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Deflection of spacecraft trajectories as a new test of general relativity:
Determining the parametrized post-Newtonian parametersb and g
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In a previous work, we proposed a new test of general relativity~GR! based on a general deflection formula
which applies to all values of asymptotic speedV` (0<V`<1). The formula simplifies to Einstein’s light
deflection result whenV`51. At low velocity, the general deflection equation reduces to the classical New-
tonian contribution along with additional terms which contain the GR effect. A spacecraft, such as the proposed
interstellar mission which involves a close pass of the Sun, can be used to exaggerate the GR effect so that it
can be accurately measured. In this paper we provide a detailed derivation of the general deflection equation,
expressed in terms of the parametrized post-Newtonian constantsb andg. The resulting formula demonstrates
that by measuring spacecraft trajectories we can determineb and g independently. We show via a detailed
covariance analysis thatb andg may be determined to a precision of;431025 and;831026, respectively,
using foreseeable improvements in spacecraft tracking.
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I. INTRODUCTION

In a recent paper@1# a new test of general relativity~GR!
was proposed based on the deflection of spacecraft traje
ries. One of the new~and unanticipated! features of this tes
is that in principle it allows the parametrized-post-Newton
~PPN! parametersb and g to be disentangled from eac
other, and hence to be determined separately in a single
periment. In light of Ref.@1#, the objectives of the presen
paper are twofold:~a! to supply the details of the formalism
underlying the analysis in Ref.@1# and ~b! to explore quan-
titatively how preciselyb and g can be determined from
specific mission. As part of this discussion we address
question of how well we can determine not only some lin
combination ofb and g, such as (212g2b), but alsob
andg separately. As we shall see, the deflection of spacec
trajectories as a test of GR is of interest not only becaus
the theoretical possibility of discriminatingb andg, but also
because such an experiment appears to be feasible with
nology that is either currently available or on the near ho
zon.

Since the possibility of decouplingb and g in a single
experiment is one of the novel features of the propo
spacecraft mission, it is useful to explain in intuitive term
how this decoupling can come about. The main theoret
result of our analysis is given by the general deflection eq
tion, which is Eq.~8! of Ref. @1# or Eqs. ~2.27!–~2.29! in
Sec. II of the present paper. We note from Eq.~2.29! that the
deflection angle can be expressed as a sum of three co
butions, the first of which is purely Newtonian. The sum
this Newtonian contribution and the second term~propor-
tional to g) yields the GR prediction for light deflection i
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the limit when the satellite is ultrarelativistic. This is to b
expected, since the hyperbolic~open! trajectory of a light ray
can be viewed as the limiting case of that for an ultrarela
istic massive object. Finally, the third term in Eq.~2.29! is
proportional to the factor (212g2b), which is also to be
expected, since this is the same factor that appears in the
description of perihelion precession. Thus the two relativis
terms in Eq.~2.29!, which are proportional tog and to (2
12g2b), respectively, can be understood as expressing
fact that in some sense a spacecraft in a hyperbolic orbit
characteristics of both a light ray and of a massive obje
Finally we note that since the coefficients ofg and (212g
2b) in Eq. ~2.29! have a different dependence on the spa
craft velocity, these can in principle be separately de
mined, thus yielding two independent equations from wh
b andg can be inferred.

The preceding discussion leads immediately to the qu
tion of whether measuring the gravitational deflection o
spacecraft to the requisite level of precision is technica
feasible. It was shown in Ref.@1# that with recent improve-
ments in spacecraft technology, particularly VLBI~very long
baseline interferometry! tracking and drag-free systems,
measurement of (212g2b) to ;1023 would be techni-
cally feasible in the foreseeable future. In our present w
we provide a more detailed covariance analysis which sh
that b and g may be measured to an accuracy of;4
31025 and;831026 respectively using advancedK-band
radiometric tracking.

In Sec. III of the present paper we supply the details
our numerical analysis applied to a specific proposed m
sion, including a discussion of the contributions from t
quadrupole moment of the Sun,J2. Of particular interest is
the question of how wellb andg can be determinedsepa-
rately with existing or available technology. Although dise
tangling b and g in this ~or any other! experiment will be
©2004 The American Physical Society01-1
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difficult, the fact that it can be done at all serves to foc
attention on strategies for maximizing the sensitivity to t
individual parameters. In this connection it is worth noti
that improvements in the classic tests of GR have been m
possible by the introduction of new technologies, such as
Mössbauer effect and atomic clocks in the case of the gr
tational redshift. Additionally, other related tests of GR, i
cluding lunar laser ranging@2–4# and tests of both the wea
equivalence principle and the gravitational inverse-squ
law @5#, have also benefited from the use of new improv
ments in technology. Recently@6#, improvements in space
craft tracking techniques applied in the Cassini mission
Saturn have led to a new determination ofg:(g21)5(2.1
62.3)31025.

In Sec. IV we develop the theoretical formalism to sho
how b andg can be disentangled in a single spacecraft
flection experiment. This formalism characterizes the se
tivity of the trajectory tob and g, which then leads to the
detailed covariance analysis presented in Sec. V. One
come of this analysis is the recognition that by using the
strength of the range and Doppler radiometric data, hig
accurate VLBI measurements become less important.
results and conclusions are presented in Sec. VI where
consider how standard and advanced tracking accuracie
fect the precision to whichb andg can be determined.

II. DERIVATION OF THE GENERAL DEFLECTION
EQUATION

To derive the general deflection equation we follow t
approach of Longuski et al.@1#, but here we take the oppo
tunity to provide additional details. We begin by assumi
that a photon or a spacecraft~idealized as a massive particle!
approaches a gravitating body from a very great dista
~starting with velocityV`

2) and is deflected by gravity. I
recedes to a great distance with final velocityV`

1 ~see Fig.
1!. Let f(r ) be the angle measured positively~by the right-
hand rule! from the inertial directionĵ to the position vector
direction, êr , as shown in Fig. 1. We then definef(r→`)
[f` , and also note thatf(r p)52p/2, where r p is the
distance of closest approach as shown in the figure. From
symmetry between the approach asymptote and the depa
asymptote, we can express the total deflection due to gra
Dfde f , as

Dfde f52@f`2f~r p!#2p. ~2.1!

We can now make use of the quadrature integral given
Weinberg@7#,

f56E A1/2~r !dr

r 2$J22@B21~r !2E#2r 22%1/2
, ~2.2!
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whereA(r ) andB(r ) can be expanded in terms of the co
stantsb andg of the PPN metric, withc51 @7#:

A~r !5112g
Gm

r
1••• ~2.3!

B~r !5122
Gm

r
12

G2m2

r 2
~b2g!1•••.

~2.4!

In Eqs.~2.3! and~2.4! G is the Newtonian gravitational con
stant,m is the mass of the central body, andE and J are
constants given by

E512V`
2 , ~2.5!

J5r p@1/B~r p!211V`
2 #1/2. ~2.6!

Let us now examine the denominator term which appe
in Eq. ~2.2!. Using Eq.~2.5! we have

H 1

J2 F 1

B~r !
2EG2

1

r 2J 5
1

J2 F 1

B~r !
211V`

2 G2
1

r 2
.

~2.7!

From Weinberg@7# the inverse of Eq.~2.4! is given by

1

B~r !
'11

2Gm

r
1

2G2m2

r 2
~22b1g!. ~2.8!

Upon substituting Eqs.~2.3!, ~2.7! and ~2.8! into Eq. ~2.2!,
we obtain, to orderG2,

FIG. 1. Deflection of a spacecraft trajectory in a gravity fie
The spacecraft approaches with asymptotic velocityV`

2 , passes
through periapsis~closest approach! at distancer p , and leaves with
asymptotic velocityV`

1 . The spacecraft coordinates are given
the radial distancer from the center of the attracting body and th

anglef with respect to the inertial directionĵ .
f`2f~r p!5E
r p

` ~r 211gGmr22!dr

@V`
2 J22r 212GmJ22r 2112G2m2J22~22b1g!#1/2

. ~2.9!
1-2
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The integrals in Eq.~2.9! can be evaluated using the eleme
tary results@8#

E dy

yAX
5

1

A2a
sin21S by12a

uyuA2q
D ~ for a,0!,

~2.10!

E dy

y2AX
52

AX

ay
2

b

2aE dy

yAX
~ for aÞ0!,

~2.11!

where

X[a1by1cy2, ~2.12!

q[4ac2b2. ~2.13!

In our problem, Eq.~2.9!, we have

a5211
2G2m2

J2
~22b1g!,

b52Gm/J2,

c5V`
2 /J2,

q52
4

J2 FV`
2 1

G2m2

J2
22V`

2 G2m2

J2
~22b1g!G .

~2.14!

We evaluate the constantsa, b, c, andq by expressingJ2 in
terms ofr p andV` . From Eqs.~2.6! and ~2.8! we obtain

J252Gmrp@11~Gm/r p!~22b1g!1r pV`
2 /~2Gm!#,

~2.15!

which givesJ2 in terms of the physically measurable para
etersr p andV` . Substituting Eq.~2.15! into Eqs.~2.14! we
obtain

a5
212r pV`

2 /~2Gm!

11~Gm/r p!~22b1g!1r pV`
2 /~2Gm!

, ~2.16!

b5
1/r p

11~Gm/r p!~22b1g!1r pV`
2 /~2Gm!

, ~2.17!

c5
V`

2 /~2Gmrp!

11~Gm/r p!~22b1g!1r pV`
2 /~2Gm!

, ~2.18!

q5
2~1/r p!2@11r pV`

2 /~Gm!#2

@11~Gm/r p!~22b1g!1r pV`
2 /~2Gm!#2

. ~2.19!
04200
-

-

For the expression 1/A2a in Eq. ~2.10! we write

1

A2a
5F11

~Gm/r p!~22b1g!

11r pV`
2 /~2Gm!

G 1/2

, ~2.20!

and noting thatGm/r p!1 we have

1

A2a
'11

@Gm/~2r p!#~22b1g!

11r pV`
2 /~2Gm!

. ~2.21!

Using Eqs.~2.16!, ~2.17!, ~2.19!, and~2.21! we evaluate the
integral of Eq.~2.10! for the upper and lower limits of̀ and
r p , respectively:

E
r p

` dy

yAX
5

1

A2a
sin21S by12a

uyuA2q
D U

r p

`

'H 11
@Gm/~2r p!#~22b1g!

11r pV`
2 /~2Gm!

J
3H sin21F 1

11r pV`
2 /~Gm!

G1
p

2 J . ~2.22!

By comparing Eqs.~2.9! and ~2.11! we note that the factor
2gGmb/(2a) will appear in the arcsine term@from Eq.
~2.10!#; it can be written as

2gGmb

2a
5

gGm/~2r p!

@11r pV`
2 /~2Gm!#

. ~2.23!

Collecting all the arcsine terms that result from Eq.~2.9!, we
obtain

F11
gGm/~2r p!

11r pV`
2 /~2Gm!

G H 11
@Gm/~2r p!#~22b1g!

11r pV`
2 /~2Gm!

J
3H sin21F 1

11r pV`
2 /~Gm!

G1
p

2 J
5H 11

@Gm/~2r p!#~22b12g!

11r pV`
2 /~2Gm!

J
3H sin21F 1

11r pV`
2 /~Gm!

G1
p

2 J . ~2.24!

The final term we must analyze from Eqs.~2.9! and~2.11! is
1-3
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2gGm
AX

ay
U

r p

`

5
2gGm

a
Ac20

5
gV`~Gm/r p!1/2

@21r pV`
2 /~Gm!#1/2F11

~2Gm/r p!~22b1g!

21r pV`
2 /~Gm!

G 1/2

'
gV`~Gm/r p!1/2

@21r pV`
2 /~Gm!#1/2F11

~Gm/r p!~22b1g!

21r pV`
2 /~Gm!

G ,

~2.25!

where we note that the value of the function atr p is zero, and
that the final expression is based on the approxima
Gm/r p!1.

Equations~2.24! and ~2.25! provide the solution to the
integral of Eq.~2.9!:

f`2f~r p!'
gV`~Gm/r p!1/2

@21r pV`
2 /~Gm!#1/2

3F11
~Gm/r p!~22b1g!

21r pV`
2 /~Gm!

G
1H 11

~Gm/r p!~22b12g!

21r pV`
2 /~Gm!

J
3H sin21F 1

11r pV`
2 /~Gm!

G1
p

2 J
~ for Gm/r p!1!. ~2.26!

To obtain the general deflection equation we write

Dfde f52@f`2f~r p!#2p

>2geS x

21xD 1/2

1ep
~212g2b!

21x

12F11e
~212g2b!

21x Gsin21S 1

11xD ,

~2.27!

where

e5Gm/r p[m/r p , x[V`
2 /e, ~2.28!

and where we have retained terms only to ordere. It is
convenient to rewrite our general deflection equation~2.27!
in the final form

Dfde f>2 sin21S 1

11xD12geS x

21xD 1/2

12e
~212g2b!

21x
cos21S 21

11xD , ~2.29!
04200
n

where we have used the identity@8# p/21sin21(z)
5cos21(2z). We recognize in Eqs.~2.27!–~2.29! the classi-
cal nonrelativistic deflection of a spacecraft trajecto
DfNR :

DfNR[2 sin21S 1

11xD . ~2.30!

The nonrelativistic deflection formula is well known to mi
sion designers@9# who use it to compute the effectiveness
the gravity-assist technique, such as that used in the Voy
missions to the outer planets. TheDfNR term is what re-
mains of Eq.~2.29! when the GR terms~i.e. thee terms! are
dropped. We can easily verify Eq.~2.30! by reprising our
derivation of Eq.~2.29! with the simplifications

A51, ~2.31!

B~r !5122
Gm

r
. ~2.32!

The result of these weak field approximations is that we
tain the Newtonian deflection. In this particular derivatio
the second term of the numerator in the integrand of
~2.9!, gGmr22, vanishes so that only terms corresponding
Eq. ~2.10! remain. An immediate consequence of the we
field assumption is that the term (22b1g) which appears
in the constantsa and q of Eq. ~2.14! also vanishes, and
hence all terms containingb andg are eliminated from Eq.
~2.26!. Since these are directly associated withe[Gm/r p ,
we merely drop thee terms which appear explicitly in Eq
~2.30! to obtain the Newtonian deflection formula, E
~2.30!. Equation~2.30! gives the total turn angle of the vec
tor V` ~i.e., the angle between the approach velocity,V`

2 ,
and the departure velocity,V`

1) based on Newton’s law o
gravity. If we substituteV`51, or x51/e, into Eq. ~2.30!,
we obtain the deflection of light predicted by Newtonia
physics:

DfNRS 1

e D>2e. ~2.33!

Similarly, settingV`51 in Eq. ~2.29! yields

Dfde fS 1

e D52e~11g!5
4Gm

r p
S 11g

2 D , ~2.34!

where termsO(e2) and higher have been dropped. Equati
~2.34! yields Einstein’s formula for the deflection of ligh
wheng is set to unity: twice the value given by Eq.~2.33!.

We note that Eq.~2.29! contains the same factor that a
pears in the formula for the precession of perhelia@7#,

Dfprec5
6pGm

L S 212g2b

3 D , ~2.35!

whereDfprec is the precession in radians per revolution, a
L is the semilatus rectum of the elliptical orbit. What is r
markable about the factor (212g2b) in the general deflec-
tion equation~2.29! is that the contribution from this term
depends on the speedx. This means that an experiment bas
1-4
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on the deflection equation can discriminate between the c
tributions fromb andg by comparison to the precession
Mercury’s orbit. It is thus clear that at different speeds,
experiment based on the general deflection equation
separately determine the values ofb andg. This is not true
for other experiments, such as light deflection, radar ti
delay, or planetary precession.

We wish to obtain a formula that conveniently compa
the general relativistic effect on spacecraft deflection to li
deflection. One way to proceed is to define a quantityDf̄
obtained by subtracting the~often large! angleDfNR in Eq.
~2.30! from the expression in Eq.~2.29!, and to then normal-
ize the result~i.e. divide! by the GR result 2e(11g):

Df̄[~Dfde f2DfNR!/@2e~11g!#

5@g/~11g!#@x/~21x!#1/21~11g!21

3@~212g2b!/~21x!#cos21@21/~11x!#.

~2.36!

For Einstein’s theory,b5g51 and Eq.~2.36! becomes

Df̄E5
DfE

2e~11g!
5

1

2 S x

21xD 1/2

1
~3/2!

~21x!
cos21S 21

11xD .

~2.37!

The functionDf̄E is plotted in Fig. 2. We note from Eq
~2.37! that whenV`51, thenDf̄E>0.5, as expected: th
ratio of the purely relativistic bending of light divided by th
total bending of light~including the Newtonian bending! is
1/2. In contrast, for a parabolic trajectoryV`50 ~i.e. x

50) and Df̄E(0)53p/452.36. When x51, then V`

5AGm/r p which is the circular speed at a radiusr p . Thus
the x variable is conveniently scaled in terms of ‘‘circula
speeds’’ atr p . For x51, Df̄E51.34. We see that there ar

FIG. 2. Plot of the functionDf̄E in Eq. ~2.37!. As discussed in

the text,Df̄E gives the scaled contribution of GR to the deflectio
plotted versus the scaled speedx. For an incident light ray

Df̄E51/2.
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many cases where the relativistic deflection of a spacec
trajectory is greater than the deflection of light for the sa
periapsis distance,r p , where periapsis is the point of close
approach. The question to be answered is whether an ex
ment can be devised to measure this effect.

In Table I we estimate the total deflection angleDfde f
@from Eq. ~2.27!# and the deflection angle due to GR,DfE
@found by multiplying Eq.~2.36! by 2e(11g)], for repre-
sentative hyperbolic spacecraft trajectories near the Ea
Jupiter, or the Sun. For these calculations we assume
b5g51. In anticipation of the more detailed analysis pr
sented in Secs. IV and V below, we estimate the accur
required to measure the relativistic deflection,DfE , to
within 0.1% ~the level of sensitivity necessary to determi
b andg to 1023). For purposes of this estimate we use t
approximation @1# @see Eq. ~3.10!# sDr p

50.1%DfEr p ,

which sets a limit on the closest approach distance,r p .
~Other variables affect the sensitivity, but knowledge ofr p is
the dominant error source.! Clearly the level of accuracy
required to perform the experiment with spacecraft defl
tions at Earth or Jupiter is beyond present day technolo
because periapsis must be known to within 21.56mm or
1.267 cm, respectively. Since we evidently require a lar
gravitational parameter,Gm, we turn our attention to the
Sun—the largest gravitating body at our disposal.

III. PROPOSED EXPERIMENT

Mewaldt et al.@10# have proposed the Small Interstell
Probe mission which would cross the solar wind terminat
shock and heliopause and penetrate into nearby interst
space. In order to accomplish its scientific objectives,
probe must attainV`'1.331024. To achieve this speed
number of gravity assist scenarios are suggested@10#, most
of which involve a final close flyby of the Sun at 4 solar rad
(4r (). At perihelion a maneuver is performed to change
speed of the spacecraft by several km/s in order to send
probe off on its hyperbolic trajectory. The Interstellar Pro
mission presents an ideal trajectory to observe the relativ
deflection, provided that the effects of non-gravitation
forces and the Newtonian deflection can be accounted
We will therefore use this mission as the basis for so
simple numerical estimates. In Secs. IV and V we prese

,

TABLE I. Representative values for spacecraft deflections.

Parameter Earth Jupiter Sun

r p @km# 6678 71 700 2.7843106

V` @km/s# 9.000 5.455 37.92
Gm @km# 4.43531026 1.41031023 1.476
e 6.641310210 1.96631028 5.30331027

x 1.357 1.68431022 3.01731022

DfNR @deg# 50.21 159.1 152.2
DfE @rad# 3.22931029 1.76731027 4.67331026

sDr p
@km# a 2.15631028 1.26731025 1.30031022

aApproximate error tolerance on periapsis knowledge to obtainb
andg to 1023.
1-5
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LONGUSKI et al. PHYSICAL REVIEW D 69, 042001 ~2004!
more detailed analysis of such a mission and its ability
disentangle the PPN parametersb andg.

Let us first estimate how accurately the relevant para
eters must be known in order to discriminate between
relativistic and Newtonian deflections. Usingr p5436.960
3105 km52.7843106 km, andGm51.476 km, we finde
55.30331027 and x53.01731022. Inserting these value
of e andx into Eq. ~2.37!, and multiplying by 4e gives the
total general relativistic deflectionDfE54.67331026 rad
50.96399. On the other hand, the nonrelativistic Newtoni
deflection is, from Eq.~2.30!, DfNR52.656 rad5152.2°,
which is very large compared to the relativistic deflectio
Thus in order to observe the relativistic deflection we m
have very precise knowledge of the Newtonian contributi
~Of course in the case of the Interstellar Probe we will o
observe the departure asymptote, namely half the deflect
given byDfE andDfNR .) We proceed to assess our abili
to measure the relativistic effect, which will be proportion
to the knowledge errors in the nonrelativistic effect.

We can view the rotation induced by general relativity
a hyperbolic trajectory as being a shift in the argument
periapsis of the probe trajectory due to the gravitational
teraction, analogous to the advance in Mercury’s perihel
Thus, in order to determine if this is a measurable effect,
must devise a series of ideal measurements to estimate
shift in argument of periapsis between perihelion and esc
At perihelion the argument of periapsis is related to the u
vector of the probe~assuming orbit plane coordinates! by the
equation

r̂ p5cos~v! î1sin~v! ĵ , ~3.1!

wherev is the argument of periapsis~arbitrarily set to zero
in Fig. 1! and î and ĵ are unit vectors of our coordinat
frame, with the third unit vectork̂5 î3 ĵ . When the probe is
sufficiently far from the Sun on its escape trajectory, its
ymptote can similarly be specified by the unit vector

r̂`5cos~v81u`! î1sin~v81u`! ĵ , ~3.2!

wherev8 is the new~shifted! argument of periapsis, andu`

is the limiting value of the true anomaly of the probe as
escapes from the Sun. In principle, each of these unit vec
can be measured, and the shift in argument of periapsis
be computed by comparing them. Specifically,

u r̂ p3 r̂`u5sin~v82v!cosu`1cos~v82v!sinu` ,
~3.3!

and we definev82v[Df, which is the quantity we wish to
measure. Noting thatDf!1, cosu`521/e, and sinu`

5Ae221/e, wheree is the eccentricity, we can solve forDf
in terms of measurable quantities:

Df5Ae2212eu r̂ p3 r̂`u. ~3.4!
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We next take the variation (d) of the measurement, Eq.~3.4!,
to compute how errors in measuring the eccentricity and
unit vectors will contribute to errors in the measured value
Df:

dDf5@e~e221!21/22u r̂ p3 r̂`u#de2edu r̂ p3 r̂`u.
~3.5!

Noting thatu r̂ p3 r̂`u>Ae221/e reduces Eq.~3.5! to

dDf5e21~e221!21/2de2e@~ k̂3 r̂ p!•d r̂`1~ r̂`3 k̂!•d r̂ p#,
~3.6!

which represents the effect of variations in the angular po
tion of the probe at periapsis and at escape. Careful eva
tion of each term for a general flyby shows that the expr
sion in square brackets in Eq.~3.6! can be expressed as

e@•••#5edu r̂ p3 r̂`u5Dr ` /r `1Dr p /r p , ~3.7!

whereD denotes errors in distance measured normal to
radius vector. Since the eccentricity is, in turn, a function
specific measurable quantities via the relatione5@1
1(r pV`

2 /m)#, we have

de5~e21!@dr p /r p12dV` /V`2dm/m#, ~3.8!

wheredr p denotes variations along the radius vector. If w
combine the previous results and assume that the diffe
measurements are uncorrelated, then the overall uncerta
in Df is

sDf
2 5e22@~e21!/~e11!#@~s r p

/r p!214~sV`
/V`!2

1~sm /m2!#1@~sDr p
/r p!21~sDr `

/r `!2#, ~3.9!

wheres denotes the Gaussian standard deviation of the m
sured quantity.

In general, the uncertainties in the first terms will be ne
ligible compared to the measured uncertaintiessDr p

and

sDr `
. Additionally, at escape the probe unit vector directi

can be measured extremely accurately using establis
VLBI techniques@11#. This leaves the down-track measur
ment of the probe position at perihelion as the domin
error source, so that

sDf'sDr p
/r p . ~3.10!

Current navigation practice would reducesDr p
to the order

of 1–10 km@12#. TakingsDr p
51 km for our numerical ex-

ample ~wheree is computed to be 1.03!, we find thatsDf
53.631027 rad which, by comparison to half the deflectio
angleDfE , represents an error of 16%. If this measurem
1-6
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uncertainty were reduced to the order of 10 m, then
would estimate that the contribution from the PPN para
etersb andg could be found to 1023. Measurement uncer
tainties of this order imply Earth-based measurement ac
racies on the order of 0.1 nrad. Based on operation
demonstrated measurements of the Deep Space Netw
VLBI system, its estimated accuracy at present is of orde
nrad. Observations of natural radio sources made with
VLBI measurement technique have demonstrated accura
of 0.8 nrad, and the fundamental limit on such measurem
is of order 0.01 nrad@13#. This precision is substantially
better than the 0.1 nrad accuracy required to measureb and
g at the;1023 level. The feasibility of developing this tech
nology to the levels of accuracy needed for our propo
experiment and for near-Sun observations is considere
Ref. @14#. We can presume that the increases in accurac
VLBI will be accompanied by corresponding improvemen
in the infrastructure needed to support these measurem
which would likely be developed in concert with improve
VLBI technology.

An important perturbation not directly addressed here
due to theJ2 gravity coefficient of the Sun. The shift induce
in periapsis due to this will be on the order of 1% of the sh
induced by general relativity. Thus, it will introduce add
tional errors in the determination ofb and g. In order to
discriminate for this effect an inclined orbit can be used@12#.
Alternately, tracking the spacecraft near perihelion may
low the signature of theJ2 perturbation to be recognized an
discriminated without having to resort to an inclined orbit

One approach to disentangle the parametersb and g in
Eq. ~2.29! would be to rely on experiments which determi
g separately@6,15#. However, as we show in the subseque
sections,b and g can actually be disentangled in a sing
mission measuring the deflection of a spacecraft.

In order to extract the general relativistic contribution
the spacecraft’s trajectory from a mission such as the Sm
Interstellar Probe it will be necessary to deal with perturb
non-gravitational forces. For a typical spacecraft these for
arise from radiation pressure, solar wind, interplanetary d
atmospheric drag, magnetic fields, propellant leakage,
spacecraft radiation@4,16#. There are two ways to addres
these perturbations: They can be measured directly by p
ing sufficiently sensitive accelerometers on-board the sp
craft, and then treating these accelerometers as data w
allow the non-gravitational forces to be directly estimate
However, it is likely that another technique will be necess
to sidestep these perturbations, which is to employ a d
free spacecraft using small thrusters to null out the n
gravitational forces. Fortunately the necessary drag-
technology is already under development, since it is a pr
uisite for the ongoing Gravity Probe B mission@17#, as well
as for the proposed STEP@18# and Galileo Galilei@19# mis-
sions.

In the next section we develop the theoretical formali
needed to demonstrate howb andg can be disentangled~at
least in principle! in a single spacecraft deflection missio
through an appropriate set of measurements. Using this
malism we show that a satellite deflection experiment m
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be able to separately determineb and g to a precision of
;431025 and;831026, respectively.

IV. ESTIMATING GENERAL RELATIVITY PARAMETERS
FROM RADIOMETRIC TRACKING OF HELIOCENTRIC

TRAJECTORIES

A. General

In this section we analyze in greater detail the precision
which we can determine the general relativistic parameterb
andg by measuring spacecraft trajectories. Specifically,
will focus on the question of disentanglingb and g by an
appropriate set of measurements. In Sec. III an estimat
the necessary measurement accuracy of these parameter
made under a number of simplifying assumptions and
proximations. In this section we relax some of these appro
mations and perform a more detailed and rigorous analysi
the problem. Figure 3 illustrates the geometry of the spa
craft trajectory. The spacecraft position and velocity vect
at perihelion arerWo andvW o , andrW o is the Earth-to-spacecraf
position vector at this time. The subscript ‘‘t ’’ refers to these
vectors at a later time. The phase angle at the initial tim
FESC, is the Earth-Sun-Spacecraft angle. Figure 3 shows
Earth’s location forFESC50,p/2,p, and 3p/2. ~Since radio-
metric measurements are highly sensitive to the relative
ometry of the spacecraft with respect to the Sun, we ana
estimates ofb andg as a function ofFESC.) Although the
analysis which follows is semi-analytical, it includes realis
models of the trajectory dynamics and measurement no
We provide detailed estimates of how accurately the tra
tory must be measured to set new limits on the parameteb
andg.

FIG. 3. Geometry of the spacecraft trajectory, where the spa

craft position and velocity vectors arerW and vW . The Earth-to-

spacecraft position vector isrW . Subscripts ‘‘o’’ and ‘‘ t ’’ refer to
initial and later epochs. The location of the Earth with respect to
spacecraft at perihelion is indicated by the phase angle,FESC.
Measurements ofb andg are computed assuming the optimal l
cation of the Earth (FESC).
1-7
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B. Transient effect of b and g

From Ref.@2# ~Sec. 7! the perturbing relativistic accelera
tion, to first PN order, can be written as~takingG5c51 and
noting that the spacecraft mass is much smaller than the s
mass!

daW 5
m

r 3 F2~g1b!
mrW

r
2gv2rW12~g11!~rW•vW !vW G ,

~4.1!

whererW represents the spacecraft position vector andvW rep-
resents the spacecraft velocity vector normalized by
speed of light. We note that the relativistic perturbation
present only in the orbital plane. The acceleration com
nents decomposed into the radial (R), transverse (S), and
out-of-plane~W! directions are

R5
m2~11e cosf !2

a3~e221!3
@~12e2!g12b~11e cosf !

12~g11!e2sin2f #, ~4.2a!

S5
m2~11e cosf !2

a3~e221!3
@2~g11!~11e cosf !e sin f #,

~4.2b!

W50. ~4.2c!

In Eqs.~4.2!, a denotes the semi-major axis,e is the eccen-
tricity of the orbit, andf is the true anomaly~to be distin-
guished from the mean anomalyM ). The hyperbolic
Lagrange planetary equations@20,21#, with proper changes
~i.e., e2.1, a→2a) can be represented as

da

dt
52

2a3/2

Am~e221!
@Re sinf 1S~11e cosf !#,

~4.3a!

de

dt
5Aa~e221!

m FR sin f 1
S

e S p

r
1

r

aD G ,
~4.3b!

di

dt
5

r

h
W cos~v1 f !, ~4.3c!

dV

dt
5

rW sin~v1 f !

h sin i
, ~4.3d!

dv

dt
5

1

e
Aa~e221!

m F2R cosf 1S
21e cosf

11e cosf
sin f G

2
dV

dt
cosi , ~4.3e!

dM

dt
5n2

1

na F2r

a
2

~e221!

e
cosf GR1

~e221!

nae F r

pGS.

~4.3f!
04200
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In Eqs. ~4.3! i is the orbit inclination,v is the argument of
periapsis,V is the longitude of the ascending node, andn
5Am/uau3 is the normalized mean motion.

After substitution of the perturbing relativistic acceler
tion components from Eq.~4.2! into the hyperbolic Lagrange
equations, the changes in the orbital elements from peria
passage to some value of the true anomaly can be app
mated by keeping the elements on the right-hand side c
stant and allowing the true anomaly to vary. We thus find

Da5
2em

~e221!2
@~212b13g12e21ge2!D cosf

2~21b12g!eD sin2f #, ~4.4a!

De52
m

a~e221!
@~g12b14e213ge2!D cosf

2~21b12g!eD sin2f #, ~4.4b!

Dv5
m

a~e221!
F ~22b12g!D f

2S 2b1~12e2!g

e DD sin f

2~21b12g!D~sin f cosf !G , ~4.4c!

DM5
3m

a~e221!2
@g1b1~21g!e2

1~213g12b1~21g!e2!e1~212g1b!e2#nDt

2
m

aAe221
F ~212g1b!D~sin f cosf !

1
g12b1~413g!e2

e
D sin f G2~21g!

m

a
DF,

~4.4d!

whereF is the hyperbolic eccentric anomaly@note thatDt in
Eq. ~4.4d! is the actual time multiplied by the speed
light c].

Figures 4 and 5 show the change in the orbital eleme
due to the relativistic effect. The initial epoch is at the pe
apsis withr p54r ( andV`539 km/s, wherer p and r ( are
the perihelion distance and radius of the Sun, respectivel
conclusion that we draw by studying these perturbation
that most of the changes in orbital elements due to GR oc
very early in the trajectory~usually within a few days of
perihelion!.

Of most interest are the partial derivatives of the orbi
elements with respect to the relativistic constants,b andg,
based on Eqs.~4.4!. These indicate the sensitivity of th
trajectory to the PPN parameters, and give us an indica
of the information content related tob and g in the trajec-
1-8
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DEFLECTION OF SPACECRAFT TRAJECTORIES AS A . . . PHYSICAL REVIEW D69, 042001 ~2004!
tory. If we let E be the set of orbital elements, a change inE
due to relativistic effects can be represented asE5Eo
1DE, whereEo denotes the initial orbital elements. Takin
partials with respect to the GR parameters yields

]E

]~g,b!
5

]~Eo1DE!

]~g,b!
5

]DE

]~g,b!
. ~4.5!

We will use these partials later to form the state transform
tion from the GR parameters to the data measurements.
partial derivatives of the orbital elements with respect tog
are given by

]a

]g
52

2em

~e221!2
@~31e2!~12cosf !12e sin2f #, ~4.6a!

FIG. 4. Change in the semi-major axisDa and eccentricityDe
due to the relativistic effect. These figures, as well as Fig. 5~a!,
indicate that most of the GR effects are observable within a
days of perihelion.

FIG. 5. Change in the argument of perihelionDv, and mean
anomalyDM , due to the relativistic effect. See also caption to F
4.
04200
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]e

]g
5

m

a~e221!
@~113e2!~12cosf !12e sin2f #, ~4.6b!

]v

]g
5

m

a~e221!
F2 f 22 sinf cosf 1

~e221!

e
sin f G ,

~4.6c!

]M

]g
5

3m

a~e221!2
@113e13e21e3#M

2
m

aAe221
F2 sinf cosf 1

~113e2!

e
sin f G2

m

a
F.

~4.6d!

Similarly, the partial derivatives of the orbital elements wi
respect tob are

]a

]b
52

2em

~e221!2
@2~12cosf !1e sin2f #, ~4.7a!

]e

]b
5

m

a~e221!
@2~12cosf !1e sin2f #, ~4.7b!

]v

]b
5

m

a~e221!
F2 f 2

2 sinf

e
2sin f cosf G , ~4.7c!

]M

]b
5

3m

a~e221!2
@112e1e2#M

2
m

aAe221
Fsin f cosf 1

2

e
sin f G . ~4.7d!

Figures 6–8 show how the partial derivatives of the orb
elements with respect to the GR parameters change as
spacecraft travels on the hyperbolic trajectory, where the
tial conditions are the same as assumed above. It is cruci
note that the partials ofv with respect tob andg are quite
different from each other—not only their signs, but also th
ratios. These partials essentially represent the amount o
formation contained in our measurements ofb and g, and
thus their ratios represent the correlation betweenb andg.
The slow convergence of the ratio of the partials with resp
to v in Fig. 8, as compared to the other ratios, shows t
there is a possibility of obtainingseparate estimates of
the PPN parameters by tracking the spacecraft close
perihelion, which is a novel feature of the GR test we a
proposing.

w

.
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V. COVARIANCE ANALYSIS AND LEAST SQUARES
APPROXIMATION

A. Measurement data types

Having established the sensitivity of the trajectory tob
andg, we can consider estimates of how wellb andg can
be determined by measuring the trajectory~Fig. 3!. For our
analysis, three different measurement data types are co
ered. The first is a two-way radar range measurement (Zr),
which measures the distance between the spacecraft an
tracking station based on the travel time of the uplink a
downlink signals. The second data type we consider is VL
measurements (Zm,n), which measure the longitudinal an
latitudinal angles of the spacecraft trajectory in the plane
the sky at the location of the tracking station@22#. Combined

FIG. 6. Change in the partial derivatives of semi-major axis a
eccentricity with respect to the GR parameters. The variabley de-
notes eitherb or g as appropriate.

FIG. 7. Change in the partial derivatives of the argument
perihelion and mean anomaly with respect to the GR parame
The variabley denotesb or g as appropriate.
04200
id-

the
d
I

f

with range measurements, VLBI can determine t
3-dimensional position of the spacecraft. The final data ty
we consider is Doppler measurements,Zṙ , which measure
the frequency shift~Doppler effect! in the transmitted sig-
nals. The frequency shift directly gives the range rate a
due to the Hamilton-Melbourne effect@23#, provides angular
information on the trajectory. All of these measurement d
types are analyzed using a variety of phase angles betw
the Earth and the spacecraft trajectory—i.e., the initial Ea
Sun-spacecraft angle,FESC, as shown in Fig. 3.

B. State to be estimated

At epoch, the spacecraft is located at perihelion of
heliocentric trajectory with the orbital elements

ao58.7253107 ~km!,

eo51.0319,

i o5vo5Vo5Mo50. ~5.1!

These elements, in addition to the PPN parametersb andg,
define the epoch state of our system:Yo5@rWo vW o g b#T

5@xo yo zo uo no wo g b#T. The trajectories of the space
craft and of the Earth are assumed to be coplanar.~We are
ignoring the issue of disentangling the effect ofJ2 in this
analysis.! The spacecraft escapes the Sun withV`

539 km/s, which corresponds to a periapsis velocity ofVp
5311 km/s.

The hypothetical trajectory from Ref.@1# will most likely
fly into perihelion as an elliptic orbit and then boost to
hyperbolic escape trajectory. Hence the initial state, E
~5.1!, can be considered as the condition at epoch. Tabl
presents the conservative initial uncertainties that are
sumed at epoch for the initial covariance matrix~assuming
an accurate on-board measurement of theDV maneuver ap-
plied at perihelion!.

d

f
rs.

FIG. 8. Ratios of orbital-element partial derivatives with resp
to the GR parameters. The time variation forv ~lower left plot!
demonstrates the potential to separately determineb andg.
1-10
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C. Computation of the information and covariance matrix

To compute the state uncertainty at epoch, given a num
of measurements, requires the computation of the infor
tion matrix L, which is given by

L5F(
i

N
1

s i
2 S ]Zi~Yo!

]Yo
D

o

TS ]Zi~Yo!

]Yo
D

o
G . ~5.2!

HereZi are the measurements,s i are the noise factors in th
measurements,Yo is the epoch state, andN is the number of
measurements taken. Given the information matrix, the
variance matrixP of the initial state and the GR paramete
is then

P5L21, ~5.3!

where Pi j 5s i j for i , j P$xo ,yo ,zo ,uo ,no ,wo ,g,b%. The
standard deviation in our measuredg or b parameter will
then besg5As77 and sb5As88 and their correlation will
be s78/sgsb .

The initial uncertainties in Eq.~5.3! are provided by Table
II. It follows from Eq. ~5.2! that to compute the information
matrix we must analyze the sensitivity of a measurem
with respect to the initial conditions and the GR paramete

]Z

]Yo
5S ]Z

]XD S ]X

]ED S ]E

]Wo
D S ]Wo

]Yo
D , ~5.4!

where

Wo5@ao eo i o vo Vo Mo go bo#T, ~5.5a!

E5@a e i v V M #T, ~5.5b!

X5F rW

vW
G5F x̃P1 ỹQ

ẋ̃P1 ẏ̃Q
G5@x y z u n w#T. ~5.5c!

For the current analysis these partials are computed ana
cally, and the initial values of the variables are denoted
the subscript ‘‘o. ’’ ~Figure 3 depictsrW o , rWo , andvW o .)

The Gaussian vectorsP andQ are functions of the orbita
elementsi ,v, andV and define the geometry of the orbit
space~Ref. @20#, Sec. 2.7!. The scalarsx̃ and ỹ are functions
of the orbital elementsa, e, andM which define the coordi-
nates inside the orbital plane. The Gaussian vectorsP andQ
are constant and can be computed based on the initial ep
whereasx̃ and ỹ must be computed at each instant in tim
Finally, Z denotes the data measurement.

TABLE II. Assumed initial uncertainties for various physic
quantities.

Quantity sxx ,syy ,szz

(km2)
suu ,snn, sww

(km2/s2)
sbb ,sgg s i j

for i 5” j

Uncertainty 1 1026 1 0
04200
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D. Implementation of the analysis

We can exhibit the partial derivatives of the initial orbit
elements and the GR parameters with respect to the in
position, velocity, and the GR parameters as an 838 matrix,
represented as follows:

]Wo

]Yo
5F S ]E~ to!

]X~ to! D
636

0632

0236 I 232

G . ~5.6!

Here,]E(to)/]X(to) is the inverse of]X(to)/]E(to) and
can be obtained from the analytic relations

S ]E~ to!

]X~ to! D5S ]X~ to!

]E~ to! D
21

5P~E,E!F S 1
]vW ~ to!

]E~ to!
D TS 2

]rW~ to!

]E~ to!
D TG ,

~5.7!

where P is an antisymmetric 636 matrix made up of the
Poisson brackets

P~Ei ,Ej !5S ]Ei

]rW
D S ]Ej

]vW
D T

2S ]Ej

]rW
D S ]Ei

]vW
D T

. ~5.8!

Although the computation ofP is quite complicated, there
exist only five independent nonzero terms@20#:

P~a,M !52P~M ,a!51
2

na
, ~5.9a!

P~e,v!52P~v,e!5
Ae221

na2e
, ~5.9b!

P~e,M !52P~M ,e!5
e221

na2e
, ~5.9c!

P~ i ,V!52P~V,i !51
1

na2Ae221 sini
, ~5.9d!

P~ i ,v!52P~v,i !5
1

na2Ae221 tani
.

~5.9e!

It is important to note that these partials can be calcula
based on the initial conditions, and are constants through
the numerical computation.

We next consider the partial derivatives of the orbital
ements with respect to the initial orbital elements and the
parameters. These can be considered as the orbital-ele
transition matrix plus the partial derivatives of the orbit
elements with respect to the GR parameters given in Sec
For an unperturbed hyperbolic Keplerian orbit, the orbi
elements are constants except for the mean anomalyM (t),
which can be represented as
1-11
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M ~ t !2M ~ to!5n~ t2to!. ~5.10!
The partial derivatives of the orbital elements with resp

to the initial orbital elements and the GR parameters can
written as

]E

]Wo
5F S ]E~ t !

]E~ to! D
636

S ]E~ t !

]~g,b! D
632

G . ~5.11!

The mean motion is a function of the semi-major axis,a, and
hence the orbital-element transition matrix,]E(t)/]E(to),
04200
t
e

gives rise to a 636 identity matrix with one non-vanishing
off-diagonal element:

]M ~ t !

]a~ to!
52

3n

2a
~ t2to!. ~5.12!

The partial derivatives of the orbital elements with respec
the GR parameters are given in Eqs.~4.6! and ~4.7!.

Next we consider the partial derivatives (]X/]E) of the
state vector with respect to the orbital elements, which
be represented by a 636 matrix:
]X

]E
5F ] x̃

]a
P1

] ỹ

]a
Q

] x̃

]e
P1

] ỹ

]e
Q x̃

]P

] i
1 ỹ

]Q

] i
x̃

]P

]v
1 ỹ

]Q

]v
x̃

]P

]V
1 ỹ

]Q

]V

] x̃

]M
P1

] ỹ

]M
Q

] ẋ̃

]a
P1

] ẏ̃

]a
Q

] ẋ̃

]e
P1

] ẏ̃

]e
Q ẋ̃

]P

] i
1 ẏ̃

]Q

] i
ẋ̃

]P

]v
1 ẏ̃

]Q

]v
ẋ̃

]P

]V
1 ẏ̃

]Q

]V
] ẋ̃

]M
P1

] ẏ̃

]M
QG

636

. ~5.13!

For a given initial condition, we can compute each of these partials based on two-body relations@20,24#. With proper
changes~i.e. a→2a), the equations for two-body hyperbolic motions yield the relations

r 5 a~e coshF21!, x̃5a~e2coshF !, ẋ̃5
Ama

r
sinhF, ỹ5aAe221 sinhF, ẏ̃5

Ama

r
Ae221 coshF, ~5.14!

where we solve for the hyperbolic eccentric anomaly~F! using the modified Kepler’s equation@21#

A m

uau3
~ t2t!5e sinh~F !2F, ~5.15!

wheret is the time of perihelion passage. We now take the partials of the coordinatesx̃ andỹ and their time derivatives,ẋ̃ and

ẏ̃, with respect to the orbital elementsa, e, andM, which gives

]~ x̃,ỹ!T

]~a,e,M !T
5F x̃

a S a1
ỹ2

r ~e221!
D ẋ̃

n

ỹ

a
2S x̃ỹ

r ~e221!
D ẏ̃

n
G , ~5.16!

]~ ẋ̃, ẏ̃!T

]~a,e,M !T
5F 2

ẋ̃

2a
2 ẋ̃S a

r D 2S 2S x̃

a
D 1

e

e221
S ỹ

a
D 2D 2nS a

r D 3

x̃

2
ẏ̃

2a
2

n

Ae221
S a

r D 2S x̃2

r
2

ỹ2

a~e221!
D 2nS a

r D 3

ỹG . ~5.17!
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The partials ofP and Q with respect toi, v, and V are
provided in Ref.@20# ~Sec. 7!. We note that these partials a
constants with respect to time, and can be evaluated base
the spacecraft’s initial epoch.

Next we evaluate the partial derivatives]Z/]X of the data
measurements with respect to the state vector. The first
type we consider are range measurements

Zr5urW2rWE2rWTSu5urW u, ~5.18!

the distance between the spacecraft and the tracking st
~TS!. The vectorrWE represents the position of the Earth~with
respect to the Sun! whose orbit is assumed to be circular wi
1 year period and radius of 1 AU. The partial derivative ofZr

with respect toX is given by

]Zr

]X
55F r̂~ t !

0331
G

631

T

, ~5.19!

wherer̂ is the unit position vector of the spacecraft as m
sured from the Earth~Fig. 3!. We consider several assume
values for the precision of the range measurement,sr , in the
interval 1024 km<sr<1022 km.

An additional measurement data type considered is VL
which yields accurate angular measurements of the sp
craft relative to a radio source. We represent this meas
ment as a set of angles,

Z(m,n)5@Zm Zn#T, ~5.20!

where Zm and Zn are the longitudinal and the latitudina
angular measurements, respectively. Taking partials with
spect toX yields

]Z(m,n)

]X
5F m̂o

T

r
0133

n̂o
T

r
0133

G
236

, ~5.21!

where we define

l̂ o5 r̂,

m̂o5 l̂ o3n̂o ,

n̂o5
ẑ2~ ẑ• l̂ o! l̂ o

uẑ2~ ẑ• l̂ o! l̂ ou
, ~5.22!

whereẑ5@0 0 1#T. In Eq. ~5.21! r is the range from Earth
to the spacecraft as defined earlier. The precisions assu
for the angular measurements are 5, 1, and 0.1 nrad.

The final data measurement type we analyze is Dopp

Zṙ5
d

dt
urW2rWE2rWTSu5 r̂•rẆ , ~5.23!
04200
on

ta

ion

-

I,
e-
e-

e-

ed

r,

which is widely used for interplanetary missions. These m
surements determine the shift in frequency due to the D
pler effect, and contain both range and angular informati
The partial derivative ofZr

• results in

]Zr
•

]X
5F ]r̂

]rW
•rẆ

r̂
G

631

T

, ~5.24!

where

]r̂

]rW
5

1

r
@ I 32 r̂ r̂T#, ~5.25!

and I 3 is the unit 333 matrix. The accuracies,sr
• , assumed

for the Doppler measurement are 1026, 1027, and
1028 km/s for integration over a 60-s period.

E. Solar occultation effects

When the spacecraft passes in front of~or behind! the Sun
~Fig. 9!, radiometric measurements cannot be obtain
Since the trajectory originates close to the Sun, solar in
ference of the measurements can be an important effec
the early stage of the experiment. Let us define

x5cos21FrW •~2rWE!

rr
G , ~5.26!

wherex represents the spacecraft-Earth-Sun angle. Base
the geometry of the Earth and Sun, and assuming that
Earth is in circular orbit about the Sun, the angle betweenrWE
and the tangent vector from center of the Earth to the ou
radius of the Sun,j, can be computed and its value is a
proximately 0.267°. We assume that no Doppler or VL
measurements are taken ifx<j10.5°, corresponding to ap
proximately 3r ( , and that no range measurements are ta
if x<j15°, corresponding to approximately 20r ( . The ef-
fects of measurement geometry and solar occulations on

FIG. 9. Occulation effect due to the Sun. No radiometric me
surements can be made when the spacecraft passes in front o~or
behind! the Sun. See text for further details.
1-13
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accuracies and correlations ofb andg depend on the phas
angle of the Earth,FESC, as shown in Fig. 10.

VI. RESULTS

For our analysis, the spacecraft is assumed to be initi
at periapsis of the heliocentric hyperbolic trajectory, w
r p54r ( and V`539 km/s. All of the data measuremen
considered are analyzed with different initial phase ang
(FESC) in order to study the sensitivity ofb andg estimates
to FESC ~Fig. 10!. The measurements are assumed to
taken every 15 min over a 10-day time span. It is import
to note that uncertainties inb and g vary over an order of
magnitude, which indicates that the relative geometry of
spacecraft with respect to the tracking station is a criti
factor in this test. The results of this analytical approach
consistent with numerical simulations that were carried o

The results shown in Figs. 11 and 12 are based on tra
ing the spacecraft under the same data schedule as de
above, except that we disregard the solar occultation ef
~which provides a lower bound on the uncertainty in ourb
andg estimates!. Figure 11 shows the uncertainties inb and
g when the range, VLBI, and Doppler measurements
combined. The plots ofsg andsb are shown for ‘‘standard
accuracy’’ and ‘‘advanced accuracy’’ which we character
as follows. Standard technology can provide noise factor
sr51023 km, sṙ51027 km/s, and s/r51 nrad using
X-band radiometric tracking. These noise factors are dire
related to how much information can be obtained from
spacecraft trajectory. Advanced accuracy noise factors
one order of magnitude more sensitive than the standard
curacy case, and are consistent with theK-band radiometric
tracking system.

Figure 12 shows the correlations betweensg andsb ~i.e.,
s78/sgsb). We observe that the GR parameters beco
more correlated as the spacecraft moves away from pe
sis. Thus, as time increases, the most accurate determina
of the PPN parameters may be correlated with each other

FIG. 10. Dependence of measurement accuracies and cor
tions of b andg on the phase angle,FESC, of the Earth.
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determinations made using fewer data~and hence with re-
duced precision! may be less correlated. This is a subtle iss
and should be investigated in more detail to determine h
the measurement ofb may be optimized with respect tog.

Our results are summarized in Table III. All of the valu
of sb andsg shown in Table III are the final ones taken
the end of the time span, without the solar occultation effe
thus indicating how accurately the GR parameters can
determined. Two obvious ways to increase the accuracy
these parameters are to either take more measurements
improve the noise factors. It is important to note, howev
that our analysis neglects a number of possible system
error sources that may be present in the measurements.

la- FIG. 11. Uncertainties inb andg determinations as functions o
time for standard and advanced tracking accuracies. Standard a
racy (X band! assumessr51023 km, sṙ51027 km/s, ands/r

51 nrad for range, range rate, and cross track uncertainties, res
tively. Advanced accuracy (K band! assumessr51024 km, sṙ

51028 km/s, ands/r50.1 nrad. In the legend ‘‘current’’ refers to
standard technology, and ‘‘future’’ refers to advanced technolog

FIG. 12. Correlation ofb andg for range, VLBI, and Doppler
measurements, with standard accuraciessr51023 km, sṙ

51027 km/s, ands/r51 nrad.
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TABLE III. Uncertaintiessb andsg in the determination of the PPN parametersb andg, respectively,
for various assumed uncertainties in range, VLBI, and Doppler measurements, as described in the t
time span for the measurements is 30 days.

Accuracy status sr ~km! sr
• ~km/s! s/r ~nrad! sb sg

Standard (X band! 1023 1027 1 3.731024 7.831025

Advanced (K band! 1024 1028 0.1 3.731025 7.831026
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Based on these results, we find that the original discus
in Ref. @1# is conservative, and that tracking technology c
rently being implemented may already allow this experim
to determine the PPN parametersb andg to an accuracy of
;431024 and;831025, respectively~as shown in Table
III !. By performing a detailed covariance analysis of the p
posed experiment, the full strength of the range and Dop
radiometric data can be accounted for, weakening the
quirement for highly accurate VLBI measurements. Th
are, however, additional issues that must still be addres
The current results serve as an impetus to continue this
vestigation, as we have determined that the spacecraft tra
tory clearly has sufficient information content to allow f
this unique measurement to be performed. Work in progr
will include the effects of solar oblateness, solar radiat
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pressure, and systematic measurement errors in an ana
of this experiment.

Note added. After this work was completed, we learned
similar research by Vulkov@25#.
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