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Staggered versus overlap fermions: A study in the Schwinger model witiN;=0,1,2
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We study the scalar condensate and the topological susceptibility for a continuous range of quark masses in
the Schwinger model witiN;=0,1,2 dynamical flavors, using both the overlap and the staggered discretiza-
tion. At finite lattice spacing the differences between the two formulations become rather dramatic near the
chiral limit, but they get severely reduced, at the coupling considered, after a few smearing steps.
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[. INTRODUCTION generate fermionsa super-renormalizable thedi§] where
the scale is set through the dimensionful fundamental cou-
Recently, the staggered action when coupled to HYPpling

smeared backgroundl$] has attracted renewed interest. This
is mainly due to the cheapness of this formulation which 1
bears the promise that realistic unquenched simulations can 9= —\/— (4)
be performed with currently available resour¢@% More- avp
over, as a remnant of the fuBU(N;=d), group, the con-

tinuous “two-hop global” symmetry We produced 10000 independent gauge configurations on a

Nx N=20 lattice with the standarttompact Wilson gauge
exdifa(— 1) , actiqn atB=4, giving a p_laquette of 0.862?3_)). For each
X = ex 164~ 1) ]x(%) configuration we determine the complete eigenvalue spec-
— — . trum of the massless overlap and staggered operators. This
_ —1)=n, )
X(X) = x()ex —10a(—1)="], () allows us to compute—Tfor any given mass—the condensate

wherex=a(n ny) protects the fermion mass against and the fermion determinant, which we use to reweight our
—alng, ....Na) P 9 observables tiN;=1,2[9].

additive renormalization. On the other hand, taking the . .
square and quartic root of the determindiat obtainN;=2 We define the massive overlap operator as
+ 1 dynamical flavorsmight spoil the locality of the action am
[3], and the often believed insensitivity to topology could D°m"=(1— 5
undermine attempts to push towards the chiral limit.

The other extreme in terms of computational cost is rep- ®)
resented by the closely related domain-wdll and overlap

D%+m, aD»=1+yssignaysD¥,)

with D‘f’p the Wilson operator at negative masg/a. We

% fermions. For these actions, the Ginsparg-Wilson relatlor}urther setp—1, which we checked. following Ref10], is
an almost optimal choice with respect to locality at our cou-
pling.

(2 Previous work on the Schwinger model using a direct
approach for the computation of the scalar condensate is col-
lected in Refs[11-13 for staggered, domain wall/overlap or
both actions, respectively. We checked that we reproduce the
staggered condensate from Réf3] and the overlap conden-
sate of FHLW/GHR in Ref[12].

Dys+ysD=0, ¥5=7vs

a
1--D
p

holds in the massless limjitvith p for the moment an arbi-
trary parameter that will be specified in EG)], implying
invariance under the full chiral symmetry gro[ip|

Sy="ysi, SY=yvs ©)

at finite lattice spacing, which again excludes additive mass In the chiral limit, theN;=1 scalar condensate is given
renormalization and prevents operators in different chiraby 8] '
multiplets from mixing.

Given this situation, we decided to investigate the differ- _ y
ence between staggered and overlap fermions at finite lattice Xscd M=0) __c —0.1599 - - [N;=1] (6)
spacing in a simple theory where the concept of chiral sym- g 32 e
metry proves relevant and some interesting quantities are
known analytically. These criteria are fulfilled by the gener-For N;=2 a nonzero value would signal spontaneous sym-
alized Schwinger modelQED in 2D with Ny massive de- metry breaking and therefore violate the Mermin-Wagner-

Il. SCALAR CONDENSATE
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Hohenberg-Coleman theorefh4]. The prediction how ex-
plicit symmetry breaking modifies this zero[i$5] de(DO)N > ——
Xsca_ 1 A+m < (}\_1 a\!
1/3 =77 , = — — ,
Xsca m _ g L“g <de(D?nv)Nf> 2
=5 ~0388 (g) [N¢=2]. (7) 13

In the staggered formulation we follow R¢fL1] and imple-

wherea\ is purely imaginary and the sum excludes the dou-
ment the(1-flavon condensate through

bler modes aa\=2.
Due to the(remnant chiral symmetry of staggeretover-
lap fermions, no subtraction of the condensate at zero quark
(8) . . . )
mass is required. Furthermore, the Schwinger model is
super-renormalizable, i.e., there is no renormalization needed
where the purpose of the factor 1/2 is to compensate that infinite cutoff. In fact, due to the dimensionful coupling
two-fold degeneracy of the staggered formulation in 2D. De<{4), all lattice renormalization factors have the foid 1
noting the eigenvalues of the massless staggered Dirac op-O(a?g?) and therefore are 1, up t®(a?) corrections.
erator by\ (they show up in complex conjugate pairs with Hence, both the staggered and the overlap discretization
zero real pait the reweighted condensate is yield (for any Ny and m>0) a finite condensate which is
subject toO(a?) cutoff effects with unitZ-factor plus an
Nof2 additive piece proportional ton.
| | deDHNPE s ()\+m) A modification which is motivated by what is done in full

1 1
_—_EN_29<XX>,

Xsca_ 1 ; : . : ;
ﬁl:g 2 NIz , QCD simulations, is to consider the Dirac operator on a
9 g (det( D) ™) “copy” of an element of the Markov chain on which one
applies one or more APE/HYP smearing stépbich in 2D
de(Dﬁﬁ)=H (A+m). ) is the samg One then thinks of the operator as one in the

original links, which is less local. For the staggered action,
such a modification preserves the universality class while
with L=Na and the sum and product running over the entireconsiderably reducing the “taste” violatioi6]. Being un-
spectrum. In Ref[11] one finds also the associated free fieldaware of any detailed understanding of what the optimum
limit smearing parameter is, we decided to combine the staple and
the original link with equal weight, which means inUx1)
1 theory that one takes the arithmetic mean of the phases.
> 5 Figure 1 displays our results for the scalar condensate. As
(am)®+sin(2mi/N)*+ sin(2mj/N) expected, the overlap condensate exhibits the qualitatively
(10 correct behavior in the chiral limit. FAd;=0 it shows the
quenched divergence, while fof;=2 it tends to zero indi-
cating the absence of spontaneous chiral symmetry breaking.
Y1 the N¢=1 case it tends to a constant which seems com-
patible with the analytic resu(6) in infinite volume, marked
by an asterisk. Here, we dare to compare to the infinite vol-
('ﬂlﬂ) {//_ 75751// (11) ume value, since the results in REL7] suggest that foN;
g | =1 in a box withL>1/(y/7g) finite volume corrections are
exponentially small. On the other hand, the staggered con-
Denoting the eigenvalues of the massless overlap Dirac oglensate exhibits gualitatively wrongbehavior in the chiral
erator by\, and remembering that we work wigh=1, the limit, vanishing for allN¢ . At large masses it differs substan-

Xsca__ 2m &
o gt

which is, of course, independent f; .
For overlap fermions, the scalar condensate is unambig
ously defined a§12]

X sca_

reweighted condensate is tially from the overlap condensate, presumably due to cutoff
effects. In the intermediate region, there is a smooth turnover
ov 1—aN/2 with no sign of a quenched divergence.
e 1 de(D)N Y (I—am2n+m The dashed curve is Smilga’s infinite volume rega,

=— , while the dash-dotted graph represents the free-field expres-
g L (de(DH™1) sion (10). Finally, since changingn at fixed box-volumeV
means that one moves from the large to the small Leutwyler-
Smilga regime, the point where the Leutwyler-Smilga pa-

A+mj, (12 rameter18]

1 am
2

where the sum runs over the full spectrum. These eigenval- x=VIm (14
ues occur either in complex conjugate pairs or as isolated

chiral (double) modes atA =0(2). Finally, one can rewrite equals 1 is indicated with a vertical dotted lifE denotes
Eqg. (12 as the analytical resul(6)].

detby)=]1
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FIG. 1. Scalar condensate afteftdp) and 1(botton) steps of

APE/HYP smearing.

APE/HYP smearing.

FIG. 2. Hybrid condensate after(@p) and 1(bottom steps of

The real surprise comes when the operators are evaluatgglthe determinant and the “one over zero” in the propagator
after one step of APE/HYP smearing. The overlap condenwhich is needed to get the finite valyé) in the 1-flavor
sate staygfor any Ny) virtually unchanged, except that the case.
size of theO(a?) artefacts is modified. Formally, the same Upon applying just one step of smearing the situation im-
statement holds true with the staggered action, but from @roves dramatically; both “hybrids” look qualitatively right
quantitative point of view the change is rather dramatic. Indown to much smaller quark masses—but still, eventually
the Ny=1 case one can “trust” it down to much smaller the nonfaithful representation of the zero m¢lén the stag-
quark masses, until it finally collapses. And ;=0 it  gered part reflects itself in a fake blow-up or drop-down
shows a nice blow-up at moderately small quark masses. lose to the chiral limit.
one really considers the limih— 0 it still tends to zero, but Figure 3 contains our results for the condensate in a log-
the point where this happens is deep within theegime log representation. The overlap data show that the analytic
(x<<1) [18]. The effect of additional smearing steps will be structure in a finite volume is indeed
discussed below.

Figure 2 shows our results for the “hybrid” condensate, 1/m  (N¢=0),
labeled after the formulation used for the valence quark. The Yeeaf<{ CONSt (Ng=1), (15)
“staggered” condensat@with Ny=1,2 sea quarks built from sea
the overlap determinantooks virtually unchanged with re- m (Nr=2)
spect to Fig. 1(the curve withN;=0 is identical. On the near the chiral limit and consistent with
other hand, the “overlap” condensatevith N;=1,2 sea
quarks constructed from the staggered determjnkaks XscaPeMY? (16)

much worse than the origin@rue) overlap version; there is

a divergence neam=0 for any N;. This shows that the at large masses, albeit the coefficient in EqQ).is (presum-
failure of the unsmeared'naive/thin-link” ) staggered for- ably due to cutoff effecisnot reproduced.

mulation cannot be attributed to either the determinant or the The bottom part demonstrates that 3 APE/HYP-smearing
valence prescription alone—it is the cancellation of the zersteps manage to completely change the overall picture of the
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operator, defined as the difference of the number of negative
and positive chirality zero modes

ind(A)=n_—n, (18
in a simple manner

q(A)=ind(A), (19

3 e /f staggered, N~ while the latter says that in 2D there is no configuration
/4’ staggered, Ne=1 | which supports both positive and negative chirality zero
S staggered, N=2| |
4’4’1’ .. overlap, Nf=t0 m Odes[lg]
1,4’ — overlap, N=1
4,&’ — - overlap, N=2 n,7&0:>n+:0,
0.01 L .A/:. L . |
“0.001 0.01 0.1 n,#0=n_=0. (20
m/g

To prove the “selection theorem” one starts from the parti-
U T tion function of the massless theory in the finite volume with

Ko &

periodic boundary conditiond\;=1) [17]

qeZ

|al N B
I([Il (74 (m) ) det’(D)NfeHnS’ 7

X
o1 E _w=T /// staggered, N =
_awemT i staggered, N.=1 |
e - /// staggered, N:=2 ] (2 1)
,4' .. overlap, Nf=0 f h h h d . d b k d
/, — overlap, N=1 rom which the condensate is computed by takorge de-
v —~- overlap, Ni=2 rivative with respect tay and » and then setting the external
o1 L e e sources to zero. The outer sum is over all topological sectors

m/g

and the product is over thg| positiveor negative chirality

zero modes. The primes indicate that the determinant and the
fermion Green’s function are computed on the subspace or-
thogonal to the zero modes. A nonzero value is obtaoreg
if both derivatives hit the prefactor, leaving nothing but the
staggered condensate while the overlap condensate gets rexplicit zero mode and its conjugate behind. This can happen
caled by a factor which differs from 1 only marginally. Now, only for Ny=1 and results in a condensate which is gener-
the two formulations are in perfect agreement(atoder- atedexclusivelyby the zero modes with chirality- 1. Note
ately) small quark masses, showing only a mild discrepancythat the argument will hold true in QCD, too, once the cur-
at largerm/g: the staggered condensate seems to tend taent body of numerical evidence in favor of a vanishing theo-
wards the free-field limit(10), while the overlap version rem in 4D (see Fig. 1 in Ref[20]) has been replaced by a
moves closer to Smilga’s predictidid). Eventually, the stag- mathematical proof.
gered condensate vanishes in the chiral limit—evenNer As a technical point we mention that on the lattice we
=0. The turnover point, however, is off the scale of the plot.define the topological charge of a backgrowhds the index

of the massless overlap operaféd,7|

FIG. 3. Scalar condensate afteftdp) and 3(botton) steps of
APE/HYP smearing.

IIl. SELECTION THEOREM q(U)=ind(U)= %tr(a,},SDOV)

(22)
A remarkable feature of the Schwinger model with
=1 is the “selection theorem.” This theorem states that in
the chiral limit the nonzero valué) is formedexclusively
from the zero modes of chirality-1, which live on back-

grounds where the topological charge

and use it for both the staggered and the overlap evaluation
of the sectoral condensate.

Figure 4 displays our results for the condensate if we
truncate the partition function at a givéq| .x. The overlap
construct faithfully reproduces the “selection theorem,”
which means that thBl;=1 condensate tends to zero if one
restricts it to the topologically trivial sector, while it takes the
Schwinger valug6) in the chiral limit for any othefq| max-

Analogously, the staggered condensate exhitbits both
takes the valué- 1. This statement alludes to a combination N; shown a many-sigma difference betweé na,=0,1,2.
of the Atiyah-Singer index theorem and the vanishing theo-This disproves the widely believed fiction that staggered fer-
rem. The former relates E¢1l7) to the index of the Dirac mions are “insensitive to topology"—but they aret sen-

g
q(A)=Ef €uvF udxeZ a7
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FIG. 4. Sectoral condensate for overl@pp) and staggered FIG. 5. Sectoral condgnsate for staggered quarks with 1 and 3
quarks without smearing. steps of APE/HYP smearing.

sitive the right way they do not seem to know about the the context of this note, shall befined(in the continuum
index and the vanishing theorems which are at the root of thgnrough

“selection theorem.”

Figure 5 shows that the real surprise comes again after (de(D+m)Nig?)
one or a few APE/HYP-smearing steps. Already one step lets Xtop= 1IM - (23
the staggered;=1 condensatéat intermediate magsie- v V(de(D +m)™r)
velop a marked sensitivity on the topological charge of the o )
background. The main difference to the scalar condensate is that the to-

After two more steps the qualitative picture is just as inpological susceptibility depends only on teeaquarks, thus
the (unsmearedoverlap casésee Fig. 4, i.e., smeared stag- offering a potentially cleaner view at the effects of square-
gered fermions do know about the relationship between torooting the staggered determinant to dt=1.
pology and the chirality of zero modes—down to rather For staggered quarks, the definiti¢23), taken in fixed
small (but nonzerp quark masses. Of course, if one really volume, reduces to
performs the chiral limit, the staggered condensate still tends

to zero—for any|q|max and even in the quenched casdé ( Xwop B (de(DHN2g?)
=0). This is visible in the top of Fig. 5, while in the bottom T2 N2 JaeroSiNg (29
part it is off the scale. g (det( D) ™)

Since in the Schwinger model various observables have i ,
been seen to depend on the topological chd@f, it is while for overlap quarks, the implementation reads

surprising that the “selection theorem” has not been checked VN, 2
before. Xtop_ B (detDr)™q%)

_ 2
g2 N? (de(D)M) 29

IV. TOPOLOGICAL SUSCEPTIBILITY

Another interesting observable to study the effects of dywhere detD?) and detDg) are defined in Eq€9), (12). In
namical fermions is the topological susceptibility which, in either case the sum is over the spectrum of the massless
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FIG. 7. Physically relevant region of the Dirac spectrum on
0.04 [T some selected configurations.
L ] V. SPECTRAL HINT
oos s s e . - . .
ro : As a hint of what is the likely reason behind the remark-
e able success of one or a few APE/HYP smearing steps at the
W oeml = e J B value considered, we would like to present the effect of
g 227 . . . ..
G = 1 such a modification on the spectrum of some individual con-
////” ST —— ] figurations. In Fig. 7 we plot the physically relevant part of
ok 57 staggered, M2 | the spectrum Aof the staggeréthe ax from Eg. (9)] and
t Yy = :PEF; 1 overlap [the axn from Eq. (13)] operator on four selected
i — - overlap, N.=! 4 . . .
L/ i i configurations before and after smearing.
N P T T T T The two configurations on the left are typical examples

0 0l 02 0.3 04 05 06 07 for topological chargeg=0 and|qg|=1, respectively. One
sees that on the unsmeared configurations the staggered
FIG. 6. Topological susceptibility with Qtop) and 1 steps of Spectrum does not resemble that of the overlap operator. Fur-
APE/HYP smearing. thermore, it is hard to see a qualitative difference between
q=0 and|g|=1 in the spectrum of the original staggered
operator, and we apply the overlap definiti®2) of the  operator. After a few smearing steps this picture changes.
topological charge in both Eq§24) and(25). The eigenvalues of the staggered operator seem to form near-
Finally we would like to mention the continuum predic- degenerate pairs which sit close to a single ovealamn the
tion how the topological susceptibility in QCD tends to zero,same configuration. In particular, in thgl=1 case a pair of
if the quark mass dogd 8] [the LS parametex was defined  eijgenmodes moves very close to the real axis. Clearly, such a
in Eq. (14)], shift mimics the effect of the true zero mode in the overlap
counterpart down to rather small quark masses. It is only

_ E_m (Ny=1\/x>1) (26) when the mass becomes comparable to the smédlestared
Xtop \P Y ' staggerepleigenvalue that the absence of an exact zero-mode
matters and a qualitative difference between the staggered

Xtop™ MVt (x<<1). (270  and overlap Dirac operator®n that configurationshows

up.

Figure 6 contains our results for the mass dependence of the In the third column of Fig. 7, a typical configuration with
topological susceptibility, defined via Eq&4), (25). The  higher topological charge|§|=4) is displayed. Here, the
full and the dashed lines represent the prediction of(26).  picture is not so nice any more, since after 3 smearing steps
for the cased;=1,2, respectively. One can see that for bothonly 3 pairs of eigenmodes have come close to the real axis
discretizationsy,, gets suppressed by dynamical fermionand the fourth one is still somewhat further out.
effects, but close to the chiral limit only the overlap determi- To show that these findings are not generic, the last col-
nant leads to results which are compatible with the QCDumn of Fig. 7 presents a selected configuration on which the
prediction(26) for N;=1 and(27) for N;=2. topological charge varies repeatedly under subsequent

Again, just one smearing step proves sufficient to almossmearing steps. Qualitative resemblance between the spectra
eliminate the lattice artefacts the “unsmeared/naive” stag-of the two operators is vague at best and there is no evidence
gered determinant was plagued with, while the topologicabf a pair of staggered eigenvalues moving close to the real
susceptibility for overlap fermions stays basically invariantaxis. Obviously, such “sick” configurations will occur more
under such a modification. frequently at larger coupling.
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VI. SUMMARY remarkable sensitivity ofg|,ax for Ny=0 andN;=1, repro-
ducing the “selection theorem” in the latter case. Finally, the
staggered artefacts in the topological susceptibility get dras-
tically reduced, resulting in good agreement with the overlap
curve down to very small quark masses.

(7) The main difference after a few smearing steps is the
size of lattice artefacts in the condensate at large quark
masses which make the smeared overlap conde(fsat@ny
N;) lie closer to the analytical predictiof) by Smilga,

Our findings may be summarized by the following state-
ments:

(1) At finite spacing and in a finite box, the “naive” stag-
gered action leads to a scalar condensate whidjuédita-
tively wrong the staggered results vanish in the chiral limit
for any N¢, while the overlap successfully reproduces the
guenched~1/m divergence, and the analytically known

Schwinger value in the chiral limit fol;=1. while the smeared staggered values move more towards the

(stz(aZ) ecrggs\i/czj;er:wncge bﬁ?rk;y\?v?ti g\f,e:&yb;ig; fOJfr;llilsagcr)wgsvi free field prediction(10). The qualitative failure of staggered
99 . quar P q $&rmions in the chiral limit is only visible at very small quark
versa we find that the failure of the naive staggered formu—masses

Iart:)or{:1 c;r(;t:(;tlobneeattnbuted to either the determinant or the (8) Under moderate smearing the modes of the massless
P (g) gl'he “select.ion theorem” is reproduced. in an impres- staggered Dirac operator form near-degenerate pairs which
P ’ P ove close to the corresponding overl(amgle eigenvalues

sive manner, with overlap fermions, while naive staggered . _
fermions fail completely. (N\), supporting the square root and factor 1/2 procedure for

(4) The topological susceptibility shows lattice artefactsSt@99ered spectroscopy. On nontrivial backgrounds the mis-

which are large for unimproved staggered fermions, whildalch between the staggered fake zero mode and the true
the overlap results seem consistent with the known chiraPVeriap zero gives an estimate of the quark mass at which the
behavior. deficiency of the staggered formulation gets visible, though

(5) Taking the square root of the staggered determinant t§1€re are configurations which break this analogy.
haveN;=1 seems to be no more or less harmful than divid-_/AS @ warning against an overly optimistic interpretation of
ing by 2, in the valence sector, to get the 1-flavor condensat®/8: We feel obliged to recall that we were working with

All naive staggered results seem to only gradually vary fmféirly smooth gauge fiel<_js. It is not clear Whether suph a nice
N;=0,1,2—even near the chiral limit, where they shoulgPattern holds true also in QCD at accessible couplings.

not.

(6) At the B value considered, already one smearing step
brings a remarkable improvement: although formally the chi-
ral limit of staggered fermions is still wrong, the mass at We are indebted to Gunnar Bali for bringing to our atten-
which one begins to see this is dramatically lowered. Attion the interest in checking chiral properties of staggered
moderate quark masses, one observes a clear blow up of tfermions in a simple model. We thank Steve Sharpe for the
APE/HYP smeared staggered condensatéNfer O, while it suggestion to study the effect of APE/HYP smearing. S.D.
stays close to the Schwinger val(® for Ny=1 and keeps wishes to acknowledge useful discussions with Rainer Som-
the qualitatively correct behavior &i;=2. Moreover, in  mer, C.H. with Christian Lang and Laurent Lellouch. S.D. is
spite of naive staggered fermions being misguided in the wagupported by DFG in SFB/TR-9, C.H. is supported by EU
they see topology, the APE/HYP variety condensate shows &rant No. HPMF-CT-2001-01468.
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