows. In Sec. II we deri
the general form of the equations of motion for mul
constituent systems using the convective variational p
ciple. In Sec. III we show the conservation of energy a
momentum implied by these equations. In Sec. IV we der
conserved quantities under transport by the flow, namely
vorticity and helicity. We then give the explicit functiona
form of the Lagrangian density for hydrodynamic systems
Sec. V, and in Sec. VI we discuss several applications of
foregoing formalism to particular physical systems.

II. VARIATIONAL DESCRIPTION
OF MULTI-CONSTITUENT SYSTEMS

A. Kinematics

We want to describe systems consisting of several c
stituents distinguished by suitably chosen labels, and we
capital lettersX,Y, . . . as indices which run over these co
stituents labels. As the fundamental quantities of the ki
matic description we choose the constituent densitiesnX and
the associated transport currentsnX , which are related to the
respective velocitiesvX as

nX5nXvX , where XP$constituent labels%. ~1!

Not all constituents can necessarily move independe
from each other, i.e. not all velocitiesvX have to be different:
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viscosity and friction due to particle collisions on the micr
scopic level can effectively bind constituents together
very short time scales. We therefore distinguish between
notions of constituents X, characterizing classes of micro
scopic particles, andfluids, which are sets of constituent
with a common velocity.

We note that in this framework entropy can be describ
very naturally as a constituent for which we reserve the la
X5s, and we write

ns5s, ~2!

wheres is the entropy density. In this context it is instructiv
to think of the entropy as a gas of particle-like thermal ex
tations~e.g. phonons, rotons, etc.!, which makes its descrip
tion as a constituent on the same footing with particle nu
ber densities quite intuitive.

B. Dynamics

The dynamics of the system is governed by an actioI
defined as

I5E LHdVdt, ~3!

in terms of the hydrodynamic LagrangianLH . The Lagrang-
ian densityLH depends on the kinematic variables, whi
are the densitiesnX and the currentsnX , i.e. LH
5LH(nX ,nX). The total differential ofLH defines thedy-
namical quantitiesp0

X ~‘‘energy’’ ! and pX ~‘‘momentum’’!
per fluid particle as the canonically conjugate variables tonX
andnX , namely,

dLH5( ~p0
XdnX1pX

•dnX!, so p0
X5

]LH

]nX
, pX5

]LH

]nX
,

~4!

where here and in the following the sum over repeated c
stituent indices is explicitly indicated by a(, i.e. no auto-
matic summation convention applies to constituent indice

C. The convective variational principle

As we have seen in the Introduction, one cannot apply
standard variational principle toLH in terms of the Eulerian
hydrodynamics variablesnX andnX . From Eq.~4! it is ob-
vious that allowingfree variations of densitiesdnX and cur-
rentsdnX would lead to the trivial equations of motionp0

X

50 andpX50. Instead, we consider the Lagrangian to be
functional of the underlyingflowlines xX5xX(aX,t), and
therefore admit only variationsdnX , dnX that areinducedby
infinitesimal displacements of the flow lines. These ‘‘conve
tive’’ variations naturally conserve the number of particl
~i.e. the number of flow lines! and no constraints are require
in the variational principle as was discussed in more deta
the Introduction.

We apply infinitesimal spatial displacementsjX and time
shifts tX to the flow lines of the constituentX. The resulting
induced variations of density and current have been deri
1-3
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REINHARD PRIX PHYSICAL REVIEW D69, 043001 ~2004!
in Appendix A, namely, the density variation~A18! for con-
stituentX is

dnX52¹•@nXjX#1@nX•¹tX2tX] tnX#, ~5!

while the current variationdnX is given by Eq.~A20! and
reads as

dnX5nX] tjX1~nX•¹!jX2~jX•¹!nX

2nX~¹•jX!2] t~nXtX!. ~6!

Inserting these expressions into the variation of the Lagra
ian ~4! and integrating by parts, we can rewrite the induc
variationdLH in the form

dLH5( ~gXtX2f X
•jX!1] tR1¹•R. ~7!

The time derivative and divergence terms will vanish in t
action integration~3! by the appropriate boundary condition
~i.e. j50 andt50) and are irrelevant as far as the var
tional principle is concerned, but for completeness we n
that their explicit expressions are

R[( ~nXpX
•jX2nX•pXtX!, ~8!

R[( @nX~p0
X1pX

•jXtX!

2jX~nXp0
X1nX•pX!#. ~9!

The induced action variation therefore has the form

dI5( E ~gXtX2fX
•jX!dVdt, ~10!

where the force densitiesf X ~actingon the constituent! and
the energy transfer ratesgX ~into the constituent! are found
explicitly as

f X5nX~] tp
X2¹p0

X!2nX3~¹3pX!1pXGX , ~11!

gX5vX•~ f X2pXGX!2p0
XGX , ~12!

whereGX is the particle creation rate for the constituentX,
i.e.

GX[] tnX1¹•nX . ~13!

The force densityf X is the total momentum change rate
the constituentX, and we see that the last term in Eq.~11!,
i.e. the ‘‘rocket term’’pXGX , represents a contribution that
purely due to the change of the particle number. Therefor
will be convenient to define the purely ‘‘hydrodynam
force’’ f H

X , as

fH
X[nX~] t pX2¹p0

X!2nX3~¹3pX!. ~14!

With this definition we can now write the force density~11!
and energy transfer rate~12! in the form
04300
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f X5f H
X 1pXGX , ~15!

gX5vX•f H
X2p0

XGX . ~16!

D. The equations of motion

Up to this point we have developed only purely mat
ematical identities without a specific physical content. T
equations of motion are obtained by imposing which type
invariance the actionI should satisfy under certain infinites
mal variations. The most general equations are obtained
requiring that acommondisplacementjX5j and time shift
tX5t of all constituents should result in an action variati
of the form

dI5E ~gextt2fext•j!dVdt, ~17!

where fext and gext are interpretable as the external for
density and energy transfer rate. This generalizes the m
common action principle ofisolatedsystems, in which the
external influencesfext and gext vanish and therefore the
equations of motion are obtained by requiring the action
be invariant under small variations. ‘‘External’’ here is mean
in the sense of not being included in the total Lagrangi
which could also mean, for example viscous or gravitatio
forces. The resulting minimal equations of motion obtain
from comparing with Eq.~10! are therefore found as

( f X5fext and ( gX5gext. ~18!

Together with Eqs.~11! and ~12! this represents the Euler
Lagrange equations associated with this variational princi
If all constituentsX form a single fluid, namely all constitu
ents have a common velocity, then only common displa
ments of all constituents make sense in the variational p
ciple. For this class ofnon-conductingmodels, Eqs.~18!
represent the full equations of motion obtainable from
variational principle. In order to complete the model, one h
to specify the hydrodynamic LagrangianLH , the external
interactionsfext andgext, and the creation ratesGX as func-
tions of the kinematic variables.

In the case ofconductingmodels, at least some of th
constituents are allowed to move independently, the sys
therefore consists of more than one fluid. This increases
respondingly the number of degrees of freedom, and m
equations of motion are required. They are obtained v
naturally from the variational principle, as independent d
placements~in space and time! are permitted foreach fluid.
Therefore the resulting force acting on each fluid can
prescribed by the model, subject to the restriction only
satisfying the minimal equations of motion~18!.

As an example, consider the case of a simple conduc
model consisting of two fluids, whereX andY are constituent
indices running only over the respective constituent lab
i.e. XP$fluid 1% andYP$fluid 2%. We then have the respec
tive force densities acting on each of the two fluids asf(1)
5(X f X and f(2)5(Yf Y, which by Eq.~18! have to satisfy
1-4
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VARIATIONAL DESCRIPTION OF MULTIFLUID . . . PHYSICAL REVIEW D 69, 043001 ~2004!
f(1)1f(2)5fext. Therefore there are now exactly two forc
densities~e.g. f(1) and fext) freely specifiable in the model
corresponding to the additional degrees of freedom of
fluids. In this casef(1) could, for example, represent a mutu
force the two fluids exert on each other, e.g. a resistive f
tion force.

III. CONSERVATION OF ENERGY AND MOMENTUM

Using the explicit expression~11! for the force density
f X, we can write

( fX5] tS ( nXpXD1¹j S ( nX
j pXD

2( ~nX¹p0
X1nX

j ¹pj
X!. ~19!

We define the ‘‘generalized pressure’’C via the total Leg-
endre transformation ofLH , namely,

C[LH2( ~nXp0
X1nX•pX!, ~20!

which is seen from Eqs.~4! to result in the total differentia

dC52( ~nXdp0
X1nX•dpX!, ~21!

and therefore the last sum in Eq.~19! is simply¹C. We can
now cast the force equation~18! in the form of a conserva
tion law for the total momentum, namely,

] tJH
i 1¹jTH

i j 5 f ext
i , ~22!

where the hydrodynamic momentum densityJH and stress
tensorTH

i j are defined as

JH[( nXpX and TH
i j [( nX

i pX j1Cgi j , ~23!

and wheregi j are the components of the metric tensor det
mining the relation between physical distancedl and coordi-
nate intervalsdxi , i.e. dl25gi j dxidxj . In Cartesian coordi-
nates this is simplygi j 5d i j . A proof of the symmetry of the
stress tensorTH

i j together with a more elegant derivation
momentum conservation as a Noether identity of the va
tional principle is given in Appendix B.

Using expressions~11! and~12!, we can further show tha

( gX5( @nX•] tp
X2nX•¹p0

X2GXp0
X#

5S ] t( nX•pXD2¹•S ( nXp0
XD

2( ~p0
X] tnX1pX

•] tnX!, ~24!
04300
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and we see from Eqs.~4! that the last sum simply represen
] tLH . We can therefore rewrite the energy equation~18! in
the form of a conservation law, namely,

] tEH1¹•QH5gext, ~25!

where the hydrodynamic energy densityEH and energy flux
QH are given by

EH5( nX•pX2LH and QH5( ~2p0
X!nX . ~26!

We see that the energy densityEH has quite naturally the
form of a Hamiltonian, i.e.HH(nX ,pX)5EH , as it is the
Legendre transformed~with respect to the momenta! of the
LagrangianLH .

IV. CONSERVATION ALONG FLOW LINES

In addition to the total energy-momentum conservatio
derived in the previous section, we can find further co
served quantities for individual constituents, for which co
servation holds under transport by the fluid flow. Because
following derivations apply to individual constituents inste
of the sum over all constituents, we will omit the constitue
index X in this section in order to simplify the notation.

Transport of a quantity by the fluid flow is closely relate
to the Lie derivative with respect to the fluid velocity; ther
fore, these conservation laws are most easily derived u
the language and theorems of differential forms instead
vectors. We will use this formalism in deriving the transpo
conservation laws, but we also give the essential steps
results translated in the more common vector and index
tation, so that familiarity with exterior calculus should not b
necessary~albeit helpful! for reading this section.

A. Kelvin-Helmholtz vorticity conservation

We define the vorticity 2-formw ~with componentswi j )
as the exterior derivative~denoted byd) of the momentum
1-form p ~with componentspi), namely,

w[dp, i.e. wi j [2¹[ i pj ] , ~27!

where @ i j # denotes antisymmetric averaging, i.e. 2A[ iBj ]
5AiBj2AjBi . In three dimensions we can define the mo
common vorticityvectorW as thedual ~with respect to the
volume forme i jk) of the 2-formw, namely,

Wi[
1

2
e i jkwjk5~¹3p! i . ~28!

The volume form is defined as

e i jk5Ag@ i , j ,k#, ~29!

whereg5det(gi j ) and@ i , j ,k# is the sign of the permutation
of $1,2,3%, which is zero if two indices are equal. The duali
betweenw andW implies

wi j 5e i jkWk, ~30!
1-5
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REINHARD PRIX PHYSICAL REVIEW D69, 043001 ~2004!
which is easily verified by inserting Eq.~28!. We note that
due to the Poincare´ property ~namely,dd50), the exterior
derivative of the vorticity 2-form vanishes identically, i.e.

dw50 ⇔¹•W50. ~31!

We can rewrite the expression~14! for the hydrodynamic
force fH in the language of forms as

] tp1v cdp2dp05
1

n
f H , ~32!

where c indicates summation over adjacent vector and fo
indices, i.e. in this case (v cdp) i52v j¹[ j pi ] . In the following
it will be convenient to separate the force per particle into
non-conservative partF and a conservative contributiondf,
namely,

1

n
f H5df1F. ~33!

The Cartan formula for the Lie derivative of ap form applied
to the 1-formp yields

£vp5v cdp1d~v cp!, ~34!

which in explicit index notation reads as £vpi52v j¹[ j pi ]
1¹i(v j pj ). Using this identity and Eq.~33! we rewrite the
force equation~32! more conveniently as

~] t1£v!p5dQ1F, ~35!

where the scalarQ is given byQ5p01v cp. Lie derivatives
and partial time derivatives commute with exterior deriv
tives, so we can apply an exterior derivative to Eq.~35! and
obtain the Helmholtz equation of vorticity transport, name

~] t1£v!w5dF, ~36!

which shows that the vorticity is conserved under transp
by the fluid if and only if the hydrodynamic force per partic
acting on the fluid is purely conservative, i.e. ifF50. In its
more common dual form, this equation can be written as

] tW2¹3~v3W!5¹3F. ~37!

The Helmholtz vorticity conservation expresses the c
servation of angular momentum of fluid particles and we c
equivalently derive it in its integrated form, namely the co
servation of circulation as first shown by Kelvin. We co
sider a 2-surfaceS and define the circulationC around its
boundary]S as

C[ R
]S

p5 R
]S

pidxi . ~38!

Using Stoke’s theorem, we see that the circulation around]S
is equivalent to the vorticity flux through the surfaceS, i.e.
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1

2ES
wi j dxi`dxj , ~39!

and the more familiar dual expression is found by insert
Eq. ~30!:

C5E
S
W•dS, ~40!

where the surface normal elementdS is dSi[
1
2 e i jkdxj

`dxk. Using Eq.~35! the comoving time derivative of the
circulationC yields

dC
dt

5
d

dt R]S
p5 R ~] t1£v!p5 R F, ~41!

which is known as Kelvin’s theorem of conservation of c
culation. As we have already seen before, strict conserva
only applies if the non-conservative force per particleF van-
ishes.

B. Vorticity and superfluids

The hydrodynamics of superfluids is characterized by t
fundamental properties: on one hand by the absence of
sipative mechanisms like friction or viscosity, and on t
other hand by irrotational flow. As we will see now, the h
drodynamic description of superfluids is therefore a natu
subclass within the more general framework of mu
constituent hydrodynamics presented here. Let us ass
that a constituentX5S is superfluid, with particle density
nS, velocity vS and massmS. The absence of microscopi
dissipative mechanisms implies that the superfluid is
bound to any other constituents, i.e. it is a perfect conduc
in the sense that it can flow freely even in the presence
other constituents. Dissipation-free flow is characterized
the absence of non-conservative forces acting on the bulk3 of
superfluid, i.e.

FS50. ~42!

As a consequence of Eqs.~36! and ~41! we see that the
vorticity ~and therefore circulation! of a superfluid is strictly
conserved. The second constraint, which distinguishes a
perfluid from a perfect fluid, is that a superfluid is local
irrotational, i.e. its vorticity is zero, so

wS50, ⇔ WS50. ~43!

Due to the vorticity conservation of superfluids, this co
straint remains automatically satisfied if it is true at som
instant t, i.e. it is consistent with the hydrodynamic evolu
tion.

3However, therecan be a non-conservative force acting on th
superfluid at a vortex core if the vortex is pushed by another flu
This mechanism gives rise to the so-called effect of ‘‘mutual fr
tion.’’
1-6
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VARIATIONAL DESCRIPTION OF MULTIFLUID . . . PHYSICAL REVIEW D 69, 043001 ~2004!
The formulation most commonly found in the literatu
on superfluids and superconductors is based on the con
of the so-called ‘‘superfluid velocity,’’ which is constraine
to be irrotational@23,24#. If one interpreted this as the actu
transport-velocityvS, such a constraint would generally n
be consistent with the equations of motion, contrary to
natural conservation of themomentum vorticitywS. This
‘‘orthodox’’ formulation of superfluidity, which goes back t
Landau’s two-fluid model for4He, is therefore a rather un
fortunate misinterpretation of physical quantities, as the
called ‘‘superfluid velocity’’ is necessarily to be interprete
as the rescaledsuperfluid momentumin order to make this
constraint consistent with hydrodynamics. The fact that
Newtonian single-fluid contexts the particle momentum o
differs by a constant mass factor from the velocity has
fortunately led to a less than careful distinction betwe
these fundamentally different quantities. This simple iden
fication no longer holds true in more general contexts, s
as in the case of multi-fluids~e.g. superfluids! or even in the
case of a single relativistic perfect fluid. The velocity circ
lation is generallynot conserved, contrary to the conserv
tion of momentum circulation~41!. The orthodox framework
of superfluid hydrodynamics will be discussed in more de
in Sec. VI D.

In addition to the superfluid constraints of bein
dissipation-free and irrotational, there is a further import
restriction, namely the quantization of circulation. An irrot
tional flow can still carry non-zero circulation in the presen
of topological defects~such as vortices!. In order to see this
we note that~as a consequence of Eq.~43!! we can write the
superfluid momentumpS as the gradient of aphase w,
namely,

pS5\dw, i.e. pS5\¹w. ~44!

The circulation~38! can therefore be non-zero if]S encloses
a topological defect inw, i.e. a region wherew ~andpS) is
not defined, as for example in the case of flow inside a to
While in the case of a perfect irrotational fluid the resulti
circulation could have any value, the superfluid phasew is
restricted to change only by a multiple of 2p after a com-
plete tour around the defect. The resulting circulation
therefore quantized as

C52Np\ with NPZ, ~45!

which gives rise to the well-known quantized vortex stru
ture of superfluids.

C. Helicity conservation

Contrary to the conservation laws derived in the prec
ing sections, which have been known for more than a c
tury, there is a further conserved quantity, namely the
called helicity, whose existence in hydrodynamics has o
been pointed out comparatively recently by Moffat@25#. This
quantity is analogous to the magnetic helicity conservat
found in magneto-hydrodynamics@26#, and it is related to
the topological structure of the vorticity, i.e. its ‘‘knotted
ness’’@27#. The relativistic analogue of this conservation h
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been shown by Carter@28,13,29#, and generalizations hav
been discussed by Bekenstein@30#.

We define the helicity 3-formH ~with componentsHi jk)
as the exterior product of the momentum 1-formp with the
vorticity 2-form w, i.e.

H[p`w, ~46!

which in components reads asHi jk53p[ iwjk] . A 3-form in a
3-dimensional manifold is dual to ascalar, so we can define
the helicity densityh as

Hi jk5he i jk . ~47!

From the duality relation together with the definition~46!,
we see that the helicity scalar has the following explicit e
pression:

h5
1

3!
e i jkHi jk5pi

1

2
e i jkwjk5pcW5p•~¹3p!. ~48!

Using Eqs.~35! and~36!, the comoving time derivative ofH
can be expressed as

~] t1£v!H5@~] t1£v!p#`w1p`@~] t1£v!w#

5~dQ1F!`w1p`dF

5d~Qw!1@d~p`F!12dF`p#. ~49!

We see that, not surprisingly, the vanishing of the no
conservative forceF is a necessary~albeit not sufficient!
condition for the conservation of helicity. We introduce th
total helicity H of a volumeV as

H[E
V
H5E

V
hdV, ~50!

and, assumingF50, we find for the comoving time deriva
tive of H:

dH
dt

5E
V
~] t1£v!H5 R

]V
Qw5 R

]V
QW•dS. ~51!

The helicityH of a volumeV is therefore conserved unde
transport by the fluid if, in addition toF50, the vorticityW
vanishes on the surface]V surrounding this volume.

V. HYDRODYNAMICS

A. The Lagrangian of hydrodynamics

In the preceding sections we have derived the most g
eral form of the Euler-Lagrange equations~18! associated
with the convective variational principle, together with th
force densities~11! and energy transfer rates~12!. We are
now interested in a particular class of Lagrangian densi
LH , namely those which describe Newtonian hydrodyna
ics. One can postulate the general form of the hydrodyna
LagrangianLH in analogy to canonical particle mechanics
1-7
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LH~nX ,nX![( mX
nX

2

2nX
2E, ~52!

whereE is a thermodynamic potential related to the intern
energy~or ‘‘equation of state’’! of the system. We therefor
find the following general form for the conjugate momen
p0

X andpX as defined in Eq.~4!:

2p0
X5

1

2
mXvX

21
]E
]nX

, pX5mXvX2
]E
]nX

. ~53!

We want to identify these conjugate momenta with the ac
physical energy and momentum per fluid particle, which i
plies that under a Galilean boost2V inducing the transfor-
mations

vX85vX1V, nX85nX , ] t85] t2V•¹, ~54!

these momenta should transform~e.g. see@23,31#! as

2p0
X852p0

X1V•pX1
1

2
mXV2 and pX 85pX1mXV.

~55!

One can verify that in this case the hydrodynamic force d
sities fH

X defined in Eq.~14! are invariant under Galilean
boosts as one should expect. The particle creation rateGX
defined in Eq.~13! are also Galilean invariant, so that th
transformation of the total force densitiesf X of Eq. ~11! is
seen to be

f X 85f X1VmXGX . ~56!

The equations of motions of an isolated system, i.e.(fX

50, are therefore Galilean invariant if and only if the tot
mass is conserved, i.e. if

( mXGX50. ~57!

By using Eq.~55! we can show that the energy transfer ra
~16! transform as

gX85gX1V•fX1mXGX

V2

2
, ~58!

and due to mass conservation~57! the total energy chang
rate therefore satisfies

( gX85( gX1V•fext, ~59!

so that the total energy conservation of an isolated syste
Galilean invariant.

In general the transformation properties~55! are only con-
sistent with the conjugate momenta~53! if E is itself Galilean
invariant, which is shown in Appendix C. This implies th
the velocity dependence ofE can only be of the form

E~nX ,nX!5E~nX ,DXY!, ~60!
04300
l

al
-

-

l

s

is

whereDXY is the relative velocity between fluidX and fluid
Y, i.e.

DXY[vX2vY5
nX

nX
2

nY

nY
. ~61!

We note that a functionE of the form~60! satisfies the iden-
tity

( nX

]E
]nX

50, ~62!

which can be used together with Eq.~53! to show that the
hydrodynamic momentum density~23! satisfies

JH5( nXpX5( mXnX5r, ~63!

i.e. the hydrodynamic momentum densityJH is equal to the
total mass currentr as a consequence of Galilean invarianc

In addition to the requirement of Galilean invariance w
will restrict our attention to systems of ‘‘perfect’’ multi
constituent fluids in the sense that their energy functionE is
isotropic. This means that we consider only equations
state of the form

E~nX ,DXY!5E~nX ,DXY
2 !. ~64!

Summarizing we can now write the hydrodynamic Lagran
ian density~52! for this class of perfect multi-fluid system
as

LH~nX ,nX!5( mX
nX

2

2nX
2E~nX ,DXY

2 !. ~65!

It is interesting to note that contrary to the relativistic ca
which is governed by a fully covariant hydrodynamic L
grangian density~e.g. see@13#!, the Newtonian Lagrangian
~65! is not strictly Galilean invariant because of the kinet
energy term. The violation is sufficiently weak, however, th
is does not affect the Galilean invariance of the result
equations of motion.

B. Conjugate momenta and entrainment effect

The total differential of the energy functionE(nX ,DXY
2 )

represents the first law of thermodynamics for the given s
tem, namely,

dE5( mXdnX1
1

2 (
X,Y

aXYdDXY
2 , ~66!

which defines the chemical potentialsmX and the symmetric
entrainmentmatrix aXY as the thermodynamical conjugate
to nX and DXY

2 . The conjugate momenta~53! are therefore
explicitly found as

pX5mXvX2(
Y

2aXY

nX
DXY , ~67!
1-8
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2p0
X5mX2mX

vX
2

2
1vX•pX. ~68!

The expression~67! for the momenta in terms of the veloc
ties is interesting, as it shows that in general the momenta
not aligned with the respective fluid velocities, which is t
so-called entrainment effect.4 The simple single-fluid case, in
which the momentum is justp5mv, is only recovered if
there is no entrainment between the fluids~i.e. aXY50) or if
all constituents move together~i.e. DXY50). This phenom-
enon is well known~albeit not under the name entrainmen!
in solid-state physics; for example, the electron moment
in a crystal lattice is connected to its velocity by aneffective
mass-tensor~e.g. see@33#!. For a more detailed discussion o
the explicit relation between effective masses and entr
ment in a two-fluid model we refer the reader to@34#. In the
context of superfluid mixtures the importance of the inter
tion and the entrainment effect has first been recognized
Andreev and Bashkin@35#, although expressed in the con
ceptually more confused orthodox framework of superflu
ity. Substituting Eq.~65! together with Eqs.~68! and ~67!
into Eq.~20!, we can now relate the ‘‘generalized pressur
C directly to the energy functionE, namely,

E1C5( nXmX, ~69!

and with Eq. ~66! the total differential ofC(mX,DXY
2 ) is

found as

dC5( nXdmX2
1

2(X,Y
aXYdDXY

2 . ~70!

We can further express the hydrodynamic force density~14!
more explicitly as

f H
X5nX~] t1vX•¹!pX1nX¹mX2(

Y
2aXYDXY

j ¹vX j ,

~71!

and for the conserved hydrodynamic energy density~26! we
find

EH5(
X

mXnX

vX
2

2
1E2(

X,Y
aXYDXY

2 . ~72!

This relation can be used to clarify the physical meaning
the thermodynamic potentialE. One might have expected t
find the total energy density simply as the sum of kine
energies plusE. It is to be noted, though, thatEH , which
represents the HamiltonianHH(nX ,pX) of the system, is
naturally a function of the fluid momentapX as opposed to
the velocities. Similarly it turns out that in order to find th

4Sometimes also referred to as ‘‘drag’’ in the superfluid literatu
But as pointed out in@32#, this is rather misleading, as entrainme
is a purely non-dissipative effect, whereas ‘‘drag’’ in physics us
ally refers to a resistive drag.
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actual ‘‘internal energy,’’ we have to construct the thermod
namic potential that depends on the relative momenta ins
of DXY . We therefore define the ‘‘entrained’’ relative mo
mentaJXY as

JXY[2aXYDXY , ~73!

representing the momentum exchange between constitu
X and Y due to entrainment, namely by using Eq.~67! the
momentum density of the constituentX can be written as

nXpX5nXmXvX2(
Y

JXY. ~74!

Using this definition ofJXY, the first law~66! now takes the
form

dE5( mXdnX1
1

2(X,Y
JXYdDXY . ~75!

We can therefore introduce the internal energy densityẼ as
the Legendre transformed~with respect to the momentaJXY)
of the energy functionE, namely,

Ẽ~nX ,JXY![E2
1

2(X,Y
JXY

•DXY , ~76!

with the associated total differential

dẼ5( mXdnX2
1

2(X,Y
DXYdJXY. ~77!

We note thatE and Ẽ only differ in systems where the en
trainment effect is present. Traditionally the quantityẼ is
what one might call the actual ‘‘internal energy’’ densit
which is a function of the momenta, while the conjuga
thermodynamic potentialE does not seem to have a we
established name in the literature. We see that in terms of
internal energyẼ, the total energy density~72! does indeed
have the expected form of ‘‘kinetic plus internal’’ energ
namely,

EH5(
X

mXnX

vX
2

2
1 Ẽ. ~78!

C. Entropy and temperature

As noted earlier, entropy can be included quite natura
in this framework as a constituent. The corresponding d
sity and current arens5s and ns5svs in terms of the en-
tropy densitys and its transport velocityvs . The entropy is
naturally massless, i.e.ms50. The thermodynamically con
jugate variable to the entropy~its ‘‘chemical potential’’! is
the temperature, i.e.ms5T, so Eq.~66! can be written as

dE5Tds1 (
X5” s

mXdnX1
1

2 (
X,Y

aXYdDXY
2 . ~79!

.

-

1-9
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The thermal momentap0
s5Q0 and ps5Q of the entropy

constituent are found from Eqs.~67! and ~68!, namely,

Q52(
Y

2asY

s
DsY, ~80!

2Q05T1vs•Q. ~81!

We see that although the entropy has zero rest mass, it
acquire a non-zero dynamical momentumQ due to entrain-
ment. This can also be interpreted as the entropy havin
non-zero ‘‘effective mass.’’ The hydrodynamic entropy for
density f H

s and energy change rategs defined in Eqs.~14!
and ~16! yield

f H
s 5s¹T1s~] t1vs•¹!Q2( 2asYDsY

j ¹vs j , ~82!

gs5vs•f H
s 1~T1vs•Q!Gs . ~83!

We see that the temperature gradient is a driving force of
entropy constituent, as would be expected. We also recog
the termTGs in the expression of the energy transfer rategs,
which represents the heat creation ‘‘TdS. ’’

VI. APPLICATIONS

A. Single perfect fluids

As the first application of the foregoing formalism, w
consider a single perfect fluid consisting of several comov
constituents. This multi-constituent fluid is described by
densitiesnX which move with a single velocityvX5v, and
so the currents arenX5nXv. Obviously all the relative ve-
locities vanish in this case, i.e.DXY50, and therefore there
is no entrainment. Here we will explicitly write the entrop
with its densitys, and we do not include it in the constitue
index set labeled byX, i.e. X5” s. The Lagrangian~65! for
this system is

LH5( mXnX

v2

2
2E~s,nX!, ~84!

and the energy and pressure differentials~66! and ~70! sim-
ply read as

dE5Tds1( mXdnX and dP5sdT1( nXdmX,

~85!

where in the case of a single fluid, the generalized pres
C simply reduces to the usual fluid pressureP. The fluid
momenta~67! and ~68! are

pX5mXv and 2p0
X5mX1mX

v2

2
, ~86!

while for the entropy constituent we have with Eqs.~80! and
~81!:

Q50 and 2Q05T. ~87!
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The explicit expression for the force densities~11! and en-
ergy transfer rates~16! are found as

f X5nXmX~] t1v•¹!v1nX¹mX1mXGXv, ~88!

gX5v•fX1GXmX2mX
v2

2
GX , ~89!

f s5s¹T, ~90!

gs5v•f s1TGs . ~91!

If we allow for an external forcefext and energy exchang
rategext, the equations of motion~18! of the system are

f s1( fX5fext and gs1( gX5gext. ~92!

Inserting Eqs.~88!–~91! and using mass conservation~57!,
we find the explicit equations of motion

~] t1v•¹!v1
1

r
¹P5

1

r
fext, ~93!

TGs1( mXGX5gext2v•fext, ~94!

where we have used the thermodynamic relation~85! in or-
der to rewrite the momentum equation in the familiar Eu
form. The energy equation expresses the heat creationTGs
by chemical reactionsGX . For an isolated system, where
fext50 andgext50, that entropy can only increase due to t
second law of thermodynamics, soGs>0. From Eq.~94! we
therefore obtain a constraint on the direction of the chem
reactions, namely,

( GXmX<0. ~95!

If we consider, for example, the case of two constituents
equal mass, so that the mass conservation~57! implies G1
1G250, then this constraint now reads as

G1~m12m2!<0, ~96!

which shows that chemical reactions only proceeds in
direction of the lower chemical potential as would be e
pected.

B. ‘‘Potential vorticity’’ conservation: Ertel’s theorem

We now consider the case without chemical reactions
which the general perfect fluid discussed in the forego
section can be described effectively as a fluid consisting o
of a single matter constituent and entropy. In this case we
show that the vorticity is generally not conserved, but tha
weaker form of the vorticity conservation still holds. Th
fluid is described by the particle number densityn, the mass
per particlem and a comoving entropy densitys. Mass con-
servation~57! in this case reduces toG50. If we assume the
1-10
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VARIATIONAL DESCRIPTION OF MULTIFLUID . . . PHYSICAL REVIEW D 69, 043001 ~2004!
system to be isolated, i.e.f1f s50, then the only force pe
particle~33! acting on the matter constituent is the ‘‘therm
force’’ ~90!, namely,

1

n
fH52 s̃¹T, ~97!

wheres̃[s/n is the specific entropy. Ifs̃ is constant every-
where, then this ‘‘thermal force’’ is conservative, i.e.F50
and by Eq.~41! the circulation is therefore conserved. In th
non-uniform case, however, we find

dC
dt

5 R
]S

F52 R
]S

s̃dT, ~98!

which vanishes only if we integrate along a path]S that lies
completely in a surface of constants̃. We can also see this in
the Helmholtz formulation, namely by applying an exteri
derivative to Eq.~97!, one obtains

dF52ds̃̀ dT, i.e. ¹3F52¹ s̃3¹T, ~99!

and it follows therefore from Eq.~36! that the vorticity is no
longer generally conserved in this case. However, the qu
tity ds̃̀ dF, or its equivalent dual expression¹ s̃•(¹3F),
still vanishes identically. Based on this observation we c
struct the ‘‘potential vorticity’’ 3-formZ as

Z[ds̃̀ w, ~100!

and the dual scalarz is

Zi jk5ze i jk and z5
1

3!
e i jkZi jk5¹ s̃•~¹3p!,

~101!

where the last expression was found using Eq.~30!. The
evolution of the potential vorticity 3-formZ under transport
by the fluid is

~] t1£v!Z5d@~] t1£v!s̃#`w, ~102!

and thereforeZ is conserved for isentropic flow, i.e. if

Gs50⇔~] t1£v!s̃50. ~103!

The dual version of Eq.~102!, namely the conservation o
the scalarz, is then found as

] tz1¹•~zv !50. ~104!

Traditionally this conservation law is often expressed
terms of the scalara[z/r, which then results in the follow-
ing form of the conservation law:

~] t1v•¹!a50, ~105!

which is generally known as ‘‘Ertel’s theorem’’@36,37#.
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C. Thermally conducting fluids

We have so far only considered perfect fluids, which a
perfect heat insulators as the entropy is strictly carried al
by fluid elements and no heat is exchanged between fl
elements. It is quite straightforward to extend this to th
mally conducting fluids simply by dropping the assumpti
that the entropy flux is bound to the matter fluid flow, i.e. w
just have to allowvs5” v, wherevs andv are the velocities
of the entropy fluid and the matter fluid, respectively. F
simplicity we consider only a single matter constituent, d
scribed by its particle number densityn, which by Eq.~57! is
automatically conserved, i.e.G50.

From the general expressions~81! and ~80! we see that
the ‘‘entropy fluid’’ acquires a non-zero momentum due
the interaction with the matter fluid, via entrainment. Ho
ever, this aspect does not usually seem to be taken into
count in the traditional description of heat-conducting flui
~e.g. see@23#!. The aim of the present section is only to sho
how to recover the standard equations for a heat-conduc
fluid, and we therefore simply assume the entrainment to
negligible, i.e.a50. It is certainly an interesting question
this neglect of entrainment is physically justified in all cas
With this assumption, the force density~82! and energy rate
~83! of the entropy reduce to

f s5s¹T and gs5vs•f s1TGs . ~106!

As in the ~isolated! perfect fluid case discussed previous
the equations of motion are againf s1f50 andgs1g50.
This time, however, one force density,f s say, can be speci
fied by the model due to the increased number of degree
freedom, so we set it tof s5fR , wherefR is a resistive force
acting against the entropy flow. We obtain the Euler equat
in the same form as in Eq.~93!, but now the energy equatio
takes the form

TGs5~v2vs!•fR . ~107!

By the second law of thermodynamics, namelyGs>0, we
can constrain the form of the resistive forcefR to

fR52h~vs2v ! with h>0, ~108!

i.e. the friction force acting on the entropy fluid is alwa
opposed to its flow relative to the matter fluid. Obviously t
value of the resistivityh is not restricted to be a constant b
will generally depend on the state of the system. Follow
the traditional description~e.g. @23#! we introduce the hea
flux densityq relative to the matter fluidas

q[Ts~vs2v !. ~109!

By combining this with Eqs.~106! and~108!, we see that the
heat flux current is constrained by the second law to be of
form

q52k¹T with k[
Ts2

h
>0, ~110!
1-11



s
t

he
th

ting
the

n
eat

ar
e
e
-

REINHARD PRIX PHYSICAL REVIEW D69, 043001 ~2004!
wherek is the thermal conductivity. With Eq. ~109! we can
express the velocity of the entropy fluidvs in terms of the
heat fluxq and the matter velocityv, so the entropy creation
rateGs can be expressed as

Gs5] ts1¹•S sv1
q

TD . ~111!

We further find for the hydrodynamic energy flux vectorQH
of Eq. ~26!:

QH5( ~2p0
X!nX5S m1m

v2

2 Dnv1sTvs

5nvS m
v2

2
1m1 s̃TD1q, ~112!

where the last equality was found using Eq.~109!. We intro-
duce the specific enthalpy asw[m1 s̃T, and using the first
law,5 namelydP5ndm1sdT, we find the total variation of
the specific enthalpy as

dw5Tds̃1
1

n
dP, ~113!

and so we recover the standard expression~e.g. cf.@23#! for
the energy flux:

QH5nvS m
v2

2
1wD1q. ~114!

D. The two-fluid model for superfluid 4He

We now consider the example of superfluid4He at a non-
zero temperatureT. Let n be the number density of4He
atoms ands be the entropy density. The4He atoms move
with a velocityv, while the entropy~carried by a thermal ga
of excitations such as phonons and rotons! transports hea
without friction ~i.e. fR50) at the velocityvN , so the rela-
tive velocity isD5vN2v. In this context the entropy fluid is
often referred to as the ‘‘normal fluid’’ as opposed to t
superfluid mass flow. The two transport currents, namely
of 4He atoms and of entropy, are, respectively,

n5nv and s5svN . ~115!

The 4He atoms have massm, so the mass density isr
5nm, and the hydrodynamic Lagrangian density~65! reads
as

LH5
1

2
nmv22E~n,s,D2!, ~116!

5In the absence of entrainment the entropy fluid does not c
momentum; therefore, the matter fluid defines a unique fram
which the stress tensor~23! is purely isotropic. In this case th
generalized pressureC is identical with the usual perfect fluid no
tion of the pressureP.
04300
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where the energy functionE determines the first law~66! as

dE5mdn1Tds1adD2, ~117!

which defines the chemical potentialm of 4He atoms, the
temperatureT and the entrainmenta. The conjugate mo-
menta~67!, ~68! of the 4He atoms are

p5mv1
2a

n
D, ~118!

2p05m2
1

2
mv21v•p, ~119!

while for the entropy fluid Eqs.~80! and ~81! yield

Q52
2a

s
D, ~120!

2Q05T1vN•Q. ~121!

The conservation of mass~57! implies

G5] tn1¹•n50. ~122!

In the absence of vortices, there are no direct forces ac
between the two fluids, so the equations of motion in
absence of external forces~i.e. fext50) are simply

f5fH50 and f N50. ~123!

The energy equations areg50 andgN5gext, and with Eq.
~83! this leads to

2gext5Gs~Q01vN•Q!52TGs , ~124!

where we have inserted Eq.~121!. We see that this equatio
describes the rate of entropy creation by an external h
source, namely,

] ts1¹•~svN!5
1

T
gext. ~125!

As discussed in Sec. IV B, the superfluid4He is ~locally!
irrotational, i.e.

wi j 52¹[ i pj ]50⇔W5¹3p50. ~126!

Using Eq.~14!, the equation of motion~123! for the super-
fluid therefore reduces to

] t p2¹p050, ~127!

and with the explicit momenta~119! and ~118! this yields

] t~v1«D!1¹S m̃1
1

2
v21«v•DD50, ~128!

where we introduced the entrainment number« and the spe-
cific chemical potentialm̃ as

ry
in
1-12
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«[
2a

r
and m̃[

m

m
. ~129!

The entropy fluid is governed by the momentum equat
f N50, and with Eq.~82! and the entropy momenta~121!
and ~120!, we find

~] t1vN•¹!S 2a

s
DD2¹T1

2a

s
D j¹vN

j 1
2a

s2 GsD50.

~130!

The two equations~128! and~130! represent the ‘‘canonical’
formulation of the two-fluid model for superfluid4He. These
equations do not seem to bear any obvious relation to
‘‘orthodox’’ formulation of Landau’s two-fluid model found
in all textbooks on the subject~e.g. see@31,23,24#!. Never-
theless, these equations are equivalent to the orthodox fra
work, as we will show now, but it is important to note th
the orthodox formulation is based on a rather unfortun
confusion between the velocity and momentum of the sup
fluid which is inherent in the historic definition of the supe
fluid velocity by Landau.

We demonstrate the equivalence of these formulations
explicitly translating the canonical formulation into the o
thodox language. The starting point of Landau’s model is
statement that the superfluid velocity is irrotational. We wr
nS for the superfluid velocity, which is not to be confuse
with the actual velocityv of 4He atoms, so the starting poin
is

¹3nS50. ~131!

From the general discussion about vorticity conservation
Sec. IV A and its particular role in superfluids~Sec. IV B!
we have already seen that contrary to the momentum vo
ity W5¹3p, the velocity-rotation¹3v is generallynot
conserved by the fluid flow, and in particular not in the pre
ence of more than one fluid as is the case in superfluid4He
at T.0. The only possible interpretation we can givenS in
order for the constraint~131! to be consistent with hydrody
namics and to remain true for all times is that it is really t
rescaled superfluidmomentump, so the ‘‘key’’ to our trans-
lation is the ansatz

nS[
p

m
. ~132!

While this would be equivalent to the fluid velocity in
single perfect fluid, as seen in Eq.~86!, this has no interpre-
tation as the velocity of either the mass or the entropy in
case of the present two-fluid model as we can see in
~118!. Therefore we callnS a pseudo velocity, as it is ady-
namic combination of both fluid velocities governed by th
entrainmenta between the superfluid4He and its excita-
tions. With the explicit entrainment relation~118! we can
now express the velocityv of the 4He fluid in terms of the
pseudo-velocitynS and the normal-fluid velocityvN as

v5~12«!21~nS2«vN!, ~133!
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where we used the definition~129! of the entrainment num-
ber«. With this substitution, the total mass currentr, which
is equal to the total momentum densityJH as seen in Eq.
~63!, can be written in the form

JH5rv5F r

12«GnS1F2«r

12«GvN , ~134!

which suggests to introduce a ‘‘superfluid density’’%S and a
‘‘normal density’’ %N as

%S[
r

12«
and %N[

2«r

12«
, ~135!

such that total mass densityr and mass currentr5JH can
now be written as

r5%S1%N and JH5%SnS1%NvN . ~136!

It is now obvious that this split is completely artificial, an
%N and %S are onlypseudo-densities, as they do not repre
sent the density of any~conserved! physical quantity and are
not even necessarily positive. In fact neither of the tw
pseudo densities and currents are conserved individu
contrary to the physical currents~115!. We note that even
Landau warned against taking too literally the interpretat
of superfluid4He as a ‘‘mixture’’ of these two~pseudo! ‘‘flu-
ids’’ @23#. Contrary to the artificial orthodox split, howeve
the separation into entropy fluid and the4He mass flow is
physically perfectly meaningful, and the superfluidcan be
regarded as a two-fluid system in the literal sense in
canonical framework. The pseudo ‘‘mass density’’%N ,
which the normal fluid seems to carry in the orthodox d
scription, is due to the fact that entrainment provides
entropy fluid with a non-vanishingmomentum~120! in the
presence of relative motion, even though it does not trans
any mass. This lack of careful distinction between mass c
rent and momentum leads to the paradoxical picture of
‘‘superfluid counterflow’’: for example, in the simple case
heat flow through a static superfluid, the normal fluid as
ciated with the heat flow carries a pseudo mass cur
%NvN . But because there is no net mass current there ha
be some superfluid ‘‘counterflow’’ of pseudo mass curre
%SnS52%NvN . This apparently strange behavior is sole
due to an awkward choice of variables and a loss of dir
contact between the quantities used in the orthodox desc
tion and the actual conserved physical quantities of4He.

Further, following the traditional orthodox framework, w
define the relative~pseudo! velocity L as

L[vN2nS, ~137!

which, using Eq.~133!, can be expressed in terms ofD as

L5~12«!D. ~138!

In order to relate the canonical thermodynamic quantities
the orthodox language, we follow Khalatnikov@31# and Lan-
dau @23# and consider the energy density in the ‘‘superflu
1-13
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REINHARD PRIX PHYSICAL REVIEW D69, 043001 ~2004!
frame’’ K0, which is defined bynS
(0)50. In this frame, the

momentum densityJH
(0) expressed in Eq.~136! is

JH
(0)5%NvN

(0)5%NL522aD, ~139!

and the transport velocityv of the superfluid4He atoms in
this frame can be expressed using Eq.~140! as

v (0)5v2nS5
%N

r
vN

(0)5
1

r
JH

(0) . ~140!

The hydrodynamic energy densityEH of the fluid system is
given by Eq.~72!, which reads in this case

EH5
1

2
rv21E22aD2, ~141!

and using the previous translations together with the first
~117!, we can write the total variationdE(0) of the energy
density inK0 as

dEH
(0)5Tds1m̃Sdr1L•dJH

(0) , ~142!

which defines the ‘‘superfluid chemical potential’’m̃S as

m̃S5m̃2
1

2
~v2nS!2. ~143!

Using these quantities, the canonical equation of motion
~128! can now be translated into the orthodox form as

] tnS1¹S n S
2

2
1m̃SD 50. ~144!

One can equally verify that the generalized pressure, defi
in ~69!, is expressible in terms of the orthodox quantities

C52E1rm̃1sT52EH
(0)1Ts1rm̃S1L•JH

(0) ,
~145!

in exact agreement with the expressions found in@31,23#.
For the remaining momentum equation, the total momen
conservation~22! is traditionally preferred over the equatio
of motion ~130! of the entropy fluid. We therefore conclud
this section by the appropriate translation of the stress te
~23! into the orthodox language. The canonical express
for the stress tensor of superfluid4He is

TH
i j 5nipj1siQ j1Cgi j , ~146!

and inserting the previous expressions for the explicit m
menta and the translations to orthodox variables, one
write this in the form

TH
i j 5%SnS

i nS
j 1%NvN

i vN
j 1Cgi j , ~147!

which concludes our proof of equivalence between the
nonical and orthodox descriptions.
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E. A two-fluid model for the neutron star core

Here we consider a~simplified! model for the matter in-
side a neutron star core, which mainly consists of a~charge
neutral! plasma of neutrons, protons and electrons. We fo
on superfluid models, in which the neutrons are assume
be superfluid, which allows them to freely traverse the flu
of charged components due to the absence of viscosity
discussed in Sec. IV B, this also implies some extra com
cations due to the quantization of vorticity into microscop
vortices. Here we are interested in a macroscopic descrip
i.e. we consider fluid elements that are small compared to
dimensions of the total system, but which contain a la
number of vortices. On this scale we can work with a smo
averaged vorticity instead of having to worry about ind
vidual vortices. One effect of the presence of the vortic
will be a slight anisotropy in the resulting smooth averag
fluid @38,22,39#, which can be ascribed to the tension of vo
tices, and which we will neglect here for simplicity. Th
second effect of the vortex lattice is that it allows a dire
force between the superfluid and the normal fluid, media
by the respective vortex interactions, and which is natura
described in the context of the two-fluid model as a mut
force. The model assumptions used here are fairly comm
to most current studies of superfluid neutrons stars~e.g. see
@40–42,34#!.

The model therefore consists of comoving constitue
XP$e,p,s%, corresponding to the electrons, protons and
tropy, and we will label this fluid with ‘‘c.’’ The second fluid
consists only of the superfluid neutrons, i.e.X5n. Charge
conservation implies

Ge5Gp , ~148!

and for simplicity we will assume localcharge neutrality, i.e.

ne5np . ~149!

We assume the electrons and protons to be strictly mov
together in this model~i.e. we consider time scales longe
than the plasma oscillation time scale!, so we can neglec
electromagnetic interactions altogether. Another phys
constraint isbaryon conservation, i.e. we must have

Gn1Gp50, ~150!

and together with mass conservation~57!, this leads to the
requirement6

mn5mp1me[m. ~151!

We can therefore write the mass densities of the two fluids

rn5mnn and rc5mnp . ~152!

The first law~66! of this model reads as

6This relation is of course not exactly satisfied in reality, whi
shows a well-known shortcoming of Newtonian physics: mass
to be conserved separately from energy.
1-14
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dE5Tds1mndnn1medne1mpdnp1aendDen
2 1apndDpn

2

1asndDsn
2 . ~153!

Obviously there is only one independent relative velocityD,
namely,

D[vc2vn5Den5Dpn5Dsn , ~154!

and we define the total entrainmenta as

a[aen1apn1asn. ~155!

In the case of the neutron star model, we are obviously a
interested in including the effects of gravitation. We c
therefore not assume the system is isolated and we inc
the effect of the gravitational potentialF as an externa
force. The minimal equations of motion~18! therefore read
as

f n1f c52r¹F and gn1gc52r•¹F, ~156!

where the force and energy rate of the c-fluid are natur
given by f c[f p1f e1f s and gc[gp1ge1gs. With Eqs.
~148! and ~150! we can write the respective force densiti
more explicitly as

f n5f H
n 1Gn pn, ~157!

f c5f H
c 2Gn~pe1pp!1GsQ, ~158!

where we naturally definedf H
c [f H

p 1f H
e 1f H

s . Similarly we
can write the energy rates~16! as

gn5vn•f H
n 2Gnp0

n , ~159!

gc5vc•f H
c 1Gn~p0

e1p0
p!2GsQ0 . ~160!

Because the gravitational acceleration is the same for
bodies~i.e. fluids!, we can now simply absorb the effect o
the gravitational potential into the definition of ‘‘extended
forces f̂ and energy ratesĝ which simply incorporate the
respective gravitational force density and work rate, i.e.
define

f̂ X[f X1rX¹F, ~161!

f̂ H
X[f H

X1rX¹F, ~162!

ĝX[gX1rXvX•¹F. ~163!

With these redefinitions, the minimal equations of moti
~156! again take the form of an isolated system, i.e.

f̂ n1 f̂ c50 and ĝn1ĝc50, ~164!

while for Eqs.~157!–~160! we obtain exactly the same form
just for all forces and energy rates replaced by their ‘‘e
tended’’ version. Using the foregoing equations, we obta

f̂ H
c 52 f̂ n1Gn pc2GsQ, ~165!
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and therefore

ĝc52vc• f̂ H
n 2Gn@vc•~pn2pc!2p0

c#2GsQ0 . ~166!

Substituting this and the extended version of Eq.~159! into
the energy-rate equation~164!, we find

TGs5D• f̂ H
n 1Gn@p0

n2p0
e2p0

p1vc•~pn2pe2pp!#,
~167!

where we have used the explicit form~81! of Q0. In addition
to the external force, the two-fluid model allows one to p
scribe one of the fluid force densities. In the present case
most convenient to specify the extended hydrodynamic fo
f̂ H

n on the neutrons. As this force can only originate from t
second fluid, we will refer to it as themutual forcefmut, so
we set

f̂ H
n 5fmut. ~168!

Substituting the explicit conjugate momenta~67! and ~68!,
we obtain the final expression for the entropy creation r
~167! as

TGs5D•fmut1Gnb. ~169!

The first term on the right hand side is the work done by
mutual force, and the second term is the entropy created
beta reactions between the two fluids, for which the te
‘‘transfusion’’ has been coined@32#. The deviation from beta
equilibrium characterized byb is found as

b[mp1me2mn2
1

2
mS 12

4a

rn
DD2, ~170!

where the last term gives the correction to the chemical e
librium due to relative motionD of the two fluids. The sec-
ond law of thermodynamics for an isolated system states
entropy can only increase, i.e.Gs>0. In order for this to be
identically true in Eq.~169!, the mutual forcefmut and the
reaction rateGn have to be of the form

Gn5Jb with J>0,

fmut5hD1k3D with h>0,
~171!

where k is an arbitrary vector characterizing a no
dissipative Magnus-type force orthogonal to the relative
locity. Further substituting the conjugate momenta in the
pression for the hydrodynamic force densities~14!, we find
their explicit form

f H
n 5nn~] t1vn•¹!S mvn1

2a

nn
DD1nn¹mn12aD j¹vn

j ,

~172!
1-15
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f H
c 5np~] t1vc•¹!S mvc2

2~aen1apn!

np
DD1np¹~mp1me!

22aD j¹vc
j 2s~] t1vc•¹!S 2asn

s
DD1s¹T. ~173!

We now make the simplifying assumption that we can
glect the entrainment of entropy, i.e. we assume that all
entrainment between the two fluids is due to the neutr
proton and neutron-electron contributions, so we setasn

50, which impliesQ50. Using Eq.~67! we find

pe1pp2pn5m~12«n2«c!D, ~174!

where we have defined the entrainment numbers

«n[
2a

rn
and «c[

2a

rc
. ~175!

Putting all the pieces together, we obtain the moment
equations~168! and ~165! in the form

~] t1vn•¹!~vn1«nD!1¹~m̃n1F!1«nD j¹vn
j 5

1

rn
fmut,

~176!

~] t1vc•¹!~vc2«cD!1¹~m̃c1F!2«cD j¹vc
j 1

s

rc
¹T

52
1

rc
fmut1~12«c2«n!m

Gn

rc
D, ~177!

with the specific chemical potentialsm̃n[mn/m and m̃c

[(mp1me)/m.
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APPENDIX A: EVALUATION OF CONVECTIVE
VARIATIONS

We write the particle flow lines as

xi5xi~a,t !, ~A1!

where the ‘‘particle coordinates’’ai are used to label indi-
vidual particles and can be taken, for example, to be th
initial position, i.e.

ai5xi~a,0!. ~A2!
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This introduces a time-dependent map~or ‘‘pull-back’’ ! be-
tween the ‘‘material space’’ai and physical spacexi , and the
associated Jacobian matrixJ is

J i
j[

]xi

]aj U
t

. ~A3!

We consider the variations of fluid variables induced byac-
tive infinitesimal spatial displacementsj i(x,t) and temporal
shifts t(x,t) of the fluid particle flow lines~A1!, namely,

x8 i~a,t8!5xi~a,t !1j i~x,t ! and t85t1t~x,t !.
~A4!

We note that the transformation~A4! not only shifts flow
lines in space, but also in time. A physical quantity of t
flow, Q(x,t) say, is changed toQ8(x8,t8), and we define the
correspondingEulerian andLagrangianvariations as7

dQ[Q8~x,t !2Q~x,t !, ~A5!

DQ[Q8~a,t8!2Q~a,t !5Q8~x8,t8!2Q~x,t !. ~A6!

By expandingDQ to first order using the definition~A4! of
x8 i and t8, we find the relation

DQ5dQ1j j¹jQ~x,t !1t] tQ~x,t !. ~A7!

Let us consider the induced~first order! variation of the ve-
locity v i[] tx

i(a,t), namely,

v8 i~a,t8!5] t8x8 i~a,t8!5] t8x
i~a,t !1] tj

i~a,t !

5] tx
i~a,t !

]t

]t8
U

a

1] tj
i~a,t !

5v i~a,t !2v i] tt~a,t !1] tj
i~a,t !,

~A8!

which by Eq.~A6! corresponds to the following Lagrangia
variation of the velocity:

Dv i5@] tj
i1v l¹lj

i #2@v i] tt1v iv l¹lt#, ~A9!

and with Eq.~A7! the Eulerian variation is found as

dv i5@] tj
i1v l¹lj

i2j l¹lv
i #2@] t~v it!1v iv l¹lt#.

~A10!

7Contrary to the Eulerian variation, the Lagrangian variation c
be defined in different~non-equivalent! ways. The definition used
here is based on comparing the quantityQ in different points by
parallel transport. Another common definition~e.g. see@11,20#!
consists of using the Lie-transported quantity instead. Both de
tions are equivalent for scalars but differ for vectors and hig
order tensors.
1-16
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From the conservation of mass one can derive an expres
for the particle densityn in terms of the Jacobian~A3!,
namely,

n~x,t !5
n0~a!

detJ , ~A11!

wheren0(a)5n(a,0) is the initial density att50. Using Eq.
~A3!, the change of the Jacobian matrixJ induced by the
flow line variation~A4! can be found as

J8 i
j~a,t8!5

]x8 i~a,t8!

]aj
5

]xi~a,t !

]aj U
t8

1
]j i

]aj

5
]xi~a,t !

]aj
1

]xi~a,t !

]t

]t

]aj U
t8

1
]j i

]aj

5J i
j~a,t !2v i

]t

]aj
1

]j i

]aj , ~A12!

with the resulting Lagrangian variation~A6! expressible as

DJ i
j5J l

j~¹lj
i2v i¹lt!. ~A13!

The derivative of a determinant detA with respect to a ma-
trix elementAi j is given by

] detA

]Ai j
5det~A!~A21! i j , ~A14!

and therefore we can write the Lagrangian variation of
Jacobian determinant as

D~detJ!5det~J!~J 21! j
iDJ i

j . ~A15!

The flow line variation~A4! therefore induces the Lagrang
ian change of the Jacobian

D~detJ!

detJ
5¹lj

l2v l¹lt. ~A16!

Using Eq.~A11!, the induced density variation is therefo
found as

Dn52n¹lj
l1nv l¹lt, ~A17!

and with Eq.~A7! the corresponding Eulerian expression
found as

dn52¹l~nj l !1@nv l¹lt2t] tn#. ~A18!

By combining the results for velocity and density variatio
we find the variations of the currentni5nv i as

Dni5@n] tj
i~x,t !1nl¹lj

i2ni¹lj
l #2ni] tt, ~A19!

dni5@n] tj
i~x,t !1nl¹lj

i2¹l~nij l !#2] t~nit!.
~A20!
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APPENDIX B: NOETHER IDENTITIES
OF THE VARIATIONAL PRINCIPLE

In addition to the flow line variations considered so fa
we will now also allow formetric variationsdgi j . Although
we only consider Newtonian physics here, there isa priori
no reason to restrict ourselves to flat space. Most imp
tantly, however, including metric variations allows us to o
tain the form of the stress tensorTH

i j and the associated mo
mentum conservation~22! directly from the variational
principle as a Noether identity, as opposed to constructin
from the equations of motion as we have done in Sec.
Therefore we extend the variation~4! of the Lagrangian to

dLH5( p0
XdnX1( pX

•dnX1
]LH

]gi j
dgi j . ~B1!

Next consider the density changednX induced by a metric
variationdgi j at constant flow lines, i.e. constantJ i

j . First
we note that we can express the Jacobian as

detJ5e i jkJ i
1J j

2J k
3 , ~B2!

and using Eq.~A14! the variation of the volume forme i jk

5Ag@ i jk # induced by metric changes is expressible as

de i jk5
1

2
e i jkglmdglm . ~B3!

Therefore we have

]detJ
]gi j

U
J
5

1

2
det~J!gi j , ~B4!

and using Eqs.~A11! and~A18! we can write the variation of
the density induced by spatial displacementsj and metric
variationsdgi j as

dn52¹l~nj l !2
1

2
ngi j dgi j , ~B5!

Dn52n¹lj
l2

1

2
ngi j dgi j , ~B6!

where we have used the fact that with our definition of t
Lagrangian variation~A7! we have

Dgi j 5dgi j 1j l¹lgi j 5dgi j , ~B7!

as the metric is by definition constant under parallel tra
port. A metric change with fixed flow lines does not chan
the local velocityv i ; therefore, the current variation can b
written using Eqs.~B5! and ~A20! as

dni5@n] tj
i~x,t !1nl¹lj

i2¹l~nij l !#2
1

2
nigl j dgl j ,

~B8!
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Dni5@n] tj
i~x,t !1nl¹lj

i2ni¹lj
l #2

1

2
nigl j dgl j .

~B9!

When allowing for metric variations it is convenient~e.g. see
@39#! to introduce the ‘‘diamond variation’’LLH as

LLH[
1

Ag
d~AgLH!5dLH1

1

2
LHgi j dgi j , ~B10!

such that the variation of the action~3! can now be written as
~noting thatdV5Agd3x)

dI5E LLHdVdt. ~B11!

Substituting Eqs.~B1!, ~B5! and ~B8! and integrating by
parts,LLH can be cast in the form

LLH52( f i
XjX

i 1
1

2
TH

i j dgi j 1¹lR
l1] tR, ~B12!

where the canonical forcesfX have the explicit expressio
~11! and we defined the tensorTH

i j as

TH
i j [2

]LH

]gi j
1Cgi j , ~B13!

using our earlier definition~20! of the generalized pressur
C.

Now consider a common displacementj of the whole
system including the background metric, which induce
metric change

dgi j 522¹( ij j ) , ~B14!

where (i j ) indicates symmetric averaging, i.e. 2A( iBj )
5AiBj1AjBi . The corresponding Lagrangian variatio
~B9! and ~B6! are found as

DnX50, ~B15!

DnX
i 5nX~] tj

i1vX
l ¹lj

i !. ~B16!

Substituting this into Eq.~B1!, the inducedDLH is

DLH5S ( nX
i pX j22

]LH

]gi j
D¹ij j1JH

i ] tj i , ~B17!

where we have used the definition~23! of the momentum
densityJH . It is well known that contrary to the fully cova
riant Lagrangian for relativistic hydrodynamics~e.g. @13#!,
the Newtonian Lagrangian is not strictly Galilean invaria
under boosts. This is due to the velocity dependence of
kinetic energy, as can be seen in the explicit form~52!. We
can therefore only demand strict invariance, i.e.DLH50,
for time-independent displacements, namely] tj50, which
leads to the Noether identity
04300
a

t
e

]LH

]gi j
5

1

2( nX
i pX j. ~B18!

The left-hand side is manifestly symmetric ini and j, there-
fore we see that

( nX
i pX j5( nX

j pXi, ~B19!

and we can now write the~symmetric! stress tensor~B13!
explicitly as

TH
i

j5( nX
i pj

X1Cgi
j . ~B20!

This tensor is identical to the expression~23! found earlier
by construction from the equations of motion. It remains
be shown, however, how the momentum conservation
~22! is directly obtainable as a Noether identity from th
variational principle. Using Eqs.~B17!, ~A7! and ~B12! we
can explicitly express the diamond variation as

LLH52~] tJ
j !j j2¹l~LHj l !1] t~JH

l j l !, ~B21!

which has to be identical to the expression~B12! for a com-
mon displacementj of the whole system, which after som
partial integrations takes the form

LLH5S 2( f X j1¹lTH
l j D j j1¹l~ . . . ! l1] t~ . . . !.

~B22!

The requirement that the previous two expressions have t
identical~up to divergences and time derivatives! leads to the
Noether identity

] tJH
i 1¹jTH

i j 5 f ext
i , ~B23!

which is the momentum conservation law~22!.

APPENDIX C: GALILEAN INVARIANCE OF E
In this section we show that requiring the conjugate m

mentap0
X andpX of Eq. ~53! to transform as Eq.~55! under

Galilean boosts~54! implies that the internal energyE has to
be Galilean invariant. We assume thatE(nX ,nX) transforms
into E8(nX ,nX8 ) under a Galilean boost, where

nX85nX1nXV. ~C1!

Therefore the conjugate momenta~53! in the frame moving
with speed2V are of the form

2p0
X85

1

2
mXvX

21mXvX•V1
1

2
mXV21

]E8

]nX
, ~C2!

pX 85mXvX1mXV2
]E8

]nX8
. ~C3!

Using Eq. ~53! to eliminate all terms containingvX , we
arrive at
1-18
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2p0
X852p0

X1V•pX1
1

2
mXV21F ]E8

]nX
2

]E
nX

1V•]
E
nXG ,

~C4!

pX 85p1mXV1F ]E
]nX

2
]E8

]nX8
G . ~C5!

By comparing with the required transformation propert
~55! we see that a necessary and sufficient condition for
is the vanishing of the terms in brackets in Eqs.~C4! and
~C5!. We can rewrite the partial derivatives of the ener
function as follows:

]E8

]nX8
5

]E8

]nX
•

]nX

]nX8
U

nX

5
]E8

]nX
, ~C6!

and

]E8

]nX
Un

X8
5

]E8

]nX
U

nX

1
]E8

]nX
•

]nX

]nX
Un

X8
5

]E8

]nX
U

nX

2V•
]E8

]nX
.

~C7!

Inserting these identities into Eqs.~C4! and~C5!, the invari-
ance requirement can be expressed as

]E
]nX

UnX
5

]E8

]nX
U

nX

and
]E
]nX

5
]E8

]nX
for all X, ~C8!

thereforeE8 can only differ fromE by a constant, which is
unimportant because the absolute value of the energy sca
arbitrary. This shows that energy functionE has to be Gal-
ilean invariant under the above assumptions.

APPENDIX D: NEWTONIAN LIMIT OF THE
RELATIVISTIC LAGRANGIAN

As shown in the relativistically covariant framework b
Carter @13#, the equations of motion for conducting mult
constituent fluids can be derived from a covariant Lagra
ian density of the form

Lcov52rc2, ~D1!

where the scalarr is now the total mass-energy density
the system. For simplicity we consider here a two-fluid s
tem, as generalizations to more fluids are straightforw
while making the notation more cumbersome. The two fl
ids, A and B say, are described by the two 4-current dens
nA

m , nB
m , and therefore the scalarLcov(nA

m ,nB
m) can only de-

pend on the three independent scalar combinations of t
two currents, for example,

nA5
1

c
A2gmnnA

mnA
n , nB5

1

c
A2gmnnB

mnB
n ,

and
04300
s
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-

-
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x5
1

c
A2gmnnA

mnB
n , ~D2!

and so generallyLcov5Lcov(nA ,nB ,x). Instead ofx we can
equivalently choose as a third independent quantity the c
bination

D2

c2 [12S nAnB

x2 D 2

. ~D3!

We are interested here only in the purely hydrodynamic c
tent of this framework, so we assume a flat space-time, i.
metric of the form

ds25gmndxmdxn52c2dt21dx2, ~D4!

with the time coordinatex05t and sog0052c2. When tak-
ing the Newtonian limit asc→`, the metric becomes singu
lar. The reason for this singular limit obviously lies in th
fact that a locally Lorentzian theory reduces to a Galile
invariant theory, therefore the Lorentz invariance has to
broken in the limit. As the non-invertible metric no longe
fully determines the space-time, we now have tochoose8 a
preferred time coordinate,t say, in which to take the limit
and which will reduce to the Newtonian absolute time.

The relation between the scalar rest-frame particle de
ties nX and the densitiesnX

0 in the preferred-time frame ca
be expressed from Eqs.~D2! and ~D4!:

nX5
1

c
Ac2~nX

0 !22nX
25nX

0F12
1

2c2 S nX

nX
0 D 2G1O~c24!,

~D5!

where (nX) i5nX
i is the spatial part of the 4-currentnX

m in the
preferred time frame. We see from this equation that if
choose the densitiesnX

0 to represent the Newtonian partic
number densities independent ofc, then in the limit we find

lim
c→`

nX5nX
0 . ~D6!

We further note that the quantityD introduced in Eq.~D3!
reduces to the relative velocity in the Newtonian lim
namely,

lim
c→`

D25S nA

nA
2

nB

nB
D 2

. ~D7!

We now turn to the covariant LagrangianLcov of Eq. ~D1!
which can quite generally be written as

Lcov52~nAmA1nBmB!c22E~nA ,nB ,D2!1O~c21!,
~D8!

where the first term represents the rest-mass energy in
fluid frame, whileE contains the ‘‘equation of state,’’ i.e. th
internal-energy function of the fluid at orderO(c0). When
we write this in the preferred time frame using Eq.~D5!, we
obtain

8See@16# for a more detailed discussion of this limit and how
construct a fully space-time covariant Newtonian framework.
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Lcov52~nA
0mA1nB

0mB!c21mA

nA
2

2nA
0

1mB

nB
2

2nB
0

2E~nA
0 ,nB

0,D2!1O~c21!. ~D9!

We see that this Lagrangian obviously diverges in the Ne
tonian limit c→` due to the rest-mass energiesnX

0mXc2.
Before we can take this limit, we therefore have to renorm
ize the Lagrangian density by subtracting a finite coun
term that will make the limit finite. The most natural choic
is obviously to subtract the mass energy in the preferred t
frame that will determine the Newtonian absolute time. W
therefore define the renormalized Lagrangian densityL ren as
s-
C.

h-

r

04300
-

l-
r-

e
e

L ren[Lcov1~nA
0mA1nB

0mB!c2. ~D10!

In L ren we have explicitly broken Lorentz invariance b
choosing a preferred time frame, and when taking the Ne
tonian limit we obtain the finite Lagrangian

lim
c→`

L ren5mA

nA
2

2nA
1mB

nB
2

2nB
2E~nA ,nB ,D2!, ~D11!

which corresponds exactly to the Newtonian hydrodynam
LagrangianLH of Eq. ~65!.
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