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The B-meson distribution amplitude is calculated using QCD sum rules. In particular we obtain an estimate
for the integral relevant to exclusivi® decayskg=460+110 MeV at the scale of 1 GeV. A simple QCD-
motivated parametrization of the distribution amplitude is suggested.
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[. INTRODUCTION considered as an extension of an earlier QCD sum rule cal-
culation by Grozin and Neubefr14] (see alsd15]) with the

The B-meson distribution amplitude was introduced1i  main difference being that we calculate next-to-leading order
as the direct analogue of light-cone distribution amplitudegNLO) radiative corrections to the sum rule. This is impor-
of light mesong2—4] in an attempt to describe generic ex- tant since the true analytic structure of the distribution am-
clusive B decays by the contribution of the hard gluon ex- plitude is seen only at this level.
change. Since then, considerable effort has been invested in The presentation is organized as follows. Section Il is
understanding the QCD dynamics of heavy meson decays imtroductory and contains the necessary definitions. A simple
the heavy quark limit. The radiative decBy- yev provides = model for the distribution is obtained in Sec. Ill using QCD
one with the simplest example of such proced&gs This  perturbation theory and duality. The complete sum rule is
form factor can be calculated in terms of tBemeson distri- constructed in Sec. IV where we discuss the structure of
bution amplitude to one-loop accura¢§] and arguments nonperturbative corrections. This section also contains our
have been given that the corresponding factorization formulaain results, the summary and conclusions.
is valid to all orders in the strong couplif@]. Similar QCD
factorization formulas have also been proposed for the re- Il. DEFINITIONS
lated processeB— yy andB— y¢* ¢~ [8,9]. For weak de- . i o
cays involving energetic light hadrons in the final states the Following Ref.[16] we define theB-meson distribution
QCD factorization is more complex since one must isolate"‘mp“t“de as the renormghzed matrix elem_ent of the bilocal
the end-point soft contributions in terms of additive contri- OP€rator built of an effective heavy quark fietg(0) and a
butions. This is a hot topitsee e.g[10]) and the results have light antiquarkq(tn) at a lightlike separation:
been encouraging although, as has been repeatedly pointed

out[11,17, the 1m, corrections to heavy-to-light exclusive (O|[a(tn)n[tn,0]Th,(0)1x[B(v))
decays are most likely large and require quantitative treat- |
ment
: =—=F(w)Tr re,.]o ., (t, 1
The B-meson distribution amplitude plays the central role 2 () THLyspTP 1 (t ) @

in all known factorization formulas, but, surprisingly, re-
ceived relatively little attention in the past. In the present"‘”th
work we use QCD sum rules to present a realistic model for 1
the B-meson distribution amplitude, consistent with all QCD [tn,O]EPex;Jtigf dun,A*(utn)
constraints. We also take this opportunity to clarify its theo- 0

retical status about which there has been some confusion. ) ) ) S
The approach that we take in this paper is a modification of'€r€0 IS the heavy quark velocity),, is the lightlike vec-
the classic work by Chernyak and Zhitnitsky on the QCDr, n“=0, such thah-v=1, P, =3(1+4¢) is the projector
sum rule analysis of the distribution amplitudes of light me-On upper components of the heavy quark spifiosfands for
sons[13]. In particular we argue that the relevant matrix an arbitrary Dirac structuréB(v)) is the B-meson state in
element of a bilocal quark-antiquark operator can be calcuthe heavy quark effective theofHQET) and F(u) is the
lated by the QCD-corrected expansioniataginary light-  decay constant in HQET, which is related to the physical
cone distances. We find that the nonperturbative corrections-meson decay constant to one-loop accuracy as

remain under control and present quantitative estimates for

the distribution amplitude and its first inverse moment which foVma=F () Cras 3 Inﬂ—Z
enters decay form factors at the tree level. Our results can be BB - vi%y o’

. 2
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The notation| ... ]g in EqQ. (1) stands for the renormaliza- ° tn
tion in a minimal subtraction{MS-)like scheme angk here
and below refers to the modified minimal subtractidnS)
normalization scale.

The invariant functiond | (t,u) wheret is a real number
defines what is usually called the leading twBsimeson dis- (@ (b) ©
tribution amplitude in position space, in contrast to the am-

plitude ® _(t,«) which involves a different light-cone pro- ; ! X _
erator built of one light and one effective heavy quark figlduble

jector (n in'stead Ofm in between. the quarks; her.L@:O,n line). The dashed line indicates the gluon Wilson line insertion in
-n=2. This name is not exact since the translation symmepeqween the quark fields.
try of the theory is broken by the presence of the effective

FIG. 1. One-loop renormalization of the nonlocal light-cone op-

heavy quark field and hence neither geometrical nor collinear c 4 2
tv.vist' is Qefined. In the p.resent paper we consider only the Orf”(t,u)zo'iare(t)+as F — +=In(itp) O'f”e(t)
distribution® , (t,) and its Fourier transform 4 e €
4 (1 u
1 o . _ - bar _ (bar
¢+(k’M):EJ' dtelktCDJr(t—iO,,u,), ;-fodul—u[o+ e(Ut) O+ e(t)]
1
. - ro?:”e(t)], 7
<I>+<t,m=f dke ™o (k,p), (@) €
0

where the first two terms in curly brackets correspond to

where in the first equation the integration contour goes beloWertex-type corrections shown in Fig. 1a and Fig. 1b, respec-
the singularities ofb , (t,x) that are located in the upper tively (in Feynman gaugeand the third term takes into ac-
half plane. count the quark field renormalization"=Z, 2@ and

The scale dependence of the distribution amplitude i"=2z, "*h0*® with Z,=1—(2/e)(aCeldm), Z,=1
driven by the renormalization of the corresponding nonlocaly (4/e) (aCg/4+) [17]. The exchange diagram in Fig. 1c is

operator UV finite and does not contribufe 4,16].
Note the following property: renormalization of the non-
O+(t)=a(tn)m[tn,0]l“hv(0). local light-cone operatoD . (t) (7) is quasilocal: it only gets

mixed with itself and with operators with smaller light-cone
separation. In fact the heavy quark vertex correction in Fig.
The corresponding factor was computed ifi16] to one- 13 corresponds to a multiplicatieusp renormalization in
loop order. In momentum space, the result reads coordinate spacgl8] while the light quark vertex correction
is identical to the similar contribution to the light-quark—
antiquark nonlocal operatorgl9]. For light quarks, this
Orf"(k-,u«):j dk'Z., (k,k"; u)OP"qK"), (5 property of quasilocality guarantees existence of the Wilson
short distance operator product expangioO®E since it im-
plies that the “size” of the operator is not altered by the
where renormalization. In the present case, however, the local OPE
does not exist because of the termitlnf which is non-
L ) SCr . analytic att—0. It is easy to see that this contribution arizes
Zi(kk' )= (k=K + =2 (kK )+, from the term~ (ut)</€? in the dimensionally regularized
diagram in Fig. 1a so that the answer for this diagram de-
pends on the order of limits—0 and 4-d=e—0. We con-

(1) . 4 4 u 5 , clude that renormalization of the nonlocal light-cone opera-
22k )= ;_2+ zlni_ z o(k—=k’) tor built of one light and one effective heavy quark field does
not commute with the short-distance expansion. In particular

4| k 6(k"—k) N O(k—k")

(6) — S
KoK=k k=i 1 [a(trm(tn.OTh, (0)]r# 2 1A(0)(D-1)Ph, (0)],

p
®

€

with d=4—¢ and the standard notation €2 2/e— ye

+In4a. Here[ ...], is the usual “plus” distribution. and the equality does not hold even as an asymptotic expan-
In order to understand the meaning of this result it ission. As a consequence, non-negative moments of the

instructive to consider operator renormalization in positionB-meson distribution amplitudefdkkP¢, (k,u) for p

space. The one-loop expression corresponding to@&dqs =0,1,2 ... are notrelated to matrix elements of local op-
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erators and in fact do not exist: It is easy to see that thén perturbation theory and taking into account nonperturba-

logarithmic singularity of the amplitude in position spacetive effects induced by vacuum condensdt2s]. Matching

d  (t,u)~In(it) for t—0 implies that the Fourier integral the two representations one obtains a sum rule. There are two

(4) is logarithmically divergent ak—oo, that is ¢, (k,u) technical details: First, one makes an assumption that contri-

~1/k for k> pu, in agreement with the analysis [ifi6]. The  butions of the continuum and of higher resonances can be

analysis of moment§dkk®¢, (k,u) in [14,2Q tacitly as- taken into account by the restriction to the so-called duality

sumes a different definition of thB-meson distribution am- region 0<s<w, in the dispersion representation for the cor-

plitude, such that the nonlocal light-cone operator is definedelation functions, e.g.

as the generating function for renormalized local operators

on the right-hand sidéRHS) of Eg. (8). This implies e.qg. » ds o
H(W)=f = pn(S)—>f

0S—w 0

ds
en(s), (13

that power divergences are subtracted. This is a different S
—w

object which, most likely, does not satisfy any simple renor-
malization group equation and has no obvious relation to

exclusiveB decays. wherepy;(s) is the corresponding spectral density. The nu-
merical value for the parametes, (called the continuum

Ill. SUM RULES: PERTURBATION THEORY threshold is usually taken to be in the interval 0.8—1.0 GeV

17,22-24. Second, one makes the so-called Borel transfor-

The aim of the present study is to suggest a realisti
model of theB-meson distribution amplitude that would be
consistent with all QCD constraints. To this end we evaluate
the necessarB-meson matrix elements using the standard f‘”o ds
QCD sum rule approack21]. In this section we set up the 0 S—w
framework and present intermediate results that include only

perturbation theory contributions and the assumption of du- ) , )
ality. The complete treatment including nonperturbative cor/ntroducing the variablé/ (Borel parametsrinstead of the
rections is presented in the next section. energyw in order to suppress higher-order nonperturbative

To derive the sum rules we consider the following Corre_corrections and minimize the dependence on the continuum
lation functions in HQET: model. The resulting sum rule for the correlation function
IT(w) is well known[22,23,25:

ation

pri(s)— j:(’dse—S’Mpn(s) (14)

if d*xe“¥)(0| T{q(0)I";h,(0)h,(x)T',q(x)}|0) 1 B N
_FZ(M)e—A/M:_Cf OdSSZe—s/M
2 2772 0

=—%TY[F1P+F2]H(£0) €)
x| 14 22 1—7+4—7TZ—2In§)
and m\ 3 9 ®
2
i f d*xe” (0| T{q(tn)Ar 1[tn,0]h, (0)h,(X)T'2q(x)}|0) - %<Eq> 1+ 27“5— 12\;2 (15
1
=~ TP o] Tt w). 0 ere as=as(w), (qq)=—(240 MeV)® is the quark con-

densate andné is the ratio of the quark-gluon and quark

The correlation functioI(w) has a pole at»=A where  condensatesni=(qg(sG)q)/(qq)=0.8 Ge\E. The given
A =mg—m, is the usual HQET parameter, and the residue ahumbers correspond to the renormalization scale
this pole is proportional to the HQET decay constBfifx): =1 GeV. With the choice A=04-05 GeV and g
=0.8-1.0 GeV the sum rule in Eq15) is satisfied for a
wide range of values of the Borel parameter 0.3 Ga¥
<o and is used 22,23 to determine theB-meson decay
(11 constantF () in the heavy quark limit. In the numerical
estimates in this paper we will take the “window” 0.3 GeV
Similarly, <M<0.6 GeV in which the matching is dorf@4] and use
. the value as(1 GeV)=0.5 (AS25-°=360 MeV) which is
L, * L ikt consistent with the world average.
T(t.w)= EF (M)K_wfo dke Ty (kmw)t ... Our task in this work is to de?ive the similar sum rule for
(12)  the correlation functiof(t,w) defined in Eq(10). The per-
turbative contributions are shown in Fig. 2. The correspond-
On the other hand, both correlation functions can be calcuing sum rule reads, so far without nonperturbative correc-
lated in QCD at negative values af of the order of 1 GeV tions:

1
I(w)= EFZ(M) + higher resonances and continuum.

A-w
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(d) (e) ®

FIG. 2. Correlation functiori10) in QCD perturbation theory to
first order.

l —
EFZ(M)e’A’M¢+(k,m
= k0(2wo—k){ fmodse*S’Mpds,k,u)
k/2

k/2
+J1) dse ¥Mp_(s,k,u)

+ke(k—ZwO)J'wodse*S”\"p>(s,k,,u) (16)
0

where
p<(S,k,M)
= Ne 1 aSCFZ 7_772_|n25
4772 27 |2 24
| 1 1)l 1 1|2 1
— 5 In(x=1) = (x=1)n(x—1) = 5In*(x—1)
21 k 1+1 1 | Li
n;[ +In(x—1)]+xInx+Li, T/
a’SCFNC
p=(s,ku)= 3 —X+In(1-%x)—2(1-x)In(1—x)
8

. (17

k
+21In%(1—x)+2 In;[x+|n(1—x)]

Here Li(x) is the Euler dilogarithm function and we used
the shorthand notatiox=2s/k.

Neglecting ag corrections for a moment, one gets the
simple expression

PHYSICAL REVIEW D 69, 034014 (2004

1 — N w
—F2<me*A’M¢+<k,u>=—°0(2wo—k>kf "dse M,
2 4772 k/2

19

In the local duality limitM —c using the sum rule expres-
sion for F(«) [Eq. (15)] with the same accuracy, F3(u)
= (N /67%) w3, one obtains

¢+(k)LD=% 0(2wo—K)k(2wo—k) (19

W

which resembles the asymptotic light-cone distribution am-
plitude of light mesons if rewritten in terms of the scaling
variable é=k/(2wg). For finite values of the Borel param-
eter M the B-meson distribution amplitude gets skewed to-
ward smaller values of the momentum but qualitatively re-
mains the same; see Fig. 3. Note that it has finite sugport
<2wy and can be interpreted as the probability amplitude to
find the light quark(on shel) in the B meson with momen-
tum k.

Beyond the Born approximation this simple parton-model
interpretation is lost since the distribution amplitude devel-
ops a high-momentum “tail” withk>2wg and in this region
cannot be thought of as a probability amplitude for the two-
particle state on the mass shell. TB¢«a) radiative correc-
tion turns out to be very large{100% of the Born termbut
cancels to a large extent against the similar large radiative
correction toF (u) [22,25.

The numerical results for two values of the Borel param-
eterM=0.3 GeV andM =0.6 GeV are shown in Fig. 3. We
choosewy=1 GeV for this plot and substitute the coupling
F2(u) appearing on the LHS of the sum ryl6) by the sum
rule (15) to the same accuracy, i.e. neglecting nonperturba-

tive corrections. In this way the dependencefonancels out

and the sensitivity to other parameters&q( and M) is
strongly reduced. Indeed, it is seen in Fig. 3 that dependence
on the Borel parameter is rather mild. Note that for lakge
the distribution amplitude becomes negative. The asymptotic
behavior is

¢, (k)~k for k—0,

¢4 (k)~— %In(k/,u) for k> pu,
(20

in agreement witH16]. Also the scale dependence of the
distribution amplitude extracted from the sum rul&6)
agrees with16]. All results are shown fou=1 GeV.

Of particular interest for the QCD descriptionBfdecays
is the value of the first negative moment

=dk
Nalw= | otom. (21)

We obtain from the sum rules

Ag'=1.49-1.83 GeV'! for wo=1.0 GeV,
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FIG. 3. B-meson distribution amplitudé , (k,.=1 GeV) calculated from the sum rul&6) in QCD perturbation theory to leading order
(dashed curvgsand next-to-leading ordgssolid curve$ for the continuum thresholdy=1 GeV and two values of the Borel parameter
M=0.3 GeV (left pane) andM =0.6 GeV (right pane)]. The value of the decay constaffu) appearing on the LHS of the sum rule is
substituted by the corresponding sum r(1&) with the appropriate accuragO or NLO) and neglecting the condensate contributions.

)\5121.79—2.08 Gev'! for wo=0.8 GeV, (22 IV. SUM RULES: NONPERTURBATIVE CORRECTIONS

The primary source of nonperturbative corrections to the
where the lower value correspondshb=0.6 GeV and the sum rules ir_1 HQI_ET is provid_ed by the quark cond_ensate. The
higher one toM =0.3 GeV for each choice ob,. Notice corresponding diagramseading and next-to-leading order
that Az * decreases adl increases and in the local duality fare.shown in Fig. 4. The leading-order contribution in Fig. 4a
limit we obtain is simply
T<EQ>(t,w):<q_q>_ (24)

_ 2w
Ns M= 200)!0=

as(2wo) (5 5w
2wq T \3

3t %) } (23
It does not depend on the quark-antiquark separation and

gives rise to thes-function type contribution to the RHS of
where it is taken into account that in the linhit—o° the sum  the sum rule in Eq(16):

rules effectively become normalized at the scale 2w,

because of subtraction of the continuum from the running 1

coupling; cf.[26]. To avoid misunderstanding we recall that T E(qq)é(k). (25

all results of this section correspond to the sum rules in QCD

perturbation theory and the given numbers will be superCondensates of higher dimension produce even more singu-
seded by those in the next section where we consider thiar terms; the expansion goes in derivatives of éfenction
nonperturbative corrections. at k=0. This is a well-known problem which is familiar

FIG. 4. Quark condensate con-
tribution to the correlation func-
tion (10).

(e) (U] (@) (h)
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from the QCD sum rule studies of light-cone distribution  One option[14,28,3( is to parametrize th8-meson dis-
amplitudes of light mesor{4.3] and nucleon parton distribu- tribution amplitude by the matrix element of the bilocal op-
tions[27,28: The short-distance OPE which is the the basiserator in Eq.(1) at imaginary light-cone separation
of the Shifman-Vainstein-Zakharov approach is inadequate
for a calculation of distribution functions point by point in
the momentum fraction space. As a consequence, QCD sum t=—i7, o (T, u)=D, (—i7,u). (27)
rules cannot be used for a direct calculation of distribution
amplitudes(unless they are supplemented by additional as-
sumption$ but rather provide constraints which have to be Obviously
implemented within QCD-motivated parameterizations
(modelg of the distributions, consistent with perturbative
CD. For a model to be self-consistent, there are three con- ® o
Qoo plr= [ ke g (29
The end-point behavior of the distributions has to be con-
sistent with QCD.
The model has to be closed under the QCD evolutipn, i-8and the parametexg is given by the simple integral
calculation of the scale dependence has to be possible and
not involve nonperturbative parameters other than those
specified by the model at the reference scale. o
The model has to involve a minimum possible number of )\gl(,u):f dro (7,1). (29
nonperturbative parameters. 0
The Chernyak-Zhitnitsky models of light-cone distribu-
tion amplitudes of light mesons give the classical example of ] . ) . .
such an approach. In this case one expands the distributio'Fhe purpose _Of going over to imaginary !|ght-con_e times
amplitude in a series over orthogonal polynomials, e.g. fodistancey is similar to that of the usual Wick rotation: In

the pion this way the oscillating exponents corresponding to the light-
cone time dependence of intermediate states propagating

* along the light cone are converted to falling exponents sup-
h(&pn)=68(1— §)p 022 op(n)CI(26-1), pressed by the energy of the state, where the light-cone quan-

o 26) tization is implied. Simultaneously, the normalization scale
p acquires the physical meaning of the cutoff in energy of

so that coefficients in this expansion correspondGegen- the intermediate states. Note that the renormalization of
bauey moments of.(£), and defines anodelby truncating qo+(T,,u_) involves only the d.istr_ibuti.on at smaller light-cone
this expansion at a certaip=pyay. The first pmay coeffi- separationdcf. Eq. (7)]. This implies tha.t knovylgdge of
cients are then estimated using QCD sum rulespractice ~ ¢+(7,x) at small distances up t@<<7n, is sufficient to
one takesp,,,=2 since estimates of higher-order coeffi- calculate its scale dependence in the same distance range, in
cients turn out to be unreliab)eThe model satisfies all the agreement with the self-consistency criterion formulated
above criteria since the correct end-point behavior is built iPOVe: o
by construction and higher-order coefficients can get mixed ©On the other hand, it is easy to understand that the func-
only with lower-order coefficients but not vice versa; it fol- 0N ¢.(7,x) can be calculated at smatl using OPE; ex-
lows that the set of coefficien{s. @, .. . ¢} is closed pansion in vacuum condensates of increasing dimension cor-
T PP : responds to the Laurent expansiongof(7, ) in powers of
under renormalizatio29] and the distribution amplitude ’

. (£,) can be calculated at arbitrary scale from its model” which is modified by galculable perturbative corrections.
atWM:,MO- It indeed involves a minimum number of param- The condensate expansion seems to be under control up to

. ~ 1 .
eters, each of which has a clear meaning in QCD as i SCe ® FSh 0 CE, FE B N TR
matrix element of a certain local operator and can eventuall g 9

be calculated e.g. on the lattice. tr?tel‘P*(T"‘g) ﬁt a cerglnrmgxgrt[]elilt%n a certal? T)O(tj.el for
In contrast to Eq(26), the B-meson distribution ampli- € largeér benhavior. Frovided that theé nonperturbative cor-

tude cannot be written as sumof independent terms that rections decrease suffic_:iently fast for largeone can hope.
have autonomous QCD evolution but rather is given by théhat the model assumptions do not lead to a large uncertainty
integral in the complex moment plarfd.6]. This feature re- in the pverall resu_lt. .

minds one of the evolution of parton distributions in the To illustrate this con;truptlor), We.have calculatgd the
deep-inelastic inclusive lepton-hadron scattering, but in Conguark _condensate co_ntrl_butlon including thg correction
trast to the latter case one cannot obtain complex moments &ee Fig. 4, the contribution of the gluon cond@seﬁég.

the B-meson distribution amplitude by analytic continuation 5). and the contribution of the mixed condensaterg Ga)
from the set of real integeras we mentioned in Sec. Il, =mg(qg) which is obtained as the expansion of the diagram
every non-negative moment of, (k,u) divergeg. As are- in Fig. 4a in the background gluon field. The resulting sum
sult, one necessarily has a continuous rather than discrete gete in which we have also included the perturbative contri-
of nonperturbative parameters. bution of Fig. 2 reads

034014-6
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0 segment of length—i/M. It can be shown that the corre-
sponding contributions-(asCg)" exponentiate to all orders
[31] and produce a Sudakov-like exponential suppression

factor
X
aC 512 e’E
S(T,M,,u)=exp{ - ZSWF In?(re”e)+ ﬁ_l_lné_m
+Liy(—27M) ] (31
tn which is the same for the quark and the quark-gluon conden-

- 1.2
FIG. 5. Gluon condensate contribution to the correlation func-Sate. Note that bL(—27M)~ —3 In*(27M) for 7>1/M. We

tion (10). Only this diagram contributes in the Fock-Schwinger €Nd Up with an improved sum rule

gauge.

1 _
EFZ(,U«)efA’M%(T,M)

“F(we Mo, (r) “0 sl 1
2 A :fo dSGﬁSMppen(S,T,/.L)—E(qq>8(7',|\/|,,u)

wq _
:J'O dse S/Mppert(slT!/-L) 14 CYSCF > | e | /.LeyE | 142:M
X o |27 n( 7ue’®)—In oM n( )
1 14 aSCF 3 5772 | 2 ve
2T 2 ZH L Mg 1+27M (32)
—In(7ue®)—=In(1+27M)—Liy(—27M) }
) in which the double-logarithmic corrections to the quark and
1/as_, M 72 1 my — quark-gluon chiral condensates are resummed. We do not
T8\ (1+27M)2 + 3_2W<qq> attempt a similar resummation in the perturbative contribu-
tion since its effect is negligible compared to the?1falloff
X(1+27M), (300  inherited from the Born term.

The perturbative and the nonperturbative contributions to
where the perturbative spectral density can be read off Edhe sum rule resuli32) for ¢, (7,u) are shown separately as
(16). The contribution of the gluon condensate turns out toa function of distancer in Fig. 6 (wo=1 GeV) and Fig. 7
be very small and will be neglected in what follows. We (wy=0.8 GeV) for two different values of the Borel param-
further note that the sum of the diagram in Fig. 4d and oneeterM =0.3 GeV andM =0.6 GeV. Note that at small dis-
half of the heavy quark self-energy correction in Fig. 4f de-tances the nonperturbative corrections are significantly
fines the universal renormalization factor of the Wilson linesmaller than the perturbative contribution. The nonperturba-
built of the lightlike segment of lengtk-i 7 and the timelike  tive correction turns to zero at a certain valuerais a result

FIG. 6. Perturbativgsolid curve$ and nonperturbativélong dashes contributions to theB-meson distribution amplitude . (7, u
=1 GeV) calculated from the sum rul@2) to NLO accuracy. In addition, the nonlocal condensate mo¢ds (36) of resummed
nonperturbative contributions to the sum rule, cf. E8j7), are shown by short dashes. The continuum threshold is chosen ig, be
=1 GeV and two values of the Borel parameter are uske:0.3 GeV(left pane) andM =0.6 GeV(right pane). The value of the decay
constant~(u«) appearing on the LHS of E@32) is substituted by the corresponding sum r(i§).
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pi{T,n =1 GeV)

FIG. 7. Same as in Fig. 6, with a different value of the continuum threshgid0.8 GeV.

of the cancellation between the quark condensate contribu- AN
tion (~ cons} and that of the mixed condensate t). This p=3+— [28] (36)
cancellation of course cannot be taken seriously and indi- Mo

cates only that the OPE breaks down since the hierarchy of
contributions is lost. We conclude that the classical QCD

sum rule is valid only up to light-cone distances of ordercorresponding tq0|q(x)q(0)|0)~exd —Ay—x?]. Here\
1-3 GeV'*, depending on the value of the Borel parameterjs a parameter with the physical meaning of the vacuum
A rough estimate for the nonperturbative contribution go* quark correlation length. In this work we taka
in the strict OPE-based approach is, therefore, given by the 400 MeV as a representative number; [84,35. We will
integral over the region of smailt where the correction is  gee that sensitivity of the sum rules to the shap&(oj is in
still positive, that is up to the crossing point with the zero ¢4t small; the major shortcoming of this approach is rather

axis. In order to get an estimate of a possible nonperturbativg, o+ other condensaté®.g. the nonlocal quark-antiquark-
contribution from large dlstgnces we use the concept of %Iuon condensateare not included and there exists no pa-
nonlocal quark condensate introduced 2] and later used rameter that would justify such a truncation

rather extensively in QCD sum rule calculations of the dis- Nonlocality of the quark condensate is easy to implement

tribution amplitudes of light mesons by the Dubna group, .. . . . -
[33,34. The same approach was taken ufid]. within our sum rules and it amounts to a simple substitution

The nonlocal quark condensate presents a model for 0 Eq. (32) (cf. [14]):
partial resummation of the OPE to all orders in terms of the

vacuum expectation value of the single nonlocal operator 5
m

°(1+27M)
16M

1
— 5(AN)S(7,M, )| 1+ O(as) —

(O[a00Ix010(0)|0) =(aa) | “ave (). (33

1 w0 i
- _<QQ>S(T,M,M)f duf(v)eY(T+2mM)/(4mM?)
The first two moments of (v) are fixed by the OPE: 2 o

) (37)
f dvf(v)=1,
0

One sees that an unphysical rise of power corrections for
large 7 is replaced by an exponential falloff so that with this

* 1, substitution the sum rulé32) can be extended to arbitrarily
fo dvvf(v)=7zmo, (34) large light-cone distances. Note that the mixed condensate
contribution is now included as a part of the nonlocal con-

and in addition one requires that the correlation functgg) ~ densate and we are forced to neglectdhesorrection to the
decreases exponentially at large Euclidian separatigns (I0cal quark condensate in E¢32) apart from the universal

—. —o0. The two simplest choices are Sudakov exponent. The size of this correction does not ex-
ceed 10-15% forr in the few GeV ! region so that its
model I: f(v)= 5(v—m3/4) [32] (35) sacrifice is numerically not important. In the same region, the

Sudakov perturbative suppression appears to be comparable
to the nonperturbative suppression incorporated in the non-
96cal condensates which is due to a finite vacuum quarks
correlation length. The results are shown in Fig. 6 and Fig. 7
by short dashes; the lower and the higher of the curves cor-
1-pg—Mv respond to the ghoices in E(ﬁ?)land Eq.(36), respectively.

' The corresponding results farg = are, foru=1 GeV,

corresponding to the Gaussian large-distance behavi
~exy —|xjm§/16] and
p—2

model Il: f(v)= m

14
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0.26

wo=1 GeV, M=0.6 GeV: Az =1.23+1 0.60=1.95+0.23 GeV ¢,
0.83

0.13

wo=1 GeV, M=0.3 GeV: A§1=1.32+ 0.54=2.03+0.29 GeV'l,
0.88

0.35
wo=0.8 GeV, M=0.6 GeV: \;'=1.36+1 0.84=2.36+0.33 GeV !,
1.16

0.15

wo=0.8 GeV, M=0.3 GeV: \;'=1.39+{ 0.64=2.24+0.35 GeV !, (39)
1.05

where the first number gives the perturbative contributionOne observes a good overall agreement which is gratifying
[the difference from Eq(22) is due to the different value given the very different approaches involved.

used forF(w)] and the three numbers under the brace cor- As follows from Eqs(5) and(6), the scale dependence of
respond to three different estimates for the nonperturbativé g also involves the first logarithmic moment of the distri-
contribution:(1) quark and mixed condensate contribution tobution amplitudg 12,16

Eq. (32) restricted to the positivity regiorf2) nonlocal con-

densate model [Eqg. (35] and (3) nonlocal condensate 4 aCr | _,

model 1 [Eq. (36)]. The first(upped number should be con- Ng (p)=|1+—— “’1% Mg (m0)

sidered as an estimate of the nonperturbative correction from

below while the difference between the two lower ones char- aCe  u (=dk pug

acterizes the uncertainty in the choice of the parametrization i In,u_ofo KN d+kimo), (42

of the nonlocal condensate. We take the average between the
two models as our central value, and one half of the differ- -
ence between this central value and the fiogtpe) number, where (asC /m)In(u/po)<1. We define

coming from local OPE, as an estimate of the overall uncer- ~dk

tainty of the result. In other words, we ascribe 50% uncer- gB(M):)\B(M)f —In=¢,(k,u) (43)
tainty to the extrapolation of the nonperturbative contribution o k Tk

to large distances as suggested by the nonlocal condensate

model, which is rather conservative; £83]. From the num- _ * e
bers in Eq.(38) we obtain the final result =Ng(w) . drin(rue’) e, (1,u)
)\gl(,u=1 GeV)=2.15-0.5 GeV'?! (39

and calculatesg(1 GeV) from the QCD sum rul€32) re-
peating the same procedure as explained above\for

or . - > ) , !
Without going into details we simply quote the final result:

Ag(u=1 GeV)=460+110 MeV. (40
og(u=1 GeV)=1.4+0.4. (44
Several other models of th® meson distribution amplitude
have been proposed in the literature. Our value in Q) Note thatog(u) defines the average value of difk in the

can be compared with integral for the first inverse momeng *, so that the number

in Eq. (44) implies that main contribution th; * comes from

Ag=350=150 MeV [6,36], momenta~ 250 MeV. With this value folrg, the two con-

. tributions O(«s) in Eq. (42) tend to cancel each other to a

Ag=A~400-500 MeV[20], large extent, so that the remaining scale dependenag bf
is weak.

Ng=473 MeV [37], A simple model of the distribution amplitudeé , (k,w)
with given values of the parametexg and og and correct

Ag=600 MeV [15]. (41)  asymptotic behavior can be chosen as

034014-9
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in perturbation theory16) in Sec. Ill; cf. Fig. 3. The effect
of nonperturbative corrections is to shift the distribution to-
ward softer momenta, which is natural. One minor drawback
of such a parametrization is that the set of parametgrand
og is not closed under renormalization. In view of a very
limited range of scales that are interesting Bsdecay phe-
nomenology this seems to be not a problem, however.

To summarize, in this paper we have derived QCD sum
rules for theB-meson distribution amplitudél) and, in par-
< ticular, obtained an estimate of its first inverse momegt
(39 and the parametarg (43) that characterizes the shape
of the distribution; see Ed44). A simple model is suggested
[Eq. (45)] that incorporates all existing constraints. We be-
FIG. 8. A QCD model for theB-meson distribution amplitude li€ve that our estimates are interesting for the studies of the

(45) (solid curveé compared with the perturbative sum rule predic- heavy quark limit in exclusiv@® decays and can be used in a
tion (16) with M=0.45 GeV,w,=1 GeV (dashed curje broad context. Concrete applications go beyond the aim of

k, GeV

agt Kk 1 2(03—1)I
n

— k
T K2+1|K*+1 w?

¢+(ku=1 GeV)=
(45)

(k in units of Ge\J. Using the values okz andog in Egs.

this work.
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