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Dynamics of phase transitions by hysteresis methods: Two-dimensional models
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In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one
ought to be concerned about nonequilibrium effects due to heating and cooling of the system. Motivated by
this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature
driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis
calculations are presented for a number of observables, includingnteena) energy, properties of Fortuin-
Kasteleyn clusters and structure functions. We test the methods for 2D Potts models, which provide a rich
collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium
configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which
dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon
production due to spinodal decomposition of the Polyakov loops, if such a scenario is realized by nature.
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[. INTRODUCTION long to equilibrate a phenomenological quark-gluon plasma
[5,6], although the dynamics in the time period of the phase
Quantum chromodynamics has well established phaseonversion may proceed out of equilibrium. Finite size cor-
transitions in certain limiting cases. In the limit of vanishing rections may play a role, because the system is not large
guark masses it has the chiral phase transition from the phasempared to the typical spatial scale of strong interactions,
of broken chiral symmetry at low temperatures to the chirali.e. 1 fm. One should also address the question, whether the
symmetric phase at high temperatures. In the limit of infiniteinitial quench could lead to domains of distinct averaie
guark masses one finds the deconfinement transition from tH&ality, with interfaces between them, which have relatively
Z(3)-symmetric low temperature phase with confinement tdong relaxation times.
theZ(3)-broken phase at high temperatures, for a review see On an effective level[in the framework of theO(4)
[1]. For physical quark masses,,my of the order of 10 model one has studied dynamical effects on the chiral phase
MeV and mg of the order of 150 MeV it is suggested by transition[7,8]. Although the largest equilibrium correlation
lattice simulationg2] and effective modelf3] that neither a  length (that of the pion with a mass of 137 MeV) is not
chiral nor a deconfinement transition occurs in the sense thdérge compared to the intrinsic QCD scale.g., set by
there are thermodynamic singularities. Anmowm), as a result of a quenched cooling process one may
Lattice gauge theory investigations of the finite tempera-get disoriented chiral condensates via spinodal decomposi-
ture phase transitions of QCD have, with some notable extion. We are interested in the analogous question for the de-
ceptions[4], been limited to studies of their equilibrium confinement transitioh9]. One could get a disoriented con-
properties, whereas in nature these transitions are governei@nsate of Polyakop 0] loops and an associated production
by a temperature, or otherwise, driven dynamics. Even whebnf low-momentum gluons.
a proper phase transition does not exist, a question is whether Polyakov loops behave effectively like 3D spin variables
one may expect observable remnants of the phase conversiptil—14 and the Potts-model in three dimensions with
because of off-equilibrium effects. =3 states gives an effective description of the deconfine-
In the early universe the effects of the dynamics are mosinent transitior(more sophisticated spin models are also con-
likely negligible, since the cooling process is determined bysidered[13]). By adding an external fielfll5], one can rep-
the Hubble expansion of the Universe that is slow comparedesent the effect of finite quark masses. Even this
to the typical time scales of strong interactions, which are osimplification is not yet a suitable basis for a numerical in-
the order of 1023 sec. In heavy ion collisions this is differ- vestigation. To get confidence in our computational methods,
ent. A rapid heating(quench of the nuclei at the “little  we simulatedy-state Potts models in 2D, for which a number
bang” event is followed by a slower cooling process. Theof rigorous result$16,17] allow for cross checks. We set the
lifetime of the emerging system appears to be sufficientlyexternal field to zero and choosg=2, 4, 5 and 10, corre-
sponding to a weak second order, a strong second order, a
weak first order and a strong first order phase transition,

*Email address: berg@hep.fsu.edu respectively. The difference between weak and strong second
TEmail adresss: heller@csit.fsu.edu order transitions is explained in Sec. Ill. For a review of
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sition in the Glaubef19] dynamics. The universality class of At critical points(i.e. at second order transitiorthe slowing
Glauber dynamics, model A in the classification of R&D], down of such algorithms is governed by universal exponents.
contains local Monte CarléMC) updating schemes which A counterexample is the Swendsen-Wa&p] algorithm,
imitate the thermal fluctuations of Nature. Studying the com-which updates entire FK clusters. Clearly, such an updating
puter time evolution of Glauber dynamics gives an overviewdoes not correspond to thermal fluctuations of nature. The
of a scenario which allows for a variation of the speed of thepurpose of the Swendsen-Wang algorithm is to speed up the
phase transition. Notably, the notion of the MinkowskiandynamiCS of second order phase transitions in computer
time is lost in the conventional quantum field-theoretical for-gjmlations.
mulation of an equilibrium ensembl[@1] which is used in ~ \yhen driving the system through the transition, the phase
numerical simulations. To study the time evolution of this .;nversion may be dominated by metastable or unstable
field-theoretic ensemble, one has to find a way 10 reintroducgiates of matter. If a system is brought into a metastable state,
a proper dynamics. The hope is that the thus generated COj-yj| pe unstable against finite, localized fluctuation. This
figurations are typical for the dynamical process. , cenario is callechucleation It may allow the system to
Our observables are the internal energy, properties Ofgach a metastable equilibrium before a large enough fluc-
Fortuin-Kasteleyn(FK) clusters[22], and structure func- y ation occurs. If the system is brought into an unstable state,
tions. The results from equilibrium configurations are com-jxfinitesimal, nonlocalized amplitude fluctuations lead to an
pared with those from configurations that are dynamicallyimediate onset of the decay of the unstable state. This sce-

driven throggh.the hysteresis cycles. In all cases we find thaﬁario is calledspinodal decompositiorit may lead to long-
the dynamics induces remarkably strong signals for a Spinzyge correlations, in a sense similar to those encountered in

odal decomposition. With increasing similar signals be-  gqilibrium close to second order phase transitions.
come very weak for the equilibrium phase transition. _ The concept of nucleation as well as the spinodal were
In the next section we discuss in more detail the basig; s introduced by Gibbs as early as 1877, where the spin-
concepts used in this paper. Our numerical investigations argq | was defined as a limit for metastability of fluid gases.
reported in Sec. Ill, where subsections deal with bulk propg only in the late 1950s did it become apparent that a
erties, FK clusters and structure functions. A brief summary)hase heyond the spinodal decomposes by a diffusional clus-
and conclusions are given in the final Sec. IV. Papg28] toring mechanism quite different from the nucleation and
of this series will be devoted to a study of the 3D 3-stateyqyyth mechanism encountered for metastable states. In his
Potts model in an external magnetic field. classic review26] Cahn includes an account of the historical
development. The modern theory uses effective diffusional
Il. PRELIMINARIES differential equationgoriginally an idea of Hillert[27]) to
distinguish dynamical universality classes, see Refs.

Our (computey time-dependent Hamiltonian is [20,28,29 for reviews. A sharp distinction between infini-

H(t)=— B(t)E (1)  tesimal (spinoda) and finite (nucleation fluctuations is,
strictly speaking, a mean field concept. In real systems,
where where fluctuations are important, the boundary separating
nucleation from spinodal decomposition is not perfectly
E=-2 Z 50'((,0,0’(;’,() . (2) Shal‘p.
(r.r’)

The numerical investigations, we are aware of, investigate
. . the spinodal versus the nucleation scenario after a quench,
Here the sum runs over all nearest neighbor sitasdr ',  which may either lead into the metastable regioncleation
and o takes the values,1..,g. In this paper we rely on or beyond it(spinodal decompositionSee Miller and Ogil-
symmetric lattices oN=LXL spins. For suitably chosen vie [4] in the context of lattice gauge theory. Our hysteresis
values of B, and Bnax, We run the system at various approach differs in this respect. The continued change of the
cooling/heating rates in cycles frof,, to Bmnax and back. external temperature prevents the system from ever reaching
Hysteresis methods played some role in the early days aéquilibrium, but implies on the other hand a smoother dy-
lattice gauge theory24], but have apparently been aban- namics, because the temperature changes only in small steps.
doned. Possibly, the reason is that one does not learn mudknder laboratory conditions there is never a perfect quench
from a single hysteresis. However, averages over large nunand in some situations our hysteresis approach may allow us
bers of heating and cooling cycles have to our knowledge naio model the laboratory condition more realistically than a
been analyzed in the literature. By creating a large number ajuench. We measured many observables in each hysteresis
cycles, ensemble averages of dynamical configurations amycle. In this paper we report selected results for the energy,
obtained at selected temperatuifes 1/3. For each tempera- FK clusters and structure functions. In more detail the data
ture away from the endpoint of the cycles two distinct aver-will be analyzed and presented in RE30].
ages exist, one on the heating and the other on the cooling We measure FK clusters instead of geometrical clusters,
branch of the cycles. because their statistical definition accounts for the fact that
The spins are updated by an algorithm which is within theneighboring spins may not only be aligned by the spontane-
Glauber class. Examples are single- and multiMErROPO-  ous magnetization but also by random fluctuations. It is only
LIS, as well as heat-bath updating methods, where the latticthen that the Kertesi31] line of percolation coincides with
sites may be visited randomly or in some systematic ordethe phase transition, see RgB2] for a review of this and
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related tOpiCS. In contrast to the stochastic definition, thQNhere F—é: F_ F’_ Some Straightforward a|gebra transforms
geometric definition connects aligned spins with certaintyhis into

and leads to an overcounting of ordered clusters. While the

FK works well for Potts models, a generalization to gauge _ 1 9!t |2
theories is not _known. 'I_'his i§ closely related to the fact t_hatS(k,t)z ﬁ 20 < 2 50(;'t)'qoexp[ikr] > — 5;;02 méo.
a cluster updating algorithm is not known for gauge theories. s %0~ r fo

We are interested in the effects of dynamic heating and (6)

cooling on the cluster structure, in particular in the question

of whether one may still find observable signals, even Wher:rhis is simply the time-dependent version O_f the equilibrium.
their is no longer a transition in the strict thermodynamicStrUCt“re factor. In condensed matter experiments the magni-

sense. There are similarities and differences to the prograltHCIe of the structure function is directly observable in x-ray,

of Satz[33]. Satz focuses on geometric properties of Fk Neutron and light scattering experiments, compare, e.g., Ref.

clusters and would like to extract from their equilibrium dis- [341- Unfortunately, it appears to us that direct measurements

tribution signals for the phase conversion when there is nd? high energy experiments are unrealistic. In our simulations
proper phase transition. We are trying to find signals for théVe exPect pronounced peatsmilar as for equilibrium con-
phase conversion due to the deviations from equilibrium. Fofiguration near second order phase transitidos S(k,t) in
nucleation one expects compact clusters, due to the nonzetde case of a phase conversion by spinodal decomposition
interfacial tension between the ordered and the disordere@nd no such signals in the case of a conversion by nucleation
phase. For spinodal decomposition, clusters of each of thand growth.

ordered states will grow unrestricted by such an interfacial

tension, building domain walls between the distinct ordered IIl. NUMERICAL RESULTS
states. For nucleation we expect the maximum cluster sur- ) ) )
face to grow to a sizeL9~* with c~2 for strong first order The data presented in this paper rely on systematic updat-

transitions €=2 for the smallest surface of a cluster which N9 for which the Potts spins are updated in sequential order,

percolates For spinodal decomposition we expect consider-€ach spin once during one sweep. We did a number of cross-

ably larger values, comparable to the largest values one findd1€Cks using random updating for which the spins are up-
on equilibrium configurations in the neighborhood of a sec-dated in random order, in the average each spin once during
ond order phase transition. one sweep. Besides a slowing down of the dynamics by a

In our simulations we record the following cluster obsery-factor of about 0.6 for random updating, we observed no

ables: their number, the mean volume, the maximum volumg}oticeable changes of the results checked.

the mean surface area, the maximum surface area, the gyra- | "€ temperaturg@=1/T is changed by- A3 after every
tion radius and the percolation probability. The volume of aSweep(we experimented also with temperature changes after
cluster is simply the number of spins it contains. The clustefach Spin update and found no differences within our statis-
surface is defined on the links of the dual lattice, which cor-ical errors. Our step sizeA 3 is proportional to the inverse
responds to thed— 1)-dimensional hyperspace of the origi- Volume of the system

nal lattice. The percolation probabilifyis the probability to

find at least one cluster that percolates. For our periodic lat- Ap= 2(Bmax— Bmin)
tices this means that the cluster connects to itself through the ngL?
boundary conditions, in any one of the two directions.

_ We analyz_e the structure fu_n_ction in momentum space fofyhere Bumin and Buax define the terminal temperatures and
signals of spinodal decomposition. Lk =(5,(11)q,) d&  the integerny=1,2, ... isvaried. Equilibrium configura-
note the magnetization in directiap {1, ... g}. By intro-  tions are recovered in the limit;— (AB=0). In nature
ducing a Potts spiISqO(F,t)= So(r 1).q, W Can write the cor- the fluctuations per spin per time ur@h_ere the unit_of one
relation function MC sweep set the scale for the dynamics. Our choice\gf

is motivated by our interest in the question whether a dynam-
.. ics, which slows down with volume size may still dominate
91 O =( s 0),007 1) — 2 mﬁo. (3)  the nature of the transition. Relying on the heat-bath method,
do each of our systems is driven through at least 640 cycles,
each starting from an equilibrated, disordered configuration.
Error bars are calculated with respect to 32 jackknife bins. In
q-1 q-1 an exploratory simulation35] of 2D Potts models the
gr,r' = >, (qu(F,t)sqo(F’,t)>— > (Sg)% (4 mETROPOLIS algorithm was employed, but it turns out that
Go=0 Go=0 the heat-bath method saves CPU time.

In this article we simulate the 2DQ-state Potts model for
g=2, 4, 5 and 10. This allows us to compare the influence of
the Glauber dynamics for a weak second order, a strong sec-
1 ond order, a weak first order and a strong first order phase
S(k,t)=— >, g(|R|,t)exikR] (5) transition. Our terminology “strong second order phase tran-

Ns ‘R sition” may need some explanation. For a finite system of

()

in the familiar form

The structure factoffunction) is the Fourier transform of the
correlation function
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TABLE I. The (infinite volume phase transition temperatures
B.=1IT., the specific heat exponentand the latent heats of se-
lectedg-state Potts models in two dimensions. For the latent heats
the negative energy per linke, is given andAe, is an estimate

Ga

from hysteresis cycles. T

el

— >

q Be o Ae Bmin  Bmax Ag é

S
2 0.440687 O 0 0.2 1.0 0.01587)
4 0.549306 2/3 0 0.2 1.0 0.09011)
5 0.587179 1 0.031072 0.4 1.2 0.1402)

10 0.713031 1 0.348025 04 1.2 0.34@®)

FIG. 1. Energy(8) hysteresis curves fon,=1. From left to

d e . . . .
volume L® the partition functions is a polynomial i right: q=2. 4, 5 and 10,

=exp(—p) that takes positive values on the real axis. For

first ano! fsecond qrd?r phase transitions the Imaginary par_t cf:fonventional, canonical simulations. The reason for the con-
the partition function’s zero closest to the real axis scales lik

0 1 —1y - : o Sentional canonical equilibrium simulations is that one needs
uy~L ", wherey=1/d for a first order transition andd/ 1 \no the temperature to generate FK clusters. They were
<wy=2/d for a second order transition. The fluctuatlo_n_s of performed at many temperatures and in each case 640 mea-
the energy are governed by the exponenof the specific  g,rements were taken after at leasy2® sweeps for reach-
heat for which we assume the hyperscaling relafi®®] «

X s ing equilibrium.
=2—dv. Therefore,a=1 for first order transitions and 0
< a<1 for second order transitions. To determine the impli-

cations for the finite size scaling of the energy fluctuations, A. Internal energy

we use the link expectation value of the energy For a first order phase transition, the slowing down of the
canonical equilibrium Markov process is exponential in com-
e=e(B)={(Suin.or 1= —(EN(2dLY), (8)  puter time,~exd2fL91], wheref is the interfacial tension

(se€g[17] for the analytical valugsIn this case we expect an
wherer andr ~ are nearest neighbor sites. The valuegof energy hysteresis to survive in the limit—c and
are conveniently located in the range=@ <1 with e(0)  AB(L;ng)—0 for any fixed value ofng in Eq. (7). The
=1/g ande () =1. To leading order iih., finite size scaling shape of the hysteresis can then be used to define finite vol-

theory predicts the fluctuation & to scale like ume estimators of physical variables, such as the transition
temperature and the latent heat. The infinite volume limits of
(&)%) —(g))2~L""d (9)  these estimators are supposed to be independent of any fixed
choice ofng.

for B at the transition poin.=1/T.. For first order phase For the second order phase transitions of ¢e2 and
transitionsa=1 holds and the left-hand-side of E®) ap- g=4 models the analysis is more subtle. The Markov pro-
proaches a finite value, proportional to the square of the lacess slows only down like? with z~2 [39]. Therefore, one
tent heatAe,. For second order phase transitions the left-still expects a hysteresis in the lintit—c andn fixed, only
hand-side scales to zero. In this sense a weak second ordée opening has no longer the interpretation of a finite vol-
transition is one withy close to zero ow=0 and a cusp or ume estimator of the equilibrium latent heat. A finite size
logarithmic singularity, while a strong second order transi-scaling analysis of the hysteresis as a functionng(L)
tion hasa close to one. First order transitions are weak whershould allow to identify second order transitions. This analy-
Ae <1 holds and strong wheAe, becomes of order one, Sis is not pursued here.
say fromAe>0.1 on. For our choices aj the analytical Forng=1 and selected lattice sizes we show in Fig. 1 our
values[16,18 of 8., « andAe, are compiled in Table |. Our energy(8) hysteresis data. The ordinate is scaled to
values of B, and By for Eq. (7) and a numerical result,
Ae, as explained in the following subsection, are also given C(q)(e,(,@)— 1 with C(q)= % (10)
in this table. q q-1

In steps of 20 our lattice sizes range frdm=20 to L
=100. For the smaller systems all hysteresis runs are dorgo that, independently of, the range[0,1] gets covered
on a single PC, while for the larger lattices up to 32 PCs aravhen g is varied from G-<. If one wants to compare the
used, dividing our entire run in 32 bins of at least 20 hysterpresent heat bath witiMETROPOLIS results[35], the better
esis loops each. In each case a short equilibrium rupldf  efficiency of the heat bath algorithm is such that
sweeps was initially performed g#,,,, where the systems nj=™°"°"~qnfi*®**ought to be used. From left to right in
equilibrate easily, because they are highly disordered. Fdrfig. 1 hysteresis loops for the casgs 2, 4, 5 and 10 are
comparison with equilibrium configurations we performedvisible. For clarity of the figure we have omitted error bars
multicanonical[37,38 (see the next subsectipas well as and for g=4 and 5 also theL=40 and 60 lattices.
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FIG. 2. Latent heat estimates from=1 hysteresis curves. FIG. 3. The largest cluster surface for the 10-state Potts model

) ) on various lattice sizes as indicated in the fig(iree extensions are
Notable is that the hysteresis curves for ¢he4 strong sec-  the value ofn, and e for equilibrium

ond order transition and thg=5 weak first order transition

are quite similar. Frong=10 toq=2 there is a gradual, not namics. To understand the dynamics of our finite volume

an abrupt, deformation of the shape of the hysteresis. transitions in more detail, we analyze in the next two sub-
To analyze the physical content of the hysteresis curves ofections the behavior of FK clusters and structure functions

Fig. 1 in more detail, we define the finite volume estimatorsgn gyr configurations.

of the inverse transition temperatysg(L) and of the latent In a last remark about the hysteresis curves of the internal

heatAe (L) by their values at the maximum opening of the energy, we like to mention that we have also generated equi-

corresponding hysteresis curve. Figure 2 shows the thus olihrium data for all cases using the multicanonical method.

tained estimatea g (L) together with fits of the form As expected, the thus obtained3) functions fall inside the
hysteresis curves of Fig. 1. Some more details are given in
— a
Ae(L)=Dej+ 1y Rer-[38)

B. Cluster properties
wherea, is a constant. Fog= 10 the left-hand-side ordinate
applies and for the otheag-values the right-hand-side ordi-
nate. Because of the distinct scales the difference betwe
theq=10 and theg=5 estimators is large, while the general
behavior of the fitting curve appears to be quite similar for
all g-values. The obtained infinite volume estimates are

We limit our presentation to a few of the cluster observ-
ables we measurénore details will be given if30]). The
G1‘<r':11rgest cluster surface turns out to be interesting, because it
exhibits pronounced peaks in the transition region. We use
the normalization

given in Table I. Folg= 10 the estimate is in excellent agree- No. surface links of clustec
ment with the analytical result, but this is not at all the case S.= o (12
for the otherg-values. Instead, thg=2, 4 and 5 estimates L

overshoot the equilibrium values considerably. This does not
come as a surprise, because we already noted that, in tfier our cluster surfaces. A link which connects a site of the
infinite volume limit and for fixechz, a finite opening of the cluster with the site of another adjacent cluster is defined to
hysteresis survives even for the second order phase trandle @ surface link. The surface links can be mapped on the
tions. Obviously, the opening has no longer the interpretatiotd —1)-dimensional hypercubes which enclose the cluster on
of an estimator of the equilibrium latent heat. Instead, thehe dual lattice. The largest surface is simply defined as
phenomenon illustrates that the dynamics tends to wash out
differences of the equilibrium properties of the transitions. Simax=max S} (13
Performing a similar analysis fo8.(L) and comparing
the infinite volume estimates with the analytical results, wewhere the maximum is taken over all clustersf the con-
get accuracies of about1% for all g. So, we find no prob- figuration at hand.
lem in locating the equilibrium transition temperature from  For the 10-state model results for the largest cluster sur-
the information of the dynamics. The accuracy of these dyface of then;=1 hysteresis cycle are shown in Fig. 3. The
namical estimates is not competitive with the best equilib-arrows indicate the flow of the hysteresis cycles. During the
rium methods. For example, fitting the pseudocriticalheating and cooling parts of the cycles, the surface areas
B-values of the multicanonical 10-state Potts model simulapeak at distinct values(3=,8§eak. This is striking evidence
tion [37] self-consistently to the formB.(L)=pB.+c/L? that the geometry of the FK clusters is distinct during cool-
gives B,=0.713032 (16)using our energy conventiai)]. ing and heating. Due to our use of stochasiiccontrast to
The purpose of our present study is not to calculate higlyeometrical clusters, the equilibrium transition temperature
precision estimates of equilibrium quantities, but to investi-value is pinched between the temperatures at which the two
gate the deviations from equilibrium due to the imposed dypeaks are located.
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FIG. 4. The probabilityp of having a percolating cluster for the

: . FIG. 6. The largest cluster surface for equilibrium simulations.
10-state Potts model on various lattices.

Also shown in Figs. 3 and 5 are results f§},,(8) from

It can be understood that the peaksSph(B) are related  gquilibrium simulations orl. =80 lattices. They are barely
to percolation. For thg8— B,y half-cycle the picture is that  yjsible, because they are to a large extent covered by the
the cluster with the largest surface percolates due to the peyrves of the— B, half-cycle. Therefore, we plot the
riodic boundary conditions. Until the cluster percolates, itSequiIibrium curves for all oug-values separately in Fig. 6.
surface area inpreases, while it is decreasing after percolatiofne peaks show a marked increase frqrm10 (right) to q
(as only small islands of the false phase remain eventually — 2 (jeft). For first order phase transitions the interface ten-
Relying on the same data as for Fig. 3, we show in Fig. 4 th&jon implies that the free energy increases with the cluster
percolation probabilityp. It is seen that the temperatures of gyrfaces. The stronger the first order transition is, the more
the Smax peaks correspond approximately to the steepesfe system tries to minimize interfaces. For a second order
increase/decrease of the percolation probabilities. phase transition there is ridisorder-orderfree energy pen-

Another observation from Fig. 3 is that for the half-cycle gty when the phases mix and the cluster surfaces become
B~ Bmin the peaks ofSy,, are even more pronounced than fjyffy. This is quite similar to the distinct behavior of cluster
for B— Bmax- This is in accordance with a very rapid fall-off syrfaces under nucleation versus spinodal decomposition.
of the percolation probability for thg8— B, half-cycle.  The suggestion from Figs. 3 and 5 is then that the dynamics
Our interpretation is that the response to the temperaturghanges the transition scenario to spinodal for all our
change is more rapid when the system enters the disorderg@yalues. In these cases the heights of the peaks are quite
phase than when it enters the ordered phase. Such a changgilar to those which we find for the equilibrium peaks of
in relaxation scales may be expected for a strong first orde@heqzz andq=4 second order transitions.
transition(because both phases are separated by a gap in the The question emerges, how fast is the equilibrium sce-
energy and not continuously relajeavhile one would ex-  nario approached when the speed of the dynamics slows
pect that the response times under heating and cooling aggwn? In Fig. 7 we plot fomg=1, 2, 4, 8, and 16 our
similar for a weak second order phase transition. Indeed, Figgma)m) results of the 10-state model on an>880 lattice.
5 shows that the two peaks are of almost equal height for the, increasingn; we observe a slight decrease of tge
2-state Pottﬁlsing} model. TheSax r_esults for theg=4 and — Bonin Peaks, while the8— Bn., peaks increase. Although
q=5 models(no figures shownare in-between the two sce- {he peaks of the cooling and heating half-cycles approach

narios, but certainly closer tg=10 than toq=2. The dif-  one another in this way, each process is still far away from
ference betweeq=4 andq=>5 is minor.

" 801 ——

Smax
OO—*I\)OJ-hCHO)\IOOQO
Smax
OO—*I\)OJJ}CHO)\IOOQO

oo e
2 03 04 05 06 07 08
B

FIG. 7. The largest cluster surface for the 10-state Potts model
FIG. 5. The largest cluster surface for the 2-state Potts model oon 80x 80 lattices for then, values indicated by the extensions to
various lattice sizes as indicated in the figure. the lattice size.
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FIG. 8. The largest cluster surface fraxp=1 dynamical simu- FIG. 9. The structure functiorSkl(,B) for the 10-state Potts
lations on 106x 100 lattices. Compare with the equilibrium results model andnz=1 dynamics.
of Fig. 6.

o . ) . when the vectok is k; and the time dependence is dictated
equilibrium as a comparison with the height of t9e=10  py s— 5(1). Spinodal decomposition is characterized by an
equilibrium peak of Fig. 6 shows. The long tails of the peaksexplosive growth in the low momentum modes, while the
of the B— Bmax half-cycle decrease rather rapidly with in- high momentum modes relax to their equilibrium values.
creasingig, so thatS,,,(8) approaches its equilibrium value
for :8>/8;—eak'

Forg=2 (no figure showhan approach of both peaks to ) ;
the equilibrium peak 08y, is observed, whose height is for  In Figs. 9 and 10 we give thg=10 andq=2 results for
q=2 only about 10% smaller than the height of thg=1  S¢,(8). The hysteresis flow is indicated by the arrows. Fig-
dynamical peak. We take this as an indication that in theure 11 shows thg-dependence of theg;=1 dynamics to-
range of our dynamical speeds the phase conversion mechgether with our equilibrium results. In comparison with the
nism is always spinodal, independently of the order of theS,.{B) Figs. 3, 5, 6 and 8, several differences and similari-
equilibrium transition. Figure 8 makes this point by contrast-ties deserve to be mentioned:
ing the equilibrium results of Fig. 6 with the;=1 dynami- (i) For ourng values theSkl structure functions have a
cal results. In the next subsection we analyze our structurgronounced maximum on th8— B, half-cycle. This is
functions data with respect to this scenario. cooling in the spin system language used in this paper and

The locations of the equilibrium peaks are closer to theheating(i.e., confinement to deconfinemgim an analogue
Bpeax Values of the dynamicab— B, heating half-cycles QCD system.
than to thep,., values of the dynamicgB— Bpax cooling (ii) Different ordinate scales are chosen in Figs. 9 and 10,
half-cycles. This is particularly clear faj=4. Our under- because the magnitudes of the peaks show a considerable
standing of this is that the relaxation is faster for the heatingj-dependence. That is exhibited in Fig. 11.
than for the cooling half-cycle. This observation goes hand in (iii) As in Fig. 6 for S, the equilibrium peaks o8,
hand with the interpretation of the higher peaks in Figs. 3, %crease frong=10 toq=2 (see Fig. 11 However, increas-
and 8 as being due to faster response times of the system,sr.]g ng from 1 to 16, the approach of tr&l('g) function to

their equilibrium is even for,8>,8‘§e‘,jlk rather slow. This is

shown forg= 10 in Fig. 12. To a large extent it holds still for
During our simulations we recorded the structure function

1. Lowest momentum Kk

C. Structure functions

(6) for the following momenta:

0.02 T
40-1 ——
- - 0.018 | 80-1 ——
ky=(27L~%,0) and (0,27L"1) (14) 0016 | 1001 —— /
_ 1 1 0.014 /
ko=(2mwL~ 1 27L~ 1) (15) ootz | _
_ 1 1 & o001t | T
ks=(4wL"-,00 and (0,4wL ") (16) 0.008 |
ky=(4wL 127L"1Y) and (27L 147l Y 0.006
17 0.004 |
0.002 |
— -1 -1 0 . . " L . L
ke=(4mL " "4l 7). (18) 02 03 04 05 06 07 08 09 1

The structure functions are averaged over rotationally

B

equivalent momenta. In the following we use the notation

! FIG. 10. The structure functionskl(/}) for the 2-state Potts
Ski=Ski(B), (i=1,...,5) for thestructure functior5(k,t),

model andng=1 dynamics.
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FIG. 11. The structure functio, () from ns=1 dynamical FIG. 13. The structure functio, for the 2-state Potts model

simulations on 88 80 lattices together with their equilibrium val-

on 80x 80 lattices for dynamical simulations with, as indicated
ues.

by the extensions to the lattice size. The inlay of the left enlarges
the equilibrium peak together with the heating data. For the iglay
g=2, where for3> ,Bgeakthe equilibrium appears to become is shifted by—0.13 ands,, by +0.002.
approached fon;=16, as is shown in Fig. 13.

(iv) The inlays of Figs. 12 and 13 enlarge the equilibrium

peaks together with the heating 8,) data. Forq=10 plicit by first equilibrating the systems #,.x. Then peaks

as well as forq=2 we find that the heating data develop aOf similar size as the equilibrium peaks appear on g,

peak with increasingg, which may eventually approach the —Bmin half-cycle. For our slower dynamics t&l(ﬂ) struc-
equilibrium peak. However, in both cases it appears that théure function peaks for th@— B, half-cycle become vis-
heating peak wants first to merge with the cooling peak. Foible without equilibrating first at8y,a. For increasingng
q=10 then,;=16 cooling peak is much larger than the equi- they approach the equilibrium peafsee the inlays of Figs.
librium peak and the heating peaks are all the time increast2 and 13. For both half-cycles the approach to equilibrium
ing. Eventually, both peaks should start to decrease towardsppears to happen only for really slow dynamics. Very CPU
the equilibrium data. Fog=2 the cooling peaks decrease time consuming simulations of;>16 values would be
rapidly with increasing1; and then ;=16 cooling peak un- needed to follow this in detail.
dershoots the equilibrium peak. Cooling and heating peaks
move towards merging and should approach the equilibrium
peak from below. 2.k, i=1 and quenching

The Skl structure function peaks strongly under cooling

and less under heating. This is presumably related to the fact Miller and Ogilvie[4] investigated the dynamics of $2)
that the spin variables get ordered at low temperat(liles ~ 9auge theory after quenching from a low to a high physical
the Polyakov loops get ordered at high temperatyrgmis ~ temperaturgcorresponding to thg,in— Bmax half-cycle of
allowing for g-ality order-order domains. For our fast dy- the spin system They report a critical valud, so that
namics theS, values atBn. are so high that the peaks modes grow(do not grow exponentially fork<k. (k>k).

under heating become overshadowed. This can be made ex- In Figs. 14 gnd 15 we show for owr,=1 dynam_lcs all
structure functions, which we have measured. It is notable

that we observe a large gap between the peaks for

0.035
0.03 Ski(,B), i=12 and forSkj(,B), j=3. We also performed
0.025 | 0.035 F
s 002y 003 |
[45])
0.015 f 0.025 |
0.01 0.02 b
)
0.005 0.015
0.01 |
0.005 |

FIG. 12. The structure functio, for the 10-state Potts model 04 05 06 07 08 08 1 11 12
on 80x 80 lattices for dynamical simulations with; as indicated B
by the extensions to the lattice size. The inlay of the left enlarges
the equilibrium peak together with the heating data. For the iflay FIG. 14. Hysteresis of th§,(t) structure functions for the 10-
is mapped on 0.52*(B—0.66) andSk1 on 0.002+4* S, state Potts model on an 8@®O0 lattice fi;=1).

1
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0.002 f
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FIG. 15. Hysteresis of théS(t) structure functions for the FIG. 17. Time evolution of th&,(t) structure functions for the
2-state Potts model on an 8®0 lattice f1,=1). 2-state Potts model on an 80 lattice after quenching from

Bmin=0.2 to Bmax:0-6-

guenching runs. In Fig. 16 we show the time evolution on an
80x 80 lattice after quenching the 10-state Potts model fronviews sed20,28,29) predicts an exponential growth of the
B=0.4t0B=0.8 and in Fig. 17 we show the time evolution low momentum structure function in the initial part of the
after quenching the 2-state Potts model frghe0.2 to 8 time evolution after quenchinghis also applies to model)A
=0.6. As in our hysteresis investigations averages of 64@yhether such an exponential growth is found or not was
independent repetitions are taken. Again, we find a large gased by Miller and Ogilvi€4] to determine the criticak,
between the peaks f&,(8), i=1,2 and forS.(B), j=3.  petween the low and the high momentum mode. However
Further it is remarkable that the heights of the peaks in theione of our structure functions in Figs. 16—18 shows initial
hysteresis cooling half-cycles and under quenching are akxponential growth. This is already kind of obvious by look-
most identical, while the time scale is according to EQ.  ing at the figures, where the shape of the increasing parts of
extended to 3200 sweeps for the hysteresis curve. the curves is always concave and is quantitatively deter-
For Fig. 18 we have changed the second order phase traftined by performing fits. A likely explanation is that the
sition of the 2-state Potts model to a crossover by adding theahn-Hilliard theory relies on approximations which are not
term h=:6,( 1),q, With @ small magnetic field, h=0.01,  jystified in our 2D models. In 3D we find exponential growth
with respect to the spiqg, in the Hamiltonian(1). In essence in the very early stage of the time evolution after quenching
the time evolution after quenching is similar as without the(incrementing therB after every update and fitting the time
magnetic field, only that the magnitude of tﬁgl and Sk, evolu_tion within thg first sweef23]). Interestingly, our hys-
peaks decreases, maintaining still a clearly visible gap to thEeresis curves of Figs. 14 and 15, which rely on the smoother
peaks of theSkj, j=3 structure functions. Increasing the dynamics of temperature changes in small steps, show an

I _ , initial exponential growth.
magnetic field further, Fdn—O.l, the large peaks d|§appear We find no peaks in the structure factors when we quench
altogether by merging into the small peaks. The signal of

o . . %rom an ordered initial state into the disordered phase. The
transition is possibly lost for such high values of the mag- . . .
S reason may be that the structure factor is defined with respect
netic field. .
to the order parameter. Under a quench into the ordered

_ ;g?}g?fegv; (: ?r?:ks;tus g?ne:é:}:rﬂlgai,/:\l,léf ?ﬁéwii iﬁe iSphaseq—ality order-order domain may emerge, whereas there
— N ' ’ is only one disordered phase.

more subtle. Cahn-Hilliard theof26,40 (model B, for re-

0.035 — 0.012
0.03 1 0.01 | /0
0.025 r ) 0.008 | |
0.02 | / i
& / @ 0006 f
0.015 |/
i 0.004 fi
0.01 |
0.005 | 0.002 |/
0 ] 0 S —
0 200 400 600 800 1000 1200 1400 1600 0 100 200 300 400 500 600 700 800
t [sweeps] t [sweeps]
FIG. 16. Time evolution of th&,(t) structure functions for the FIG. 18. Time evolution of th&,(t) structure functions for the
10-state Potts model on an 880 lattice after quenching from 2-state Potts model on an 880 lattice after quenching from
Bmin=0.4 t0 B,2=0.8. Bmin=0.2 t0 Bna=0.6 at a magnetic fielti=0.01.
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IV. SUMMARY AND CONCLUSIONS quence that they are not visible at all, because the systems
are still out of equilibrium aiB,,., and on their return path.

Our energy hysteresis method allows for dynamical est"'l'hat is of potential interest for heavy ion collision, where our

mates of the equilibrium transition temperatures for first as B half-cycle corresponds to heating for which the

well as for second order phase transitions. While the preci: : X : .

. : : o . .dynamics of the experiment is definitely fast. We have no
sion of these estimates is not competitive with those of SAUlentirely satisfactory theoretical explanation for the observed
librium investigations, the hysteresis method provides infor- y y P

mation about dynamically rooted deviations of asymmetry, but think that it is related to the fact thyedlity

accompanying physical observables from their equilibriumorder'Order domain may emerge in the ordefgieconfined

values. For second order transitions we find that the dynamqhase'

. : .. Using quenching, we find dynamical signals surviving
ics generates a latent heat and for a weak first order transition P

. ) - . . even after the propgisecond ordgrphase transition is con-
we find a “dynamical” latent heat much larger than its equi-

librium value, whereas for a strong first order transition theverted into a crossover. Moving then far away from the tran-

dynamical latent heat agrees with the equilibrium val sition, the dynamical signals fade away too and the issue of

. - . L crossovers requires further investigations.
magnetization allows for a similar analysis, which is not re-
ported herg Our computer programs allow to extend the present study

to the 3-state Potts model in three dimensions with an exter-

In our analysis of 2D Potts models, we find spinodal de'nal magnetic field representing quark effects. In a more re-
composition to be the dominant feature as soon as we turn or 9 P g qual T
. . o o mote future, one could carry out similar studies for quenched

the dynamics. For instance, the equilibriuquasistatic

. . L . and even full QCD. But none of these studies could resolve
phase conversion of first order phase transitions is due t e i )

. ) e problem of a quantitative relationship between the
nucleation. Even our slowest dynamicsg(16) changes

the phase conversion of the investigated weak §) and Glauber time scale of our Euclidean dynamics and the time
P . . 9 eqx . scale of the Minkowskian dynamics in the real world. In this
strong @= 10) first order transitions from nucleation to spin-

dal. For theq=2 K d order t ition th context it is of interest that Pisarski and Dumitru developed
odal. ~or theq= (weak second order transition the, ...recently a Polyakov loop modg#1] which allows for simu-
=16 dynamics appears to be already rather close to eqUIIIt1'ations in the Minkowskian formulatiop42]. It may be pos-

rium, W.h'Ch is formally reac;hed fonB—mo.. The_se results_ sible to address questions similar to those raised in our paper
are mainly based on analyzing the dynamical time evolutloqNithin the hyperbolic dynamics of their model

of Fortuin-KasteleynFK) clusters and structure functions. Most likely the aim of such studies cannot be to make

0 _For I.:K clustgrs we find th&.lt the largest clus.ter surfac recise quantitative predictions. Instead, one may have to be
area Is quite sensmvg to dynam|cal effects_ and yields for al ontent with illustrating the effect of different speeds of the

c_c:_n&dertigq—valul(_as signals in favdoLof? spinodal der::ohznpo—phase conversion on the observable signals qualitatively. If
sition on the coo mgﬁﬁﬁmax) and nea 'ngﬁ%ﬁ_mi“) ait- spinodal decomposition of Polyakov loops is indeed realized
cycles of our hysteresis loops. This may be illustrated bym heavy ion collisions, one may observe an enhancement in

comparing the results of our fast{=1) dynamics of Fig. 8 th ducti f low- |
with the equilibrium results of Fig. 6. For the first order © proctiction ot low-energy giuons.

transitions the dynamics enhances the peak values to take on
similar values as one finds for thg=2 andq=4 second
order configurations near the critical point.

(i) For the structure factor ourg=1 dynamics leads on B.B. and A.V. would like to thank Michael Ogilvie for
the Bmin— Bmax half-cycle to amplitude maxima, which are useful discussions. This work was in part supported by the
considerably larger than those from the second order equilibdJ.S. Department of Energy under contract DE-FGO02-
rium configurations, see Fig. 11. The dynamical peaks on th87ER41022. The simulations were performed on worksta-
Bmax— Bmin half-cycle are comparable to those of the equi-tions of the FSU HEP group. Test runs were done on work-
librium configurations, which has for Fig. 11 the conse-stations of the IUB.
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