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Study of qq̄ states in transverse lattice QCD using alternative fermion formulations
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In this work we investigateqq̄ spectra and wave functions of light front transverse lattice Hamiltonians that
result from different methods of formulating fermions on the transverse lattice. We adopt the one link approxi-
mation for the transverse lattice and discrete light cone quantization~DLCQ! to handle longitudinal dynamics.
We perform a detailed study of the continuum limit of DLCQ and associated techniques to manage severe light
front infrared divergences. We explore the effects of various parameters of the theory, especially the strength of
the helicity-flip interaction and the link mass on spectra and wave functions.
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I. INTRODUCTION

A promising method to calculate observables in QCD
the transverse lattice formulation@1–3#. In this method, one
keepsx65x06x3 continuous and discretizes the transve
space spanned by coordinatesx'5(x1,x2). With the gauge
choice A150, A2 becomes a constrained variable whi
can be eliminated in favor of dynamical gauge variables.
far very encouraging results have been obtained in the p
gauge and meson sectors@4–6#.

Because of the doubling phenomena, fermions on the
tice pose challenging problems. To date, calculations of
son properties using transverse lattice have employed Wi
fermions@7#. It is well known that the Wilson term explicitly
breaks chiral symmetry and makes it difficult to explore t
consequences of spontaneous chiral symmetry breakin
the chiral limit. In this limit, in the one link approximation
on the transverse lattice, the Wilson term can be adjuste
produce the desirable level splitting betweenp andr. This,
however, results in the undesirable consequence that
splitting of the r multiplet is almost as large as thep-r
splitting. Because of the doubling problem, one cannot k
the Wilson term very small. Thus it is desirable to explo
other formulations of fermions on the transverse lattice t
may have different chiral properties.

In a recent work@8# we have addressed the problems
fermions on the light front transverse lattice. We propos
and numerically investigated different approaches of form
lating fermions on the transverse lattice. In one approa
which uses forward and backward derivatives, fermion d
bling is absent and the helicity flip term which is propo
tional to the fermion mass in light front QCD becomes
irrelevant term in the free field limit. In the literature, sym
metric derivatives have been used which lead to ferm
doubling due to the decoupling of even and odd lattic

*Electronic address: dipankar@theory.saha.ernet.in
†Electronic address: hari@theory.saha.ernet.in
‡Electronic address: jvary@iastate.edu
0556-2821/2004/69~3!/034502~17!/$22.50 69 0345
s

e

o
re

t-
e-
on

in

to

he

p

t

f
d
-

h,
-

n
.

Using the light front staggered fermion formulation and t
Wilson fermion formulation, we studied the removal of do
blers from the spectrum. Our investigations lead to the id
tification of an even-odd helicity flip symmetry of the ligh
front transverse Hamiltonian, the absence of which me
the removal of doublers in all the cases that we studied.

In this work we make a detailed comparison of vario
light front QCD Hamiltonians that result from different way
of formulating fermions on the transverse lattice. As the fi
step in our calculations, we adopt the one link approximat
in the meson sector which has been widely used in the
erature.~Only very recently, the effect of additional links i
the meson sector has been investigated@6#.! Since the one
link approximation is very crude, our aim is not to reprodu
physical observables. Rather, we explore the effects of v
ous coupling strengths on the low-lying spectra and wa
functions and compare two different formulations.

We use discretized light cone quantization~DLCQ! @9# to
address longitudinal dynamics. Because of the presenc
severe light front infrared divergences, a major concern h
is the reliability of DLCQ results when calculations are do
at finite resolutionK and results are extrapolated to the co
tinuum (K→`). In meson calculations so far,K<20 have
been chosen. In this work we perform a detailed study of
continuum limit of DLCQ by performing calculations a
larger values ofK.

In the meson sector, in the zero link approximation,
each transverse location we have a two-dimensional fi
theory which in the largeNc limit ~whereNc is the number
of colors! is nothing but the ’t Hooft model. In this well-
studied model, excited states are simply excitations of theqq̄
pair, which contain nodes in the wave functions. The pict
changes when one link is included, thereby allowing ferm
ons to hop. The admixture ofqq̄ link states withqq̄ states is
controlled by the strengths of the particle number chang
interactions and the mass of the link field. One link appro
mation is a priori justified for very massive links and/o
weak particle changing interaction since in this case lo
lying excited states are alsoqq̄ excitations. Likewise, for
large particle changing interaction strength and/or light li
©2004 The American Physical Society02-1
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mass, low-lying excited states areqq̄ link states. We explore
the spectra and wave functions resulting from the choice
various regions of parameter space.

The plan of this paper is as follows. In Sec. II we pres
the details of the light front transverse lattice Hamiltoni
resulting from the use of forward and backward derivativ
and the resulting effective Hamiltonian when the unitary li
variables are replaced by general complex matrices. In
section we also present the canonical transverse lattice Q
Hamiltonian resulting from the addition of the Wilson term
Section III contains comparisons of numerical results for
two Hamiltonians. Finally Sec. IV contains our summary a
conclusions. Typical terms in the Hamiltonian with forwa
and backward derivatives in the Fock representation
DLCQ is presented in Appendix A. Explicit expressions f
the states are given in Appendix B. For completeness,
plicit expressions for the matrix elements in the forwa
backward case and the Wilson case are presented in Ap
dixes C and D.

II. HAMILTONIANS

Due to the constraint equation in the light front theo
different methods are possible to put fermions on the tra
verse lattice. In this section we present the detailed struc
of the resulting QCD Hamiltonians for two methods studi
in Ref. @8#, namely, forward and backward derivatives a
symmetric derivatives together with the Wilson term.

A. Hamiltonian with forward and backward derivatives

Details of the derivation of the fermionic part of th
Hamiltonian are already given in Ref.@8#. Here we give the
details of the gauge field part of the Hamiltonian. Nonline
constraints on the unitary link variables make it difficult
perform canonical quantization. We also present the effec
Hamiltonian when nonlinear unitary variables are replac
by linear variables.

1. Gauge field part of the Lagrangian density

The gauge field part of the Lagrangian density in the c
tinuum is

LG5
1

2g2 Tr FrsFrs, ~2.1!

where Frs5]rAs2]sAr1@Ar,As# with Ar5 igAraTa.
Here r,s50,1,2,3 anda51,2, . . . ,8. Forease of notation
we suppress the dependence of field variables on the lo
tudinal coordinate in this section. With the gauge cho
A150, the Lagrangian density can be separated into th
parts,

LG5LT1LL1LLT . ~2.2!

HereLT depends entirely on the lattice gauge fieldUr(x),
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LT5
1

g2a4 (
rÞs

$Tr@Ur~x!Us~x1ar̂ !

3U2r~x1ar̂1aŝ!U2s~x1aŝ!21#%. ~2.3!

The purely longitudinal partLL depends on the constraine
gauge fieldA2,

LL5
1

8
~]1A2a!2 ~2.4!

and the mixed partLLT depends both on lattice gauge fie
and the constrained gauge field,

LLT5
1

g2a2 Tr@]mUr~x!]mUr
†~x!#1

1

2a2 gA2aJLINK
1a .

~2.5!

Here the link current

JLINK
1a ~x!5(

r

1

g2 Tr$Ta@Ur~x!i ]1
↔

Ur
†~x!

1Ur
†~x2ar̂ !i ]1

↔
Ur~x2ar̂ !#%. ~2.6!

Substituting back the expression forA2a from the con-
straint equation

~]1!2A2a5
2g

a2
@JLINK

1a 2Jq
1a# ~2.7!

with

Jq
1a~x!52h†~x!Tah~x!, ~2.8!

whereh is the dimensionless two-component lattice fermi
field, in theA2a dependent terms in the Lagrangian dens
namely,

2
1

2

g

a2
A2aJq

1a1
1

8
~]1A2a!21

1

2

g

a2
A2aJLINK

1a ~2.9!

we generate the terms

g2

2a4 JLINK
1a S 1

]1D 2

JLINK
1a 1

g2

2a4 h†TahS 1

]1D 2

h†Tah

2
g2

a4 JLINK
1a S 1

]1D 2

h†Tah. ~2.10!

Collecting all the terms, the canonical Lagrangian density
transverse lattice QCD is
2-2
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L5
1

a2 h†~x!i ]2h~x!1
1

a4g2 Tr@]mUr~x!]mUr
†~x!#

2
m2

a2 h†~x!
1

i ]1
h~x!1 im

1

a2 h†~x!ŝs

1

a

1

]1
@Us~x!h~x1a ŝ!2h~x!#

1 im
1

a2 @h†~x1ar̂ !Ur
†~x!2h†~x!#ŝ r

1

a

1

]1
h~x!

2
1

a4 @h†~x1ar̂ !Ur
†~x!2h†~x!#ŝ r

1

i ]1
ŝs@Us~x!h~x1a ŝ!2h~x!#

1
1

a4g2 (
rÞs

$Tr@Ur~x!Us~x1ar̂ !U2r~x1ar̂1a ŝ!U2s~x1a ŝ!21#%

1
g2

2a4 JLINK
1a S 1

]1D 2

JLINK
1a 1

1

2a4 g2Jq
1aS 1

]1D 2

Jq
1a2

g2

a4 JLINK
1a S 1

]1D 2

Jq
1a . ~2.11!
a-

on

e

ad

rs
Here ŝ15s2 , ŝ252s1. In the two-component represent
tion @10#, the dynamical fermion field

c1~x2,x'!5F 1

a
h~x2,x'!

0
G , ~2.12!

whereh is the dimensionless two component lattice fermi
field.

2. Effective Hamiltonian

Because of the nonlinear constraintsU†U51, detU51,
it is highly nontrivial to quantize the system. Hence Barde
and Pearson@1# and Bardeen, Pearson, and Rabinovici@2#
proposed to replace the nonlinear variablesU by linear vari-
ables M where M belongs toGL(N,C), i.e., we replace
(1/g)Ur(x)→Mr(x). Once we replaceU by M, many more
terms are allowed in the Hamiltonian. Thus one needs to
an effective potentialVe f f to the Lagrangian density

Ve f f52
m2

a2 Tr~M†M !1l1 Tr@~M†M !2#

1l2@det M1H.c.#1•••. ~2.13!

Thus, the effective Hamiltonian for QCD on the transve
lattice becomes

Pf b
2 5Pf f ree

2 1PV
21Pf h f

2 1Ph f
2 1Pchn f

2

1Pqqc
2 1Pggc

2 1Pqgc
2 1Pp

2 . ~2.14!

The free fermion part is

Pf f ree
2 5E dx2(

x
S m21

2

a2Dh†~x!
1

i ]1 h~x!.

~2.15!
03450
n
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The effective potential part is

PV
25E dx2a2(

x
S m2

a2 Tr~M†M !2l1Tr@~M†M !2#

2l2@detM1H.c.#1••• D . ~2.16!

The free helicity-flip part is

Pf h f
2 52imE dx2(

x
(

s
h†~x!ŝs

1

a

1

]1 h~x!. ~2.17!

Helicity flip associated with the fermion hop is

Ph f
2 52 imgE dx2(

x
(

s
h†~x!

3ŝs

1

a

1

]1@Ms~x!h~x1aŝ!#

2 imgE dx2(
x

(
r

@h†~x1ar̂ !Mr
†~x!#

3ŝ r

1

a

1

]1 h~x!. ~2.18!

Canonical helicity nonflip terms are
2-3
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Pchn f
2 52

g

a4E dx2a2(
x

(
rs

@h†~x1ar̂ !Mr
†~x!#ŝ r

1

i ]1ŝs@h~x!#

2
g

a4E dx2a2(
x

(
rs

@h†~x!#ŝ r

1

i ]1ŝs@Ms~x!h~x1aŝ!#

2
g2

a4E dx2a2(
x

(
rs

@h†~x1ar̂ !Mr
†~x!#ŝ r

1

i ]1ŝs@Ms~x!h~x1aŝ!#. ~2.19!
q.
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The four-fermion instantaneous term is

Pqqc
2 522

g2

a2E dx2(
x

h†~x!Tah~x!
1

~]1!2 h†~x!Tah~x!.

~2.20!

The four link instantaneous term is

Pggc
2 52

1

2

g2

a2E dx2(
x

JLINK
1a ~x!

1

~]1!2 JLINK
1a ~x!.

~2.21!

The fermion-link instantaneous term is

Pqgc
2 52

g2

a2E dx2(
x

JLINK
1a ~x!

1

~]1!2 h†~x!Tah~x!.

~2.22!

The plaquette term is

Pp
252

g2

a4E dx2a2(
x

(
rÞs

$Tr@Mr~x!Ms~x1ar̂ !

3M 2r~x1ar̂1aŝ!M 2s~x1aŝ!21#%. ~2.23!

Here

JLINK
1a ~x!5(

r
Tr$Ta@Mr~x!i ]1

↔
Mr

†~x!

1Mr
†~x2ar̂ !i ]1

↔
Mr~x2ar̂ !#%. ~2.24!

3. Violations of hypercubic symmetry

The canonical helicity nonflip interactions given in E
~2.19! for rÞs break the hypercubic symmetry on the tran
verse lattice. For interacting theory this is also true for
Hamiltonian with a symmetric derivative. In the free fie
limit they do not survive for the Hamiltonian with a symme
ric derivative but for a forward-backward derivative they su
vive. In that case, in the free field limit they reduce to
03450
-
e

-

1

a2E dx2(
x

(
rÞs

Fh†~x1ar̂ !ŝ r ŝs

1

]1
h~x!

1h†~x!ŝ r ŝs

1

]1
h~x1aŝ!

2h†~x1ar̂ !ŝ r ŝs

1

]1
h~x1aŝ!G . ~2.25!

Going to the transverse momentum space via

h~x2,x'!5E d2k'eik'
•x'

fk'~x2! ~2.26!

we get

2
2

a2E dx2E d2k'fk'
†

~x2!s3

1

i ]1
fk'~x2!

3@sin~kya!2sin~kxa!1sin~kxa2kya!#. ~2.27!

Thus the violations of hypercubic symmetry are of the ord
of the lattice spacinga. The sign in front of this term change
if we switch the forward and backward derivatives.

In our numerical studies presented in Ref.@8# and in this
work, we have set the coefficients of the hypercubic symm
try violating terms to zero.

B. Canonical transverse lattice QCD with the Wilson term

When one uses symmetric derivatives for the ferm
fields, doublers arise as a result of the decoupling of e
and odd lattice sites. To remove the doublers one may use
Wilson fermions@7# or the Kogut-Susskind fermions@8,11#.
In this section, the details of the structure of the Hamilton
resulting from the modification of the Wilson term are pr
sented.

1. Constraint equation

The symmetric derivative is defined by

Drc
6~x!5

1

2a
@Ur~x!c6~x1ar̂ !2U2r~x!c6~x2ar̂ !#.

~2.28!

Again we make the replacement (1/g)Ur(x)5Mr(x). An-
ticipating doublers, we can add a ‘‘Wilson term’’:
2-4
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dL5
k

a
c̄~x!@gMr~x!c~x1ar̂ !

22c~x!1gM2r~x!c~x2ar̂ !#, ~2.29!

wherek is the dimensionless Wilson parameter. Explicitly,
terms of the dynamical fieldc1 and the constrainedc2

dL5
k

a
c2†~x!g0@gMr~x!c1~x1ar̂ !22c1~x!

1gM2r~x!c1~x2ar̂ !#

1
k

a
c1†~x!g0@gMr~x!c2~x1ar̂ !22c2~x!

1gM2r~x!c2~x2ar̂ !#. ~2.30!

The constraint equation forc2 in the presence of the Wilso
term is
03450
i ]1c2~x!5mgoc1~x!1 i
a r

2a
@gMr~x!c1~x1ar̂ !

2gM2r~x!c1~x2ar̂ !#

2
k

a
g0@gMr~x!c1~x1ar̂ !22c1~x!

1gM2r~x!c1~x2ar̂ !#. ~2.31!

2. Hamiltonian: Symmetric derivatives and the Wilson term

After a great deal of algebra, we arrive at the Ham
tonian,

P25Pf f ree
2 1PV

21Ph f
2 1Pwh f

2 1Pchn f
2 1Pwn f1

2 1Pwn f2
2

1Pqqc
2 1Pggc

2 1Pqgc
2 1Pp

2 . ~2.32!

The free fermion part is

Pf f ree
2 5E dx2a2(

x

1

a2S m14
k

aD 2

h†~x2,x!
1

i ]1 h~x2,x!.

~2.33!

The helicity flip part is
Ph f
2 52gE dx2(

x
H S m14

k

aD 1

2a
h†~x!(

r
ŝ r

1

i ]1 @Mr~x!h~x1ar̂ !2M 2r~x!h~x2ar̂ !#

2S m14
k

aD 1

2a (
r

@h†~x2ar̂ !ŝ rM r~x2ar̂ !2h†~x1ar̂ !ŝ rM 2r~x1ar̂ !#
1

i ]1 h~x!J . ~2.34!

The Wilson term induced helicity flip part

Pwh f
2 5g2E dx2(

x
H k

a

1

2a (
r

(
s

@h†~x2ar̂ !Mr~x2ar̂ !1h†~x1ar̂ !M 2r~x1ar̂ !#

3
1

i ]1ŝs@Ms~x!h~x1aŝ!2M 2s~x!h~x2aŝ!#

2
k

a

1

2a (
r

(
s

@h†~x2ar̂ !ŝ rM r~x2ar̂ !2h†~x1ar̂ !ŝ rM 2r~x1ar̂ !#

3
1

i ]1 @Ms~x!h~x1aŝ!1M 2s~x!h~x2aŝ!#J . ~2.35!

The canonical helicity nonflip term arising from the fermion constraint is

Pchn f
2 52g2E dx2(

x

1

4a2 (
r

(
s

@h†~x2ar̂ !ŝ rM r~x2ar̂ !2h†~x1ar̂ !ŝ rM 2r~x1ar̂ !#

3
1

i ]1ŝs@Ms~x!h~x1aŝ!2M 2s~x!h~x2aŝ!#. ~2.36!
2-5
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The Wilson term induced helicity nonflip terms are

Pwn f1
2 52gE dx2(

x
H S m14

k

aDk

a
h†~x!

1

i ]1 (
r

@Mr~x!h~x1ar̂ !1M 2r~x!h~x2ar̂ !#

1S m14
k

aD k

a (
r

@h†~x2ar̂ !Mr~x2ar̂ !1h†~x1ar̂ !M 2r~x1ar̂ !#
1

i ]1h~x!J ~2.37!

and

Pwn f2
2 52g2E dx2(

x

k2

a2 (
r

(
s

@h†~x2ar̂ !Mr~x2ar̂ !1h†~x1ar̂ !M 2r~x1ar̂ !#

3
1

i ]1 @Ms~x!h~x1aŝ!1M 2s~x!h~x2aŝ!#. ~2.38!
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Comparing the Hamiltonians with~a! the forward-backward
derivative and~b! the symmetric derivative with the Wilso
term, we notice that the only differences are in the parti
number changing interactions, namely, helicity flip and h
licity nonflip terms.

III. ONE LINK APPROXIMATION

A. Relevant interactions

In the one link approximation, for either Hamiltonian, th
four link instantaneous term and the plaquette term do
contribute and only the link mass term of the effective p
tential contributes. Further, in the case of the forwa
backward Hamiltonian, the helicity nonflip part proportion
to g2 does not contribute. For the Wilson term modifie
Hamiltonian, the Wilson term induced helicity flip pa
Pwh f

2 , the canonical helicity nonflip termPcnh f
2 , and the

term proportional tok2 in the Wilson term induced helicity
nonflip part do not contribute. Thus in the case of the Wils
term modified Hamiltonian the entire fermion hopping wi
no helicity flip arises from the Wilson term.

B. Comparison with one gluon exchange in the continuum

It is interesting to compare the one link approximation
the transverse lattice with the one gluon exchange appr
mation in the continuum. In the latter, a major source
singularity is thek'/k1 term in the quark-gluon vertex
wherek' (k1) is the gluon transverse~longitudinal! momen-
tum. This originates from theA2Jq

1 interaction term in the
Hamiltonian via the (1/]1)]'

•A' contribution to the con-
strained fieldA2. This term gives rise to quadratic ultravio
let divergence in the transverse plane accompanied by li
divergence in the longitudinal direction in fermion se
energy. On the transverse lattice,]1A2}(1/]1)JLINK

1 so that
A2Jq

1→JLINK
1 @1/(]1)2#Jq

1 . Thus a term which gives rise t
severe divergence structure in the continuum gets burie
the fermion-link instantaneous interaction term which giv
rise to a term in the gauge boson fermion vertex in the c
tinuum in Abelian theory. In the non-Abelian gauge theo
03450
e
-

ot
-
-
l

n

i-
f

ar

in
s
-

this gives rise to a term in the quark-gluon vertex and also
the instantaneous quark-gluon interaction in the continuu

The transfer of the troublesome term from the qua
gluon vertex in the continuum theory to the quark-link i
stantaneous interaction term in the lattice theory has an
teresting consequence. In the continuum theory, the add
of a gluon mass term by hand spoils the cancellation of
light front singularity between one gluon exchange and
instantaneous four-fermion interaction. On the transverse
tice this cancellation is absent anyway with or without a li
mass term.

C. Longitudinal dynamics and effects of transverse hopping

We first consider the dynamics in the absence of any li
In this case, fermions cannot hop, and at each transv
location we have~111!-dimensional light front QCD which
reduces to the ’t Hooft model in the largeNc limit. In this
case quarks and antiquarks at the same transverse po
interact via the spin independent instantaneous interac
which, in the nonrelativistic limit, reduces to the linear p
tential in the longitudinal direction. The only parameters
the theory are the dimensionless fermion massmf5am and
the gauge couplingg. The spectrum consists of a groun
state and a tower of excited states corresponding to the

citations of theqq̄ pair.

Next consider the inclusion of theqq̄ link states. There
are four independent amplitudes corresponding to whe
the quark is left, right, above, or below the antiquark. W
nonzero mass of the link, these states lie above the gro
state of a pure quark-antiquark system. Further, theq, q̄, and
link ~which are frozen at their transverse positions! undergo
fermion-link instantaneous interactions in the longitudin
direction which further increases the mass of theqq̄ link
states. Now the quark or antiquark can hop via helicity flip
helicity nonflip. Here we find a major difference between t
Hamiltonians resulting from a forward-backward derivati
and a symmetric derivative. Let us first consider the helic
flip hopping term in the forward-backward case
2-6
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Ph f
2 52 imgE dx2(

x
(

r
Fh†~x!ŝ r

1

a

1

]1 h~x1ar̂ !

1h†~x1ar̂ !Mr
†~x!ŝ r

1

a

1

]1h~x!G . ~3.1!

If we consider the transition from a two particle to a thr
particle state by a quark hop, then the first term in Eq.~3.1!
corresponds tou2&→u3a& and the second term correspon
to u2&→u3b&. The helicity flip term in the symmetric deriva
tive case, after making some shifts in lattice points, can
written as

Ph f
2 52gS m14

k

aD
3

1

2aE dx2(
x

(
r

F H h†~x!ŝ r

1

i ]1Mr~x!h~x1ar̂ !

2h†~x!ŝ rM r~x!
1

i ]1 h~x1ar̂ !J
2H h†~x!ŝ r

1

i ]1M 2r~x!h~x2ar̂ !

2h†~x!ŝ rM 2r~x!
1

i ]1h~x2ar̂ !J G . ~3.2!

For the Hamiltonian with symmetric derivative, a quark
antiquark hopping accompanied by helicity flip has oppos
signs for forward and backward hops. On the other ha
hopping accompanied by helicity nonflip have the sa
signs. As a result, there is no interference between heli
flip and helicity nonflip interactions@7#. In the case of the
Hamiltonian with the forward-backward derivative, quark,
antiquark hopping accompanied by helicity flip has the sa
sign for forward and backward hops. As a consequence
helicity nonflip hop can interfere with the helicity flip hop
This has immediate consequences for the spectrum. In
case with a symmetric derivative, in the lowest order per
bation theory, the helicity zero states mix with each oth
which causes a splitting in their eigenvalues resulting in
singlet state lower than the triplet state. On the other ha
helicity plus or minus one states do not mix with each ot
or with helicity zero states, resulting in a twofold dege
eracy. In the case with forward and backward derivatives
helicity states mix with each other, resulting in the compl
absence of degeneracy.

IV. SINGULARITIES, DIVERGENCE,
AND COUNTERTERMS

Since the transverse lattice serves as an ultraviolet re
lator, we need to worry about only light front longitudin
momentum singularities.

A. Tree level

We take all the terms in the Hamiltonian to be norm
ordered. At tree level this leaves us with singular factors
03450
e

e
d,
e
ty

e
he

he
r-
r
e
d,
r

-
ll
e

u-

l
f

the form 1/(k)2 in the normal ordered four fermion and fe
mion link instantaneous interactions. The singularities
removed by adding the counterterms used in the previ
work @4# on transverse lattice. The explicit forms of th
counterterms are given in Appendix C in the appropri
places.

B. Self-energy corrections

In the one link approximation, a quark can make a f
ward ~backward! hop followed by a backward~forward! hop
resulting in self-energy corrections. In a single hop, helic
flip or nonflip can occur. In the case of symmetric deriv
tives, helicity flip cannot interfere with helicity nonflip, an
as a consequence, self-energy corrections are diagonal in
licity space. In the case of forward and backward derivativ
the interference is nonzero, resulting in self-energy corr
tions both diagonal and off-diagonal in the helicity spac
Similar self-energy corrections are generated for an a
quark also. These self-energy corrections contain a loga
mic light front infrared divergence which must be remov
by counterterms. In Appendix E we present the explicit fo
of counterterms in the two cases separately. In previ
works on one link approximation@4,5,7#, these counterterms
were not implemented.

V. NUMERICAL RESULTS

We diagonalize the dimensionless matrixa2P2. We fur-
ther divide the matrix elements byg2Cf which is the strength
of the matrix elements for four fermion and fermion-lin
instantaneous interactions. Now, we define the constanG
with a dimension of mass byG25(g2/a2)Cf . DLCQ yields
M2/G2.

The dimensionless couplings are introduced@4# as fol-
lows: fermion massmf5m/G, link massmb5m/G, particle
number conserving helicity flip couplingmf /(aG)5mfC1,
particle number nonconserving helicity flipANgmf /(aG)
5mfC2, and particle number nonconserving helicity nonfl
ANg/(a2G2)5C3. In the case of the Wilson term modifie
Hamiltonian, we have the fermion mass termmf5(m
14k/a)/G, helicity-flip coupling ANgm f/(2aG)5mfC̃2,
and helicity nonflip couplingANgmfk/(aG)5mfC̃3.

All the results presented here were obtained on a sm
cluster of computers using the many fermion dynam
~MFD! code@12# that implements the Lanczos diagonaliz
tion method in parallel environment. For lowK values, the
results were checked against an independent code runnin
a single processor.

A. Cancellation of divergences

As we already mentioned, we encounter 1/(k1)2 singu-
larities with instantaneous four fermion and instantane
fermion-link interactions which give rise to linear dive
gences. We remove the divergences by adding appropria
chosen counterterms. We have numerically checked the
moval of a linear divergence by counterterms in DLCQ. Fi
we consider onlyqq̄ states with instantaneous interactio
2-7
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We study the ground state eigenvalue as a function ofK with
and without the counterterm. Results are presented in
1~a!. Next we consider onlyqq̄ link states with fermion-link
instantaneous interaction with and without the counterter
The behavior of ground state eigenvalue as a function ofK is
presented in Fig. 1~b!. In both cases, it is evident that th
counterterms are efficient in removing the divergence.

B. qq̄ at the same transverse location

Next we study the spectrum of the Hamiltonian in t
absence of any links. Since in this case the Hamiltonian
pends only on the dimensionless ratiomf /g we fix g51 and
vary mf to study the spectra. The Hamiltonian matrix is d
agonalized for various values ofK. The convergence of the
ground state eigenvalue as a function ofK is presented in
Table I. The ground state wave function squared as a fu
tion of the longitudinal momentum fractionx is plotted in

FIG. 1. Effect of the counterterm on the ground state eigenva

~a! With and without the counterterm in theqq̄ sector for mf

50.3. ~b! With and without the counterterm in theqq̄ link sector
for mf50.3 andmb50.2.

TABLE I. Ground state eigenvalue~in units of G2) for qq̄ sit-
ting at the same transverse location.

K Eigenvalue (M 2)
mf50.3 mf50.9 mf53.0

10 0.620 4.547 39.233
18 0.693 4.664 39.861
30 0.745 4.724 40.053
50 0.788 4.762 40.163
78 0.819 4.783 40.220
98 0.832 4.791 40.241

K→` 0.869 4.820 40.285
03450
g.

s.

e-

c-

Fig. 2. The convergence of the wave function has a v
different behavior as a function of fermion massmf . As can
be seen from this figure, the convergence inK is from above
for heavymf and from below for lightmf . As a consequence
the wave function is almost independent ofK whenmf is of
orderg.

C. Results of the one link approximation

We encountered logarithmic infrared divergences due
self-energy corrections and, in Appendix E, we discuss
associated counterterms. In Fig. 3 we show the effect of s
energy counterterms on the ground state energy in the
Hamiltonian cases we studied.

The quark distribution function for the ground state a
the fifth state for the set of parametersmf50.3, mb

50.2, C250.4, C350.01, andK530 is presented in Fig. 4
In this figure we also present separately the contribut
from two particle and three particle states. As expected,
contribution from the three particle state peaks at smallex
compared to the two particle state. The exact location of
peak depends on the link mass. The convergence of the
est four eigenvalues withK for the Hamiltonian with
forward-backward and symmetric lattice derivatives
shown in Table II formf50.3, mb50.2. We also show the
results extrapolated toK→`.

It is interesting to see the effect of the fermion-link insta
taneous interaction on the low-lying eigenvalues. In its a
sence, there is no confining interaction in the longitudin
direction in theqq̄ link sector. Furthermore, the mass of th
lowest state in this sector corresponds to the threshold m
in this sector. Since its mass is lowered, it mixes mo
strongly with theqq̄ sector in the ground state. The fifth sta
now corresponds to an almost freeqq̄ link state with an
infinitesimalqq̄ component as shown in Fig. 5.

VI. SUMMARY, DISCUSSION, AND CONCLUSIONS

In this work we have performed an investigation ofqq̄
states using two different light front Hamiltonians in the o
link approximation. The Hamiltonians correspond to two d
ferent ways of formulating fermions on the transverse latti
namely, ~a! forward and backward derivatives forc1 and
c2, respectively, or vice versa and~b! symmetric derivatives
for both c1 and c2. In the latter, fermion doubling is
present which is removed by the addition of the Wilson ter
In this case there is no interference between helicity flip h
and helicity nonflip hop and, as a result, theqq̄ component
of the ground state wave function, which has helicity plus
minus one, is degenerate. In the former case, interfere
between helicity flip and helicity nonflip leads to the absen
of degeneracy in the low-lying spectra. One can recover
proximate degeneracy of helicity plus or minus one com
nents only by keeping the strength of the helicity nonfl
hopping very small. In the case of forward and backwa
derivatives, terms are also present which violate hypercu
symmetry on the transverse lattice. They become irrelev
in the continuum limit when the linear variablesM are re-

e.
2-8
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FIG. 2. Quark distribution functionuc(x)u2 of

the ground state in theqq̄ approximation for
three choices of quark masses with the coupli
constantg51.0.
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placed by nonlinear variablesU. We have removed them
entirely from the Hamiltonian in the present investigation

Since the one link approximation is very crude, we ha
not attempted a detailed fit to low-lying states in the mes
sector. Instead, we have explored the effects of various c
pling strengths on the low-lying spectra and associated w
functions. In our work, longitudinal dynamics is handled
DLCQ. We have performed a detailed study of various c

FIG. 3. Effect of self-energy counterterms on the ground s

eigenvalue in the case of~a! the symmetric derivative withC̃2

50.4, C̃350.1 and~b! the forward-backward derivative withC2

50.4, C350.01. mf50.3, mb50.2 for both cases.
03450
e
n
u-
ve

-

vergence issues in DLCQ using a wide range ofK values.
We summarize our results as follows. We have shown

effectiveness of appropriate counterterms in theqq̄ and qq̄
link sector to regulate the instantaneous fermion a
fermion-link interactions, respectively. We have also check
the cancellation of logarithmic divergences due to se
energy effects. In the limit where fermions are frozen on
transverse lattice but undergo instantaneous longitudina
teraction, we have studied the convergence of ground s
wave functions with respect toK for three typical values of
the fermion mass. We have studied how the presence or
sence of the fermion-link instantaneous interaction in theqq̄
link sector affects the wave function of low-lying states. W
have also studied the consequences of the interferenc
helicity flip and helicity nonflip hopping in the Hamiltonia
with forward-backward derivatives. This interference is a
sent in the symmetric derivative case.

For future studies we would like to address the problem
mesons containing one light and one heavy quark in the c
text of heavy quark effective theory on the transverse latt
A systematic study of the effects of sea quarks and additio
links on the meson observables also need to be undertake
major unsettled issue in the transverse lattice formulatio
the continuum limit of the theory when nonlinear link var
ables are replaced by link variables. It will be interesting
investigate the light front quantization problem with nonli
ear constraints. In this respect the study of the nonlin
sigma model on the light front appears worthwhile.
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FIG. 4. ~a! Quark distribution function
uc(x)u2 of the ground state in the one link ap

proximation, ~b! the qq̄ contribution to the

ground state, and~c! the qq̄ link contribution to
the ground state.~d! The quark distribution func-
tion uc(x)u2 of the fifth eigenstate in the one link

approximation,~e! theqq̄ contribution to the fifth

eigenstate, and~f! the qq̄ link contribution to the
fifth eigenstate. The parameters aremf50.3, mb

50.2, C250.4, C350.01, andK530.
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APPENDIX A: STRUCTURE OF TERMS IN DLCQ

We use DLCQ for the longitudinal dimension (2L<x2

<1L) and implement an antiperiodic boundary conditi
for the two component fermion field,

hc~x2,x!5
1

A2L
(
l

xl (
m51,3,5, . . .

@bc~m,x,l!e2 ipmx2/(2L)

1dc
†~m,x,2l!eipmx2/(2L)# ~A1!

with
03450
-

y,
-
.

$bc~m,x,l!,bc
†~m8,x8,l8!%5$dc~m,x,l!,dc

†~m8,x8,l8!%

5dmm8dx,x8dc,c8dl,l8 . ~A2!

The link field has a periodic boundary condition~with the
omission of the zero momentum mode!,

Mrpq~x2,x!5
1

A4p
(

m51,2,3, . . .

1

Am
@B2rpq~m,x1ar̂ !

3e2 ipmx2/L1Brpq
† ~m,x!eipmx2/L)# ~A3!

with

@Brpq~m,x!,Br 8Tts
†

~m8,x8!#5dmm8dx,x8d r ,r 8dpsdqt .
~A4!

The HamiltonianP25(L/p)H. In the following section we
give the explicit structure of terms in the Hamiltonian in th
980
409
620
682
693
37
TABLE II. Lowest four eigenvalues~in units of G2) in one link approximation

Forward-backward Symmetric
K (C250.01,C350.4) (C̃250.1, C̃350.4)

M 1
2 M 2

2 M 3
2 M 4

2 M 1
2 M 2

2 M 3
2 M 4

2

10 0.38041 0.4800 0.4899 0.5996 0.3486 0.4507 0.4507 0.5
18 0.3722 0.4968 0.5110 0.6447 0.3402 0.4673 0.4673 0.6
30 0.3606 0.5027 0.5210 0.6680 0.3288 0.4702 0.4702 0.6
42 0.3511 0.5029 0.5240 0.6765 0.3189 0.4677 0.4677 0.6
50 0.3457 0.5019 0.5246 0.6790 0.3130 0.4651 0.4651 0.6

K→` 0.3243 0.5022 0.5313 0.6979 0.2913 0.4589 0.4589 0.68
2-10
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FIG. 5. Without the fermion-link instanta
neous interaction:~a! The quark distribution
function uc(x)u2 of the ground state in the on

link approximation,~b! theqq̄ contribution to the

ground state, and~c! the qq̄ link contribution to
the ground state.~d! The quark distribution func-
tion uc(x)u2 of the fifth eigenstate in the one link

approximation,~e! theqq̄ contribution to the fifth

eigenstate multiplied by 104, and~f! the qq̄ link
contribution to the fifth eigenstate. Parameters a
the same as in Fig. 4.
io

o

rm
forward-backward case in DLCQ restricting our discuss
to those relevant for the one link approximation.

1. Mass terms

The mass terms are

H f f ree5m2(
x

(
c

(
l

(
n

1

n
@bc

†~n,x,l!bc~n,x,l!

1dc
†~n,x,l!dc~n,x,l!#, ~A5!

HLINK f ree5
m2

2 (
x

(
r̂

(
n

1

n
@Br

†~m,x!Br~m,x!

1B2r
† ~m,x1ar̂ !B2r~m,x1ar̂ !#. ~A6!

2. Four fermion instantaneous term

The four fermion instantaneous term which gives rise t
linear potential in the color singlet state is

2
g2

pa2 (
cc8c9c-

(
ll8l9l-

(
x

dll8dl9l-

3 (
m1m2m3m4

bc
†~m1 ,x,l!dc-

†
~m4 ,x,2l-!

3bc8~m2 ,x,l8!dc9~m3 ,x,l-!

3
1

~m32m4!2 dm11m4 ,m21m3
. ~A7!

3. Helicity flip terms

The particle number conserving terms are
03450
n

a

mg

a (
r

(
x

(
l1 ,l2

xl1

† ŝ rxl2

3(
m1

1

m1
@bc

†~m1 ,x,l1!bc~m1 ,x,l2!

1dc
†~m1 ,x,2l2!dc~m1 ,x,2l2!#. ~A8!

For the particle number nonconserving terms, a typical te
is

mg

a

1

A4p
(

r
(

x
(

l1 ,l2

xl1

† ŝ rxl2

3 (
m1m2m3

1

Am3

1

2m31m2
dm12m2,2m3

bc
†~m1 ,x,l1!

3B2rcc8~m3 ,x1ar̂ !bc8~m2 ,x1ar̂ ,l2!. ~A9!

4. Helicity nonflip terms

For two operators we have

2

a2 (
x

(
l

(
n

1

n
@bc

†~n,x,l!bc~n,x,l!

1dc
†~n,x,l!dc~n,x,l!#. ~A10!

For three operators, a typical term is

2g
1

a2

1

A4p
(

r
(

x
(
l

(
m1m2m3

1

Am3

1

2m31m2

3dm12m2,2m3
bc

†~m1 ,x,l!

3B2rcc8~m3 ,x1ar̂ !bc8~m2 ,x1ar̂ ,l!. ~A11!
2-11



. I

th

We

CHAKRABARTI, HARINDRANATH, AND VARY PHYSICAL REVIEW D 69, 034502 ~2004!
5. Fermion-link instantaneous term

A typical term is

2
g2

4p

1

a2 (
x

(
r

(
cc8c9

(
dd8

Tcc8
a Tdd8

a (
m1m2m3m4

1

Am3

1

Am4

3bd
†~m1 ,x,l1!bd8~m2 ,x,l2!

3B2rc8c9~m3 ,x1ar̂ !B2rc9c
†

~m4 ,x1ar̂ !

(2)~m31m4!/~m12m2!2dm12m2 ,2m322m4
. ~A12!

APPENDIX B: STATES IN DLCQ

We will consider states of zero transverse momentum
the one-link approximation, the gauge invariant states areqq̄
states

u2&5
1

AN

1

AV
(

d
(
y(q)

(
y(q̄)

dy(q),y(q̄)bd
†
„n1 ,y~q!,s1…

3dd
†
„n2 ,y~ q̄!,s2…u0& ~B1!

and theqq̄ link states

u3a&5
1

N

1

AV

1

A2
(
dd8

(
s

(
y(q)

(
y(q̄)

(
y( l )

dy( l ),y(q)dy(q),y(q̄)2aŝ

3bd
†
„n1 ,y~q!,s1…Bsdd8

†
„n3 ,y~ l !…dd8

†
„n2 ,y~ q̄!,s2…u0&

and

u3b&5
1

N

1

AV

1

A2
(
dd8

(
s

(
y(q)

(
y(q̄)

(
y( l )

dy( l ),y(q)dy(q),y(q̄)1aŝ

3bd
†
„n1 ,y~q!,s1…B2sdd8

†
„n3 ,y~ l !…

3dd8
†
„n2 ,y~ q̄!,s2…u0&. ~B2!

We shall consider transition from these initial states to
following final states: Theqq̄ state

^28u5
1

AN

1

AV
(

e
(
z(q)

(
z(q̄)

dz(q),z(q̄)^0ude„n28 ,z~ q̄!,s28…

3be„n18 ,z~q!,s18… ~B3!

and theqq̄ link states

^3a8u5
1

N

1

AV

1

A2
(
ee8

(
t

(
z(q)

(
z(q̄)

(
z( l )

dz( l ),z(q)dz(q),z(q̄)2at̂

3^0ude„n28 ,z~ q̄!,s28…Btee8„n38 ,z~ l !…be8„n18 ,z~q!,s18…

~B4!

and
03450
n

e

^3b8u5
1

N

1

AV

1

A2
(
ee8

(
t

(
z(q)

(
z(q̄)

(
z( l )

dz( l ),z(q)dz(q),z(q̄)1at̂

3^0ude„n28 ,z~ q̄!,s28…B2tee8„n38 ,z~ l !…

3be8„n18 ,z~q!,s18…. ~B5!

APPENDIX C: FORWARD-BACKWARD DERIVATIVES:
MATRIX ELEMENTS IN DLCQ

1. Transitions from the two particle state

a. To the two particle state

Let us consider transitions to the two particle state.
have, from the free particle term,

^28uH f f reeu2&5m2S 1

n1
1

1

n2
DN2 , ~C1!

where

N25dn1 ,n
18
ds1 ,s

18
dn2 ,n

28
ds2 ,s

28
. ~C2!

From the four fermion instantaneous term we get

^28uHqqcu2&522
g2

pa2Cfdn11n2 ,n
181n

28

3
1

~n12n18!2
ds1 ,s

18
ds2 ,s

28
~C3!

whereCf5(N221)/2N.
To implement the regulator prescription for 1/(k1)2, we

add the counterterm matrix elements

^28uHCTu2&52
g2

pa2Cfdn11n2 ,n
181n

28

3 (
nloop51

K
1

~n12nloop!
2
ds1 ,s

18
ds2 ,s

28
.

~C4!

Here the termnloop5n1 is dropped from the sum.
From the helicity flip term we get

^28uHh f1u2&522
1

a (
s

F m

n1
xs

18
†

ŝsxs1
ds2 ,s

28

1
m

n2
x2s2

† ŝsx2s
28
ds1 ,s

18GNh f ~C5!

with

Nh f5dn1 ,n
18
dn2 ,n

28
. ~C6!

From the helicity nonflip term we get

^28uHhn f~1!u2&52
1

a2S 1

n1
1

1

n2
DN2 . ~C7!
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b. To the three particle state

Next we consider the transitions to the three parti
states.

To the stateu3a&. From the helicity flip term we get

^3a8uHh f2u2&

5
mg

a
AN

1

V

1

A2

1

A4p
(

t
xs

18
†

ŝ txs1
ds2 ,s

28

3dn2 ,n
28

dn
1812n

38 ,n1

n18

1

An38
(
z(q)

(
y(q)

dz(q),y(q)2at̂

1
mg

a
AN

1

V

1

A2

1

A4p
(

t
x2s2

† ŝ tx2s
28
ds1 ,s

18

3dn1 ,n
18

dn
2812n

38 ,n2

n2

1

An38
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)1 t̂ a . ~C8!

From the helicity nonflip term we get

^3a8uHhn f~2!u2&

52g
1

a2AN
1

V

1

A2

1

A4p
ds1 ,s

18
ds2 ,s

28
dn2 ,n

28

3
dn

1812n
38 ,n1

n18

1

An38
(

t
(
z(q)

(
y(q)

dz(q),y(q)2at̂

2g
1

a2AN
1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18
dn1 ,n

18

3
dn

2812n
38 ,n2

n2

1

An38
(

t
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)1 t̂a . ~C9!

To the stateu3b&. From the helicity flip term we get

^3b8uHh f2u2&

5
mg

a
AN

1

V

1

A2

1

A4p
(

t
xs

18
†

ŝ txs1
ds2 ,s

28

3dn2 ,n
28

dn
1812n

38 ,n1

n1

1

An38
(
z(q)

(
y(q)

dz(q),y(q)1at̂

1
mg

a
AN

1

V

1

A2

1

A4p
(

t
x2s2

† ŝ tx2s
28
ds1 ,s

18

3dn1 ,n
18

dn
2812n

38 ,n2

n28

1

An38
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)2 t̂a .

~C10!

From helicity nonflip term we get
03450
e
^3b8uHhn f~3!u2&

52g
1

a2AN
1

V

1

A2

1

A4p
ds1 ,s

18
ds2 ,s

28
dn2 ,n

28

3
dn

1812n
38 ,n1

n1

1

An38
(

t
(
z(q)

(
y(q)

dz(q),y(q)1at̂

2g
1

a2AN
1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18
dn1 ,n

18

3
dn

2812n
38 ,n2

n28

1

An38
(

t
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)2 t̂a . ~C11!

2. Transitions from the three particle „qq̄ link … state z3a‹

a. To the three particle state

From the free particle term, we get

^3a8uH f reeu3a&5Fm2S 1

n1
1

1

n2
D1

1

2
m2

1

n3
GN3 ~C12!

with

N35dn1 ,n
18
dn2 ,n

28
dn3 ,n

38
ds1 ,s

18
ds2 ,s

28
. ~C13!

The diagonal contribution from the four fermion instant
neous term to the three particle state vanishes due to
vanishing trace of the generators ofSU(N). The contribution
from the fermion-link instantaneous term

^3a8uHqgc~1!u3a&

52
g2

p

1

a2 Cfdn112n3 ,n
1812n

38
dn2 ,n

28
1

An3An12n1812n3

3
~n12n1814n3!

~n12n18!2

1

A2
ds1 ,s

18
ds2 ,s

28

2
g2

p

1

a2 Cfdn212n3 ,n
2812n

38
dn1 ,n

18
1

An3An22n2812n3

3
~n22n2814n3!

~n22n28!2

1

A2
ds1 ,s

18
ds2 ,s

28
. ~C14!

Counterterm matrix elements in DLCQ to implement t
regulated prescription for 1/(k1)2
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^3a8uHCT~1!u3a&5
g2

p

1

a2Cfdn112n3 ,n
1812n

38
dn2 ,n

28
ds1 ,s

18
ds2 ,s

28F (
nloop51

n1max 1

An3An12nloop12n3

~n12nloop14n3!

~n12nloop!
2

1

A2

1 (
nloop51

n2max 1

An3An22nloop12n3

~n22nloop14n3!

~n22nloop!
2

1

A2
G , ~C15!
es

-

a-
the

s

~n22n28!2 A2
s1 ,s

18 s2 ,s
28
wheren1max,n112n3 andn2max,n212n3.
The contribution from the helicity flip term that conserv

the particle number is

^3a8uHh f~1!u3a&

522
m

a
dn1 ,n

18
dn2 ,n

28
dn3 ,n

38F 1

n1
(

r
xs

18
†

ŝ rxs1
ds2 ,s

28

1
1

n2
(

r
x2s2

† ŝ rx2s
28
ds1 ,s

18G . ~C16!

The contribution from the helicity nonflip term that con
serves the particle number is

^3a8uHhn f~1!u3a&5
2

a2S 1

n1
1

1

n2
DN3 . ~C17!

b. To the two particle state

From the helicity flip term we get

^28uHh f2u3a&

5
mg

a
AN

1

V

1

A2

1

A4p
(

s
xs

18
†

ŝsxs1
ds2 ,s

28

3dn2 ,n
28

dn
18 ,n112n3

n1

1

An3
(
z(q)

(
y(q)

dz(q),y(q)1aŝ

1
mg

a
AN

1

V

1

A2

1

A4p
(

s
x2s2

† ŝsx2s
28
ds1 ,s

18

3dn1 ,n
18

dn
28 ,n212n3

n28

1

An3
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)2 ŝa .

~C18!

From the helicity nonflip term we get
03450
^28uHhn fu3a&52g
1

a2AN
1

V

1

A2

1

A4p
ds1 ,s

18
ds2 ,s

28
dn2 ,n

28

3
dn

18 ,n112n3

n1

1

An3
(

s
(
z(q)

(
y(q)

dz(q),y(q)1aŝ

2g
1

a2AN
1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18
dn1 ,n

18

3
dn

28 ,n212n3

n28

1

An3
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)2 ŝa .

~C19!

3. Transitions from the three particle „qq̄ link … state z3b‹

a. To the three particle state

From the free particle term, we get

^3b8uH f reeu3b&5Fm2S 1

n1
1

1

n2
D1

1

2
m2

1

n3
GN3

~C20!

with

N35dn1 ,n
18
dn2 ,n

28
dn3 ,n

38
ds1 ,s

18
ds2 ,s

28
. ~C21!

The diagonal contribution from the four fermion instant
neous term to the three particle state vanishes due to
vanishing trace of the generators ofSU(N).

The contribution from the fermion-link instantaneou
term is

^3b8uHqgc~1!u3b&

52
g2

p

1

a2 Cfdn112n3 ,n
1812n

38
dn2 ,n

28
1

An3An12n1812n3

3
~n12n1814n3!

~n12n18!2

1

A2
ds1 ,s

18
ds2 ,s

28

2
g2

p

1

a2 Cfdn212n3 ,n
2812n

38
dn1 ,n

18
1

An3An22n2812n3

3
~n22n2814n3! 1

d d . ~C22!
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Here also we have the counterterm matrix elements give
Eq. ~C15!.

The contribution from the helicity flip term that conserv
the particle number is

^3b8uHh f~1!u3b&

522
m

a
dn1 ,n

18
dn2 ,n

28
dn3 ,n

38F 1

n1
(

r
xs

18
†

ŝ rxs1
ds2s

28

1
1

n2
(

r
x2s2

† ŝ rx2s
28
ds1s

18G . ~C23!

The contribution from the helicity nonflip term that con
serves the particle number is

^3b8uHhn f~1!u3b&5
2

a2S 1

n1
1

1

n2
DN3 . ~C24!

b. To the two particle state

From the helicity flip term we get

^28uHh f2u3b&

5
mg

a
AN

1

V

1

A2

1

A4p
(

s
xs

18
†

ŝsxs1
ds2 ,s

28

3dn2 ,n
28

dn
18 ,n112n3

n18

1

An3
(
z(q)

(
y(q)

dz(q),y(q)2aŝ
03450
in
1

mg

a
AN

1

V

1

A2

1

A4p
(

s
x2s2

† ŝsx2s
28
ds1 ,s

18

3dn1 ,n
18

dn
28,2n31n2

n2

1

An3
(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)1 ŝ a .

~C25!

From the helicity nonflip term we get

^28uHhn fu3b&

52g
1

a2AN
1

V

1

A2

1

A4p
ds1 ,s

18
ds2 ,s

28

3dn2 ,n
28

dn
18 ,n112n3

n18

1

An3
(

s
(
z(q)

(
y(q)

dz(q),y(q)2aŝ

2g
1

a2AN
1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18
dn1 ,n

18

3
dn

28 ,n212n3

n2

1

An3
(

s
(
z(q̄)

(
y(q̄)

dz(q̄),y(q)1aŝ.
APPENDIX D: SYMMETRIC DERIVATIVES AND THE WILSON TERM: MATRIX ELEMENTS IN DLCQ

In this section we list only those matrix elements that differ from the forward-backward case.

1. Transitions from the two particle state

a. To the statez3a‹

For the helicity flip we have

^3a8uPwh f
2 u2&5S m14

k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

t
xs

18
†

ŝ txs1
ds2 ,s

28(y(q)
(
z(q)

dz(q),y(q)2at̂

1

An38
S 1

n1
2

1

n18
D dn2 ,n

28
dn

1812n
38 ,n1

1S m14
k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

t
x2s2

† ŝ tx2s
28
ds1 ,s

18(
y(q̄)

(
z(q̄)

dz(q̄),y(q̄)1 t̂ a

1

An38
S 1

n28
2

1

n2
D dn1 ,n

18
dn

2812n
38 ,n2

.

~D1!

For the helicity nonflip we have

^3a8uPwn f1
2 u2&52S m14

k

aD k

a
AN

1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18(t
(
y(q)

(
z(q)

dz(q),y(q)2at̂

1

An38
S 1

n1
1

1

n18
D dn2 ,n

28
dn

1812n
38 ,n1

2S m14
k

aD k

a
AN

1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18(t
(
y(q̄)

(
z(q̄)

dz(q̄),y(q̄)1 t̂a

1

An38
S 1

n28
1

1

n2
D dn1 ,n

18
dn

2812n
38 ,n2

.

~D2!
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b. To the statez3b‹

For the helicity flip we have

^3b8uPwh f
2 u2&5S m14

k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

t
xs

18
†

ŝ txs1
ds2 ,s

28(y(q)
(
z(q)

dz(q),y(q)1at̂

1

An38
S 2

1

n1
1

1

n18
D dn2 ,n

28
dn

1812n
38 ,n1

1S m14
k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

t
x2s2

† ŝ tx2s
28
ds1 ,s

18(
y(q̄

(
z(q̄)

dz(q̄),y(q̄)2 t̂a

1

An38
S 2

1

n28
1

1

n2
D

3dn1 ,n
18
dn212n3 ,n

28
. ~D3!

For the helicity nonflip we have

^3a8uPwn f1
2 u2&52S m14

k

aDk

a
AN

1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18(t
(
y(q)

(
z(q)

dz(q),y(q)1at̂

1

An38
S 1

n1
1

1

n18
D dn2 ,n

28
dn

1812n
38 ,n1

2S m14
k

aD k

a
AN

1

V

1

A2

1

A4p
ds1 ,s

18
ds2 ,s

28(t
(
y(q̄)

(
z(q̄)

dz(q̄),y(q̄)2 t̂ a

1

An38
S 1

n28
1

1

n2
D dn1 ,n

18
dn

2812n
38 ,n2

.

~D4!

2. Transitions from the three particle state z3a‹ to the two particle state

For the helicity flip we have

^28uPwh f
2 u3a&5S m14

k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

s
xs

18
†

ŝsxs1
ds2 ,s

28(z(q)
(
z(q)

dz(q),y(q)1aŝ

1

An3
S 1

n18
2

1

n1
D dn2 ,n

28
dn112n3 ,n

18

1S m14
k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

s
x2s2

† ŝsx2s
28
ds1 ,s

18(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)2 ŝ a

1

An3
S 1

n2
2

1

n28
D dn

18 ,n1
dn

2812n
38 ,n2

.

~D5!

For the helicity nonflip we have

^28uPwn f1
2 u3a&52S m14

k

aD k

a
AN

1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18(s
(
z(q)

(
y(q)

dz(q),y(q)1aŝ

1

An3
S 1

n1
1

1

n18
D dn2 ,n

28
dn112n3 ,n

18

2S m14
k

aD k

a
AN

1

V

1

A2

1

A4p
ds2 ,s

28
ds1 ,s

18(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)1 ŝ a

1

An3
S 1

n28
1

1

n2
D dn1 ,n

18
dn212n3 ,n

28
. ~D6!

3. Transitions from the three particle state z3b‹ to the two particle state

For the helicity flip we have

^28uPwh f
2 u3b&5S m14

k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

s
xs

18
†

ŝsxs1
ds2 ,s

28(z(q)
(
y(q)

dz(q),y(q)2aŝ

1

An3
S 1

n1
2

1

n18
D dn2 ,n

28
dn112n3 ,n

18

1S m14
k

aD 1

2a
AN

1

V

1

A2

1

A4p
(

s
x2s2

† ŝsx2s
28
ds1 ,s

18(
z(q̄)

(
y(q̄)

dz(q̄),y(q̄)1 ŝ a

1

An3
S 1

n28
2

1

n2
D dn1 ,n

18
dn212n3 ,n

28
.

~D7!

For the helicity nonflip we have
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^28uPwh f
2 u3b&52S m14

k

aDk
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AN

1

V

1

A2
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ds2 ,s
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ds1 ,s

18(s
(
z(q)

(
y(q)

dz(q),y(q)2aŝ

1

An3
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AN
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APPENDIX E: SELF-ENERGY COUNTERTERMS

In this appendix we list the self-energy counterterms.

1. Symmetric derivatives case

The counterterm for self-energy for a quark or an an
quark with longitudinal momentumn1 due to double helicity
flip hops is

CT15
2

n1
(

n1851

n1 1

n18

~n12n18!2

m2n1n181m2~n12n18!2
. ~E1!

The counterterm for self-energy for a quark or an antiqu
with longitudinal momentumn1 due to double helicity non-
flip hops is

CT25
2

n1
(

n1851

n1 1

n18

~n11n18!2

m2n1n181m2~n12n18!2
. ~E2!

2. Forward and backward derivative case

In this case we have three types of contributions:~1! the
helicity flip acting twice,~2! the helicity nonflip acting twice,
and ~3! the interference of helicity flip and helicity nonfli
hops. The first two are diagonal in helicity space but the
one is off-diagonal in helicity space.
.

c

03450
-

k

st

The transition from stateu2& to stateu3a& and back due to
a quark hop gives rise to longitudinal infrared divergence.
this case the counterterm due to double helicity flip is

CT352 (
n1851

n1 1

n18

n1

m2n1n181m2~n12n18!2
. ~E3!

The counterterm due to double helicity nonflip is the sa
without the factor of 2. The transition from stateu2& to state
u3b& and back due to a quark hop does not give rise
longitudinal infrared divergence. Similarly the transitio
from stateu2& to stateu3a& and back due to an antiquark ho
does not give rise to longitudinal infrared divergence. T
transition from stateu2& to stateu3b& and back due to an
antiquark hop gives rise to longitudinal infrared divergen
which requires counterterms, the explicit forms of which a
the same as in the quark case for the transition fromu2& to
stateu3a&. Lastly we consider counterterms for self-ener
contributions arising from the interference of helicity flip an
helicity nonflip hopping. The counterterms have the sa
structure as in the case of helicity nonflip transitions acco
panied by the following extra factors. Since we have tw
possibilities, namely helicity flip followed by helicity nonflip
and vice versa, and these two contributions are the same
get a factor of two. We also get a factorxs8

† ŝ'xs where

s (s8) is the initial ~final! helicity andŝ15s2, ŝ252s1.
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