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In this work we investigatqaspectra and wave functions of light front transverse lattice Hamiltonians that
result from different methods of formulating fermions on the transverse lattice. We adopt the one link approxi-
mation for the transverse lattice and discrete light cone quantizélb@Q) to handle longitudinal dynamics.

We perform a detailed study of the continuum limit of DLCQ and associated techniques to manage severe light
front infrared divergences. We explore the effects of various parameters of the theory, especially the strength of
the helicity-flip interaction and the link mass on spectra and wave functions.

DOI: 10.1103/PhysRevD.69.034502 PACS nuntderl1l.15.Ha, 11.10.Ef, 11.15.Tk, 12.38.Gc

[. INTRODUCTION Using the light front staggered fermion formulation and the
Wilson fermion formulation, we studied the removal of dou-
A promising method to calculate observables in QCD isblers from the spectrum. Our investigations lead to the iden-
the transverse lattice formulatigd—3]. In this method, one tification of an even-odd helicity flip symmetry of the light
keepsx™ =x°+x3 continuous and discretizes the transversefront transverse Hamiltonian, the absence of which means
space spanned by coordinates=(x*,x2). With the gauge the removal of doublers in all the cases that we studied.
choice AT=0, A~ becomes a constrained variable which In this work we make a detailed comparison of various
can be eliminated in favor of dynamical gauge variables. Sdight front QCD Hamiltonians that result from different ways
far very encouraging results have been obtained in the pu[@f formulating fermions on the transverse lattice. As the first
gauge and meson sectgrs—6]. step in our calculations, we adopt the one link appro_ximatiqn
Because of the doubling phenomena, fermions on the lafl the meson sector which has been widely used in the lit-
tice pose challenging problems. To date, calculations of meerature.(Only very recently, the effe_ct of add.|t|onal links in
son properties using transverse lattice have employed Wilsof!® Meson sector has been investigdl) Since the one
fermions[7]. It is well known that the Wilson term explicitly "k approximation is very crude, our aim is not to reproduce
breaks chiral symmetry and makes it difficult to explore thephySICaI opservables. Rather, we exp!ore the effects of vari-
consequences of spontaneous chiral symmetry breaking S (_:ouplmg strengths on the low-lying spe_ctra and wave
the chiral limit. In this limit, in the one link approximation un\j:\;leogzeaggéoeglzpeaée” t\a/,:) C?)lrﬁfgregggggrg&ﬁ%rg [9] to
on the transverse lattice, the Wilson term can be adjusted t9q4 9 d

q the desirable level splitting bet do. Thi dress longitudinal dynamics. Because of the presence of
produce the desirable level Spliting betweerandp. ThiS, = sayare light front infrared divergences, a major concern here

however, results in the undesirable consequence that tqg the reliability of DLCQ results when calculations are done

spl!tt!ng of the p multiplet is a_llmost as large as the-p at finite resolutiork and results are extrapolated to the con-
splitting. Because of the doubling problem, one cannot keerﬂnuum (K—). In meson calculations so fa<20 have

tr;ﬁ W]|‘Ison tle[_m ver;f/ fsma!l. Thus t':} |stdeS|rabIe tlotte.Xpl?r:eEeen chosen. In this work we perform a detailed study of the
other formulations of Termions on e transverse 1atlice tha, yinyum fimit of DLCQ by performing calculations at

may have different chiral properties. larger values oK
In a recent wor 8] we have addressed the problems of In the meson sector, in the zero link approximation, at

fermions on the light front transverse lattice. We proposed,, .y yansyerse location we have a two-dimensional field

?Td nL:(mer!caIIy mv;eﬁngtated dlfferelnit.appr:)aches of formuh’theory which in the largé\. limit (whereN; is the number
ating termions on the transverse 1atlice. In one approacty, colorg is nothing but the 't Hooft model. In this well-
which uses forward and backward derivatives, fermion dou-

bling is absent and the helicity flip term which is propor- Studied model, excited states are simply excitations ofjtne
tional to the fermion mass in light front QCD becomes anPal» Which contain nodes in the wave functions. The picture
irrelevant term in the free field limit. In the literature, sym- changes when one I|'nk IS |nc_lu.ded, thefeb}’ allowing fgrm|-
metric derivatives have been used which lead to fermiorPns to hop. The admixture ofq link states withqq states is

doubling due to the decoupling of even and odd latticescontrolled by the strengths of the particle number changing
interactions and the mass of the link field. One link approxi-

mation is a priori justified for very massive links and/or

*Electronic address: dipankar@theory.saha.ernet.in weak particle changing interaction since in this case low-
"Electronic address: hari@theory.saha.ernet.in lying excited states are alspq excitations. Likewise, for
*Electronic address: jvary@iastate.edu large particle changing interaction strength and/or light link
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mass, low-lying excited states aqalink states. We explore

the spectra and wave functions resulting from the choice of CT:@ > {TU, () Ug(x+ar)
various regions of parameter space. s
The plan of this paper is as follows. In Sec. Il we present > U_r(x+af+a§)U_S(x+a§)—1]}. 2.3

the details of the light front transverse lattice Hamiltonian
resulting from the use of forward and backward derivativeal_ - .
and the resulting effective Hamiltonian when the unitary link he pur_ely I(zngnudmal part, depends on the constrained
variables are replaced by general complex matrices. In thigauge fieldA™,
section we also present the canonical transverse lattice QCD

Hamiltonian resulting from the addition of the Wilson term.

Section Il contains comparisons of numerical results for the

two Hamiltonians. Finally Sec. IV contains our summary and

conclusions. Typical terms in the Hamiltonian with forward 5nq the mixed parC,; depends both on lattice gauge field
and backward derivatives in the Fock representation inyng the constrained gauge field,

DLCQ is presented in Appendix A. Explicit expressions for

the states are given in Appendix B. For completeness, ex- 1 1

plicit expressions for the matrix elements in the forward- £ .=——Tr[9,U,(x)3*UT(x)]+ 55 9A~ %, %« -
backward case and the Wilson case are presented in Appen- g-a a 2a

dixes C and D. (2.9

L A2
£L=§(& A9 (2.9

Here the link current
Il. HAMILTONIANS

Due to the constraint equation in the light front theory,
different methods are possible to put fermions on the trans-
verse lattice. In this section we present the detailed structure
of the resulting QCD Hamiltonians for two methods studied e R
in Ref. [8], namely, forward and backward derivatives and +U:(x— ar)io"U,(x—ar)]}. (2.6
symmetric derivatives together with the Wilson term.

1 —
JE&K(X):Z ?Tr{T”‘[U,(x)ia’fo(x)

Substituting back the expression f&r ¢ from the con-

A. Hamiltonian with forward and backward derivatives straint equation

Details of the derivation of the fermionic part of the
Hamiltonian are aIreaQy given in RgB]. Here we give the (a+)2Afa=2_g[JL+lﬁK_J+a] 2.7)
details of the gauge field part of the Hamiltonian. Nonlinear a? q
constraints on the unitary link variables make it difficult to
perform canonical quantization. We also present the effectiv ith
Hamiltonian when nonlinear unitary variables are replace
linear variables.
Py finear varables 33 00=27"00Tn(x), 28
1. Gauge field part of the Lagrangian density
where 7 is the dimensionless two-component lattice fermion
field, in theA™ ¢ dependent terms in the Lagrangian density,
namely,

The gauge field part of the Lagrangian density in the con
tinuum is

1
£e=z—ngrF Fro, (2.1 19 lg ra

1
po _ —aqtay T agtpa—an2 T —a
3 7 G ITAT P S A 29

where FP7=gPA%—g’AP+[AP,A%] with AP=igAreT?,
Herep,0=0,1,2,3 ande=1,2, ... ,8. Forease of notation
we suppress the dependence of field variables on the longi-

we generate the terms

2 2 2 2
tudinal coordinate in this section. With the gauge choice 9~ .+. (i Jta +g—77TT“77(i) 7T
A" =0, the Lagrangian density can be separated into three ~ 2a* LINK| g* ] “LINK T 954 a*
parts, 2 2
s 2 (2.10
a4 YLINK| 5F 7 7. -
EG:£T+£L+‘CLT' (22)

Collecting all the terms, the canonical Lagrangian density for
Here L1 depends entirely on the lattice gauge fielg(x), transverse lattice QCD is
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1 1
L= 277T(x)|<9 n(x)+ T 5T 9,U,(x)a*U] ()]

m? 1 1 11 R
-7 (X)—n(X)+Im 2n*(x>as —[Usx) n(x+as)—n(x)]
a ac7
1 R 11
+im;[n*<x+ar>ur*< )— T(x)]ar — n(X)
1 1
[7/T(X+ar)UT(X)— 7'(x)]a, - — —oJU(X) n(x+as)— n(x)]

r#s

1
+ P > {TU () Ugx+arnU_ (x+ar+as)U_gx+as)—1]}

92 +a 12+a 12+a12+a gz+a 12+a
+2 2I0INK " Jinkt 2a4gJ o Jq 2 Ik prs Jq - (2.11

Hereo,=0,, 0,=—0o,. In the two-component representa- The effective potential part is
tion [10], the dynamical fermion field

iy~ wl)— an(x_,XJ‘) 21 ﬂz
Pr(x xh= , (2.12 p;:jdx*aZE (?T«MTM)—MTr[(M*M)Z]
O X
where 7 is the dimensionless two component lattice fermion —N,[detM+H.c]+--- (2.16
field. B |

2. Effective Hamiltonian

Because of the nonlinear constraittU=1, detu=1, 1he free helicity-flip part is

it is highly nontrivial to quantize the system. Hence Bardeen

and Pearsonl] and Bardeen, Pearson, and Rabinoyi&ji

proposed to replace the nonlinear varialleby linear vari- 11

ablesM where M belongs toGL(N,C), i.e., we replace - _ - TS DT
(1/g)U,(x)—M,(x). Once we replac&) by M, many more Pfhf_ZImf dx zx: 25: 7 (X)osg g7 - (21D
terms are allowed in the Hamiltonian. Thus one needs to add

an effective potentiaV/.¢; to the Lagrangian density

9 Helicity flip associated with the fermion hop is

o
Veii=— EgTr(MTM)Jr)\lTr[(MTM)Z]

+N\[detM+H.c]+---. (2.13 ngz—imgf dx > > 7'(x)
X S
Thus, the effective Hamiltonian for QCD on the transverse 11
lattice becomes X ‘}sg M) n(x+ as)]

Pib="Pttreet Pv + Pinit Phit Pepng R
o —img [ a3 3 ['0ckal M 00]
+Pgact Paget Paget Py - (2.14 x
The free fermion part is -

Piiree™ f dx" 2 |m

X

—5(x). (2.18

T(X) T 7(X).

(2.19  Canonical helicity nonflip terms are
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Pennr= f dx~a?2 > [ (x+anMi()]or; (ﬁas[ 7(3)]

~ 1. -
2] 0SS (r 01 e M mc+ a3

2
. ~ 1. -
—%f dx"a2>, % [7'(x+anM](x)]o—rod Ms(x) 7(x+as)]. (2.19
X
I
The four-fermion instantaneous term is 1 1
—f dx‘g ;S n*(x+ar)crrcrsa—+17(x)

- g2 - t a 1 t a
Page=— 252 | X2 7' 00T0(X) 7z 7' (O T*7(9).

( ~ a1 .
(2.20 + nT(X)UrUsaT n(X+ as)
. . . A l R
The four link instantaneous term is _ nT(x+ar)0'ros(9—+ n(x+ad |. (2.2
— 1 g2 +a i 1
Pogc=—5 =2 dx‘z I8 (X) —— (a*) LINK(X) Going to the transverse momentum space via
(2.21

n(x-,xi)=f d2kt e X i (x7) (2.26

The fermion-link instantaneous term is
we get

2 1
Page= fdx > ‘]LINK(X) )2 7' () T25(x). —;j dXiJ d2kl¢li(x*)o3m—+¢kl(x’)

(2.22
X[sin(kya) —sin(k,a) + sin(k,a—kya)]. (2.27)

The plaquette term is Thus the violations of hypercubic symmetry are of the order
of the lattice spacing. The sign in front of this term changes
g if we switch the forward and backward derivatives.
P, =— dx"a2Y, > {Tr[M(x)M(x+ar) In our numerical studies presented in R&] and in this
X r#s work, we have set the coefficients of the hypercubic symme-

M,r(x+af+a§)M,S(x+a§)— 1]} (2.23 try violating terms to zero.

B. Canonical transverse lattice QCD with the Wilson term

Here . o .
When one uses symmetric derivatives for the fermion

fields, doublers arise as a result of the decoupling of even

and odd lattice sites. To remove the doublers one may use the
Ik (¥) = E T T M, (X)I&+ M/ (x) Wilson fermions[7] or the Kogut-Susskind fermiori$,11].

In this section, the details of the structure of the Hamiltonian

resulting from the modification of the Wilson term are pre-

+M(x—ar)i 7'M (x—ar)]}. (224  sented.

o ) 1. Constraint equation
3. Violations of hypercubic symmetry i o ]
) . o _ _ _ The symmetric derivative is defined by
The canonical helicity nonflip interactions given in Eg.

(2.19 for r #s break the hypercubic symmetry on the trans- 1 . -
verse lattice. For interacting theory this is aiso true for the Dr#™(X)= 2gLYr(X) Y (x+an) —U_ ()¢ (x—ar)].
Hamiltonian with a symmetric derivative. In the free field (2.29

limit they do not survive for the Hamiltonian with a symmet-
ric derivative but for a forward-backward derivative they sur-Again we make the replacement §1U,(x)=M,(x). An-
vive. In that case, in the free field limit they reduce to ticipating doublers, we can add a “Wilson term”:
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SL= gZ(x)[ng(x)tﬂ(H— ar) 19"~ () =my°¢" (X) +i ;—;[ng(X) Y (x+ar)
—2p(0+gM_ ()¢(x—an],  (2.29 —gM_ ()¢ (x—an)]

K ~
— —y[gM,(x) ¢t (x+ar)— 24" (x
wherex is the dimensionless Wilson parameter. Explicitly, in a’ LgM:(x)¢7( ) =207

terms of the dynamical fiel¢y* and the constrained—

+gM_ ()¢ (x—ar)]. (2.3)
2. Hamiltonian: Symmetric derivatives and the Wilson term
:—¢// T(x) Y’ LgM () " (x+ar)— 24 (x) After a great deal of algebra, we arrive at the Hamil-
tonian,
+gM_ () ¢" (x—ar)] P™=Pstreet Pyt Prit Puntt Penntt Punin T Punt
K . +Pgact Paget Paget Py - 2.
+ 200V TM, 0¥ (i)~ 20 () oue (232

The free ferm|on part is
+gM_, (X (x—ar)]. (2.30

B | )21
Pifree= | X" @ ; 22 m+4a 7' (X rx)ia_+77(x X).
The constraint equation faf~ in the presence of the Wilson (233
term is The helicity flip part is
B 3 k| 1 N ~ 1 “ “
th=—gjdx 2 meaz] 5o n 002 o= [M(X) n(x+an) =M _ () n(x—ar)]
X r
k) 1 A - “ 1
—|m+az 52 [T (x—ar)o,M,(x—ar)— n'(x+ar)o,M r(x+ar)] e/t (2.39
r

The Wilson term induced helicity flip part

Puni=07[ xS [5;2 S [/ (x-af M, (x—af) + 7' (@ M (c+af)]

1. . .
X 7o Ms(X) n(x+as) =M _g(x) n(x—as)]

Kk 1 . " A n
——— > > [7'(x—ar)o,M,(x—ar)— p'(x+ar)o,M _ (x+ar)]
alzad 5

1 . -
xm—+[MS(x) n(x+as)+M_¢(x)n(x—as)]|. (2.395

The canonical helicity nonflip term arising from the fermion constraint is

1 A “ A ~
Pghnf:_ng dx*g EZ ES) [ (x—ar)oM,(x—ar)— ' (x+ar)o,M_ (x+ar)]

1. ~ -
X5 Ms(X) 7(x+as) =M _¢(X) 7(x—as) ]. (2.36
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The Wilson term induced helicity nonflip terms are

1 “ “
Pv;nf1=—gf dx 3 | [ meaz| 2000 o 2 M0 n0cka) + M (0 n(x—ai)]
- “ R ~ 1
+(m+4§ gZ [7'(x—ar)M,(x—ar) + nT(x+ar)M,r(x+ar)]ﬁn(x) (2.37

and
2
v‘vnf2=—92f Y 53 S [ (x—ah)M,(x—af)+ nl(x+ah)M_ (x+a0)]
X a r S

X%[Ms(x) n(x+as)+M_¢(x) p(x—as)]. (2.39

Comparing the Hamiltonians witfa) the forward-backward this gives rise to a term in the quark-gluon vertex and also to
derivative andb) the symmetric derivative with the Wilson the instantaneous quark-gluon interaction in the continuum.
term, we notice that the only differences are in the particle The transfer of the troublesome term from the quark-
number changing interactions, namely, helicity flip and hegluon vertex in the continuum theory to the quark-link in-

licity nonflip terms. stantaneous interaction term in the lattice theory has an in-
teresting consequence. In the continuum theory, the addition

IIl. ONE LINK APPROXIMATION qf a gluon mass tgrm by hand spoils the cancellation of the

light front singularity between one gluon exchange and the

A. Relevant interactions instantaneous four-fermion interaction. On the transverse lat-

In the one link approximation, for either Ham"tonian, the tice this cancellation is absent anyWay with or without a link
four link instantaneous term and the plaquette term do nofass term.
contribute and only the link mass term of the effective po-
tential contributes. Further, in the case of the forward- C. Longitudinal dynamics and effects of transverse hopping
backward Hamiltonian, the helicity nonflip part proportional
to g2 does not contribute. For the Wilson term modified
Hamiltonian, the Wilson term induced helicity flip part

Punt, the canonical helicity nonflip temPenyg, and the oy oo the 't Hooft model in the lardé, limit. In this

term proportional tac? in the Wilson term induced helicity case quarks and antiquarks at the same transverse position
nonflip part do not contribute. Thus in the case of the Wilson qu Iqu v posttl

term modified Hamiltonian the entire fermion hopping with interact via the spin independent instantaneous interaction
no helicity flip arises from the Wilson term. which, in the nonrelativistic limit, reduces to the linear po-

tential in the longitudinal direction. The only parameters in
the theory are the dimensionless fermion miass-am and
the gauge couplingy. The spectrum consists of a ground

It is interesting to compare the one link approximation ongtate and a tower of excited states corresponding to the ex-
the transverse lattice with the one gluon exchange approxi-

mation in the continuum. In the latter, a major source ofcitations of theqq pa|r.. . -

singularity is thek:/k* term in the quark-gluon vertex Next consider the inclusion of theq link states. There
wherek® (k™) is the gluon transverséongitudina) momen- ~ are four independent amplitudes corresponding to whether
tum. This originates from thé~J; interaction term in the ~the quark is left, right, above, or below the antiquark. With
Hamiltonian via the (14*)d"- A contribution to the con- nonzero mass of the link, these states lie above the ground
strained fieldA™. This term gives rise to quadratic ultravio- state of a pure quark-antiquark system. Furthergthee and

let divergence in the transverse plane accompanied by linedink (which are frozen at their transverse positijpnadergo
divergence in the longitudinal direction in fermion self- fermion-link instantaneous interactions in the longitudinal
energy. On the transverse lattigg, A~ «c(1/9")J|\k so that  direction which further increases the mass of thg link
A‘J;—>JL+|NK[1/(&+)2]J§ . Thus a term which gives rise to states. Now the quark or antiquark can hop via helicity flip or
severe divergence structure in the continuum gets buried ihelicity nonflip. Here we find a major difference between the
the fermion-link instantaneous interaction term which givesHamiltonians resulting from a forward-backward derivative
rise to a term in the gauge boson fermion vertex in the conand a symmetric derivative. Let us first consider the helicity
tinuum in Abelian theory. In the non-Abelian gauge theoryflip hopping term in the forward-backward case

We first consider the dynamics in the absence of any link.
In this case, fermions cannot hop, and at each transverse
location we havdl+1)-dimensional light front QCD which

B. Comparison with one gluon exchange in the continuum

034502-6



STUDY OF anTATES IN TRANSVERSE LATTIE . .. PHYSICAL REVIEW D 69, 034502 (2004

~ 11 . the form 1/k)? in the normal ordered four fermion and fer-
WT(X)UraﬁTU(X'I' ar) mion link instantaneous interactions. The singularities are
removed by adding the counterterms used in the previous
work [4] on transverse lattice. The explicit forms of the
. 3.7 counterterms are given in Appendix C in the appropriate
places.

ng=—imgf dx‘z 2
X r

t st L1
+ o (x+anM(x)oy - —n(X)

If we consider the transition from a two particle to a three
particle state by a quark hop, then the first term in &gl B. Self-energy corrections

corresponds t¢2)—|3a) and the second term corresponds |, the one link approximation, a quark can make a for-

to |2)—|3b). The helicity flip term in the symmetric deriva- ¢ (backward hop followed by a backwar@forward) hop
tive case, after making some shifts in lattice points, can bgegyjiing in self-energy corrections. In a single hop, helicity
written as flip or nonflip can occur. In the case of symmetric deriva-
tives, helicity flip cannot interfere with helicity nonflip, and
as a consequence, self-energy corrections are diagonal in he-
licity space. In the case of forward and backward derivatives,
1 1 A the interference is nonzero, resulting in self-energy correc-
X—| dx >, > H 2T (X)o7, —M(X) p(x+ar) tions both diagonal and off-diagonal in the helicity space.
2a x r 19 Similar self-energy corrections are generated for an anti-
quark also. These self-energy corrections contain a logarith-
mic light front infrared divergence which must be removed
by counterterms. In Appendix E we present the explicit form
1 A of counterterms in the two cases separately. In previous
—{ 7T(x) o, ia_*M _(X)y(x—ar) works on one link approximatiof4,5,7], these counterterms
were not implemented.

K

m+4—

Phi=—9 a

- 1 A
=7 (0o M (X 7(x+ar)

- (3.2 V. NUMERICAL RESULTS

“ 1 -
- nT(X)UrM —r(x) i(9_+77(x_ ar)}

We diagonalize the dimensionless mataP . We fur-

For the Hamiltonian with symmetric derivative, a quark O ther divide the matrix elements lm?C; which is the strength

antiquark hopping accompanied by helicity flip has oppositeof the matrix elements for four fermion and fermion-link

signs' for forward apd backwa.rd. hops. Qn the other h"’mdi'nstantaneous interactions. Now, we define the cons&nt
hopping accompanied by helicity nonflip have the SameE it 2 dimension of mass b@2=(g%/a?)C;. DLCQ yields
signs. As a result, there is no interference between helicit)M 252

flip and helicity nonflip interaction§7]. In the case of the The di . . .
I - o e dimensionless couplings are introduddd as fol-
Hamiltonian with the forward-backward derivative, quark, or lows: fermion massn,=m/G, link massu,= u/G, particle

antiquark hopping accompanied by helicity flip has the same - ber conserving helicity flip couplingy /(aG)=mCy,

sign for forward and backward hops. As a consequence the_ . . Lot
helicity nonflip hop can interfere with the helicity flip hop. particle number nonconserving helicity figNgmy/(aG)

This has immediate consequences for the spectrum. In thglnfcz’ and particle number nonconserving helicity nonflip

case with a symmetric derivative, in the lowest order pertur- Ng/_(aZGZ)ZC?" In the case of the Wilson term modified
bation theory, the helicity zero states mix with each othefa@miltonian, we have the fermion mass tem=(m
which causes a splitting in their eigenvalues resulting in thet4«/a)/G, helicity-flip coupling VNgm(2aG)=m;C,
singlet state lower than the triplet state. On the other handand helicity nonflip coupling/Ngm«/(aG)=m;Cs.
helicity plus or minus one states do not mix with each other All the results presented here were obtained on a small
or with helicity zero states, resulting in a twofold degen-cluster of computers using the many fermion dynamics
eracy. In the case with forward and backward derivatives al[MFD) code[12] that implements the Lanczos diagonaliza-
helicity states mix with each other, resulting in the completetion method in parallel environment. For lo values, the
absence of degeneracy. results were checked against an independent code running on
a single processor.
IV. SINGULARITIES, DIVERGENCE,

AND COUNTERTERMS . .
A. Cancellation of divergences

Since the transverse lattice serves as an ultraviolet regu-
lator, we need to worry about only light front longitudinal lar
momentum singularities.

As we already mentioned, we encounterkl/f? singu-
ities with instantaneous four fermion and instantaneous
fermion-link interactions which give rise to linear diver-
gences. We remove the divergences by adding appropriately
A. Tree level chosen counterterms. We have numerically checked the re-
We take all the terms in the Hamiltonian to be normalmoval of a linear divergence by counterterms in DLCQ. First
ordered. At tree level this leaves us with singular factors ofwe consider onlygq states with instantaneous interaction.
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' ' ' ' Fig. 2. The convergence of the wave function has a very
107 e * * * * different behavior as a function of fermion mass. As can
40 4 - be seen from this figure, the convergenc&iis from above
“a (@) for heavym; and from below for lighim; . As a consequence
90 . ’ the wave function is almost independentkofvhenm; is of
140 | e ] orderg.
aa WoCT Tl
° -19.0 ¢ o—e with CT . i C. Results of the one link approximation
3
g -24.0 : : : — We encountered logarithmic infrared divergences due to
g 201 * * * * 1 self-energy corrections and, in Appendix E, we discuss the
" i associated counterterms. In Fig. 3 we show the effect of self-
=150 Tal ’ energy counterterms on the ground state energy in the two
. (b) Hamiltonian cases we studied.
-320 r D e 1 The quark distribution function for the ground state and
44 Wo CT e the fifth state for the set of parameters;=0.3, uy
-49.0 | s with CT e 1 =0.2,C,=0.4,C5=0.01, andK =30 is presented in Fig. 4.
T i In this figure we also present separately the contribution
-66.08.0 50 250 38.0 46.6‘ from .twol particle and three part'icle states. As expected, the
K contribution from the three particle state peaks at smaller

compared to the two particle state. The exact location of this
FIG. 1. Effect of the counterterm on the ground state eigenvaluepeak depends on the link mass. The convergence of the low-
(8 With and without the counterterm in theq sector for m est four eigenvalues wittK for the Hamiltonian with
=0.3. (b) With and without the counterterm in theq link sector ~ forward-backward and symmetric lattice derivatives is

for m;=0.3 andu,=0.2. shown in Table Il form;=0.3, u,=0.2. We also show the
results extrapolated t— oo,
We study the ground state eigenvalue as a functiaf with It is interesting to see the effect of the fermion-link instan-

and without the counterterm. Results are presented in Figaneous interaction on the low-lying eigenvalues. In its ab-

1(a). Next we consider onlyﬁlink states with fermion-link  S€Nce, there iSﬂO confining interaction in the longitudinal
instantaneous interaction with and without the countertermglirection in theqq link sector. Furthermore, the mass of the
The behavior of ground state eigenvalue as a functidtigf ~ lowest state in this sector corresponds to the threshold mass

presented in Fig. (b). In both cases, it is evident that the in this sector. Since its mass is lowered, it mixes more

counterterms are efficient in removing the divergence. strongly with theqq sector in the ground state. The fifth state
- now corresponds to an almost freg link state with an
B. qq at the same transverse location infinitesimal qq component as shown in Fig. 5.

Next we study the spectrum of the Hamiltonian in the
absence of any links. Since in this case the Hamiltonian de- VI. SUMMARY, DISCUSSION, AND CONCLUSIONS
pends only on the dimensionless ratip/g we fixg=1 and

vary m; to study the spectra. The Hamiltonian matrix is di- !N this work we have performed an investigation o
agonalized for various values & The convergence of the states using two different light front Hamiltonians in the one

ground state eigenvalue as a functionkofis presented in link approximation. The Hamiltonians correspond to two dif-
Table I. The ground state wave function squared as a funderent ways of formulating fermions on the transverse lattice,

tion of the longitudinal momentum fraction is plotted in  hamely, (& forward and backward derivatives for™ and
¥, respectively, or vice versa arfk) symmetric derivatives

for both ¢* and ¢~ . In the latter, fermion doubling is
present which is removed by the addition of the Wilson term.
In this case there is no interference between helicity flip hop

TABLE I. Ground state eigenvalu@n units of G?) for qasit-
ting at the same transverse location.

K Eigenvalue (V1 2) and helicity nonflip hop and, as a result, thg component
m;=0.3 m=0.9 m;=3.0 of.the grounq state wave function, which has hellqlty plus or
minus one, is degenerate. In the former case, interference
10 0.620 4.547 39.233 between helicity flip and helicity nonflip leads to the absence
18 0.693 4.664 39.861 of degeneracy in the low-lying spectra. One can recover ap-
30 0.745 4,724 40.053 proximate degeneracy of helicity plus or minus one compo-
50 0.788 4.762 40.163 nents only by keeping the strength of the helicity nonflip
78 0.819 4.783 40.220 hopping very small. In the case of forward and backward
98 0.832 4.791 40.241 derivatives, terms are also present which violate hypercubic
K —s o0 0.869 4.820 40.285 symmetry on the transverse lattice. They become irrelevant

in the continuum limit when the linear variabl®é$ are re-
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X

placed by nonlinear variableld. We have removed them vergence issues in DLCQ using a wide rangeKofalues.
entirely from the Hamiltonian in the present investigation.
Since the one link approximation is very crude, we haveeffectiveness of appropriate counterterms in ¢fteand qq
not attempted a detailed fit to low-lying states in the mesonink sector to regulate the instantaneous fermion and
sector. Instead, we have explored the effects of various coyermion-link interactions, respectively. We have also checked
pling strengths on the low-lying spectra and associated wavghe cancellation of logarithmic divergences due to self-
functions. In our work, longitudinal dynamics is handled by energy effects. In the limit where fermions are frozen on the
DLCQ. We have performed a detailed study of various contransverse lattice but undergo instantaneous longitudinal in-

0.40 ; ; ; ;
030 | .
020 | 4 1
A (a)
0.10 + . .
® | o—e withCT A |
= 0.00 a-awoCT A
>
C
g -0.10
2 040 | ‘ ‘ ‘
[7]
¢ .\'\0\.\.
8 030 8
A
0.20 + a .
. {b)
010 ¢ e—e with CT a L
a-—awoCT
0.00 ~ i
-0.10 : : : :
8.0 18.0 28.0 38.0 48.0
K

We summarize our results as follows. We have shown the

teraction, we have studied the convergence of ground state
wave functions with respect t§ for three typical values of
the fermion mass. We have studied how the presence or ab-

sence of the fermion-link instantaneous interaction inghe

link sector affects the wave function of low-lying states. We
have also studied the consequences of the interference of
helicity flip and helicity nonflip hopping in the Hamiltonian
with forward-backward derivatives. This interference is ab-
sent in the symmetric derivative case.

For future studies we would like to address the problem of
mesons containing one light and one heavy quark in the con-
text of heavy quark effective theory on the transverse lattice.
A systematic study of the effects of sea quarks and additional
links on the meson observables also need to be undertaken. A
major unsettled issue in the transverse lattice formulation is
the continuum limit of the theory when nonlinear link vari-
ables are replaced by link variables. It will be interesting to
investigate the light front quantization problem with nonlin-
ear constraints. In this respect the study of the nonlinear
sigma model on the light front appears worthwhile.
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APPENDIX A: STRUCTURE OF TERMS IN DLCQ 1 1 R
L . . _ Mipg(X™ X)) = — E ——=[B_rpg(m,x+ar)
We use DLCQ for the longitudinal dimension-C=<x [4m m=123,... \/a
<+L) and implement an antiperiodic boundary condition
for the two component fermion field, x @ immxX /L B;rpq(m,x)ei”mx_’”] (A3)
1 with
Uc(xiax): \/_— E X\ [bc(mixi)\)eiiwmx 12t
= - T ! !
2L » m=135, [Brpq(m:x)aBr/Tts(m X )]: 5mm' 5x,x’5r,r’5p55qt'
+dZ(m,x, _)\)eiwmx’/(ZL)] (Al) (A4)
The HamiltonianP~ = (L/#)H. In the following section we
with give the explicit structure of terms in the Hamiltonian in the

TABLE IlI. Lowest four eigenvaluesin units of G?) in one link approximation

Forward-backward Symmetric
K (C,=0.01,C5=0.4) (C,=0.1,C5=0.4)
M3 M3 M3 M2 M3 M3 M3 M2

10 0.38041 0.4800 0.4899 0.5996 0.3486 0.4507 0.4507 0.5980
18 0.3722 0.4968 0.5110 0.6447 0.3402 0.4673 0.4673 0.6409
30 0.3606 0.5027 0.5210 0.6680 0.3288 0.4702 0.4702 0.6620
42 0.3511 0.5029 0.5240 0.6765 0.3189 0.4677 0.4677 0.6682
50 0.3457 0.5019 0.5246 0.6790 0.3130 0.4651 0.4651 0.6693

K—o 0.3243 0.5022 0.5313 0.6979 0.2913 0.4589 0.4589 0.6837
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0.00 L ‘ . ‘ ‘ ‘ . ‘ ‘ link approximation(b) the qq contribution to the
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04 L b b 1 the same as in Fig. 4.
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X
forward-backward case in DLCQ restricting our discussion mg

to those relevant for the one link approximation.

The mass terms are

oA
E Xn, Tr X
N, AT TAR

I3

1. Mass terms 1
X 2 —[bl(my X, A1)be(My X, \2)
my MMy

1 +di(my X, = A2)do(My, X, ~Az)].  (AB)
Hffree:ng 2 ; ; ﬁ[bl(n,x,)\)bc(n,x,)\)

For the particle number nonconserving terms, a typical term

+dl(n,xN)de(n,x )], ns)  °
mg 1 ~
w? 1, ?TE > 2; X0,
HLINKfree:7§ 2 ; E[Br(m,x)Br(m,X) X Mg
r
t ; ; X > ! ! 5 bl( A1)
—_— 8 my, X,

+BL,(m,x+ar)B_,(mx+ar)]. (A6) e m2m3+m2 my —my,2mgPc( My 1

2. Four fermion instantaneous term XB_eer(Mg,X+ar)be (M, x+ar,\y). (A9)

The four fermion instantaneous term which gives rise to a

linea

r potential in the color singlet state is 4. Helicity nonfiip terms

5 For two operators we have

g
2_2 2 2 Z 5)\}\7 5)\//)\”/

2 1
ma cc’c’¢” AN X 3 E 2 Z —[bZ(n,x,)\)bc(n,x,)\)
a - “x N n n
X 2 bT(ml X )\)dTw(m4 X _)\/H) t
mymgmgmg o +dg(n,x,N)dc(n,x,\)]. (A10)
X ber (Mo, X, N )der(mg, X, ") For three operators, a typical term is
1 1 1 1 1
X—— : (A7) g — - -
(mg—m,)? "M MM s 9o mzr PPy ml%mg Jms 2mg+m,

X Om, — bl(my,x,\
3. Helicity flip terms my —my, 2myDe( My )

The particle number conserving terms are X B_eor(Mg,X+ar)bg (my,x+ar,\). (Al11)
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5. Fermion-link instantaneous term 1 1
A typ|Ca| term is <3b |_ N \/— \/— z 21: z(zq) Z(EE) ;l) 5Z(I),z(q)§z(q),z(a)+af
g’ 1 1 1 X (0]de(n},2(q),0H)B _teer (N5,2(1))
__222 E ET T E —_— elN3,2(q),02)b _teer (N3,
4 " cc'c” dd’ co’ " dd mimamamy /Mg /My

+ Xbe/(ni,Z(q),Ui). (BS)
Xbg(myg, X, q)bg (mMy,X,\5)
APPENDIX C: FORWARD-BACKWARD DERIVATIVES:

- R
XB_rerer(Mg,X+ar)B_ q,c(my,x+ar) MATRIX ELEMENTS IN DLCQ

(=)(Mg+my)/(My=My)?8, ) 2my-2m,  (A12) 1. Transitions from the two particle state

a. To the two particle state

APPENDIX B: STATES IN DLCQ Let us consider transitions to the two particle state. We

We will consider states of zero transverse momentum. Ihave, from the free particle term,
the one-link approximation, the gauge invariant stategjare

1
states <2 |Hf free|2> m? _+ NZ: (Cy
|2)= 2 E Z y(q), y(q)bd(nl y(Q),01) where
\/— \/— y(a) y(q)
o NZZ 5n1,ni501,015n2,néé\oz,aé- (CZ)
xdi(nz,y(q),0)|0) (B1) o
From the four fermion instantaneous term we get
and theqq link states 92
1 <2,|quc|2>: _2ﬁ0f5n1+n2,ni+né
3a)= YIS ST,
138)= N \/— \/_ o SRS Sy(1).y(a) 9y(a) y(a) a5 1
) : _ X5 090,.0/00,.0 (C3
><bd(nl1y(Q)10'1)Bder(n31y(|))d r(nz,Y(Q),02)|0> (nl nl)
and whereC;=(N2—1)/2N.
To implement the regulator prescription for 7()?, we
11 add the counterterm matrix elements
|3b) = N\/_—T 2 25 y(zq) 2 % ¥().y(a) Py(a) y(a) + as g2
dd y@ <2 |HCT|2> Z_ZC 5nl+n2 nl+né
X bj(n1,y(@), 0B (44 (N3, ¥(1) .
1
T ) X ———— 8, /00 o
de,(nzny(Q):Uz)w)- (BZ) nloozp:l (nl_nloop)z 191 2:99
We shall consider transition from these initial states to the (C9

following final states: Theyq state Here the termm,,q,=n, is dropped from the sum.

From the helicity flip term we get

1 1
<2 |_ \/— \/— E Z(E Z 5z(q) z(q)<0|de(n2 q) 0’2)
9 %a) <2 |th1|2>__2 E ’O-SX(J'J_(SU'Z 0'2
Xbe(n1,2(q),01) (B3)
m
and theqq link states + X—UzUSX 730010 }Nhf (€S
lllysssy "
3a’|= = — — Sy 20y o) () —ai
BTN S 2 @& g P00t Nai= Oy 180, (C)
X(0]de(n,2(0),09)Bree (N5,2(1))ber(1,2(q),07)  From the helicity nonflip term we get
(B4) 1
and (2 |thf(1)|2>:2¥ P No. (C7)
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b. To the three particle state (3b"|Hpni(3)]2)
Next we consider the transitions to the three particle

states. = \/_ ! 'S
To the statd3a). From the helicity flip term we get a2V v \/— ‘/ O, g1 Or, 7292,

(3a'[Hp22) Sny+2n] ny
X =2 O2(a).y(a) +at
Ny \/n—g t z(q) y(q
\/—VT\/_— E X ’O-tX(Tl&a'z o!

__50' 0/50 0"5 !
Sn’+2n! n 1 v \/E VA 22 AT "t
1 371
X Ony = = 2 2 day@)-di
2 np \/ng @) y(@) Snr2ngn, 1
7 2 Z Z 5Z(E),y(a)ffa- (Cll)

11 1 ny Vs T i@y

=

2

1 11 1

mg R
+ ?\/N V2 an Et: X o, 00X~ 000, 07
aw
5n,+2n 1y 2. Transitions from the three particle (qq link) state|3a)
x 5n1,n1 n, \/—3 Z(zq:) %:) Sxa)y(@+ia- (CY a. To the three particle state

From the helicity nonflip term we get From the free particle term, we get

(3a’[Hnni(2)]2)

) 1 1 ) 1
(3 [Hireel3a)=| m?| —+ — |+ S u®—|N; (C12
\/_ 1 5 n, 27 ny
2 V\/—\/_ 01 02 n,,n 2
On’ +2n ny with
X ln, J_—Z ZE qu) S2(a) y(q) -at
1
\/_ 11 1 N3:5nl,ni5n2,né5n3,né5al,ai502,aé- (C13
—932 V2 Jan 80,0500, ,0,On n!

The diagonal contribution from the four fermion instanta-
2 2 S = (C9) neous term to the three particle state vanishes due to the
2(q).y(q) +ta vanishing trace of the generators®fJ(N). The contribution
from the fermion-link instantaneous term

5né+2né n, 1
n2 vng

To the statd3b). From the helicity flip term we get

~M

z(q) y(a)

(3b'[Hn2[2) (3a'[Hqg(1)|3a)

2
g° 1 1
mg = 2Cf5n1+2n3,n’+2n'5n2,n’ 7
T a 1 3 2\/n—3\/n1—n1+2n3

(ni—nj+4n3) 1

\/—V\/—\/—ZX ’O-tXlTlaU'z a,

5 ’ ’
nj+2ng.ng 1

R - X— 0 0'
X Bn,,ng N Jng %:) %) 2(q),y(q) +at (n,—n)2 2 v
1 1

mg—11 1 .o _g__C s

= - , , 2 “fOn,+2n n+2n n,n’ N
* a \/NV \/E \/E Et: X*‘Tzotx’”za”l*"l ™ a 2o ' 1\/n—3\/n2—n2+2n3

+4n;) 1
5n’+2n N, (r\;g %) (C14)
X Bn, , > 2 8@ y@-ia- (n;=ny? 2 b1} 0oz
tong \/_3 2(q) y(a)
(C10
Counterterm matrix elements in DLCQ to implement the
From helicity nonflip term we get regulated prescription for ()2
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2 Nimax
g 1 (nl_nloop+4n3) 1
3a’|Hep(1)|3a)=— —C;8 120,600,001 .07 0oy ) 2 —
N2max
1 Ny—Ngopt4nz) 1
+ ( 2 loop 23) — (C15)
Noop=1 VN3yVN2—=NjgopT2N3  (N2—Njggp) V2
|
Wherenlmaxfnl'Jan3 ananmax'<'n2+.2n3. 1 11
The contribution from the helicity flip term that conserves (2'|Hp¢3a)=—g —2\/Nv—— Sy .yOny
the particle number is V2 |4
5n ,Ny+2n,
, —n1 \/——z Z(Eq) %) S2(a) y(q) +as
(3a’[Hp(1)[3a)
1 11 1
. g NS o
= =2 By By g 2 X1 T X000, 01 92NV 2 an° ng.ng
1 ~ 5n’ n,+2n
— T : , Trgmptang 1
r 2 ngcrrxgzﬁgl,al}- (C10 0 ne EE ZE 2a).y(@) -sa-

The contribution from the helicity nonflip term that con-
serves the particle number is

1 1
<3a'|thf(1)|3a>:; P Ns. (C1y
1 2
b. To the two particle state
From the helicity flip term we get
(2'|Hpr|3a)
mg
\/—V\/—\/—E X /USXol 05,0
5n’ n;+2n, 1
11 3 .
O 2) y(Eq) 2() (@) + a5
g 11 1 R
? VT_ 2 Xto— SX—o"éo' Jo!
2 /477 S 2 2 Y17
n,,ny+2ng
Xbn, ) , _E > Sug) y@ -
Y ny Vng 1@ v

(C19

From the helicity nonflip term we get

(C19

3. Transitions from the three particle (qalink) state |3b)
a. To the three particle state

From the free particle term, we get

, 1 1 1 1
(3b"[Hireel30)=| m n_+ 2:““ N
1 N3
(C20
with
N3 5nl 15n2 é5n3 350'1 Uléaz,aé' (C21)

The diagonal contribution from the four fermion instanta-
neous term to the three particle state vanishes due to the
vanishing trace of the generators ®U(N).

The contribution from the fermion-link instantaneous
term is

(3b'[Hggd(1)[3b)

= g° 1 Csé 13 !
T r a2t ny+2n3,n1+2n€n,,n; \/n—g\/nl—ni+2n3
(ny—ni+4n;) 1
(—np? 2 it
g’ 1 1
___Zcfan +2n3,n,+2ng On, 0!
™ a 2o M Jngng—ng+2ng
(n,—ns,+4n3) 1
o b, 1Pey (C22
(np—ny)? 2 7w
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Here also we have the counterterm matrix elements given in

mg
Eq.(C15. o J—V 2 X0, 0X 0100, 0]
The contribution from the helicity flip term that conserves V2 V4
the particle number is s
né,2n3+n2
(3b’[Hx¢(1)[3b) X Sy .y n, \/__3 Z%) %) O2(q),y(a)+5a-
__.,m (C25
= _23 6n1 n16n2 n25n3 ng n, Er X ’O'rXolé\zrza
1 . - .
= X Txr By . (€23 From the helicity nonflip term we get
Ny, =y 2 2 “171
The contribution from the helicity nonflip term that con- (2" [Hpnil 3b)
serves the particle number is
2 1 1 == \/— __50' o” g a'
(30 HundD[30)= | -+ | Ns. (C24 SNV o e
b. To the two particle state %S On} ny+ang D .
Ny .n; , — S(a).y(q) - as
From the helicity flip term we get 2z ng \/—3 s z(q) y(a)
1 11 1
(2'[Hni2l3b) —g—z\/ﬁ——— o0
V \/— J4 ng.ng
mg 11 1 $ oA
=—INg =—+= 2 XO—’USX(T 50 o) 5n’,n +2n
a \% \/5 4 s 1 1 %2072 > 272 3_ Z Z 52(5)’y(q)+a§.
N2 \/—3 S () y(a)

5n’ npt2ng 1

_r v = E S - (C20
2%l g @ g (D@

APPENDIX D: SYMMETRIC DERIVATIVES AND THE WILSON TERM: MATRIX ELEMENTS IN DLCQ

In this section we list only those matrix elements that differ from the forward-backward case.

1. Transitions from the two particle state

a. To the statd3a)
For the helicity flip we have

1

K 1 + 1 1
3a’'|Pyne2)= —VWN-—=— /0' .00 b5 —— | 6n. n 00
< | whf| > a 2a\/_V > \/E Et: X' 0tX0,%0,,0 2%) %:) 2(9),y(q) — at\/n—<nl nl) ny.n59ni+2nk.n;

k\'1 11 1 1 /1 1
| < D — T - ! ! !
+ m+4a 2a\/NV \/E 4772t X- (rzo'tX o rr o %) Z(Eq) 5z(q) y(q)tha\/ﬂ—<ﬂ2 nz) nl,n15n2+2n3,n2-
(b1
For the helicity nonflip we have
_ k —11 1 1 /1 1
(3a'|Pynia|2) m+4— g\mv—zzf%z 00, 012 y(zq) Z(Eq) S2(q).y(a) - at\/n—(nl+n_i) Ony.nyOn;+2n; ny
kK\k —1 1 1 1 /1 1
S meas AN ==, b S S S 8 1| OnynyOngeang
( aja V 2 Jag 2727710014 @ " 2(q), y(Q)Ha\/n—(nz nz) ny.n;Ono+2nk.n,

(D2)
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b. To the statd3b)
For the helicity flip we have

. 1 11 1 oA 1 1 1
<3b |Pwhf|2>_ m+4— ENVE_LHT Z X(ria-t)(aléaz,aé%) Z(Eq) 5Z(Q),y(q)+at\/Té< - n_1+ ”_i 5”2'”55”i+2“§’n1
k)| 1 11 1 “ 1 1 1
t o
+ m+45 %a NVET > X—UZUIX—Uééal,o’iZ > 02(q) y(q) - ta (——+—

™t y(q z(q) \/n—é

! n
n, N2
X 5”1 ,n£§n2+2n3,né-

(D3)

For the helicity nonflip we have

(3a'[Pynn|2)=—

K\ K 1 1 1 /1 1
a a\/ﬁv_z\/T—w502,oééal,012 E 2 5z(q),y(q)+af\/Té(_+_)6 n’On!

y(a) z(a) N ng

Sy 1
50. 0_’50_ g" 5 — — 3
a’ V2 Jag w202 S z(EE) 2 y@-ia

1 1 s s
—+ — .
né n, nl,ni né+2né,n2

2. Transitions from the three particle state|3a) to the two particle state
For the helicity flip we have

k|1 11 1 $ o~ 1 1 1
! - — e — ’ ~ —_——— ’ !
<2 |Pwhf|3a>_ m+4a 2a\/ﬁv \/E . ES XUiUSX”15°2'”2Z(Eq) z(zq) 5z(q),y(q)+as\/n—3(ni nl) 5n2,n25n1+2n3,n1
k| 1 11 1 1 1 1
— | — _ — i o ’ ’ N i) e _— ’ ’ ’
+ m+4a 2a NV \/5 = Es: X—azo's)(fazaal,ol% % 5z(q),y(q)fsa \/n—3<n2 né) 5n1,n15n2+2n3,n2-
(D5)
For the helicity nonflip we have
B k\lk -1 1 1 1 1 1
<2 |Pwnf1|3a>:_ m+4g a\/NVﬁ . 5"2'”é5"1"’i25 Z(Zq) %) 5Z(Q),Y(Q)+as\/n—3(n_l+n_i) 5”2~”é5”1+2”3v”i
k\k —1 1 1 1 1 1
— | M+a=| =INS = =10, /80 0! 2 2 Osa)y(@) 3 —(—,+—)5 O von. . (D6)
a/a \% \/E [Ag 727271 12(5) )’(E) 2(q).y(q Sa\/n—3 n, n, ny.ng@ny+2ng,n;

3. Transitions from the three particle state|3b) to the two particle state
For the helicity flip we have

B 1 11 1 t o~ 1 1 1
(2 |Pwhf|3b>_ m+4— ZaVN v /—2 /—477 Es XUiUsXalgoz,aé%:) %) 5z(q),y(q)fas /_ﬂ3(n1_ ni) 5n2,né5n1+2n3,ni
k| 1 11 1 “ 1 1 1
+ .
+ +4—| — —_——_—— ’ ’ —_— | — — — U /.
2N G T % Xt X 52‘“)’y‘°‘“safn3(ng ”z) Prunirarzne

(D7)
For the helicity nonflip we have
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- 11 1 1 /1 1

<2 |Pwhf|3b>=— m+4— \/_V \/— /— 0'2 0'1 = ; ; 2(q),y(q) — as\/—( 1+n_1> 5n2,né5n1+2n3,ni
K 11 1 1 1 1

- m+4_ \/— (r (r (r o —t—1 5 )

\Y \/_ / 2 1 ES e 52(q), Y(Q)+Sa\/n—3(n2 n, | onn n,+2ng,n}

(D8)
|
APPENDIX E: SELF-ENERGY COUNTERTERMS The transition from statg?) to state3a) and back due to

a quark hop gives rise to longitudinal infrared divergence. In

In this appendix we list the self-energy counterterms. this case the counterterm due to double helicity flip is

1. Symmetric derivatives case Ny n,
The counterterm for self-energy for a quark or an anti- CTy=2 E N2 (E3)
: terr n nj unyn;+mP(ny—n;)
qguark with longitudinal momentum; due to double helicity =t T
flip hops is The counterterm due to double helicity nonflip is the same
n 02 without the factor of 2. The transition from std®) to state
CTy=— 2 1 (n;—ny) . (ED |3b) and back due to a quark hop does not give rise to
Ny ni=1 n; u n1n1+m 2(ny— 1)2 longitudinal infrared divergence. Similarly the transition

from state|2) to state|3a) and back due to an antiquark hop
The counterterm for self-energy for a quark or an antiquarkloes not give rise to longitudinal infrared divergence. The
with longitudinal momentunm, due to double helicity non- transition from stat¢2) to state|3b) and back due to an
flip hops is antiquark hop gives rise to longitudinal infrared divergence
which requires counterterms, the explicit forms of which are
2 2 1 (n;+n})? the same as in the quark case for the transition ff@mnto
CTo=r—- 2 - > vy (E2)  state|3a). Lastly we consider counterterms for self-energy
Lnj-1 Ny fnang+ me(ny—ny) contributions arising from the interference of helicity flip and
helicity nonflip hopping. The counterterms have the same
2. Forward and backward derivative case structure as in the case of helicity nonflip transitions accom-
panied by the following extra factors. Since we have two
helicity flip acting twice,(2) the helicity nonflip acting twice, possibilities, namely helicity flip foIIo_vveq by helicity nonflip
and (3) the interference of helicity flip and helicity nonflip &d Vice versa, and these two contributions are the same, we
hops. The first two are diagonal in helicity space but the lasget @ factor of two. We also get a factal, o xs where
one is off-diagonal in helicity space. s(s') is the initial (final) helicity ando'=o?, o= —o.

In this case we have three types of contributiofis:the
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