
PHYSICAL REVIEW D 69, 034503 ~2004!
Staggered versus overlap fermions: A study in the Schwinger model withNfÄ0,1,2
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We study the scalar condensate and the topological susceptibility for a continuous range of quark masses in
the Schwinger model withNf50,1,2 dynamical flavors, using both the overlap and the staggered discretiza-
tion. At finite lattice spacing the differences between the two formulations become rather dramatic near the
chiral limit, but they get severely reduced, at the coupling considered, after a few smearing steps.
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I. INTRODUCTION

Recently, the staggered action when coupled to HY
smeared backgrounds@1# has attracted renewed interest. Th
is mainly due to the cheapness of this formulation wh
bears the promise that realistic unquenched simulations
be performed with currently available resources@2#. More-
over, as a remnant of the fullSU(Nf5d)A group, the con-
tinuous ‘‘two-hop global’’ symmetry

x~x!→exp@ iuA~21!(nn#x~x!,

x̄~x!→x̄~x!exp@2 iuA~21!(nn#, ~1!

wherex5a(n1 , . . . ,nd) protects the fermion mass again
additive renormalization. On the other hand, taking
square and quartic root of the determinant~to obtainNf52
11 dynamical flavors! might spoil the locality of the action
@3#, and the often believed insensitivity to topology cou
undermine attempts to push towards the chiral limit.

The other extreme in terms of computational cost is r
resented by the closely related domain-wall@4# and overlap
@5# fermions. For these actions, the Ginsparg-Wilson relat
@6#

Dĝ51g5D50, ĝ55g5S 12
a

r
D D ~2!

holds in the massless limit@with r for the moment an arbi-
trary parameter that will be specified in Eq.~5!#, implying
invariance under the full chiral symmetry group@7#

dc5ĝ5c, dc̄5c̄g5 ~3!

at finite lattice spacing, which again excludes additive m
renormalization and prevents operators in different ch
multiplets from mixing.

Given this situation, we decided to investigate the diff
ence between staggered and overlap fermions at finite la
spacing in a simple theory where the concept of chiral sy
metry proves relevant and some interesting quantities
known analytically. These criteria are fulfilled by the gen
alized Schwinger model~QED in 2D with Nf massive de-
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generate fermions!, a super-renormalizable theory@8# where
the scale is set through the dimensionful fundamental c
pling

g5
1

aAb
. ~4!

We produced 10 000 independent gauge configurations
N3N5202 lattice with the standard~compact! Wilson gauge
action atb54, giving a plaquette of 0.86279~10!. For each
configuration we determine the complete eigenvalue sp
trum of the massless overlap and staggered operators.
allows us to compute—for any given mass—the condens
and the fermion determinant, which we use to reweight
observables toNf51,2 @9#.

We define the massive overlap operator as

Dm
ov5S 12

am

2r DDov1m, aDov511g5 sign~ag5D2r
W !

~5!

with D2r
W the Wilson operator at negative mass2r/a. We

further setr51, which we checked, following Ref.@10#, is
an almost optimal choice with respect to locality at our co
pling.

Previous work on the Schwinger model using a dire
approach for the computation of the scalar condensate is
lected in Refs.@11–13# for staggered, domain wall/overlap o
both actions, respectively. We checked that we reproduce
staggered condensate from Ref.@13# and the overlap conden
sate of FHLW/GHR in Ref.@12#.

II. SCALAR CONDENSATE

In the chiral limit, theNf51 scalar condensate is give
by @8#

xsca~m50!

g
5

eg

2p3/2
50.1599••• @Nf51#. ~6!

For Nf52 a nonzero value would signal spontaneous sy
metry breaking and therefore violate the Mermin-Wagn
©2004 The American Physical Society03-1
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Hohenberg-Coleman theorem@14#. The prediction how ex-
plicit symmetry breaking modifies this zero is@15#

xsca

g
50.388•••S m

g D 1/3

@Nf52#. ~7!

In the staggered formulation we follow Ref.@11# and imple-
ment the~1-flavor! condensate through

xsca

g
52

1

2

1

N2g
^x̄x&, ~8!

where the purpose of the factor 1/2 is to compensate
two-fold degeneracy of the staggered formulation in 2D. D
noting the eigenvalues of the massless staggered Dirac
erator byl ~they show up in complex conjugate pairs wi
zero real part!, the reweighted condensate is

xsca

g
5

1

2

1

L2g

K det~Dm
st!Nf /2(

1

~l1m! L
^det~Dm

st!Nf /2&
,

det~Dm
st!5) ~l1m!. ~9!

with L5Na and the sum and product running over the en
spectrum. In Ref.@11# one finds also the associated free fie
limit

xsca

g
5

2

N2

m

g (
i , j 51

N/2
1

~am!21sin~2p i /N!21sin~2p j /N!2

~10!

which is, of course, independent ofNf .
For overlap fermions, the scalar condensate is unamb

ously defined as@12#

xsca

g
52

1

N2g
^c̄ĉ&, ĉ5

11g5ĝ5

2
c. ~11!

Denoting the eigenvalues of the massless overlap Dirac
erator byl, and remembering that we work withr51, the
reweighted condensate is

xsca

g
5

1

L2g

K det~Dm
ov!Nf(

12al/2

~12am/2!l1m L
^det~Dm

ov!Nf&
,

det~Dm
ov!5) F S 12

am

2 Dl1mG , ~12!

where the sum runs over the full spectrum. These eigen
ues occur either in complex conjugate pairs or as isola
chiral ~doubler! modes atal50(2). Finally, one can rewrite
Eq. ~12! as
03450
e
-
p-

e

u-

p-

l-
d

xsca

g
5

1

L2g

K det~Dm
ov!Nf( 8

1

l̂1m
L

^det~Dm
ov!Nf&

, l̂5S l212
a

2D 21

,

~13!

whereal̂ is purely imaginary and the sum excludes the do
bler modes atal52.

Due to the~remnant! chiral symmetry of~staggered! over-
lap fermions, no subtraction of the condensate at zero qu
mass is required. Furthermore, the Schwinger mode
super-renormalizable, i.e., there is no renormalization nee
at infinite cutoff. In fact, due to the dimensionful couplin
~4!, all lattice renormalization factors have the formZ51
1O(a2g2) and therefore are 1, up toO(a2) corrections.
Hence, both the staggered and the overlap discretiza
yield ~for any Nf and m.0) a finite condensate which i
subject toO(a2) cutoff effects with unitZ-factor plus an
additive piece proportional tom.

A modification which is motivated by what is done in fu
QCD simulations, is to consider the Dirac operator on
‘‘copy’’ of an element of the Markov chain on which on
applies one or more APE/HYP smearing steps~which in 2D
is the same!. One then thinks of the operator as one in t
original links, which is less local. For the staggered actio
such a modification preserves the universality class w
considerably reducing the ‘‘taste’’ violation@16#. Being un-
aware of any detailed understanding of what the optim
smearing parameter is, we decided to combine the staple
the original link with equal weight, which means in aU(1)
theory that one takes the arithmetic mean of the phases

Figure 1 displays our results for the scalar condensate
expected, the overlap condensate exhibits the qualitativ
correct behavior in the chiral limit. ForNf50 it shows the
quenched divergence, while forNf52 it tends to zero indi-
cating the absence of spontaneous chiral symmetry break
In the Nf51 case it tends to a constant which seems co
patible with the analytic result~6! in infinite volume, marked
by an asterisk. Here, we dare to compare to the infinite v
ume value, since the results in Ref.@17# suggest that forNf

51 in a box withL.1/(Apg) finite volume corrections are
exponentially small. On the other hand, the staggered c
densate exhibits aqualitatively wrongbehavior in the chiral
limit, vanishing for allNf . At large masses it differs substan
tially from the overlap condensate, presumably due to cu
effects. In the intermediate region, there is a smooth turno
with no sign of a quenched divergence.

The dashed curve is Smilga’s infinite volume result~7!,
while the dash-dotted graph represents the free-field exp
sion ~10!. Finally, since changingm at fixed box-volumeV
means that one moves from the large to the small Leutwy
Smilga regime, the point where the Leutwyler-Smilga p
rameter@18#

x5VSm ~14!

equals 1 is indicated with a vertical dotted line@S denotes
the analytical result~6!#.
3-2
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The real surprise comes when the operators are evalu
after one step of APE/HYP smearing. The overlap cond
sate stays~for any Nf) virtually unchanged, except that th
size of theO(a2) artefacts is modified. Formally, the sam
statement holds true with the staggered action, but from
quantitative point of view the change is rather dramatic.
the Nf51 case one can ‘‘trust’’ it down to much smalle
quark masses, until it finally collapses. And forNf50 it
shows a nice blow-up at moderately small quark masse
one really considers the limitm→0 it still tends to zero, but
the point where this happens is deep within thee regime
(x!1) @18#. The effect of additional smearing steps will b
discussed below.

Figure 2 shows our results for the ‘‘hybrid’’ condensa
labeled after the formulation used for the valence quark. T
‘‘staggered’’ condensate~with Nf51,2 sea quarks built from
the overlap determinant! looks virtually unchanged with re
spect to Fig. 1~the curve withNf50 is identical!. On the
other hand, the ‘‘overlap’’ condensate~with Nf51,2 sea
quarks constructed from the staggered determinant! looks
much worse than the original~true! overlap version; there is
a divergence nearm50 for any Nf . This shows that the
failure of the unsmeared~‘‘naive/thin-link’’ ! staggered for-
mulation cannot be attributed to either the determinant or
valence prescription alone—it is the cancellation of the z

FIG. 1. Scalar condensate after 0~top! and 1~bottom! steps of
APE/HYP smearing.
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in the determinant and the ‘‘one over zero’’ in the propaga
which is needed to get the finite value~6! in the 1-flavor
case.

Upon applying just one step of smearing the situation i
proves dramatically; both ‘‘hybrids’’ look qualitatively righ
down to much smaller quark masses—but still, eventua
the nonfaithful representation of the zero mode~s! in the stag-
gered part reflects itself in a fake blow-up or drop-dow
close to the chiral limit.

Figure 3 contains our results for the condensate in a l
log representation. The overlap data show that the ana
structure in a finite volume is indeed

xscal}H 1/m ~Nf50!,

const ~Nf51!,

m ~Nf52!

~15!

near the chiral limit and consistent with

xscal}m1/3 ~16!

at large masses, albeit the coefficient in Eq.~7! is ~presum-
ably due to cutoff effects! not reproduced.

The bottom part demonstrates that 3 APE/HYP-smear
steps manage to completely change the overall picture of

FIG. 2. Hybrid condensate after 0~top! and 1~bottom! steps of
APE/HYP smearing.
3-3
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staggered condensate while the overlap condensate get
caled by a factor which differs from 1 only marginally. Now
the two formulations are in perfect agreement at~moder-
ately! small quark masses, showing only a mild discrepan
at largerm/g: the staggered condensate seems to tend
wards the free-field limit~10!, while the overlap version
moves closer to Smilga’s prediction~7!. Eventually, the stag-
gered condensate vanishes in the chiral limit—even forNf
50. The turnover point, however, is off the scale of the pl

III. SELECTION THEOREM

A remarkable feature of the Schwinger model withNf
51 is the ‘‘selection theorem.’’ This theorem states that
the chiral limit the nonzero value~6! is formedexclusively
from the zero modes of chirality61, which live on back-
grounds where the topological charge

q~A!5
g

4pE emnFmndxPZ ~17!

takes the value71. This statement alludes to a combinati
of the Atiyah-Singer index theorem and the vanishing th
rem. The former relates Eq.~17! to the index of the Dirac

FIG. 3. Scalar condensate after 0~top! and 3~bottom! steps of
APE/HYP smearing.
03450
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operator, defined as the difference of the number of nega
and positive chirality zero modes

ind~A!5n22n1 ~18!

in a simple manner

q~A!5 ind~A!, ~19!

while the latter says that in 2D there is no configurati
which supports both positive and negative chirality ze
modes@19#

n2Þ0⇒n150,

n1Þ0⇒n250. ~20!

To prove the ‘‘selection theorem’’ one starts from the par
tion function of the massless theory in the finite volume w
periodic boundary conditions (Nf>1) @17#

Z@h̄,h#5N(
qPZ

E DA(q)e2(1/4)*F2

3S )
k51

uqu

~ h̄ck!~ c̄kh!D Nf

det8~D !Nfe1*h̄S8h

~21!

from which the condensate is computed by takingone de-
rivative with respect toh̄ andh and then setting the externa
sources to zero. The outer sum is over all topological sec
and the product is over theuqu positiveor negative chirality
zero modes. The primes indicate that the determinant and
fermion Green’s function are computed on the subspace
thogonal to the zero modes. A nonzero value is obtainedonly
if both derivatives hit the prefactor, leaving nothing but t
explicit zero mode and its conjugate behind. This can hap
only for Nf51 and results in a condensate which is gen
atedexclusivelyby the zero modes with chirality61. Note
that the argument will hold true in QCD, too, once the cu
rent body of numerical evidence in favor of a vanishing the
rem in 4D ~see Fig. 1 in Ref.@20#! has been replaced by
mathematical proof.

As a technical point we mention that on the lattice w
define the topological charge of a backgroundU as the index
of the massless overlap operator@21,7#

q~U !5 ind~U !5 1
2 tr~ag5Dov! ~22!

and use it for both the staggered and the overlap evalua
of the sectoral condensate.

Figure 4 displays our results for the condensate if
truncate the partition function at a givenuqumax. The overlap
construct faithfully reproduces the ‘‘selection theorem
which means that theNf51 condensate tends to zero if on
restricts it to the topologically trivial sector, while it takes th
Schwinger value~6! in the chiral limit for any otheruqumax.

Analogously, the staggered condensate exhibits~for both
Nf shown! a many-sigma difference betweenuqumax50,1,2.
This disproves the widely believed fiction that staggered f
mions are ‘‘insensitive to topology’’—but they arenot sen-
3-4
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STAGGERED VERSUS OVERLAP FERMIONS: A STUDY . . . PHYSICAL REVIEW D69, 034503 ~2004!
sitive the right way; they do not seem to know about th
index and the vanishing theorems which are at the root of
‘‘selection theorem.’’

Figure 5 shows that the real surprise comes again a
one or a few APE/HYP-smearing steps. Already one step
the staggeredNf51 condensate~at intermediate mass! de-
velop a marked sensitivity on the topological charge of
background.

After two more steps the qualitative picture is just as
the ~unsmeared! overlap case~see Fig. 4!, i.e., smeared stag
gered fermions do know about the relationship between
pology and the chirality of zero modes—down to rath
small ~but nonzero! quark masses. Of course, if one rea
performs the chiral limit, the staggered condensate still te
to zero—for anyuqumax and even in the quenched case (Nf
50). This is visible in the top of Fig. 5, while in the bottom
part it is off the scale.

Since in the Schwinger model various observables h
been seen to depend on the topological charge@22#, it is
surprising that the ‘‘selection theorem’’ has not been chec
before.

IV. TOPOLOGICAL SUSCEPTIBILITY

Another interesting observable to study the effects of
namical fermions is the topological susceptibility which,

FIG. 4. Sectoral condensate for overlap~top! and staggered
quarks without smearing.
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the context of this note, shall bedefined~in the continuum!
through

x top5 lim
V→`

^det~D1m!Nfq2&

V^det~D1m!Nf&
. ~23!

The main difference to the scalar condensate is that the
pological susceptibility depends only on theseaquarks, thus
offering a potentially cleaner view at the effects of squa
rooting the staggered determinant to getNf51.

For staggered quarks, the definition~23!, taken in fixed
volume, reduces to

x top

g2
5

b

N2

^det~Dm
st!Nf /2q2&

^det~Dm
st!Nf /2&

, ~24!

while for overlap quarks, the implementation reads

x top

g2
5

b

N2

^det~Dm
ov!Nfq2&

^det~Dm
ov!Nf&

, ~25!

where det(Dm
st) and det(Dm

ov) are defined in Eqs.~9!, ~12!. In
either case the sum is over the spectrum of the mass

FIG. 5. Sectoral condensate for staggered quarks with 1 an
steps of APE/HYP smearing.
3-5
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S. DÜRR AND C. HOELBLING PHYSICAL REVIEW D69, 034503 ~2004!
operator, and we apply the overlap definition~22! of the
topological charge in both Eqs.~24! and ~25!.

Finally we would like to mention the continuum predi
tion how the topological susceptibility in QCD tends to ze
if the quark mass does@18# @the LS parameterx was defined
in Eq. ~14!#,

x top5
Sm

Nf
~Nf51~x@1!, ~26!

x top}mNf ~x!1!. ~27!

Figure 6 contains our results for the mass dependence o
topological susceptibility, defined via Eqs.~24!, ~25!. The
full and the dashed lines represent the prediction of Eq.~26!
for the casesNf51,2, respectively. One can see that for bo
discretizationsx top gets suppressed by dynamical fermi
effects, but close to the chiral limit only the overlap determ
nant leads to results which are compatible with the Q
prediction~26! for Nf51 and~27! for Nf52.

Again, just one smearing step proves sufficient to alm
eliminate the lattice artefacts the ‘‘unsmeared/naive’’ st
gered determinant was plagued with, while the topologi
susceptibility for overlap fermions stays basically invaria
under such a modification.

FIG. 6. Topological susceptibility with 0~top! and 1 steps of
APE/HYP smearing.
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,

he

-

st
-
l

t

V. SPECTRAL HINT

As a hint of what is the likely reason behind the rema
able success of one or a few APE/HYP smearing steps a
b value considered, we would like to present the effect
such a modification on the spectrum of some individual c
figurations. In Fig. 7 we plot the physically relevant part
the spectrum of the staggered@the al from Eq. ~9!# and
overlap @the al̂ from Eq. ~13!# operator on four selected
configurations before and after smearing.

The two configurations on the left are typical examp
for topological chargeq50 and uqu51, respectively. One
sees that on the unsmeared configurations the stagg
spectrum does not resemble that of the overlap operator.
thermore, it is hard to see a qualitative difference betwe
q50 and uqu51 in the spectrum of the original staggere
operator. After a few smearing steps this picture chang
The eigenvalues of the staggered operator seem to form n
degenerate pairs which sit close to a single overlapal̂ on the
same configuration. In particular, in theuqu51 case a pair of
eigenmodes moves very close to the real axis. Clearly, su
shift mimics the effect of the true zero mode in the overl
counterpart down to rather small quark masses. It is o
when the mass becomes comparable to the smallest~smeared
staggered! eigenvalue that the absence of an exact zero-m
matters and a qualitative difference between the stagg
and overlap Dirac operators~on that configuration! shows
up.

In the third column of Fig. 7, a typical configuration wit
higher topological charge (uqu54) is displayed. Here, the
picture is not so nice any more, since after 3 smearing s
only 3 pairs of eigenmodes have come close to the real
and the fourth one is still somewhat further out.

To show that these findings are not generic, the last c
umn of Fig. 7 presents a selected configuration on which
topological charge varies repeatedly under subsequ
smearing steps. Qualitative resemblance between the sp
of the two operators is vague at best and there is no evide
of a pair of staggered eigenvalues moving close to the
axis. Obviously, such ‘‘sick’’ configurations will occur mor
frequently at larger coupling.

FIG. 7. Physically relevant region of the Dirac spectrum
some selected configurations.
3-6
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VI. SUMMARY

Our findings may be summarized by the following sta
ments:

~1! At finite spacing and in a finite box, the ‘‘naive’’ stag
gered action leads to a scalar condensate which isqualita-
tively wrong: the staggered results vanish in the chiral lim
for any Nf , while the overlap successfully reproduces t
quenched;1/m divergence, and the analytically know
Schwinger value in the chiral limit forNf51.

~2! Considering both types of ‘‘hybrid’’ formulations
~staggered valence quarks with overlap sea quarks and
versa! we find that the failure of the naive staggered form
lation cannot be attributed to either the determinant or
propagator alone.

~3! The ‘‘selection theorem’’ is reproduced, in an impre
sive manner, with overlap fermions, while naive stagge
fermions fail completely.

~4! The topological susceptibility shows lattice artefac
which are large for unimproved staggered fermions, wh
the overlap results seem consistent with the known ch
behavior.

~5! Taking the square root of the staggered determinan
haveNf51 seems to be no more or less harmful than div
ing by 2, in the valence sector, to get the 1-flavor condens
All naive staggered results seem to only gradually vary
Nf50,1,2—even near the chiral limit, where they shou
not.

~6! At the b value considered, already one smearing s
brings a remarkable improvement: although formally the c
ral limit of staggered fermions is still wrong, the mass
which one begins to see this is dramatically lowered.
moderate quark masses, one observes a clear blow up o
APE/HYP smeared staggered condensate forNf50, while it
stays close to the Schwinger value~6! for Nf51 and keeps
the qualitatively correct behavior atNf52. Moreover, in
spite of naive staggered fermions being misguided in the w
they see topology, the APE/HYP variety condensate show
03450
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remarkable sensitivity onuqumax for Nf50 andNf51, repro-
ducing the ‘‘selection theorem’’ in the latter case. Finally, t
staggered artefacts in the topological susceptibility get d
tically reduced, resulting in good agreement with the over
curve down to very small quark masses.

~7! The main difference after a few smearing steps is
size of lattice artefacts in the condensate at large qu
masses which make the smeared overlap condensate~for any
Nf) lie closer to the analytical prediction~7! by Smilga,
while the smeared staggered values move more towards
free field prediction~10!. The qualitative failure of staggere
fermions in the chiral limit is only visible at very small quar
masses.

~8! Under moderate smearing the modes of the mass
staggered Dirac operator form near-degenerate pairs w
move close to the corresponding overlap~single! eigenvalues
(l̂), supporting the square root and factor 1/2 procedure
staggered spectroscopy. On nontrivial backgrounds the m
match between the staggered fake zero mode and the
overlap zero gives an estimate of the quark mass at which
deficiency of the staggered formulation gets visible, thou
there are configurations which break this analogy.

As a warning against an overly optimistic interpretation
6/8, we feel obliged to recall that we were working wi
fairly smooth gauge fields. It is not clear whether such a n
pattern holds true also in QCD at accessible couplings.

ACKNOWLEDGMENTS

We are indebted to Gunnar Bali for bringing to our atte
tion the interest in checking chiral properties of stagge
fermions in a simple model. We thank Steve Sharpe for
suggestion to study the effect of APE/HYP smearing. S
wishes to acknowledge useful discussions with Rainer S
mer, C.H. with Christian Lang and Laurent Lellouch. S.D.
supported by DFG in SFB/TR-9, C.H. is supported by E
Grant No. HPMF-CT-2001-01468.
. B

s.
D

@1# A. Hasenfratz and F. Knechtli, Phys. Rev. D64, 034504
~2001!.

@2# HPQCD Collaboration, C. T. Davieset al., Phys. Rev. Lett.92,
022001~2004!.

@3# K. Jansen, hep-lat/0311039.
@4# D.B. Kaplan, Phys. Lett. B288, 342 ~1992!; Y. Shamir, Nucl.

Phys.B406, 90 ~1993!.
@5# R. Narayanan and H. Neuberger, Nucl. Phys.B412, 574

~1994!; B443, 305 ~1995!; H. Neuberger, Phys. Lett. B417,
141 ~1998!; 427, 353 ~1998!.

@6# P.H. Ginsparg and K.G. Wilson, Phys. Rev. D25, 2649~1982!.
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