
PHYSICAL REVIEW D 69, 034505 ~2004!
Nucleon mass, sigma term, and lattice QCD
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We investigate the quark mass dependence of the nucleon massMN . An interpolation of this observable,
between a selected set of fully dynamical two-flavor lattice QCD data and its physical value, is studied using
relativistic baryon chiral perturbation theory up to orderp4. In order to minimize uncertainties due to lattice
discretization and finite volume effects our numerical analysis takes into account only simulations performed
with lattice spacingsa,0.15 fm and mpL.5. We have also restricted ourselves to data withmp

,600 MeV andmsea5mval . A good interpolation function is found already at the one-loop level and chiral
orderp3. We show that the next-to-leading one-loop corrections are small. From thep4 numerical analysis we
deduce the nucleon mass in the chiral limitM0'0.88 GeV and the pion-nucleon sigma termsN5(49
63) MeV at the physical value of the pion mass.
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I. INTRODUCTION AND FRAMEWORK

Lattice QCD on one side and chiral effective field theo
on the other are progressively developing as important to
to deal with the nonperturbative nature of low-energy QC
and the structure of hadrons@1#. The merger of both strate
gies has recently been applied to extract physical prope
of hadrons—such as the nucleon—from lattice QCD simu
tions. Of particular interest in such extrapolations is the
tailed quark mass dependence of nucleon properties.
amples of recent extrapolation studies concern the nuc
mass@2,3#, its axial vector coupling constant and magne
moments@4,5#, form factors@6#, and moments of structur
functions@7#.

Accurate computations of the nucleon mass with dyna
cal fermions and two active flavors are now possible@8–10#
in lattice QCD. However, the masses ofu andd quarks used
in these evaluations exceed their commonly accepted s
physical values, typically by an order of magnitude. It is
this point where chiral effective field theory methods a
useful—within limitations discussed extensively in Re
@2,3#—in order to interpolate between lattice results, act
observables, and the chiral limit (mu,d→0). In this paper we
explore the capability of such an approach for extracting
nucleon mass and the pion-nucleon sigma term.

The nucleon mass is determined by the expectation v
^NuQm

muN& of the trace of the QCD energy-momentum tens
@11#
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m5

b~g!

2g
GmnGmn1muūu1mdd̄d1•••, ~1!

whereGmn is the gluonic field strength tensor,b(g) is the
beta function of QCD, andmqq̄q with q5u,d . . . are the
quark mass terms~we omit here the anomalous dimension
the mass operator, as in Ref.@12#!. So the physical nucleon
massMN can be expressed as

MN5M01sN ~2!

in terms of its valueM0 in the SU(2) f chiral limit

M05^Nu
b

2g
GmnGmn1•••uN& ~3!

~with suitably normalized nucleon Dirac spinors!. The ellip-
sis refers to possible contributions from heavier quarks, ot
thanu andd, and the sigma term is defined as

sN5 (
q5u,d

mq

dMN

dmq
5^Numuūu1mdd̄duN&. ~4!

The quark mass dependence ofMN translates into a depen
dence on the pion massmp

2 ;mq at leading order. We pursu
this connection in the symmetry breaking part of the chi
effective Lagrangian.

The framework of our study is relativisticSU(2) f baryon
chiral perturbation theory~BChPT! as described in Ref.@13#.
The effective Lagrangian required for our analysis of t
nucleon mass up toO(p4) is

L5L N
(1)1L N

(2)1L N
(4)1L p

(2) ~5!
©2004 The American Physical Society05-1
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with

L N
(1)5C̄~ igmDm2M0!C1

1

2
gAC̄gmg5umC,

L N
(2)5c1Tr~x1!C̄C

2
c2

4M0
2

Tr~umun!~C̄DmDnC1H.c.!

1
c3

2
Tr~umum!C̄C1•••,

L N
(4)5e38@Tr~x1!#2C̄C1

e115

4
Tr~x1

2 2x2
2 !C̄C

2
e116

4
$Tr~x2

2 !2@Tr~x2!#21Tr~x1
2 !

2@Tr~x1!#2%C̄C1•••. ~6!

In L N
(4) we follow the notation of Ref.@14#. HereL p

(2) is the
leading order pion Lagrangian including the mass term. T
nucleon Dirac field is denoted byC, andM0 is the nucleon
mass in the chiral limit. The axial fieldum and the covariant
derivativeDm involve the Goldstone boson fields viaU(x)
PSU(2), andx65u†xu†6ux†u, u25U, parametrizes the
explicit chiral symmetry breaking through the quark mass
here we usex52BM, whereM5diag(mu ,md) and B5

2^q̄q&/ f p
2 is the chiral condensate divided by the pion dec

constant squared, both taken in the chiral limit. In the f
lowing we neglect isospin breaking effects.

II. ANALYTIC RESULTS

A. O„p3
… analysis

The leading order contribution to the shift of the nucle
mass from its value in the chiral limit comes from the e
plicit chiral symmetry breaking piece inL N

(2) , which drives
the nucleon sigma termsN of Eq. ~4!. The next-to-leading
order ~NLO! contribution is represented by diagram~a! of
Fig. 1, with thepNN vertex generated byL N

(1) . We have
evaluated the relevant one-loop integrals using the so-ca
infrared regularization method@13#. It represents a variant o
dimensional regularization which treats one-loop integr
involving baryon propagators in a way consistent with chi
power counting. The diagram~a! develops a divergence pro
portional tomp

4 . It is absorbed in contact terms which a

FIG. 1. One-loop graphs of NLO~a! and NNLO ~b!, ~c! con-
tributing to the nucleon mass shift. The solid dot denotes a ve
from L N

(1) , the diamond a vertex fromL N
(2) .
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formally of fourth order. We denote1 the counterterm struc
ture that renders theO(p3) contribution finite as
2e1mp

4 C̄C. In the notation of Ref.@14# it involves the cou-
pling constant combinatione152(16e3812e11512e116)
from L N

(4) .
Following the reasoning outlined here, the constraint

obtain a finite result at leading one-loop order has effectiv
promoted a linear combination ofp4 couplings—denoted by
e1—into thep3 calculation. The resulting expression for th
mp dependence ofMN then reads

MN5M024c1mp
2 1Fe1

r ~l!1
3gA

2

64p2f p
2 M0

S 122 ln
mp

l D G
3mp

4 2
3gA

2

16p2f p
2

mp
3A12

mp
2

4M0
2

3Fp

2
1arctan

mp
2

A4M0
2mp

2 2mp
4 G . ~7!

Heree1
r (l) is the finite~renormalization scalel dependent!

part of e1

e15e1
r ~l!1

3gA
2

2 f p
2 M0

L

and any ultraviolet divergences appearing in the limitd→4
are subsumed in

L5
ld24

16p2 F 1

d24
2

1

2
@ ln~4p!1G8~1!11#G .

For further discussion we expand theO(p3) result Eq.~7! in
powers of the pion mass and obtain

MN5M024c1mp
2 2

3gA
2

32p f p
2

mp
3

1Fe1
r ~l!2

3gA
2

64p2f p
2 M0

S 112 ln
mp

l D Gmp
4

1
3gA

2

256p f p
2 M0

2
mp

5 1O~mp
6 !. ~8!

Note that the sum of the first three terms in this formu
coincides with the well-known leading one-loop express
for MN of heavy baryon chiral perturbation theor
~HBChPT!, as expected in the infrared regularization a
proach@13#. From Eq.~8! one can also deduce that the cou
terterme1 of Eq. ~7!, required in relativistic baryon ChPT fo
renormalization purposes, is equivalent to the counterte
introduced in Ref.@3# which regularizes the short distanc
behavior in HBChPT.

1Our couplinge1 differs from the convention of Ref.@3# by a
factor 4.
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In Ref. @3# an assessment of convergence properties
ChPT has been performed. It was shown that, up tomp

.300 MeV, the chiral perturbation expansion develops
stable plateau region independent of cutoff scales. Moreo
this analysis indicates that an upper limit for this plate
behavior may be reached whenmp approaches about 60
MeV. While these considerations were made in a nonrela
istic framework, explicit comparison shows that the relat
istic approach used in the present work contains the s
chiral structures as those discussed in Ref.@3#. We can there-
fore assume that, with respect to the internal consistenc
ChEFT, our analysis is applicable for pion masses well ab
the physical one. We givemp&600 MeV as an estimate fo
the range of validity. We emphasize that, in contrast to
framework adopted by the Adelaide group@2#, all the terms
beyond the leadingc1 contribution to the nucleon mass i
Eq. ~8! are part of thesamechiral orderp3. The numerical
evaluation of the individual contributions to Eq.~8! ~see Sec.
III ! shows that the large fluctuations in the chiral extrapo
tion using dimensional regularization, reported in Ref.@2#,
arise from examining only the first four terms in Eq.~8!,
instead of keeping the full expression~7!.

B. O„p4
… analysis

Let us now focus on the next-to-NLO~NNLO! contribu-
tion to the pion mass dependence of the nucleon mass.
involves also graphs~b! and ~c! in Fig. 1 which include
vertices generated byL N

(2) as well as wave-function renor
malization@13#. In order to avoid having to deal with a num
ber of counterterms too large to be handled in a meanin
numerical analysis, we decide to truncate the chirally
panded formula atO(mp

6 ). We will show numerically that
this truncation approximates the full function reasona
well for the parameter ranges considered here. Up to term
order mp

6 no counterterms other thane1 are required for a
finite result. AtO(p4) one then obtains

MN5M024c1mp
2 2

3gA
2

32p f p
2

mp
3

1Fe1
r ~l!2

3

64p2f p
2 S gA

2

M0
2

c2

2 D
2

3

32p2f p
2 S gA

2

M0
28c11c214c3D ln

mp

l Gmp
4

1
3gA

2

256p f p
2 M0

2
mp

5 1O~mp
6 !, ~9!

where now

e15e1
r ~l!1

3L

2 f p
2 S gA

2

M0
28c11c214c3D .

This expression includes the constantsc2 andc3 which en-
code the influence of theD(1232) resonance in low energ
pion-nucleon scattering. The terms up tomp

4 have already
03450
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been discussed in Ref.@15#. For related discussions of th
SU(3) f case see Ref.@16#, and references therein. It is als
interesting to observe that our truncation of the relativis
result atmp

6 as shown in Eq.~9! formally coincides with the
expansion of nucleon mass in HBChPT to fifth order,
there are no genuine two-loop graph contributions at t
order in the chiral expansion@17#.

III. NUMERICAL ANALYSIS
AND CONTACT WITH LATTICE QCD

A. The nucleon mass

We proceed with the numerical evaluation of Eqs.~7! and
~9!. We set the nucleon axial vector coupling and the p
decay constant equal to their physical valuesgA51.267 and
f p592.4 MeV. Strictly speaking, these quantities should
taken in the chiral limit. We have checked that using curr
estimates forgA

0 and f p
0 at mp→0 does not lead to any sig

nificant changes in our final results. Details are discusse
the last part of this section. Without loss of generality w
choosel51 GeV. At orderp3 we are then left with three
unknown parameters@M0 , c1 ande1

r (1 GeV)[ê1] and four
parameters at orderp4 @M0 , c1 , A[e1

r (1 GeV)
13c2 /(128p2f p

2 ) and B[c214c3]. Our NNLO result is
identified with Eq.~9!. This limits the number of tunable
coefficients but still keeps sufficiently many orders inmp to
provide a good approximation to the fullO(p4) result.

The unknown parameters are determined using as inp
combined set of lattice QCD data obtained by the CP-PA
@8#, JLQCD@9# and QCDSF@10# collaborations. These com
putations are performed using fully dynamical quarks w
two flavors. In order to minimize artifacts from discretizatio
and finite volume effects, we have selected from the wh
set of available data those with lattice spacingsa,0.15 fm
andmpL.5. Furthermore we restrict ourselves to the resu
ing four data points withmp,600 MeV and with equal va-
lence and sea quark massesmsea5mval . A study of finite
volume dependence is in preparation@19#. We have ex-
pressed lattice data in physical units via the Sommer s
r 050.5 fm @20#, not taking into account systematic erro
arising from possible quark mass dependence ofr 0 occurring
in dynamical simulations. A forthcoming study will addre
this issue@21#.

In a preliminary step we have fitted the set of latti
points using the LO result treatingM0 andc1 as free param-
eters. The resulting linear fit gives an estimate ofc1 about a
factor 3 smaller than the value determined inpN scattering
analyses withxd.o.f.

2 52.25. We conclude that linear fits in th
quark mass are not appropriate to describe the quark m
dependence of baryon masses.

Successive steps in our analysis are shown in Figs.
and summarized in Table I. We have first analyzed theO(p3)
result,~7! ~fit I !. The best fit I curve is the solid one drawn
Fig. 2. The low-energy constants come out of natural s
Furthermore,c1 which determines the slope ofMN(mp

2 ) for

small mp
2 has the correct sign and the value ofê1 is within

the range quoted in Ref.@3#.
5-3
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As seen in Fig. 2, the curve obtained by fitting the fo
lattice data withmp,600 MeV and including the physica
point as a constraint shows a surprisingly good~and not yet
understood! agreement with lattice data even up tomp

'750 MeV.
The same figure also shows how fit I develops term

term when the full orderp3 NLO expression~7! is expanded
according to Eq.~8!. We emphasize again that in the hiera
chy of terms with increasing powers ofmp , as represented
by the dash-dotted, short-dashed, and long-dashed curve
contributions are of the same chiral orderp3 in the formula-
tion of baryon ChPT we use. Evidently, truncating the exp
sion ~8! at mp

5 already provides a decent approximation
the full O(p3) result.

In the NNLO case the statistics of our restricted d
sample is not sufficient to constrain all the parameters.
have therefore used input values forc2 and c3 available in
the literature. We setc253.2 GeV21 in agreement with
Refs. @22,23# and performed two kinds of fits, one withc3
523.4 GeV21, found in Ref. @24# to be consistent with
empirical NN phase shifts and still within the error ba

FIG. 2. Solid/dotted line: best fit curve using the one-loop res
at chiral orderp3 Eq. ~7!. Input: four lowest lattice data points with
mp,600 MeV and physical nucleon mass~Fit I!. The dotted ex-
tension of this curve formp

2 .0.4 GeV2 indicates the region where
the application of baryon ChPT is usually believed to become
reliable. For illustration we also show a subset of lattice data u
mp'0.8 GeV, those compatible with the cuts in lattice spacing a
volume as explained in the text. The solid dots are CP-PACS d
the boxes refer to JLQCD and the empty circles to QCDSF. T
dot-dashed, dashed and long-dashed curves show, respectivel
contributions from the sum of the first three, four and five terms
Eq. ~8!.
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quoted in Ref. @25# ~fit II !, and another one withc3
524.7 GeV21, the central value determined by Ref.@25# in
the low-energypN scattering analysis~fit III !.

Fit III underestimatesc1, whereas the value obtained in fi
II for this LEC is in agreement with Ref.@25# and with the
outcome of the analysis by Becher and Leutwyler of lo
energypN scattering inSU(2) f relativistic baryon ChPT
@26,27#, the framework we use. Furthermore, the value forc3
employed in fit II is quite close to22.9 GeV21, the one
corresponding to the empirical spin-isospin averaged p-w
scattering volume which is dominated by theD(1232) con-
tribution.

Figure 3 demonstrates that the difference between
O(p4) and O(p3) results is relatively small over the entir
range ofmp that we analyzed. We explicitly show that high
order chiral corrections are small, even at pion masses
above the physical one. We therefore believe that our in
polation has passed the necessary tests of consistency
convergence formp,0.6 GeV.

In the calculations underlying the fits I–III we have us
gA51.267 andf p592.4 MeV as input. Rigorously speak
ing, we should have used values of those quantities in
chiral limit. We have performed test calculations withgA

0

51.2 @5# and f p
0 588 MeV @18#. With a slight readjustmen

of ê1 by less than 3%, any one of the quantities in Tabl
changed by less than 1% when replacinggA , f p with gA

0 ,
f p

0 .
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-
o
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FIG. 3. Solid curve: best fit~fit II ! using the NNLO result, Eq.
~9!, at chiral orderp4. Dashed curve: NLO result~chiral orderp3)

from Eq. ~7! using as parameters the central values of fit II.ê1 has
been deduced settingc253.2 GeV21. For details on the data point
see Fig. 2.
on
TABLE I. Fit results forMN(mp) described in detail in the text. Fit I refers to the interpolation based
the O(p3) NLO result, Eq.~7!. Fit II and fit III are based on theO(p4) NNLO result, Eq.~9!, respectively
with c3523.4 GeV21 @24# andc3524.7 GeV21 @25#.

M0 @GeV# c1 @GeV21# ê1 @GeV23# A @GeV23# B @GeV21#

Fit I 0.89160.004 20.7960.05 3.560.6
Fit II 0.88360.003 20.9360.04 3.860.6 210.4 ~fixed!

Fit III 0.87260.003 21.1160.04 4.160.6 215.6 ~fixed!
5-4
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B. The sigma term of the nucleon

The pion-nucleon sigma termsN , defined in Eq.~4!,
translates into

sN5mp
2 ]MN

]mp
2

, ~10!

if we assume that the Gell-Mann–Oakes–Renner~GOR! re-
lation mp

2 ;mq holds and we can neglectO(mq
2) terms. An

improved analysis of s-wavepp scattering lengths@28# in-
dicates that theO(mq

2) corrections to the GOR relation ar
very small, although this statement becomes progressi
less accurate with increasing quark masses, and further
tailed examination of the role of strange quarks in this c
text is necessary. A recent systematic analysis@29# of results
for pseudo-Goldstone boson masses fromNf52 lattice QCD
comes to conclusions consistent with those drawn in R
@28#. We therefore use Eq.~10! in the following.

At chiral order p3 starting from Eq.~8! one finds the
expression

sN524c1mp
2 2

9gA
2

64p f p
2

mp
3 12e1

r ~l!mp
4

2
3gA

2

64p2f p
2 M0

S 314 ln
mp

l Dmp
4

1
15gA

2

512p f p
2 M0

2
mp

5 1O~mp
6 !. ~11!

The corresponding NNLO result is derived from Eq.~9!:

TABLE II. The pion-nucleon sigma term deduced from th
NLO and NNLO fits forMN(mp) given in Table I.

sN @MeV#

Fit I 4364
Fit II 4963
03450
ly
e-
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sN524c1mp
2 2

9gA
2

64p f p
2

mp
3

1F2e1
r ~l!2

1

16p2f p
2 S 9gA

2

4M0
26c113c3D

2
3

16p2f p
2 S gA

2

M0
28c11c214c3D ln

mp

l Gmp
4

1
15gA

2

512p f p
2 M0

2
mp

5 1O~mp
6 !. ~12!

Our deduced values ofsN at the physical point are summa
rized in Table II. The behavior of the sigma term as a fun
tion of the pion mass is shown in Fig. 4. Within errors, th
curve is compatible with the ‘‘empirical’’ sigma termsN
54568 MeV extracted in Ref.@30#, but it does not favor
the much larger value reported in Ref.@31#. Our result is also
consistent with the analysis of Ref.@32#, within the larger
uncertainties quoted there.

IV. DISCUSSION AND CONCLUSIONS

The present work has been aimed at improving and
dating interpolations of the nucleon mass, using chiral eff
tive field theory, between the range of relatively large qua
masses accessible in full lattice QCD simulations, and
small quark masses relevant for comparison with phys
observables. A remarkably good interpolation can already
achieved by a one-loop calculation at chiral orderp3 using
relativistic baryon ChPT. In either case short distance
namics, including effects of theD(1230) and possibly othe
resonance excitations of the nucleon, are encoded in a si
counterterm that controls the contributions of ordermp

4 .
O(p3) relativistic baryon ChPT is therefore free of limita
tions of HBChPT discussed in Refs.@2,3#. Apart from the
nucleon mass in the chiral limit, the only remaining para
eterc1 drives the pion-nucleon sigma term. Our interpolati
FIG. 4. The pion-nucleon sigma term as a function ofmp
2 from Eq. ~12!, using as input the central values from fit II~see Table I!. The

small mp region is magnified in the right panel and plotted together with the frequently quoted empiricalsN54568 MeV @30#.
5-5
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pion masses, in order to minimize uncertainties from fin
size effects and from quark masses too large to be han
using perturbative chiral expansions. Surprisingly, the res
ing interpolations work even in a pion mass region where
approach is commonly believed to become unreliable.

The extension to NNLO~chiral orderp4), truncated at
order mp

5 , introduces in addition the pion-nucleon low
energy constantsc2,3 which primarily reflect the impact ofD
resonance physics on low-energypN dynamics. We have
constrained the input values for these two LECs frompN
phenomenology. The fit interpolating the nucleon mass
tween the chiral limit and the lattice data remains remarka
stable and even improves slightly when going from NLO
NNLO. Our analysis explicitly shows thatO(p4) corrections
are small with respect to theO(p3) result.

The pion-nucleon sigma term deduced from themp de-
pendence of the nucleon mass in the NNLO ‘‘best fit’’~fit II !
is fully consistent with that obtained by Gasser, Leutwy
and Sainio@30#. This is a nontrivial result since no suc
constraint has been built into the procedure.
n

rt
,

r,

ht,

-

o

.
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In summary, the outcome of the present study is prom
ing. It demonstrates that extrapolation methods based on
ral effective field theory can be successfully combined w
lattice QCD results in order to bridge the gap between sim
lations and observables. Of course, remaining uncertain
need to be further investigated, such as corrections du
finite lattice volume and questions concerning converge
properties of the chiral expansion with quark masses exce
ing 100 MeV. Future studies will include the quark ma
dependence ofr 0 , MN / f p and the implicit quark mass de
pendence off p andgpNN .
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