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Dynamics of phase transitions by hysteresis methods: Two-dimensional models

Bernd A. Berg,1,2,* Urs M. Heller,3,† Hildegard Meyer-Ortmanns,4,‡ and Alexander Velytsky1,2,§

1Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
2School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306, USA

3American Physical Society, One Research Road, Box 9000, Ridge, New York 11961, USA
4School of Engineering and Science, International University Bremen, P.O. Box 750561, D-28725 Bremen, Germany

~Received 22 September 2003; published 20 February 2004!

In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one
ought to be concerned about nonequilibrium effects due to heating and cooling of the system. Motivated by
this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature
driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis
calculations are presented for a number of observables, including the~internal! energy, properties of Fortuin-
Kasteleyn clusters and structure functions. We test the methods for 2D Potts models, which provide a rich
collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium
configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which
dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon
production due to spinodal decomposition of the Polyakov loops, if such a scenario is realized by nature.
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I. INTRODUCTION

Quantum chromodynamics has well established ph
transitions in certain limiting cases. In the limit of vanishin
quark masses it has the chiral phase transition from the p
of broken chiral symmetry at low temperatures to the ch
symmetric phase at high temperatures. In the limit of infin
quark masses one finds the deconfinement transition from
Z(3)-symmetric low temperature phase with confinemen
theZ(3)-broken phase at high temperatures, for a review
@1#. For physical quark massesmu ,md of the order of 10
MeV and ms of the order of 150 MeV it is suggested b
lattice simulations@2# and effective models@3# that neither a
chiral nor a deconfinement transition occurs in the sense
there are thermodynamic singularities.

Lattice gauge theory investigations of the finite tempe
ture phase transitions of QCD have, with some notable
ceptions @4#, been limited to studies of their equilibrium
properties, whereas in nature these transitions are gove
by a temperature, or otherwise, driven dynamics. Even w
a proper phase transition does not exist, a question is whe
one may expect observable remnants of the phase conve
because of off-equilibrium effects.

In the early universe the effects of the dynamics are m
likely negligible, since the cooling process is determined
the Hubble expansion of the Universe that is slow compa
to the typical time scales of strong interactions, which are
the order of 10223 sec. In heavy ion collisions this is differ
ent. A rapid heating~quench! of the nuclei at the ‘‘little
bang’’ event is followed by a slower cooling process. T
lifetime of the emerging system appears to be sufficien
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long to equilibrate a phenomenological quark-gluon plas
@5,6#, although the dynamics in the time period of the pha
conversion may proceed out of equilibrium. Finite size c
rections may play a role, because the system is not la
compared to the typical spatial scale of strong interactio
i.e. 1 fm. One should also address the question, whether
initial quench could lead to domains of distinct averageZ3
3-ality, with interfaces between them, which have relative
long relaxation times.

On an effective level@in the framework of theO(4)
model# one has studied dynamical effects on the chiral ph
transition@7,8#. Although the largest equilibrium correlatio
length ~that of the pion with a mass of'137 MeV) is not
large compared to the intrinsic QCD scale~e.g., set by
LMOM), as a result of a quenched cooling process one m
get disoriented chiral condensates via spinodal decomp
tion. We are interested in the analogous question for the
confinement transition@9#. One could get a disoriented con
densate of Polyakov@10# loops and an associated productio
of low-momentum gluons.

Polyakov loops behave effectively like 3D spin variabl
@11–14# and the Potts-model in three dimensions withq
53 states gives an effective description of the deconfi
ment transition~more sophisticated spin models are also co
sidered@13#!. By adding an external field@15#, one can rep-
resent the effect of finite quark masses. Even t
simplification is not yet a suitable basis for a numerical
vestigation. To get confidence in our computational metho
we simulatedq-state Potts models in 2D, for which a numb
of rigorous results@16,17# allow for cross checks. We set th
external field to zero and chooseq52, 4, 5 and 10, corre-
sponding to a weak second order, a strong second ord
weak first order and a strong first order phase transiti
respectively. The difference between weak and strong sec
order transitions is explained in Sec. III. For a review
Potts models see Wu@18#.

We use hysteresis methods to investigate the phase
©2004 The American Physical Society01-1
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BERG et al. PHYSICAL REVIEW D 69, 034501 ~2004!
sition in the Glauber@19# dynamics. The universality class o
Glauber dynamics, model A in the classification of Ref.@20#,
contains local Monte Carlo~MC! updating schemes whic
imitate the thermal fluctuations of Nature. Studying the co
puter time evolution of Glauber dynamics gives an overvi
of a scenario which allows for a variation of the speed of
phase transition. Notably, the notion of the Minkowski
time is lost in the conventional quantum field-theoretical f
mulation of an equilibrium ensemble@21# which is used in
numerical simulations. To study the time evolution of th
field-theoretic ensemble, one has to find a way to reintrod
a proper dynamics. The hope is that the thus generated
figurations are typical for the dynamical process.

Our observables are the internal energy, properties
Fortuin-Kasteleyn~FK! clusters @22#, and structure func-
tions. The results from equilibrium configurations are co
pared with those from configurations that are dynamica
driven through the hysteresis cycles. In all cases we find
the dynamics induces remarkably strong signals for a s
odal decomposition. With increasingq similar signals be-
come very weak for the equilibrium phase transition.

In the next section we discuss in more detail the ba
concepts used in this paper. Our numerical investigations
reported in Sec. III, where subsections deal with bulk pr
erties, FK clusters and structure functions. A brief summ
and conclusions are given in the final Sec. IV. Paper II@23#
of this series will be devoted to a study of the 3D 3-st
Potts model in an external magnetic field.

II. PRELIMINARIES

Our ~computer! time-dependent Hamiltonian is

H~ t !52b~ t !E ~1!

where

E522 (
^rW,rW8&

ds(rW,t),s(rW8,t) . ~2!

Here the sum runs over all nearest neighbor sitesrW and rW 8,
and s takes the values 1, . . . ,q. In this paper we rely on
symmetric lattices ofN5L3L spins. For suitably chose
values of bmin and bmax, we run the system at variou
cooling/heating rates in cycles frombmin to bmax and back.
Hysteresis methods played some role in the early day
lattice gauge theory@24#, but have apparently been aba
doned. Possibly, the reason is that one does not learn m
from a single hysteresis. However, averages over large n
bers of heating and cooling cycles have to our knowledge
been analyzed in the literature. By creating a large numbe
cycles, ensemble averages of dynamical configurations
obtained at selected temperaturesT51/b. For each tempera
ture away from the endpoint of the cycles two distinct av
ages exist, one on the heating and the other on the coo
branch of the cycles.

The spins are updated by an algorithm which is within
Glauber class. Examples are single- and multi-hitMETROPO-

LIS, as well as heat-bath updating methods, where the la
sites may be visited randomly or in some systematic or
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At critical points~i.e. at second order transitions! the slowing
down of such algorithms is governed by universal expone
A counterexample is the Swendsen-Wang@25# algorithm,
which updates entire FK clusters. Clearly, such an upda
does not correspond to thermal fluctuations of nature. T
purpose of the Swendsen-Wang algorithm is to speed up
dynamics of second order phase transitions in comp
simulations.

When driving the system through the transition, the ph
conversion may be dominated by metastable or unsta
states of matter. If a system is brought into a metastable s
it will be unstable against finite, localized fluctuation. Th
scenario is callednucleation. It may allow the system to
reach a metastable equilibrium before a large enough fl
tuation occurs. If the system is brought into an unstable st
infinitesimal, nonlocalized amplitude fluctuations lead to
immediate onset of the decay of the unstable state. This
nario is calledspinodal decomposition. It may lead to long-
range correlations, in a sense similar to those encountere
equilibrium close to second order phase transitions.

The concept of nucleation as well as the spinodal w
first introduced by Gibbs as early as 1877, where the sp
odal was defined as a limit for metastability of fluid gase
But only in the late 1950s did it become apparent tha
phase beyond the spinodal decomposes by a diffusional c
tering mechanism quite different from the nucleation a
growth mechanism encountered for metastable states. In
classic review@26# Cahn includes an account of the historic
development. The modern theory uses effective diffusio
differential equations~originally an idea of Hillert@27#! to
distinguish dynamical universality classes, see Re
@20,28,29# for reviews. A sharp distinction between infin
tesimal ~spinodal! and finite ~nucleation! fluctuations is,
strictly speaking, a mean field concept. In real system
where fluctuations are important, the boundary separa
nucleation from spinodal decomposition is not perfec
sharp.

The numerical investigations, we are aware of, investig
the spinodal versus the nucleation scenario after a que
which may either lead into the metastable region~nucleation!
or beyond it~spinodal decomposition!. See Miller and Ogil-
vie @4# in the context of lattice gauge theory. Our hystere
approach differs in this respect. The continued change of
external temperature prevents the system from ever reac
equilibrium, but implies on the other hand a smoother d
namics, because the temperature changes only in small s
Under laboratory conditions there is never a perfect que
and in some situations our hysteresis approach may allow
to model the laboratory condition more realistically than
quench. We measured many observables in each hyste
cycle. In this paper we report selected results for the ene
FK clusters and structure functions. In more detail the d
will be analyzed and presented in Ref.@30#.

We measure FK clusters instead of geometrical clust
because their statistical definition accounts for the fact t
neighboring spins may not only be aligned by the sponta
ous magnetization but also by random fluctuations. It is o
then that the Kertesz@31# line of percolation coincides with
the phase transition, see Ref.@32# for a review of this and
1-2
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DYNAMICS OF PHASE TRANSITIONS BY HYSTERESIS . . . PHYSICAL REVIEW D 69, 034501 ~2004!
related topics. In contrast to the stochastic definition,
geometric definition connects aligned spins with certai
and leads to an overcounting of ordered clusters. While
FK works well for Potts models, a generalization to gau
theories is not known. This is closely related to the fact t
a cluster updating algorithm is not known for gauge theor

We are interested in the effects of dynamic heating a
cooling on the cluster structure, in particular in the quest
of whether one may still find observable signals, even wh
their is no longer a transition in the strict thermodynam
sense. There are similarities and differences to the prog
of Satz @33#. Satz focuses on geometric properties of F
clusters and would like to extract from their equilibrium di
tribution signals for the phase conversion when there is
proper phase transition. We are trying to find signals for
phase conversion due to the deviations from equilibrium.
nucleation one expects compact clusters, due to the non
interfacial tension between the ordered and the disorde
phase. For spinodal decomposition, clusters of each of
ordered states will grow unrestricted by such an interfa
tension, building domain walls between the distinct orde
states. For nucleation we expect the maximum cluster
face to grow to a sizecLd21 with c'2 for strong first order
transitions (c52 for the smallest surface of a cluster whic
percolates!. For spinodal decomposition we expect consid
ably larger values, comparable to the largest values one fi
on equilibrium configurations in the neighborhood of a s
ond order phase transition.

In our simulations we record the following cluster obse
ables: their number, the mean volume, the maximum volu
the mean surface area, the maximum surface area, the
tion radius and the percolation probability. The volume o
cluster is simply the number of spins it contains. The clus
surface is defined on the links of the dual lattice, which c
responds to the (d21)-dimensional hyperspace of the orig
nal lattice. The percolation probabilityp is the probability to
find at least one cluster that percolates. For our periodic
tices this means that the cluster connects to itself through
boundary conditions, in any one of the two directions.

We analyze the structure function in momentum space
signals of spinodal decomposition. Letmq0

5^ds(rW,t),q0
& de-

note the magnetization in directionq0P$1, . . . ,q%. By intro-
ducing a Potts spinSq0

(rW,t)5ds(rW,t),q0
we can write the cor-

relation function

g~rW,rW8,t !5^ds(rW,t),s(rW8,t)&2(
q0

mq0

2 , ~3!

in the familiar form

g~rW,rW8,t !5 (
q050

q21

^Sq0
~rW,t !Sq0

~rW8,t !&2 (
q050

q21

^Sq0
&2. ~4!

The structure factor~function! is the Fourier transform of the
correlation function

S~kW ,t !5
1

Ns
(
RW

g~ uRW u,t !exp@ ikWRW # ~5!
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where RW 5rW2rW8. Some straightforward algebra transform
this into

S~kW ,t !5
1

Ns
2 (

q050

q21 K U(
rW

ds(rW,t),q0
exp@ ikW rW#U2L 2dkW ,0(

q0

mq0

2 .

~6!

This is simply the time-dependent version of the equilibriu
structure factor. In condensed matter experiments the ma
tude of the structure function is directly observable in x-ra
neutron and light scattering experiments, compare, e.g.,
@34#. Unfortunately, it appears to us that direct measureme
in high energy experiments are unrealistic. In our simulatio
we expect pronounced peaks~similar as for equilibrium con-
figuration near second order phase transitions! for S(kW ,t) in
the case of a phase conversion by spinodal decompos
and no such signals in the case of a conversion by nuclea
and growth.

III. NUMERICAL RESULTS

The data presented in this paper rely on systematic up
ing for which the Potts spins are updated in sequential or
each spin once during one sweep. We did a number of cr
checks using random updating for which the spins are
dated in random order, in the average each spin once du
one sweep. Besides a slowing down of the dynamics b
factor of about 0.6 for random updating, we observed
noticeable changes of the results checked.

The temperatureb51/T is changed by6Db after every
sweep~we experimented also with temperature changes a
each spin update and found no differences within our sta
tical errors!. Our step sizeDb is proportional to the inverse
volume of the system

Db5
2~bmax2bmin!

nbL2
~7!

where bmin and bmax define the terminal temperatures an
the integernb51,2, . . . is varied. Equilibrium configura-
tions are recovered in the limitnb→` (Db50). In nature
the fluctuations per spin per time unit~here the unit of one
MC sweep! set the scale for the dynamics. Our choice ofDb
is motivated by our interest in the question whether a dyna
ics, which slows down with volume size may still domina
the nature of the transition. Relying on the heat-bath meth
each of our systems is driven through at least 640 cyc
each starting from an equilibrated, disordered configurat
Error bars are calculated with respect to 32 jackknife bins
an exploratory simulation@35# of 2D Potts models the
METROPOLIS algorithm was employed, but it turns out th
the heat-bath method saves CPU time.

In this article we simulate the 2Dq-state Potts model for
q52, 4, 5 and 10. This allows us to compare the influence
the Glauber dynamics for a weak second order, a strong
ond order, a weak first order and a strong first order ph
transition. Our terminology ‘‘strong second order phase tr
sition’’ may need some explanation. For a finite system
1-3
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BERG et al. PHYSICAL REVIEW D 69, 034501 ~2004!
volume Ld the partition functions is a polynomial inu
5exp(2b) that takes positive values on the real axis. F
first and second order phase transitions the imaginary pa
the partition function’s zero closest to the real axis scales
uy

0;L21/n, wheren51/d for a first order transition and 1/d
,n<2/d for a second order transition. The fluctuations
the energy are governed by the exponenta of the specific
heat for which we assume the hyperscaling relation@36# a
522dn. Therefore,a51 for first order transitions and 0
<a,1 for second order transitions. To determine the imp
cations for the finite size scaling of the energy fluctuatio
we use the link expectation value of the energy

el5el~b!5^ds(rW,t),s(rW8,t)&52^E&/~2dLd!, ~8!

whererW and rW 8 are nearest neighbor sites. The values ofel
are conveniently located in the range 0<el<1 with el(0)
51/q andel(`)51. To leading order inL, finite size scaling
theory predicts the fluctuation ofel to scale like

^~el !
2&2^el&

2;La/n2d ~9!

for b at the transition pointbc51/Tc . For first order phase
transitionsa51 holds and the left-hand-side of Eq.~9! ap-
proaches a finite value, proportional to the square of the
tent heatDel . For second order phase transitions the le
hand-side scales to zero. In this sense a weak second
transition is one witha close to zero ora50 and a cusp or
logarithmic singularity, while a strong second order tran
tion hasa close to one. First order transitions are weak wh
Del!1 holds and strong whenDel becomes of order one
say from Del.0.1 on. For our choices ofq the analytical
values@16,18# of bc , a andDel are compiled in Table I. Our
values ofbmin and bmax for Eq. ~7! and a numerical result
Del , as explained in the following subsection, are also giv
in this table.

In steps of 20 our lattice sizes range fromL520 to L
5100. For the smaller systems all hysteresis runs are d
on a single PC, while for the larger lattices up to 32 PCs
used, dividing our entire run in 32 bins of at least 20 hyst
esis loops each. In each case a short equilibrium run ofqL2

sweeps was initially performed atbmin , where the systems
equilibrate easily, because they are highly disordered.
comparison with equilibrium configurations we perform
multicanonical@37,38# ~see the next subsection! as well as

TABLE I. The ~infinite volume! phase transition temperature
bc51/Tc , the specific heat exponenta and the latent heats of se
lectedq-state Potts models in two dimensions. For the latent he
the negative energy per linkDel is given andDel is an estimate
from hysteresis cycles.

q bc a Del bmin bmax Del

2 0.440687 0 0 0.2 1.0 0.0153~07!

4 0.549306 2/3 0 0.2 1.0 0.0907~11!

5 0.587179 1 0.031072 0.4 1.2 0.1402~12!

10 0.713031 1 0.348025 0.4 1.2 0.3482~16!
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conventional, canonical simulations. The reason for the c
ventional canonical equilibrium simulations is that one nee
to know the temperature to generate FK clusters. They w
performed at many temperatures and in each case 640
surements were taken after at least 20qL2 sweeps for reach-
ing equilibrium.

A. Internal energy

For a first order phase transition, the slowing down of t
canonical equilibrium Markov process is exponential in co
puter time,;exp@2fsL

d21#, wheref s is the interfacial tension
~see@17# for the analytical values!. In this case we expect a
energy hysteresis to survive in the limitL→` and
Db(L;nb)→0 for any fixed value ofnb in Eq. ~7!. The
shape of the hysteresis can then be used to define finite
ume estimators of physical variables, such as the transi
temperature and the latent heat. The infinite volume limits
these estimators are supposed to be independent of any
choice ofnb .

For the second order phase transitions of theq52 and
q54 models the analysis is more subtle. The Markov p
cess slows only down likeLz with z'2 @39#. Therefore, one
still expects a hysteresis in the limitL→` andnb fixed, only
the opening has no longer the interpretation of a finite v
ume estimator of the equilibrium latent heat. A finite si
scaling analysis of the hysteresis as a function ofnb(L)
should allow to identify second order transitions. This ana
sis is not pursued here.

For nb51 and selected lattice sizes we show in Fig. 1 o
energy~8! hysteresis data. The ordinate is scaled to

C~q!S el~b!2
1

qD with C~q!5
q

q21
~10!

so that, independently ofq, the range@0,1# gets covered
when b is varied from 0→`. If one wants to compare the
present heat bath withMETROPOLIS results @35#, the better
efficiency of the heat bath algorithm is such th
nb

METROPOLIS'qnb
heat bathought to be used. From left to right in

Fig. 1 hysteresis loops for the casesq52, 4, 5 and 10 are
visible. For clarity of the figure we have omitted error ba
and for q54 and 5 also theL540 and 60 lattices.

ts

FIG. 1. Energy~8! hysteresis curves fornb51. From left to
right: q52, 4, 5 and 10.
1-4
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Notable is that the hysteresis curves for theq54 strong sec-
ond order transition and theq55 weak first order transition
are quite similar. Fromq510 toq52 there is a gradual, no
an abrupt, deformation of the shape of the hysteresis.

To analyze the physical content of the hysteresis curve
Fig. 1 in more detail, we define the finite volume estimat
of the inverse transition temperaturebc(L) and of the latent
heatDel(L) by their values at the maximum opening of th
corresponding hysteresis curve. Figure 2 shows the thus
tained estimatesDel(L) together with fits of the form

Del~L !5Del1
a1

L
~11!

wherea1 is a constant. Forq510 the left-hand-side ordinat
applies and for the otherq-values the right-hand-side ord
nate. Because of the distinct scales the difference betw
theq510 and theq55 estimators is large, while the gener
behavior of the fitting curve appears to be quite similar
all q-values. The obtained infinite volume estimatesDel are
given in Table I. Forq510 the estimate is in excellent agre
ment with the analytical result, but this is not at all the ca
for the otherq-values. Instead, theq52, 4 and 5 estimates
overshoot the equilibrium values considerably. This does
come as a surprise, because we already noted that, in
infinite volume limit and for fixednb , a finite opening of the
hysteresis survives even for the second order phase tr
tions. Obviously, the opening has no longer the interpreta
of an estimator of the equilibrium latent heat. Instead,
phenomenon illustrates that the dynamics tends to wash
differences of the equilibrium properties of the transitions

Performing a similar analysis forbc(L) and comparing
the infinite volume estimates with the analytical results,
get accuracies of about61% for all q. So, we find no prob-
lem in locating the equilibrium transition temperature fro
the information of the dynamics. The accuracy of these
namical estimates is not competitive with the best equi
rium methods. For example, fitting the pseudocritic
b-values of the multicanonical 10-state Potts model simu
tion @37# self-consistently to the formbc(L)5bc1c/L2

givesbc50.713032 (16)@using our energy convention~2!#.
The purpose of our present study is not to calculate h
precision estimates of equilibrium quantities, but to inves
gate the deviations from equilibrium due to the imposed

FIG. 2. Latent heat estimates fromnb51 hysteresis curves.
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namics. To understand the dynamics of our finite volu
transitions in more detail, we analyze in the next two su
sections the behavior of FK clusters and structure functi
on our configurations.

In a last remark about the hysteresis curves of the inte
energy, we like to mention that we have also generated e
librium data for all cases using the multicanonical metho
As expected, the thus obtainedel(b) functions fall inside the
hysteresis curves of Fig. 1. Some more details are give
Ref. @35#.

B. Cluster properties

We limit our presentation to a few of the cluster obse
ables we measure~more details will be given in@30#!. The
largest cluster surface turns out to be interesting, becau
exhibits pronounced peaks in the transition region. We
the normalization

Sc5
No. surface links of clusterc

Ld21
~12!

for our cluster surfaces. A link which connects a site of t
cluster with the site of another adjacent cluster is defined
be a surface link. The surface links can be mapped on
(d21)-dimensional hypercubes which enclose the cluster
the dual lattice. The largest surface is simply defined as

Smax5max$Sc% ~13!

where the maximum is taken over all clustersc of the con-
figuration at hand.

For the 10-state model results for the largest cluster s
face of thenb51 hysteresis cycle are shown in Fig. 3. Th
arrows indicate the flow of the hysteresis cycles. During
heating and cooling parts of the cycles, the surface ar
peak at distinct values,b5bpeak

6 . This is striking evidence
that the geometry of the FK clusters is distinct during co
ing and heating. Due to our use of stochastic~in contrast to
geometrical! clusters, the equilibrium transition temperatu
value is pinched between the temperatures at which the
peaks are located.

FIG. 3. The largest cluster surface for the 10-state Potts mo
on various lattice sizes as indicated in the figure~the extensions are
the value ofnb and e for equilibrium!.
1-5



t
p
it
ti

lly
th
of
e

le
n

ff

tu
er
a

rd
n

a
Fi
th

-

the

.

n-
ster
ore
der

ome
r

tion.
ics
ur
uite

of

ce-
ows

ach
om

e

l o

s.

del
to

BERG et al. PHYSICAL REVIEW D 69, 034501 ~2004!
It can be understood that the peaks ofSmax(b) are related
to percolation. For theb→bmax half-cycle the picture is tha
the cluster with the largest surface percolates due to the
riodic boundary conditions. Until the cluster percolates,
surface area increases, while it is decreasing after percola
~as only small islands of the false phase remain eventua!.
Relying on the same data as for Fig. 3, we show in Fig. 4
percolation probabilityp. It is seen that the temperatures
the Smax peaks correspond approximately to the steep
increase/decrease of the percolation probabilities.

Another observation from Fig. 3 is that for the half-cyc
b→bmin the peaks ofSmax are even more pronounced tha
for b→bmax. This is in accordance with a very rapid fall-o
of the percolation probability for theb→bmin half-cycle.
Our interpretation is that the response to the tempera
change is more rapid when the system enters the disord
phase than when it enters the ordered phase. Such a ch
in relaxation scales may be expected for a strong first o
transition~because both phases are separated by a gap i
energy and not continuously related!, while one would ex-
pect that the response times under heating and cooling
similar for a weak second order phase transition. Indeed,
5 shows that the two peaks are of almost equal height for
2-state Potts~Ising! model. TheSmax results for theq54 and
q55 models~no figures shown! are in-between the two sce
narios, but certainly closer toq510 than toq52. The dif-
ference betweenq54 andq55 is minor.

FIG. 4. The probabilityp of having a percolating cluster for th
10-state Potts model on various lattices.

FIG. 5. The largest cluster surface for the 2-state Potts mode
various lattice sizes as indicated in the figure.
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Also shown in Figs. 3 and 5 are results forSmax(b) from
equilibrium simulations onL580 lattices. They are barely
visible, because they are to a large extent covered by
curves of theb→bmin half-cycle. Therefore, we plot the
equilibrium curves for all ourq-values separately in Fig. 6
The peaks show a marked increase fromq510 ~right! to q
52 ~left!. For first order phase transitions the interface te
sion implies that the free energy increases with the clu
surfaces. The stronger the first order transition is, the m
the system tries to minimize interfaces. For a second or
phase transition there is no~disorder-order! free energy pen-
alty when the phases mix and the cluster surfaces bec
fluffy. This is quite similar to the distinct behavior of cluste
surfaces under nucleation versus spinodal decomposi
The suggestion from Figs. 3 and 5 is then that the dynam
changes the transition scenario to spinodal for all o
q-values. In these cases the heights of the peaks are q
similar to those which we find for the equilibrium peaks
the q52 andq54 second order transitions.

The question emerges, how fast is the equilibrium s
nario approached when the speed of the dynamics sl
down? In Fig. 7 we plot fornb51, 2, 4, 8, and 16 our
Smax(b) results of the 10-state model on an 80380 lattice.
For increasingnb we observe a slight decrease of theb
→bmin peaks, while theb→bmax peaks increase. Although
the peaks of the cooling and heating half-cycles appro
one another in this way, each process is still far away fr

n

FIG. 6. The largest cluster surface for equilibrium simulation

FIG. 7. The largest cluster surface for the 10-state Potts mo
on 80380 lattices for thenb values indicated by the extensions
the lattice size.
1-6
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equilibrium as a comparison with the height of theq510
equilibrium peak of Fig. 6 shows. The long tails of the pea
of the b→bmax half-cycle decrease rather rapidly with in
creasingnb , so thatSmax(b) approaches its equilibrium valu
for b.bpeak

1 .
For q52 ~no figure shown! an approach of both peaks t

the equilibrium peak ofSmax is observed, whose height is fo
q52 only about 10% smaller than the height of thenb51
dynamical peak. We take this as an indication that in
range of our dynamical speeds the phase conversion me
nism is always spinodal, independently of the order of
equilibrium transition. Figure 8 makes this point by contra
ing the equilibrium results of Fig. 6 with thenb51 dynami-
cal results. In the next subsection we analyze our struc
functions data with respect to this scenario.

The locations of the equilibrium peaks are closer to
bpeak

2 values of the dynamicalb→bmin heating half-cycles
than to thebpeak

1 values of the dynamicalb→bmax cooling
half-cycles. This is particularly clear forq>4. Our under-
standing of this is that the relaxation is faster for the heat
than for the cooling half-cycle. This observation goes hand
hand with the interpretation of the higher peaks in Figs. 3
and 8 as being due to faster response times of the syste

C. Structure functions

During our simulations we recorded the structure funct
~6! for the following momenta:

k15~2pL21,0! and ~0,2pL21! ~14!

k25~2pL21,2pL21! ~15!

k35~4pL21,0! and ~0,4pL21! ~16!

k45~4pL21,2pL21! and ~2pL21,4pL21!
~17!

k55~4pL21,4pL21!. ~18!

The structure functions are averaged over rotation
equivalent momenta. In the following we use the notat
Ski

5Ski
(b), (i 51, . . . ,5) for thestructure functionS(kW ,t),

FIG. 8. The largest cluster surface fromnb51 dynamical simu-
lations on 1003100 lattices. Compare with the equilibrium resu
of Fig. 6.
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when the vectorkW is ki and the time dependence is dictat
by b5b(t). Spinodal decomposition is characterized by
explosive growth in the low momentum modes, while t
high momentum modes relax to their equilibrium values.

1. Lowest momentum k1

In Figs. 9 and 10 we give theq510 andq52 results for
Sk1

(b). The hysteresis flow is indicated by the arrows. F

ure 11 shows theq-dependence of thenb51 dynamics to-
gether with our equilibrium results. In comparison with th
Smax(b) Figs. 3, 5, 6 and 8, several differences and simila
ties deserve to be mentioned:

~i! For our nb values theSk1
structure functions have a

pronounced maximum on theb→bmax half-cycle. This is
cooling in the spin system language used in this paper
heating~i.e., confinement to deconfinement! in an analogue
QCD system.

~ii ! Different ordinate scales are chosen in Figs. 9 and
because the magnitudes of the peaks show a conside
q-dependence. That is exhibited in Fig. 11.

~iii ! As in Fig. 6 for Smax the equilibrium peaks ofSk1

increase fromq510 toq52 ~see Fig. 11!. However, increas-
ing nb from 1 to 16, the approach of theSk1

(b) function to

their equilibrium is even forb.bpeak
1 rather slow. This is

shown forq510 in Fig. 12. To a large extent it holds still fo

FIG. 9. The structure functionSk1
(b) for the 10-state Potts

model andnb51 dynamics.

FIG. 10. The structure functionSk1
(b) for the 2-state Potts

model andnb51 dynamics.
1-7
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q52, where forb.bpeak
1 the equilibrium appears to becom

approached fornb516, as is shown in Fig. 13.
~iv! The inlays of Figs. 12 and 13 enlarge the equilibriu

peaks together with the heating (b→bmin) data. Forq510
as well as forq52 we find that the heating data develop
peak with increasingnb , which may eventually approach th
equilibrium peak. However, in both cases it appears that
heating peak wants first to merge with the cooling peak.
q510 thenb516 cooling peak is much larger than the eq
librium peak and the heating peaks are all the time incre
ing. Eventually, both peaks should start to decrease tow
the equilibrium data. Forq52 the cooling peaks decreas
rapidly with increasingnb and thenb516 cooling peak un-
dershoots the equilibrium peak. Cooling and heating pe
move towards merging and should approach the equilibr
peak from below.

The Sk1
structure function peaks strongly under cooli

and less under heating. This is presumably related to the
that the spin variables get ordered at low temperatures~like
the Polyakov loops get ordered at high temperatures!, thus
allowing for q-ality order-order domains. For our fast dy
namics theSk1

values atbmax are so high that the peak
under heating become overshadowed. This can be made

FIG. 11. The structure functionSk1
(b) from nb51 dynamical

simulations on 80380 lattices together with their equilibrium va
ues.

FIG. 12. The structure functionSk1
for the 10-state Potts mode

on 80380 lattices for dynamical simulations withnb as indicated
by the extensions to the lattice size. The inlay of the left enlar
the equilibrium peak together with the heating data. For the inlab
is mapped on 0.512* (b20.66) andSk1

on 0.00214* Sk1
.
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plicit by first equilibrating the systems atbmax. Then peaks
of similar size as the equilibrium peaks appear on thebmax

→bmin half-cycle. For our slower dynamics theSk1
(b) struc-

ture function peaks for theb→bmin half-cycle become vis-
ible without equilibrating first atbmax. For increasingnb

they approach the equilibrium peaks~see the inlays of Figs
12 and 13!. For both half-cycles the approach to equilibriu
appears to happen only for really slow dynamics. Very C
time consuming simulations ofnb@16 values would be
needed to follow this in detail.

2. ki , iÐ1 and quenching

Miller and Ogilvie@4# investigated the dynamics of SU~2!
gauge theory after quenching from a low to a high physi
temperature~corresponding to thebmin→bmax half-cycle of
the spin system!. They report a critical valuekc , so that
modes grow~do not grow! exponentially fork,kc (k.kc).

In Figs. 14 and 15 we show for ournb51 dynamics all
structure functions, which we have measured. It is nota
that we observe a large gap between the peaks
Ski

(b), i 51,2 and for Skj
(b), j >3. We also performed

s

FIG. 13. The structure functionSk1
for the 2-state Potts mode

on 80380 lattices for dynamical simulations withnb as indicated
by the extensions to the lattice size. The inlay of the left enlar
the equilibrium peak together with the heating data. For the inlab
is shifted by20.13 andSk1

by 10.002.

FIG. 14. Hysteresis of theSk(t) structure functions for the 10
state Potts model on an 80380 lattice (nb51).
1-8
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quenching runs. In Fig. 16 we show the time evolution on
80380 lattice after quenching the 10-state Potts model fr
b50.4 tob50.8 and in Fig. 17 we show the time evolutio
after quenching the 2-state Potts model fromb50.2 to b
50.6. As in our hysteresis investigations averages of
independent repetitions are taken. Again, we find a large
between the peaks forSki

(b), i 51,2 and forSkj
(b), j >3.

Further it is remarkable that the heights of the peaks in
hysteresis cooling half-cycles and under quenching are
most identical, while the time scale is according to Eq.~7!
extended to 3200 sweeps for the hysteresis curve.

For Fig. 18 we have changed the second order phase
sition of the 2-state Potts model to a crossover by adding
term h( rWds(rW,t),q0

with a small magnetic fieldh, h50.01,

with respect to the spinq0 in the Hamiltonian~1!. In essence
the time evolution after quenching is similar as without t
magnetic field, only that the magnitude of theSk1

and Sk2

peaks decreases, maintaining still a clearly visible gap to
peaks of theSkj

, j >3 structure functions. Increasing th

magnetic field further, toh50.1, the large peaks disappe
altogether by merging into the small peaks. The signal o
transition is possibly lost for such high values of the ma
netic field.

The observed peaks suggest a criticalki value betweeni
52 and i 53 for the Potts models. However, the issue
more subtle. Cahn-Hilliard theory@26,40# ~model B, for re-

FIG. 15. Hysteresis of theSk(t) structure functions for the
2-state Potts model on an 80380 lattice (nb51).

FIG. 16. Time evolution of theSk(t) structure functions for the
10-state Potts model on an 80380 lattice after quenching from
bmin50.4 tobmax50.8.
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views see@20,28,29#! predicts an exponential growth of th
low momentum structure function in the initial part of th
time evolution after quenching~this also applies to model A!.
Whether such an exponential growth is found or not w
used by Miller and Ogilvie@4# to determine the criticalkc

between the low and the high momentum mode. Howe
none of our structure functions in Figs. 16–18 shows init
exponential growth. This is already kind of obvious by loo
ing at the figures, where the shape of the increasing part
the curves is always concave and is quantitatively de
mined by performing fits. A likely explanation is that th
Cahn-Hilliard theory relies on approximations which are n
justified in our 2D models. In 3D we find exponential grow
in the very early stage of the time evolution after quench
~incrementing thenb after every update and fitting the tim
evolution within the first sweep@23#!. Interestingly, our hys-
teresis curves of Figs. 14 and 15, which rely on the smoo
dynamics of temperature changes in small steps, show
initial exponential growth.

We find no peaks in the structure factors when we que
from an ordered initial state into the disordered phase. T
reason may be that the structure factor is defined with res
to the order parameter. Under a quench into the orde
phaseq-ality order-order domain may emerge, whereas th
is only one disordered phase.

FIG. 17. Time evolution of theSk(t) structure functions for the
2-state Potts model on an 80380 lattice after quenching from
bmin50.2 tobmax50.6.

FIG. 18. Time evolution of theSk(t) structure functions for the
2-state Potts model on an 80380 lattice after quenching from
bmin50.2 tobmax50.6 at a magnetic fieldh50.01.
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IV. SUMMARY AND CONCLUSIONS

Our energy hysteresis method allows for dynamical e
mates of the equilibrium transition temperatures for first
well as for second order phase transitions. While the pr
sion of these estimates is not competitive with those of eq
librium investigations, the hysteresis method provides inf
mation about dynamically rooted deviations
accompanying physical observables from their equilibri
values. For second order transitions we find that the dyn
ics generates a latent heat and for a weak first order trans
we find a ‘‘dynamical’’ latent heat much larger than its equ
librium value, whereas for a strong first order transition t
dynamical latent heat agrees with the equilibrium value~the
magnetization allows for a similar analysis, which is not
ported here!.

In our analysis of 2D Potts models, we find spinodal d
composition to be the dominant feature as soon as we tur
the dynamics. For instance, the equilibrium~quasistatic!
phase conversion of first order phase transitions is du
nucleation. Even our slowest dynamics (nb516) changes
the phase conversion of the investigated weak (q55) and
strong (q510) first order transitions from nucleation to spi
odal. For theq52 ~weak! second order transition thenb
516 dynamics appears to be already rather close to equ
rium, which is formally reached fornb→`. These results
are mainly based on analyzing the dynamical time evolut
of Fortuin-Kasteleyn~FK! clusters and structure functions.

~i! For FK clusters we find that the largest cluster surfa
area is quite sensitive to dynamical effects and yields for
consideredq-values signals in favor of a spinodal decomp
sition on the cooling (b→bmax) and heating (b→bmin) half-
cycles of our hysteresis loops. This may be illustrated
comparing the results of our fast (nb51) dynamics of Fig. 8
with the equilibrium results of Fig. 6. For the first ord
transitions the dynamics enhances the peak values to tak
similar values as one finds for theq52 and q54 second
order configurations near the critical point.

~ii ! For the structure factor ournb51 dynamics leads on
the bmin→bmax half-cycle to amplitude maxima, which ar
considerably larger than those from the second order equ
rium configurations, see Fig. 11. The dynamical peaks on
bmax→bmin half-cycle are comparable to those of the eq
librium configurations, which has for Fig. 11 the cons
.

k

h.

A.
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quence that they are not visible at all, because the syst
are still out of equilibrium atbmax and on their return path
That is of potential interest for heavy ion collision, where o
bmin→bmax half-cycle corresponds to heating for which th
dynamics of the experiment is definitely fast. We have
entirely satisfactory theoretical explanation for the observ
asymmetry, but think that it is related to the fact thatq-ality
order-order domain may emerge in the ordered~deconfined!
phase.

Using quenching, we find dynamical signals survivin
even after the proper~second order! phase transition is con
verted into a crossover. Moving then far away from the tra
sition, the dynamical signals fade away too and the issue
crossovers requires further investigations.

Our computer programs allow to extend the present st
to the 3-state Potts model in three dimensions with an ex
nal magnetic field representing quark effects. In a more
mote future, one could carry out similar studies for quench
and even full QCD. But none of these studies could reso
the problem of a quantitative relationship between
Glauber time scale of our Euclidean dynamics and the t
scale of the Minkowskian dynamics in the real world. In th
context it is of interest that Pisarski and Dumitru develop
recently a Polyakov loop model@41# which allows for simu-
lations in the Minkowskian formulation@42#. It may be pos-
sible to address questions similar to those raised in our p
within the hyperbolic dynamics of their model.

Most likely the aim of such studies cannot be to ma
precise quantitative predictions. Instead, one may have to
content with illustrating the effect of different speeds of t
phase conversion on the observable signals qualitatively
spinodal decomposition of Polyakov loops is indeed realiz
in heavy ion collisions, one may observe an enhancemen
the production of low-energy gluons.
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