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Deflection of spacecraft trajectories as a new test of general relativity:
Determining the parametrized post-Newtonian parameters8 and y
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In a previous work, we proposed a new test of general relati@fy) based on a general deflection formula
which applies to all values of asymptotic speéd (0<V.<1). The formula simplifies to Einstein’s light
deflection result whev,,=1. At low velocity, the general deflection equation reduces to the classical New-
tonian contribution along with additional terms which contain the GR effect. A spacecraft, such as the proposed
interstellar mission which involves a close pass of the Sun, can be used to exaggerate the GR effect so that it
can be accurately measured. In this paper we provide a detailed derivation of the general deflection equation,
expressed in terms of the parametrized post-Newtonian congantd y. The resulting formula demonstrates
that by measuring spacecraft trajectories we can deterpiaad y independently. We show via a detailed
covariance analysis thg andy may be determined to a precision-e%x 10" ° and~8x 10"°, respectively,
using foreseeable improvements in spacecraft tracking.
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[. INTRODUCTION the limit when the satellite is ultrarelativistic. This is to be
expected, since the hyperbolizpern) trajectory of a light ray
In a recent papdrl] a new test of general relativifGR) can be viewed as the limiting case of that for an ultrarelativ-
was proposed based on the deflection of spacecraft trajectestic massive object. Finally, the third term in E@.29 is
ries. One of the newand unanticipatedfeatures of this test proportional to the factor (2 2y— 8), which is also to be
is that in principle it allows the parametrized-post-Newtonianexpected, since this is the same factor that appears in the GR
(PPN parameters8 and y to be disentangled from each description of perihelion precession. Thus the two relativistic
other, and hence to be determined separately in a single eterms in Eq.(2.29, which are proportional toy and to (2
periment. In light of Ref[1], the objectives of the present +2y— ), respectively, can be understood as expressing the
paper are twofold(a) to supply the details of the formalism fact that in some sense a spacecraft in a hyperbolic orbit has
underlying the analysis in Refl] and(b) to explore quan- characteristics of both a light ray and of a massive object.
titatively how precisely8 and y can be determined from a Finally we note that since the coefficients pfand (2+2y
specific mission. As part of this discussion we address the- 8) in Eq.(2.29 have a different dependence on the space-
question of how well we can determine not only some linearcraft velocity, these can in principle be separately deter-
combination of3 and vy, such as (22y— ), but alsog mined, thus yielding two independent equations from which
andvy separately. As we shall see, the deflection of spacecrafg andy can be inferred.
trajectories as a test of GR is of interest not only because of The preceding discussion leads immediately to the ques-
the theoretical possibility of discriminating andy, but also  tion of whether measuring the gravitational deflection of a
because such an experiment appears to be feasible with tecdpacecraft to the requisite level of precision is technically
nology that is either currently available or on the near hori-feasible. It was shown in Refl] that with recent improve-
zon. ments in spacecraft technology, particularly VLBery long
Since the possibility of decoupling and y in a single baseline interferometjytracking and drag-free systems, a
experiment is one of the novel features of the proposedneasurement of (22y—8) to ~10 2 would be techni-
spacecraft mission, it is useful to explain in intuitive termscally feasible in the foreseeable future. In our present work
how this decoupling can come about. The main theoreticalve provide a more detailed covariance analysis which shows
result of our analysis is given by the general deflection equathat 8 and y may be measured to an accuracy of4
tion, which is Eq.(8) of Ref. [1] or Egs.(2.27—(2.29 in X 10"° and ~8x 10 © respectively using advanceédband
Sec. Il of the present paper. We note from EJ29 that the  radiometric tracking.
deflection angle can be expressed as a sum of three contri- In Sec. Il of the present paper we supply the details of
butions, the first of which is purely Newtonian. The sum of our numerical analysis applied to a specific proposed mis-
this Newtonian contribution and the second tegpmopor-  sion, including a discussion of the contributions from the
tional to y) yields the GR prediction for light deflection in quadrupole moment of the Sudy. Of particular interest is
the question of how welB and y can be determinedepa-
rately with existing or available technology. Although disen-
*Corresponding author. tangling 8 and vy in this (or any other experiment will be
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difficult, the fact that it can be done at all serves to focus
attention on strategies for maximizing the sensitivity to the \_ Voo e
individual parameters. In this connection it is worth noting
that improvements in the classic tests of GR have been made
possible by the introduction of new technologies, such as the
Mossbauer effect and atomic clocks in the case of the gravi-
tational redshift. Additionally, other related tests of GR, in-
cluding lunar laser ranginf2—4] and tests of both the weak
equivalence principle and the gravitational inverse-square
law [5], have also benefited from the use of new improve-
ments in technology. Recent[¥], improvements in space-
craft tracking techniques applied in the Cassini mission to
Saturn have led to a new determinationjf{ y—1)=(2.1
+2.3)x10° 5. FIG. 1. Deflection of a spacecraft trajectory in a gravity field.
In Sec. IV we develop the theoretical formalism to showThe spacecraft approaches with asymptotic velodify, passes
how g and y can be disentangled in a single spacecraft dethrough periapsigclosest approagtat distance ,, and leaves with
flection experiment. This formalism characterizes the sensiasymptotic velocityV. . The spacecraft coordinates are given by
tivity of the trajectory tog and vy, which then leads to the the radial distance from the center of the attracting body and the
detailed covariance analysis presented in Sec. V. One ou&ngle ¢ with respect to the inertial direction
come of this analysis is the recognition that by using the full
strength of the range and Doppler radiometric data, highlywhereA(r) andB(r) can be expanded in terms of the con-
accurate VLBI measurements become less important. Owtantsg and y of the PPN metric, witlc=1 [7]:
results and conclusions are presented in Sec. VI where we

consider how standard and advanced tracking accuracies af- Ar)=1+2 G—m+ 53
fect the precision to whicl8 and y can be determined. (r= Yo T 2.3
Il. DERIVATION OF THE GENERAL DEFLECTION Gm G?’m?
EQUATION B(r)=1—27+2 2 (B=y)+---.
To derive the general deflection equation we follow the (2.4

approach of Longuski et dl1], but here we take the oppor- , , o
tunity to provide additional details. We begin by assuming!n Eds-(2.3) and(2.4) G is the Newtonian gravitational con-
that a photon or a spacecréifiealized as a massive particle Stant.m is the mass of the central body, agdandJ are
approaches a gravitating body from a very great distancgOnstants given by

(starting with velocityV,) and is deflected by gravity. It E=1_\2

. . . e . - o0 (2'5)
recedes to a great distance with final velodity (see Fig.
1). Let ¢(r) be the _angl_e m_easuregj posﬂwét;y Fhe right- J:rp[llB(rp)_lJrVi]l/z_ (2.6
hand rule from the inertial direction to the position vector
direction, e, as shown in Fig. 1. We then defing(r —) Let us now examine the denominator term which appears

=¢.., and also note that(r,)=—m/2, wherer, is the in Eqg.(2.2). Using Eq.(2.5 we have
distance of closest approach as shown in the figure. From the

symmetry between the approach asymptote and the departure 111 11 111 "
asymptote, we can express the total deflection due to gravity, ﬁ B(r) E 2 ﬁ B(r) 1+Val - (2
Adger, as (2.7
Adger=2[ P p(rp)]— 7. (2.9 From Weinberd 7] the inverse of Eq(2.4) is given by
We can now make use of the quadrature integral given by 1 2Gm  2G2m?2
Weinberg[7], B(r) ~1+ . + ® (2= B+ ). (2.9
AY(r)dr T .
¢:if , (2.2) Upon substituting Eqs2.3), (2.7) and (2.8) into Eqg. (2.2),
r2{ 3B Y(r)—E]-r 212 we obtain, to ordeG?,
|
$o—P(rp) fw o tyenr o 2.9
o r = ) )
P S [VA 242G MY 2 — 142G m2) " 2(2— B+ ) |12
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The integrals in Eq(2.9) can be evaluated using the elemen-For the expression {/~a in Eq. (2.10 we write

tary resultq 8]

J' dy 1 by+2a (f <0)
——==—=sin or a<O0),
yyX J-a lylV=q
(2.10
[ =t o[ 2L for avo
yZ\/Y a_y >a \/_ (for a#0),
(2.11
where
X=a+by+cy?, (2.12
q=4ac—b?. (2.13
In our problem, Eq(2.9), we have
2G%m?
a=—1+ (2-B+y),
b=2Gm/J?
c=V2/3?
4 G2m? 22
== Vi+ T2 —-2V2 2 (2—B+7y)|.
(2.19

We evaluate the constardsb, ¢, andq by expressing)? in
terms ofr, andV... From Eqs.(2.6) and(2.8) we obtain

J2=2Gmr,[1+(Gmiry)(2—B+y)+r,Va/(2Gm)],
(2.15

1/2
1 lJr(Gm/rp)(ZZ B+vy) , (2.20
1+r,Ve/(2Gm)

and noting thaGm/r,<1 we have

1, [Gmr,))2-p+y)

— 2.2
1+r1,V2/(2Gm) 229

J-a

Using Egs.(2.16), (2.17), (2.19, and(2.21) we evaluate the
integral of Eq.(2.10 for the upper and lower limits of and
I, respectively:

Joc dy 1 [by+2a
—==-—=Sin | ——
pYWX  J-a lylV-qa

[Gm/(er)](Z B+y)
1+r1,V2/(2Gm)

X[ sin™?!

By comparing Eqs(2.9) and(2.11) we note that the factor
—yGmb/(2a) will appear in the arcsine terrffrom Eq.
(2.10]; it can be written as

1
1+r,V2/(Gm)

+ E} (2.22

—‘meb_ yGmM/(2rp)
2a [1+r,V2/(2Gm)]

(2.23

which givesJ? in terms of the physically measurable param- coliecting all the arcsine terms that result from E2}9), we

etersr, andV.,. Substituting Eq(2.15 into Egs.(2.14 we
obtain

—1-r1,V2/(2Gm)

= 2 1 (2'16

1+(Gm/rp) (2= B+ y)+r,Vi/(2Gm)
1y
1+(GMIry)(2— B+ y) +1,V2/(2Gm)
VZ/(2Gmr,)

= > ) (2.18
1+(Gmiry)(2— B+ y)+r,Ve/(2Gm)

o= —(Urp)[1+1,V2/(Gm)]? 219

[1+(GMry)(2— B+ ) +r,V2/(2Gm) ]2

obtain

{1+ yGm/(2r,)

1+ [GM/(2r,)](2— B+ )
1+r1,V2/(2Gm) 1+r1,V2/(2Gm)

v
x[sin‘l +§]

s [Gm/(2ry)](2—B+27)
1+r1,V2/(2Gm)
><|sin‘l

The final term we must analyze from E¢g.9) and(2.1]) is

1
1+r1,V2/(Gm)

1
1+r1,V2/(Gm)

ks
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WX |F where we have used the identity8] m/2+sin (2
—yGm_= =cos }(—2). We recognize in Eq92.27—(2.29 the classi-
y o cal nonrelativistic deflection of a spacecraft trajectory,
—yGm Adnr:
-— Jc—0
A¢NREZ Sin71 e e (23@
V.(Grr )12 2GMr)(2— 2 Lex
7 o rp) ( rp)( B+y) o . ] ]
T 241\ 12 12 T'he nonrelaﬂwshc deflectpn formula is well knovyn to mis-
[2+ 1Vl (Gm)] 2+ 1Vl (Gm) sion designer§9] who use it to compute the effectiveness of
ny(Gm/rp)l’Z (GMVr,)(2—B+y) thg gravity-assist technique, such as that useql in the Voyager
~ 5 7 5 missions to the outer planets. Thepyg term is what re-
[2+7pVe/(Gm)] 2+r1pVe/(Gm) mains of Eq.(2.29 when the GR term§.e. thee term9 are

(2.25 dropped. We can easily verify Eq2.30 by reprising our
derivation of Eq.(2.29 with the simplifications
where we note that the value of the functiom gts zero, and

that the final expression is based on the approximation A=1, (2.31
Gm/r,<1. Gm
Equations(2.24) and (2.295 provide the solution to the B(r)=1—-2—. (2.32
p

integral of Eq.(2.9):

The result of these weak field approximations is that we ob-

WGV )™ tain the Newtonian deflection. In this particular derivati
b= (1)~ _ — ain the Newtonian deflection. In this particular derivation
[2+r,Va/(Gm)] the second term of the numerator in the integrand of Eq.
(2.9, yGmr 2, vanishes so that only terms corresponding to
(GM/ry)(2—B+y) Eg. (2.10 remain. An immediate consequence of the weak
x| 1+ 241 V2/(Gm) field assumption is that the term {28+ v) which appears
pre in the constanta and q of Eq. (2.14 also vanishes, and
{ (Gm/rp)(2—,8+2y)} hence all terms containing and y are eliminated from Eqg.
+1 1+ > (2.26. Since these are directly associated wita Gmir
2+1pVe/(Gm) we merely drop thes terms which appear explicitly in Eq.
1 - (2.30 to obtain the Newtonian deflection formula, Eq.
xlsin — = |+ 2 (2.30. Equation(2.30 gives the total turn angle of the vec-
{ 1+rpvi/(G m) 2} tor V., (i.e., the angle between the approach velodity,,
and the departure velocity/") based on Newton’s law of
(for Gm/r,<1). (2.29 gravity. If we substituteV..,=1, or x=1/e, into Eq. (2.30,
To obtain the general deflection equation we write wr;a qbtain the deflection of light predicted by Newtonian
physics:
Ad’def:z[d’m_d’(rp)]_ﬂ' 1
X 172 (2+2,)/_ :8) Ad)NR(Z) =2e. (233
=2vye tem——m——
2+X 2+X - . . .
Similarly, settingV..=1 in Eq.(2.29 yields
+2 1+e(2+27 B)}sin—l ! , 1 4Gm|[1+y
2+X 1+x A Pyet - =2e(1+y)= ) (2.39
(2.27) P
where term€(€?) and higher have been dropped. Equation
where (2.34 yields Einstein’s formula for the deflection of light
) when vy is set to unity: twice the value given by E®.33.
e=Gmiry=pulr,, Xx=Vile, (2.28 We note that Eq(2.29 contains the same factor that ap-

. . ears in the formula for the precession of perhgli
and where we have retained terms only to orderlt is P P perhia

convenient to rewrite our general deflection equati®127) 6mGm(2+2y—p
in the final form Adprec= L 3 , (2.39
A =2 sin L 1 L ove x |12 whereA ¢, is the precession in radians per revolution, and
def 1+x) <Y\ 2+x L is the semilatus rectum of the elliptical orbit. What is re-

markable about the factor (22 y— ) in the general deflec-
(2.29 tion equation(2.29 is that the contribution from this term
' ' depends on the spe&dThis means that an experiment based

2+2y-p)
€ 2+X

1+x

042001-4



DEFLECTION OF SPACECRAFT TRAJECTORIES ASA. .. PHYSICAL REVIEW@D, 042001 (2004

25 y - - - TABLE |. Representative values for spacecraft deflections.
Parameter Earth Jupiter Sun
2.0
Mo [km] 6678 71700 2.78410°
V., [km/s] 9.000 5.455 37.92
151 Gm[km] 4.435<10°° 1.410<10°3 1.476
— € 6.641x10°1°  1.966<10°® 53031077
AP, X 1.357 16841072  3.017<10°2
Lor A¢yr [deg 50.21 159.1 152.2
A g [rad] 3.229x10°° 1.767< 1077 4.673x10°°
05 s, [km] @ 2.156<10°®%  1.267x10°°  1.300x10 2
dApproximate error tolerance on periapsis knowledge to obgain
0o , andy to 1073,
10? 10" 10° 10’ 10° 1¢°
X many cases where the relativistic deflection of a spacecraft

trajectory is greater than the deflection of light for the same
periapsis distance,,, where periapsis is the point of closest
approach. The question to be answered is whether an experi-
ment can be devised to measure this effect.

In Table | we estimate the total deflection angle) .+
on the deflection equation can discriminate between the corﬁﬁ?i&%ia]pl??ndgtgz.?ze.]l%m&nzi?gli S)U]e ftgr ?53(?:

Rﬂngféfnifﬁg}f I??Sd tyhltg E?ergf?rr]l;fgtt?ji;fheerepnrte(s:esezlgg cz:nsentative hyperbolic spacecraft trajectories near the Earth,
Iy : . peeas, Jupiter, or the Sun. For these calculations we assume that
experiment based on the general deflection equation c

aB_ . .. . . .
. . =+y=1. In anticipation of the more detailed analysis pre-
separately determine the values®findy. This is not true sented in Secs. IV and V below, we estimate the accuracy

for other experiments, such as light deflection, radar timerequired to measure the relativistic deflectiohge, to

delay, or planetary precession. . within 0.1% (the level of sensitivity necessary to determine
We wish to obtain a formula that conveniently compares

T . . andy to 10 ). For purposes of this estimate we use the
the ger'1eral relativistic effect on s.pacecraf.t deflection Fo_l'ghtagpproximation [1] [see Eq.(3.10] oy =0.19%Ader,,
deflection. One way to proceed is to define a quaniity P

. . ) which sets a limit on the closest approach distamgg,
obtained by subtracting th@ften large angleA in Eq. ) e
(2.30 from);he express%orr](in Ed2 2%9 ang o tg’é\'r'? norn?al- (Other variables affect the sensitivity, but knowledge pfs
izé the resuliie. divide by the GI'? résult 2(1+7): the dominant error sourgeClearly the level of accuracy
e y Y- required to perform the experiment with spacecraft deflec-

- _ tions at Earth or Jupiter is beyond present day technology,
AP=(Adger—Adnr)/[26(1+7)] because periapsis must be known to within 21,56 or
_ 1.267 cm, respectively. Since we evidently require a larger
_ 1/2 1
=Y A+ (2] (14 y) gravitational parameteiGm, we turn our attention to the

X[(2+2y—B)(2+x)]cos [ —1/(1+X)]. Sun—the largest gravitating body at our disposal.
(2.36
For Einstein’s theoryB=y=1 and Eq.(2.36 becomes

FIG. 2. Plot of the functiom\ ¢ in Eq. (2.37). As discussed in
the text,AgE gives the scaled contribution of GR to the deflection,
plotted versus the scaled speed For an incident light ray
Ade=1/2.

Ill. PROPOSED EXPERIMENT

Mewaldt et al.[10] have proposed the Small Interstellar
-1 Probe mission which would cross the solar wind termination
1T+x)" shock and heliopause and penetrate into nearby interstellar
(2.37) space. In order to accomplish its scientific objectives, the
probe must attaiV,.~1.3x 10" 4. To achieve this speed a

The functionA ¢ is plotted in Fig. 2. We note from Eq. number of gravity assist scenarios are suggeftéfl most
(2.3 that whenV,.—1, thenAd.=0.5 spected: th of which involve a final close flyby of the Sun at 4 solar radii
raﬁo of tr?e pu?ely ;Oe_lati,vistii beﬁgi;g .of, Iigitedi\ei(zl%de By thee (4rc). At perihelion a maneuver is performed to change the
total bending of light(including the Newtonian bendipgs speed of the spacecraft by several km/s in order to send the

. . N probe off on its hyperbolic trajectory. The Interstellar Probe
/2. In contrast, for a parabolic trajectol.,=0 (i.e. X mission presents an ideal trajectory to observe the relativistic

=0) and A¢g(0)=3n/4=2.36. Whenx=1, then V..  deflection, provided that the effects of non-gravitational

=\Gm/r, which is the circular speed at a radiyg. Thus  forces and the Newtonian deflection can be accounted for.
the x variable is conveniently scaled in terms of “circular \We will therefore use this mission as the basis for some
speeds” atr,. Forx=1, A¢e=1.34. We see that there are simple numerical estimates. In Secs. IV and V we present a

Age 1
e(1+7y) T2

X
2+X

1/2 (3/2) .
+ (2+X) CcOos

AEE: 2
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more detailed analysis of such a mission and its ability toWe next take the variationd) of the measurement, E(B.4),

disentangle the PPN paramet¢rsand . to compute how errors in measuring the eccentricity and the
Let us first estimate how accurately the relevant paramunit vectors will contribute to errors in the measured value of

eters must be known in order to discriminate between the\ ¢:

relativistic and Newtonian deflections. Usimg=4X6.960

X 10° km=2.784x 10° km, andGm=1.476 km, we finde

=5.303< 10"’ andx=3.017xX 10 2. Inserting these values

of € andx into Eq. (2.37, and multiplying by % gives the

total general relativistic deflectiod ¢pg=4.673<10 ° rad L

=0.9639. On the other hand, the nonrelativistic Newtonian Noting that|r,xr..|= /e~ 1/e reduces Eq(3.5) to

deflection is, from Eq.2.30, A ¢nr=2.656 rad=152.2°,

which is very large compared to the relativistic deflection. o lm2 AV 12sa_ar(kxr V. SP SRy, sP

Thus in order to observe the relativistic deflection we must5A¢ e (e —1)mroe—el (kxrp)- Ot (1 Xk) 6{3”)]6)

have very precise knowledge of the Newtonian contribution. '

(Of course in the case of the Interstellar Probe we will only . L . .

observe the departure asymptote, namely half the deflectiorY%h'Ch represents the effect of variations in the angular posi-

given byA ¢ andA ¢pyr.) We proceed to assess our ability t!on 0; the Embe a]}t periapsis alu;ld t?t eﬁcape.hCarﬁful evalua-
to measure the relativistic effect, which will be proportional tl0n of each term for a general flyby shows that the expres-

to the knowledge errors in the nonrelativistic effect. sion in square brackets in E(B.6) can be expressed as

We can view the rotation induced by general relativity on
a hyperbolic trajectory as being a shift in the argument of e .]=e5|fp><fm|=Arw/rw+Arp/rp, (3.7
periapsis of the probe trajectory due to the gravitational in-

teraction, analogous to the advance in Mercury’s perihelion. L
9 ysp é/vhereA denotes errors in distance measured normal to the

must devise a series of ideal measurements to estimate tﬁ%d'u.s. vector. Since the ecce'n.tr|0|ty.|s, In turn, a funcuon of
pecific measurable quantities via the relati@[1

shift in argument of periapsis between perihelion and escapé. 5
At perihelion the argument of periapsis is related to the unit” ('pV=/#)1, we have
vector of the probéassuming orbit plane coordinajdsy the

equation de=(e—1)[orp/ry+26V.. IV, — dul u], (3.9

SAp=[e(e?—1) Y2—|r Xr.|]5e—ed|r XT...

(3.5

Fp=coa{w)?+ sin(w)], (3.1)  wheredr, denotes variations along the radius vector. If we
combine the previous results and assume that the different

: . o measurements are uncorrelated, then the overall uncertainty
where w is the argument of periapsiarbitrarily set to zero in Ad is

in Fig. 1) andi and| are unit vectors of our coordinate

frame, with the third unit vectok=ixj. When the probe is 2 _ a2 e 1)/(et1 1124 A V)2
sufficiently far from the Sun on its escape trajectory, its as- oi=e "le-1(e )][(U’p o) (ov, V=)
ymptote can similarly be specified by the unit vector +(Uﬂlﬂz)]+[(UArp/rp)er(UArw/rm)z], (3.9

r.=cow’+6.)i+sinNo'+40.)], (320 whereo denotes the Gaussian standard deviation of the mea-
sured quantity.
wherew' is the new(shifted argument of periapsis, anl, In general, the uncertainties in the first terms will be neg-
is the limiting value of the true anomaly of the probe as itligible compared to the measured uncertaintieg ~and
escapes from the Sun. In principle, each of these unit vectors,, . Additionally, at escape the probe unit vector direction
can be measured, and the shift in argument of periapsis cayn pe measured extremely accurately using established
be computed by comparing them. Specifically, VLBI techniques[11]. This leaves the down-track measure-
ment of the probe position at perihelion as the dominant
[FpX T | =siN(w’ — w)cosh..+co ' — w)sing.., error source, so that
(3.3
Trp™ O'Arp/l’p. (3.10
and we definen’ — w=A ¢, which is the quantity we wish to
measure. Noting thatl¢<1, cosf.=—1fe, and sinf.  cuyrrent navigation practice would redueg, to the order
=./e?—1/e, whereeis the eccentricity, we can solve fargp of 110 km[12]. Taking Umpzl kmn for our numerical ex-

in terms of measurable quantities: . )
a ample (wheree is computed to be 1.03we find thato,
L =3.6x10" 7 rad which, by comparison to half the deflection
Ap= \/ez—l—e|rp><roc|. (3.9 angleA ¢¢, represents an error of 16%. If this measurement
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uncertainty were reduced to the order of 10 m, then we
would estimate that the contribution from the PPN param-
etersp and y could be found to 10°. Measurement uncer-

tainties of this order imply Earth-based measurement accu
racies on the order of 0.1 nrad. Based on operationally
demonstrated measurements of the Deep Space Network
VLBI system, its estimated accuracy at present is of order 5
nrad. Observations of natural radio sources made with the
VLBI measurement technique have demonstrated accuracie

Hyperbolic
Trajectory
about the Sun

Drsc = 3m/2 Desc =1/2
of 0.8 nrad, and the fundamental limit on such measurement:
is of order 0.01 nrad13]. This precision is substantially
better than the 0.1 nrad accuracy required to meag8uaad
y at the~ 102 level. The feasibility of developing this tech-
Earth Orbit

nology to the levels of accuracy needed for our proposed
experiment and for near-Sun observations is considered ir
Ref.[14]. We can presume that the increases in accuracy o
VLBI will be accompanied by corresponding improvements
in the infrastructure needed to support these measurements, F|G. 3. Geometry of the spacecraft trajectory, where the space-
which would likely be developed in concert with improved ¢raft position and velocity vectors ame and v. The Earth-to-

VLBI technology. _ spacecraft position vector |5 Subscripts ©” and “t” refer to

An important .perturbf;.\tilon not directly addres;eq here ignitial and later epochs. The location of the Earth with respect to the
due to thel, gravity coefficient of the Sun. The shift induced spacecraft at perihelion is indicated by the phase anBlesc.

in periapsis due to this will be on the order of 1% of the shiftMeasurements o8 and y are computed assuming the optimal lo-
induced by general relativity. Thus, it will introduce addi- cation of the Earth@®ggg).
tional errors in the determination ¢ and y. In order to
discriminate for this effect an inclined orbit can be u§&?. be able to separately determiieand y to a precision of
Alternately, tracking the spacecraft near perihelion may al—~4x 10 ° and~8x 10, respectively.
low the signature of thd, perturbation to be recognized and
discriminated without having to resort to an inclined orbit.
One approach to disentang'e the parame&md v in IV. ESTIMATING GENERAL RELATIVITY PARAMETERS
Eq. (2.29 would be to rely on experiments which determine FROM RADIOMETRIC TRACKING OF HELIOCENTRIC
y separately6,15]. However, as we show in the subsequent TRAJECTORIES
sections,8 and y can actually be disentangled in a single A. General

mission measuring the deflection of a spacecraft. ) _ . . -
In order to extract the general relativistic contribution to !N this section we analyze in greater detail the precision to

the spacecraft's trajectory from a mission such as the Smal¥hich we can determine the general relativistic paramegers
Interstellar Probe it will be necessary to deal with perturbing®nd ¥ by measuring spacecraft trajectories. Specifically, we
non-gravitational forces. For a typical spacecraft these forceWill focus on the question of disentangling and y by an
arise from radiation pressure, solar wind, interplanetary dus@PPropriate set of measurements. In Sec. lll an estimate of
atmospheric drag, magnetic fields, propellant leakage, antle necessary measurement accuracy of these parameters was
spacecraft radiatiofi4,16]. There are two ways to address Made under a number of simplifying assumptions and ap-
these perturbations: They can be measured directly by plagroximations. In this section we relax some of these approxi-
ing sufficiently sensitive accelerometers on-board the spacébations and perform a more detailed and rigorous analysis of
craft, and then treating these accelerometers as data whi¢h€ problem. Figure 3 illustrates the geometry of the space-
allow the non-gravitational forces to be directly estimated.craft trajectory. The spacecraft position and velocity vectors
However, it is likely that another technique will be necessaryat perihelion are, andv,, andp, is the Earth-to-spacecraft
to sidestep these perturbations, which is to employ a dragposition vector at this time. The subscrigt’ tefers to these
free spacecraft using small thrusters to null out the nonwvectors at a later time. The phase angle at the initial time,
gravitational forces. Fortunately the necessary drag-fre@gsc, is the Earth-Sun-Spacecraft angle. Figure 3 shows the
technology is already under development, since it is a pregearth’s location fo® g 5= 0,7/2,7r, and 37/2. (Since radio-
uisite for the ongoing Gravity Probe B missiph7], as well metric measurements are highly sensitive to the relative ge-
as for the proposed STHRS] and Galileo Galile{19] mis-  ometry of the spacecraft with respect to the Sun, we analyze
sions. estimates of3 and y as a function ofbz5¢c.) Although the

In the next section we develop the theoretical formalismanalysis which follows is semi-analytical, it includes realistic
needed to demonstrate hg8vand y can be disentangle@t  models of the trajectory dynamics and measurement noise.
least in principlé in a single spacecraft deflection mission We provide detailed estimates of how accurately the trajec-
through an appropriate set of measurements. Using this fotery must be measured to set new limits on the paramgters
malism we show that a satellite deflection experiment mayand y.

about the Sun

Drsc =0
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B. Transient effect of g and y In Egs. (4.3 i is the orbit inclination,w is the argument of

From Ref.[2] (Sec. 7 the perturbing relativistic accelera- Periapsis} is the longitude of the ascending node, and
tion, to first PN order, can be written &akingG=c=1 and = VM/|a|® is the normalized mean motion.

noting that the spacecraft mass is much smaller than the solar After substitution of the perturbing relativistic accelera-
mas$ tion components from Ed4.2) into the hyperbolic Lagrange

equations, the changes in the orbital elements from periapsis

. m mr . o passage to some value of the true anomaly can be approxi-

da=—| 2(y+ B)T_ yo?r+2(y+21)(r-v)v|, mated by keeping the elements on the right-hand side con-
r stant and allowing the true anomaly to vary. We thus find

>

(4.7
wherer represents the spacecraft position vector anep- Aa= ﬂ[(2+23+3y+ 2e?+ ye?)A cosf
resents the spacecraft velocity vector normalized by the (e?—1)?

speed of light. We note that the relativistic perturbation is

present only in the orbital plane. The acceleration compo- —(2+B+2y)eAsirff], (4.49
nents decomposed into the radi&)( transverse $), and
out-of-plane(W) directions are m 5 )
Ae=— 2—[(y+ 2B+ 4e“+3vye“)A cosf
~ m?(1+ecosf)? ) a(e’~1)
T o1y AE)rr2pitecosh) —(2+ B+27)eA sirff], (4.4b)
+2(y+1)e%sirff], (4.29 m
w=————|(2-B+2y)Af
S m2(1+ecosf)2[2( +1)(1+ f)esinf] ey
=— ecosf)esinf],
a’(e?—1)3 7 B 2B+(1-€%)y A sing
W=0. (4.29

—(2+ B+2y)A(sinf cosf) |, (4.49
In Egs.(4.2), a denotes the semi-major axisjs the eccen-

tricity of the orbit, andf is the true anomalyto be distin- 3m
guished from the mean anomaIM).. The hyperbolic AM = - 2[y+ﬁ+(2+y)e2
Lagrange planetary equatiof0,21], with proper changes a(e’—1)

(i.e.,e?>1, a— —a) can be represented as
+(2+3y+2B+(2+ y)e?)e+ (2+2y+ B)e’]nAt

da 2a%2 - . o
at 1) e sinf+S(1+ecosh], |2+ 2y+ B)A(sinf cosf)
(4.39 ave’—1
2
de  fa(e®~1)_ _ S(p r L YE2BTATIVE | inf|— (24 9) DAF,
—=\/———Rsinf+—-|—=+—-], e a
dt m e\r a
(4.30 (4.40
di r whereF is the hyperbolic eccentric anomdlyote thatAt in
gt~ pWeodw+f), (4.30 Ith (4].40) is the actual time multiplied by the speed of
ight c].
dQ  rWsin(w+f) Figures 4 and 5 show the change in the orbital elements
—_— (4.30 due to the relativistic effect. The initial epoch is at the peri-
dt hsini apsis withr ,=4r, andV..=39 km/s, where , andr, are
the perihelion distance and radius of the Sun, respectively. A
do 1 Ja(e _l)[_RCOSfJFSZJFeCOSf sinf} conclusion that we draw by studying these perturbations is
dt e m 1+ecosf that most of the changes in orbital elements due to GR occur
very early in the trajectoryfusually within a few days of
dQ ™
——cosi, (4.30 perihelion. _ _ o _
dt Of most interest are the partial derivatives of the orbital
elements with respect to the relativistic constagtsand vy,
dv 1 f2r (e*-1) ¢ R+(e2—1) r based on Egs(4.4). These indicate the sensitivity of the
dt " nala nae |p trajectory to the PPN parameters, and give us an indication

(4.3f) of the information content related 8 and y in the trajec-
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de .
——=———[(1+3e?)(1-cosf)+2esirff], (4.6
E -5000 Jy a(e?-1)
©
<1-10000f
a—w=L[Zf—Zsinfcosf+(ez_1)sinf
~180005 2 4 6 8 10 dy a(e?-1) '
10 Time (days) (4.60
6 ; ;
4 oM 3m
S —= 1+3e+3e’+e’IM
< | 77 aler- 1l ]
o . . . , _ (1+3€%) | m
0 2 4 8 8 10 — > 2 sinf cosf + ———sinf |— —F.
Time (days) aye-—1 € a
(4.60

FIG. 4. Change in the semi-major axdsa and eccentricityAe
due to the relativistic effect. These figures, as well as Fig), 5

indicate that most of the GR effects are observable within a fewgjmilarly, the partial derivatives of the orbital elements with

days of perihelion.

tory. If we let E be the set of orbital elements, a chang&in
due to relativistic effects can be represented EasE,

respect to8 are

Ja 2em
+AE, whereE, denotes the initial orbital elements. Taking 7 ﬁ[Z(l— cosf)+esirff], (4.739
partials with respect to the GR parameters yields B (e°=1)
JE IE,+AE)  JAE
R T R N e__m |
: : : B 2—1[2(1—cosf)+esm2f], (4.7p
a(e“—
We will use these patrtials later to form the state transforma- ( )
tion from the GR parameters to the data measurements. The
partial derivatives of the orbital elements with respectyto Jo m 2 sinf
are given by —= —[—f— —sinfcosf|, (4.709
B a(e®—1)
oa 2em ) )
—=————[(3+e?)(1—cosf)+2esir’f], (4.6a
ay (e?—1)?
ad om [1+2e+e?]M
—=— e+e
15X10° B a(e’—1)2
59 1 ™| sinf cosf+ = sinf (4.7d
— —————|sinf cosf+ —sinf|. .
3 ] a\e’—1 e
8
< g _
. . . . Figures 6—8 show how the partial derivatives of the orbital
o 2 4 6 8 10 elements with respect to the GR parameters change as the
<10° Time (days) spacecraft travels on the hyperbolic trajectory, where the ini-
6 ' ' ' - tial conditions are the same as assumed above. It is crucial to
R note that the partials ab with respect to8 andy are quite
D 4 1 different from each other—not only their signs, but also their
< ratios. These partials essentially represent the amount of in-
f] 2t . formation contained in our measurementsgfind y, and
thus their ratios represent the correlation betwgeand 7.
0 s - L : 0 The slow convergence of the ratio of the partials with respect

Time (days)

FIG. 5. Change in the argument of perihelidnw, and mean

to w in Fig. 8, as compared to the other ratios, shows that
there is a possibility of obtainingeparate estimates of
the PPN parameters by tracking the spacecraft close to

anomalyAM, due to the relativistic effect. See also caption to Fig. perihelion, which is a novel feature of the GR test we are

4.

proposing.
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2 2
2a ' e
KA v,
da de
9B 9P
-2 -2
0 2 _4 6 0 2 _4 6
Time (days) Time (days)
2 2
2t \
G o6 1 1
o 1.5r Y L) IM
O qH jommmmmmmm e m e - 97 ¢ SY ¢
) 2 T\ 20 oM
05 9—3 1 B _ 9B 4
0 . . . '
0 2 4 8 10 2 1 2 y

6 2 _ 4 6 2 _ 4 6
Time (days) Time (days) Time (days)

FIG. 6. Change in the partial derivatives of semi-major axis and FIG. 8. Ratios of orbital-element partial derivatives with respect

eccentricity with respect to the GR parameters. The variglle- 0 the GR parameters. The time variation for(lower left ploy
notes eitheiB or y as appropriate. demonstrates the potential to separately deterrgimad 7.

with range measurements, VLBI can determine the

V. COVARIANCE ANALYSIS AND LEAST SQUARES 3-dimensional position of the spacecraft. The final data type
APPROXIMATION we consider is Doppler measuremerds, which measure
the frequency shifiDoppler effect in the transmitted sig-

A. Measurement data types nals. The frequency shift directly gives the range rate and,

Having established the sensitivity of the trajectorygo due to the Hamilton-Melbourne effef@3], provides angular
and v, we can consider estimates of how Wﬁ”and v can information on the trajectory. All of these measurement data
be determined by measuring the trajectéfjg. 3. For our  types are analyzed using a variety of phase angles between
analysis, three different measurement data types are consithe Earth and the spacecratft trajectory—i.e., the initial Earth-
ered. The first is a two-way radar range measuremgp, ( Sun-spacecraft anglebesc, as shown in Fig. 3.
which measures the distance between the spacecraft and the
tracking station based on the travel time of the uplink and
downlink signals. The second data type we consider is VLBI
measurementsZ(, ,), which measure the longitudinal and At epoch, the spacecraft is located at perihelion of its
latitudinal angles of the spacecraft trajectory in the plane oheliocentric trajectory with the orbital elements
the sky at the location of the tracking stati@®2]. Combined a,-8.725¢107 (km),

B. State to be estimated

1319 : : : : e,=1.0319,
D osf 1
§> o do ig=wo=0,=My=0. (5.1)
O <
r\; _05'_\ ___________________ Z_______________ These elements, in addition to the PPN paramegeasid y,
S define the epoch state of our systeM;=[r, v, v 81"
1o > 4 5 ) 10 =[Xo Yo Zo Uy Vo W, ¥ B]". The trajectories of the space-
» Time (days) craft and of the Earth are assumed to be coplatvde are
2510 . . ignoring the issue of disentangling the effect Bf in this
S ol BB_M ’ analysis) The spacecraft escapes the Sun with,
3 15k ! - | =39 km/s, which corresponds to a periapsis velocity/gf
> BN - =311 km/s.
S T T el | The hypothetical trajectory from RdfL] will most likely
P R Ll 1 fly into perihelion as an elliptic orbit and then boost to a
o= 1 hyperbolic escape trajectory. Hence the initial state, Egs.

(5.1), can be considered as the condition at epoch. Table Il
presents the conservative initial uncertainties that are as-
FIG. 7. Change in the partial derivatives of the argument ofSumed at epoch for the initial covariance matf@ssuming
perihelion and mean anomaly with respect to the GR parameterén accurate on-board measurement ofAhémaneuver ap-

The variabley denotes3 or y as appropriate. plied at perihelion

6
Time (days)
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TABLE Il. Assumed initial uncertainties for various physical D. Implementation of the analysis

guantities. We can exhibit the partial derivatives of the initial orbital

Quantity o o e O oo oo o elements and the GR parameters with respect to the initial
Xxik%"z') 2 “‘E[(m”z”,’sz)ww S ;  position, velocity, and the GR parameters as ar8matrix,
represented as follows:

Uncertainty 1 106 1 0
(aE(to)) 0
°_| | dX(to) o2
C. Computation of the information and covariance matrix o 77 6xe ' 5.6
02x6 l252

To compute the state uncertainty at epoch, given a number
of measurements, requires the computation of the informa- Here, JE(t,)/9X(t,) is the inverse ofX(t,)/JE(t,) and

tion matrix A, which is given by can be obtained from the analytic relations

N T -1

A= 2 iz(azl(Yo) (aZI(YO)) (5.2) (&E(to)):(ﬁx(to))
i O Y, ) Y, ) &X(to) aE(to)
> T > T
HereZ; are the measurements, are the noise factors in the =P(E,E)|| + 3U(t°)) (_ 5r(t°)) }
measurement¥/, is the epoch state, aridis the number of ' IE(t,) IE(to)) |’
measurements taken. Given the information matrix, the co- (5.7)
variance matrixP of the initial state and the GR parameters
is then where P is an antisymmetric 86 matrix made up of the
Poisson brackets
P=A"1 (5.3 . .
JE;| [ JE; JE; | [ JE;

where Pjj=oj; for i,je{X,,Y0:20,Uqg,¥0,W,,7,8}. The P(Ei'Ej):(F) (95) _(F (0_5) . (58

standard deviation in our measuredor 8 parameter will

then beo,=\o77 and o= \ogg and their correlation will  Although the computation oP is quite complicated, there
be osg/0,04. exist only five independent nonzero terfi2g]:
The initial uncertainties in Eq5.3) are provided by Table

II. It follows from Eq. (5.2) that to compute the information _ _ i
matrix we must analyze the sensitivity of a measurement P(a,M)=—-P(M,a)=+ na’ (5.99
with respect to the initial conditions and the GR parameters:
\/ez—l
0Z (az ax) aE) awo) P(e,w)=—P(w,e)= e (5.9p
Y, \aX/\9E/\ aw,/\ oY, ) 64
e’—1
where P(e,M)=—P(M,e)= 5 (5.90
na‘e
Wo=[a, €& o @5 Qo Mg 7, ﬂo]Tv (5.59
_ ; T P(i,Q)=-P(Q,i) =+ —————, (5.99
E=[a eiw Q M], (5.5b nazx/msini
rl [ XPyQ . 1
X=|.|=|. . |[FIxy zuvw]. (559 P(i,0)=—P(w,i)= ——.
v] [ xP+yQ na?\e?—1tani

(5.99
For the current analysis these partials are computed analyti-

cally, and the initial values of the variables are denoted byt IS important to note that these partials can be calculated
the subscript b.” (Figure 3 depict$§ P ands ) based on the initial conditions, and are constants throughout
. 0 0 0-

The Gaussian vectoandQ are functions of the orbital the numerical computation.

clements and ) and define the aeometry of the orbit in We next consider the partial derivatives of the orbital el-
@ 9 y ements with respect to the initial orbital elements and the GR

space(Ref. [20], Sec. 2.7. The scalars andy are functions  parameters. These can be considered as the orbital-element
of the orbital elementa, e, andM which define the coordi-  transition matrix plus the partial derivatives of the orbital
nates inside the orbital plane. The Gaussian ve®t@8dQ  elements with respect to the GR parameters given in Sec. IV.
are constant and can be computed based on the initial ep0gBgr an unperturbed hyperbolic Keplerian orbit, the orbital
whereasx andy must be computed at each instant in time.elements are constants except for the mean ano4ty,
Finally, Z denotes the data measurement. which can be represented as
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M(t)—M(ty)=n(t—t,). (5.10  gives rise to a & 6 identity matrix with one non-vanishing
The partial derivatives of the orbital elements with respecff-diagonal element:
to the initial orbital elements and the GR parameters can be
written as IM (1) 3n

atty Z(t_tf’)' (5.12
B = ( IE() ) ( BV ) } (5.1  The partial derivatives of the orbital elements with respect to
W, | VIE(to) ) 6\ (7. B)] o the GR parameters are given in EG$.6) and (4.7).

Next we consider the partial derivativegX/JE) of the
The mean motion is a function of the semi-major agisand  state vector with respect to the orbital elements, which can
hence the orbital-element transition matris&(t)/JE(t,), be represented by ax66 matrix:

ax _dy  ax_ dy  ~dP _9dQ _dP _9Q _dP _dQ ox ay

X— — X ——+Yy = —P+-—
da +(?a Jde +ae di ai so Yiw 90 V50 aMP+(9M

aX

GE | ax _ dy  ax_ dy <P <dQ <P <dQ <P 2dQ g Gy . (613
SP+-Q  _P+——Q XGr YL XG0 tYas X5 Y o Ptog
da  Jda de  Jde w @ M M

6X6

For a given initial condition, we can compute each of these partials based on two-body rdla@gt¥. With proper
changedi.e. a— —a), the equations for two-body hyperbolic motions yield the relations

Jma

- - - - Jma
r=a(ecoshF—1), x=a(e—coshF), X=TsinhF, y=a\e’—1 sinhF, y=—— e’—1 coshF, (5.14

where we solve for the hyperbolic eccentric anom@y using the modified Kepler’'s equatid@1]

\/%(I—T)IGSMI’(F)—F, (5.15

wherer is the time of perihelion passage. We now take the partials of the coordinatesyy and their time derivativegg and
y, with respect to the orbital elemerds e, andM, which gives

X lat Zz ) X
a%3)T a r(ec=1)) n
| . . (5.16
d(a,e,M)T y Xy y
a r(e2—1)> n
__z _’)‘(Ez(zg) Ze (E ) _ngg’;(-
A% 2a r aj/ e—1\a
&(a,e,M)T: ;/ ~on a 2(;(_2_ 72 )  a s |- (5.17
~ 2a e?—1\r/ \ r ae?-1) i)Y
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The partials ofP and Q with respect toi, o, and Q) are
provided in Ref[20] (Sec. 7. We note that these partials are
constants with respect to time, and can be evaluated based
the spacecraft’s initial epoch.
Next we evaluate the partial derivativeg/ X of the data o /

Spacecraft

!

measurements with respect to the state vector. The first dat | g, ' X g Earth
type we consider are range measurements Te
o
Z,=|r—reg—rrd=Ipl, (5.18
the distance between the spacecraft and the tracking statio
(TS). The vectorr ¢ represents the position of the Eafthith
respect to the Syrwhose orbit is assumed to be circular with
1 year period and radius of 1 AU. The partial derivativeZgf 1AU
with respect taX is given by B "
z ~ T FIG. 9. Occulation effect due to the Sun. No radiometric mea-
h —— p(t) (5.19 surements can be made when the spacecraft passes in fr(ont of
X 0351 le’ ' behind the Sun. See text for further details.

~ . - which is widely used for interplanetary missions. These mea-
wherep s the unit position vector of the spacecraft as Me& Surements determine the shift in frequency due to the Dop-
sured from the EartlgFig. 3). We consider several assumed . d y . op

I : pler effect, and contain both range and angular information.
values for the precision of the range measuremept,in the

interval 10°% km$0'pSlO_2 Kkm. The partial derivative oZ; results in

An additional measurement data type considered is VLBI, T

p

which yields accurate angular measurements of the space- 97 - iﬁ
craft relative to a radio source. We represent this measure- &—X”z ar , (5.29
ment as a set of angles, ~
P Jex1
Z(m,n):[zm Zn]T, (5.20  where
where Z,, and Z,, are the longitudinal and the latitudinal &—€=E[I3—f);ﬁ], (5.25
angular measurements, respectively. Taking partials with re- a P

spect toX yields
andl; is the unit 33 matrix. The accuracies;;, assumed
0 for the Doppler measurement are 0 107, and
1x3 108 km/s for integration over a 60-s period.

: (5.2)

o+

ﬁZ(m’n) _

oX .
0 E. Solar occultation effects
1x3

SETRET

2Xx6 When the spacecraft passes in fronta@fbehind the Sun

] (Fig. 9, radiometric measurements cannot be obtained.
where we define Since the trajectory originates close to the Sun, solar inter-
ference of the measurements can be an important effect in
lo=p, the early stage of the experiment. Let us define

p(=re)} (5.26

x=cos !

; (5.22  wherey represents the spacecraft-Earth-Sun angle. Based on
ol the geometry of the Earth and Sun, and assuming that the

. Earth is in circular orbit about the Sun, the angle betw&en
wherez=[0 0 17", In Eq. (5.21) p is the range from Earth and the tangent vector from center of the Earth to the outer
to the spacecraft as defined earlier. The precisions assumeglius of the Sun¢, can be computed and its value is ap-
for the angular measurements are 5, 1, and 0.1 nrad. proximately 0.267°. We assume that no Doppler or VLBI

The final data measurement type we analyze is Dopplermeasurements are takenyif ¢+ 0.5°, corresponding to ap-
proximately 3 o, and that no range measurements are taken
7 =E|F—F s = ~ s (5.23 if x<£&+5°, corresponding to approximatelyr20. The ef-
Podt ETITS TP P ' fects of measurement geometry and solar occulations on the
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FIG. 10. Dependence of measurement accuracies and correla- FIG. 11. Uncertainties i# andy determinations as functions of
tions of 8 and y on the phase angld)csc, of the Earth. time for standard and advanced tracking accuracies. Standard accu-
racy (X band assumesrp=10’3 km, ob=10’7 km/s, ando,,
accuracies and correlations gfand y depend on the phase =1 nrad for range, range rate, and cross track uncertainties, respec-

angle of the Earthbesc, as shown in Fig. 10. tively. Advanced accuracyK band assumeso,=10"*km, o,
=108 km/s, ando, ,=0.1 nrad. In the legend “current” refers to

VI. RESULTS standard technology, and “future” refers to advanced technology.

For our analysis, the spacecraft is assumed to be initia”geter(;mnatlpns madi ulsmg fewelr dz(ctjm]dh_hgnce th)tT re-
at periapsis of the heliocentric hyperbolic trajectory, with uge hprelgsgohmay € es; corre ate d. T.I'S IS da su t.e |siue
r,=4re andV,.=39 km/s. All of the data measurements 3"d should be investigated in more detall to determine how

considered are analyzed with different initial phase angleéhe measurement & may pe opt|m|zed with respect ta
(s in order to study the sensitivity g andy estimates Our results are summarized in Table Ill. All of the values

to ®esc (Fig. 10. The measurements are assumed to bé)r:c Tp anfaﬁ shown in Tabl_ehlll ar;:- thelfmal onles _taker;f at
taken every 15 min over a 10-day time span. It is important€ €nd of the time span, without the solar occultation eftect,

to note that uncertainties i and y vary over an order of thus indicating how accurately the GR parameters can be

magnitude, which indicates that the relative geometry of théihetermlned. T;NO obwct)us '\t/\r/1ayst tck) increase the accuratcy Oft
spacecraft with respect to the tracking station is a criticaf €se parameters are 1o eiiner take more measurements or to

factor in this test. The results of this analytical approach argMprove the noise factors. It is important to note, however,

consistent with numerical simulations that were carried out.that our analysis neglects a number of possible systematic

The results shown in Figs. 11 and 12 are based on traclErTor sources that may be present in the measurements.
ing the spacecraft under the same data schedule as define~ 1 . ; . ; . ; . . .
above, except that we disregard the solar occultation effec
(which provides a lower bound on the uncertainty in gur
andy estimates Figure 11 shows the uncertaintiesgrand 06 1
v when the range, VLBI, and Doppler measurements are 04l
combined. The plots of, and oz are shown for “standard
accuracy” and “advanced accuracy” which we characterize 6> %[
as follows. Standard technology can provide noise factors ote™ o}

0,=10%km, 0,=10 " km/s, and o,,=1 nrad using Ta ool
X-band radiometric tracking. These noise factors are directly® '

related to how much information can be obtained from the -04r
spacecraft trajectory. Advanced accuracy noise factors arc  _ 4|

one order of magnitude more sensitive than the standard ac

curacy case, and are consistent with kaband radiometric

tracking system. -1 ' '
Figure 12 shows the correlations betwegpando (i.e.,

orgla,oz). We observe that the GR parameters become

more correlated as the spacecraft moves away from periap- FIG. 12. Correlation of3 and y for range, VLBI, and Doppler

sis. Thus, as time increases, the most accurate determinatiomgasurements, with standard accuracieg=10"°km, o,

of the PPN parameters may be correlated with each other, but10™7 km/s, ands, ,=1 nrad.
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TABLE IIl. Uncertaintieso; and o, in the determination of the PPN parametgrand y, respectively,
for various assumed uncertainties in range, VLBI, and Doppler measurements, as described in the text. The
time span for the measurements is 30 days.

Accuracy status o, (km) o; (km/g) a,, (nrad og o,
Standard X band 1073 107 1 3.7x10°4 7.8x10°°
Advanced K band 104 108 0.1 3.7x10°° 7.8x10°¢

Based on these results, we find that the original discussiopressure, and systematic measurement errors in an analysis
in Ref.[1] is conservative, and that tracking technology cur-of this experiment.
rently being implemented may already allow this experiment Note addedAfter this work was completed, we learned of
to determine the PPN parametgdsand y to an accuracy of ~Similar research by Vulkoy25].
~4x10 % and~8x 10 °, respectively(as shown in Table
[1I). By performing a detailed covariance analysis of the pro-
posed experiment, the full strength of the range and Doppler we are indebted to Jennifer Coy, Damon Landau, Anas-
radiometric data can be accounted for, weakening the reassios Petropoulos, Nancy M. Schnepp, and Sharon Wise for
quirement for highly accurate VLBI measurements. Theretheir assistance in preparing this paper. The work of E.F. was
are, however, additional issues that must still be addressedupported in part by the U.S. Department of Energy under
The current results serve as an impetus to continue this incontract No. DE-AC02-76ER01428. D.J.S. acknowledges
vestigation, as we have determined that the spacecratft trajesupport from the IND Technology Program by a grant from
tory clearly has sufficient information content to allow for the Jet Propulsion Laboratory, California Institute of Tech-
this unigue measurement to be performed. Work in progressology, which is under contract with the National Aeronau-
will include the effects of solar oblateness, solar radiationtics and Space Administration.
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