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B-meson distribution amplitude in QCD
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TheB-meson distribution amplitude is calculated using QCD sum rules. In particular we obtain an estimate
for the integral relevant to exclusiveB decayslB54606110 MeV at the scale of 1 GeV. A simple QCD-
motivated parametrization of the distribution amplitude is suggested.
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I. INTRODUCTION

TheB-meson distribution amplitude was introduced in@1#
as the direct analogue of light-cone distribution amplitud
of light mesons@2–4# in an attempt to describe generic e
clusive B decays by the contribution of the hard gluon e
change. Since then, considerable effort has been investe
understanding the QCD dynamics of heavy meson decay
the heavy quark limit. The radiative decayB→gen provides
one with the simplest example of such processes@5#. This
form factor can be calculated in terms of theB-meson distri-
bution amplitude to one-loop accuracy@6# and arguments
have been given that the corresponding factorization form
is valid to all orders in the strong coupling@7#. Similar QCD
factorization formulas have also been proposed for the
lated processesB→gg andB→g,1,2 @8,9#. For weak de-
cays involving energetic light hadrons in the final states
QCD factorization is more complex since one must isol
the end-point soft contributions in terms of additive cont
butions. This is a hot topic~see e.g.@10#! and the results have
been encouraging although, as has been repeatedly po
out @11,12#, the 1/mb corrections to heavy-to-light exclusiv
decays are most likely large and require quantitative tre
ment.

TheB-meson distribution amplitude plays the central ro
in all known factorization formulas, but, surprisingly, re
ceived relatively little attention in the past. In the prese
work we use QCD sum rules to present a realistic model
theB-meson distribution amplitude, consistent with all QC
constraints. We also take this opportunity to clarify its the
retical status about which there has been some confus
The approach that we take in this paper is a modification
the classic work by Chernyak and Zhitnitsky on the QC
sum rule analysis of the distribution amplitudes of light m
sons @13#. In particular we argue that the relevant matr
element of a bilocal quark-antiquark operator can be ca
lated by the QCD-corrected expansion atimaginary light-
cone distances. We find that the nonperturbative correct
remain under control and present quantitative estimates
the distribution amplitude and its first inverse moment wh
enters decay form factors at the tree level. Our results ca
0556-2821/2004/69~3!/034014~11!/$22.50 69 0340
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considered as an extension of an earlier QCD sum rule
culation by Grozin and Neubert@14# ~see also@15#! with the
main difference being that we calculate next-to-leading or
~NLO! radiative corrections to the sum rule. This is impo
tant since the true analytic structure of the distribution a
plitude is seen only at this level.

The presentation is organized as follows. Section II
introductory and contains the necessary definitions. A sim
model for the distribution is obtained in Sec. III using QC
perturbation theory and duality. The complete sum rule
constructed in Sec. IV where we discuss the structure
nonperturbative corrections. This section also contains
main results, the summary and conclusions.

II. DEFINITIONS

Following Ref. @16# we define theB-meson distribution
amplitude as the renormalized matrix element of the bilo
operator built of an effective heavy quark fieldhv(0) and a
light antiquarkq̄(tn) at a lightlike separation:

^0u@ q̄~ tn!n” @ tn,0#Ghv~0!#RuB̄~v !&

52
i

2
F~m! Tr@g5n”GP1#F1~ t,m! ~1!

with

@ tn,0#[P expF igE
0

1

dunmAm~utn!G . ~2!

Herevm is the heavy quark velocity,nm is the lightlike vec-
tor, n250, such thatn•v51, P15 1

2 (11v” ) is the projector
on upper components of the heavy quark spinor,G stands for
an arbitrary Dirac structure,uB̄(v)& is the B̄-meson state in
the heavy quark effective theory~HQET! and F(m) is the
decay constant in HQET, which is related to the physi
B-meson decay constant to one-loop accuracy as

f BAmB5F~m!F11
CFas

4p S 3 ln
mb

m
22D1 . . . G . ~3!
©2004 The American Physical Society14-1
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The notation@ . . . #R in Eq. ~1! stands for the renormaliza
tion in a minimal subtraction–~MS-!like scheme andm here
and below refers to the modified minimal subtraction (MS)
normalization scale.

The invariant functionF1(t,m) wheret is a real number
defines what is usually called the leading twistB-meson dis-
tribution amplitude in position space, in contrast to the a
plitude F2(t,m) which involves a different light-cone pro
jector ~n”̄ instead ofn” ! in between the quarks; heren̄250,n̄
•n52. This name is not exact since the translation symm
try of the theory is broken by the presence of the effect
heavy quark field and hence neither geometrical nor collin
twist is defined. In the present paper we consider only
distributionF1(t,m) and its Fourier transform

f1~k,m!5
1

2pE2`

`

dteiktF1~ t2 i0,m!,

F1~ t,m!5E
0

`

dke2 iktf1~k,m!, ~4!

where in the first equation the integration contour goes be
the singularities ofF1(t,m) that are located in the uppe
half plane.

The scale dependence of the distribution amplitude
driven by the renormalization of the corresponding nonlo
operator

O1~ t !5q̄~ tn!n” @ tn,0#Ghv~0!.

The correspondingZ factor was computed in@16# to one-
loop order. In momentum space, the result reads

O1
ren~k,m!5E dk8Z1~k,k8;m!O1

bare~k8!, ~5!

where

Z1~k,k8;m!5d~k2k8!1
asCF

4p
Z1

(1)~k,k8;m!1•••,

Z1
(1)~k,k8;m!5S 4

ê2
1

4

ê
ln

m

k
2

5

ê
D d~k2k8!

2
4

ê
F k

k8

u~k82k!

k82k
1

u~k2k8!

k2k8
G

1

~6!

with d542e and the standard notation 2/ê52/e2gE
1 ln 4p. Here@ . . . #1 is the usual ‘‘plus’’ distribution.

In order to understand the meaning of this result it
instructive to consider operator renormalization in posit
space. The one-loop expression corresponding to Eq.~6! is
03401
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O1
ren~ t,m!5O1

bare~ t !1
asCF

4p H S 4

ê2
1

4

ê
ln~ i tm!D O1

bare~ t !

2
4

ê
E

0

1

du
u

12u
@O1

bare~ut!2O1
bare~ t !#

2
1

ê
O1

bare~ t !J , ~7!

where the first two terms in curly brackets correspond
vertex-type corrections shown in Fig. 1a and Fig. 1b, resp
tively ~in Feynman gauge!, and the third term takes into ac
count the quark field renormalization:qren5Zq

21/2qbare and

hv
ren5Zh

21/2hv
bare with Zq512(2/ê)(asCF/4p), Zh51

1(4/ê)(asCF/4p) @17#. The exchange diagram in Fig. 1c
UV finite and does not contribute@14,16#.

Note the following property: renormalization of the no
local light-cone operatorO1(t) ~7! is quasilocal: it only gets
mixed with itself and with operators with smaller light-con
separation. In fact the heavy quark vertex correction in F
1a corresponds to a multiplicative~cusp! renormalization in
coordinate space@18# while the light quark vertex correction
is identical to the similar contribution to the light-quark
antiquark nonlocal operators@19#. For light quarks, this
property of quasilocality guarantees existence of the Wils
short distance operator product expansion~OPE! since it im-
plies that the ‘‘size’’ of the operator is not altered by th
renormalization. In the present case, however, the local O
does not exist because of the term ln(itm) which is non-
analytic att→0. It is easy to see that this contribution ariz
from the term;(mt)e/e2 in the dimensionally regularized
diagram in Fig. 1a so that the answer for this diagram
pends on the order of limitst→0 and 42d5e→0. We con-
clude that renormalization of the nonlocal light-cone ope
tor built of one light and one effective heavy quark field do
not commute with the short-distance expansion. In particu

@ q̄~ tn!n” @ tn,0#Ghv~0!#R5” (
p50

`
tp

p!
@ q̄~0!~DQ •n!phv~0!#R ,

~8!

and the equality does not hold even as an asymptotic ex
sion. As a consequence, non-negative moments of
B-meson distribution amplitude*dkkpf1(k,m) for p
50,1,2, . . . are notrelated to matrix elements of local op

FIG. 1. One-loop renormalization of the nonlocal light-cone o
erator built of one light and one effective heavy quark field~double
line!. The dashed line indicates the gluon Wilson line insertion
between the quark fields.
4-2
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B-MESON DISTRIBUTION AMPLITUDE IN QCD PHYSICAL REVIEW D69, 034014 ~2004!
erators and in fact do not exist: It is easy to see that
logarithmic singularity of the amplitude in position spa
F1(t,m); ln(it) for t→0 implies that the Fourier integra
~4! is logarithmically divergent atk→`, that is f1(k,m)
;1/k for k@m, in agreement with the analysis in@16#. The
analysis of moments*dkkpf1(k,m) in @14,20# tacitly as-
sumes a different definition of theB-meson distribution am-
plitude, such that the nonlocal light-cone operator is defin
as the generating function for renormalized local opera
on the right-hand side~RHS! of Eq. ~8!. This implies e.g.
that power divergences are subtracted. This is a diffe
object which, most likely, does not satisfy any simple ren
malization group equation and has no obvious relation
exclusiveB decays.

III. SUM RULES: PERTURBATION THEORY

The aim of the present study is to suggest a reali
model of theB-meson distribution amplitude that would b
consistent with all QCD constraints. To this end we evalu
the necessaryB-meson matrix elements using the standa
QCD sum rule approach@21#. In this section we set up th
framework and present intermediate results that include o
perturbation theory contributions and the assumption of
ality. The complete treatment including nonperturbative c
rections is presented in the next section.

To derive the sum rules we consider the following cor
lation functions in HQET:

i E d4xe2 iv(vx)^0uT$q̄~0!G1hv~0!h̄v~x!G2q~x!%u0&

52
1

2
Tr@G1P1G2#P~v! ~9!

and

i Ed4xe2 iv(vx)^0uT$q̄~ tn!n”G1@ tn,0#hv~0!h̄v~x!G2q~x!%u0&

52
1

2
Tr@n/ G1P1G2#T~ t,v!. ~10!

The correlation functionP(v) has a pole atv5L̄ where
L̄5mB2mb is the usual HQET parameter, and the residue
this pole is proportional to the HQET decay constantF(m):

P~v!5
1

2
F2~m!

1

L̄2v
1higher resonances and continuum

~11!

Similarly,

T~ t,v!5
1

2
F2~m!

1

L̄2v
E

0

`

dke2 iktf1~k,m!1 . . . .

~12!

On the other hand, both correlation functions can be ca
lated in QCD at negative values ofv of the order of 1 GeV
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in perturbation theory and taking into account nonpertur
tive effects induced by vacuum condensates@21#. Matching
the two representations one obtains a sum rule. There are
technical details: First, one makes an assumption that co
butions of the continuum and of higher resonances can
taken into account by the restriction to the so-called dua
region 0,s,v0 in the dispersion representation for the co
relation functions, e.g.

P~w!5E
0

` ds

s2v
rP~s!→E

0

v0 ds

s2v
rP~s!, ~13!

whererP(s) is the corresponding spectral density. The n
merical value for the parameterv0 ~called the continuum
threshold! is usually taken to be in the interval 0.8–1.0 Ge
@17,22–24#. Second, one makes the so-called Borel trans
mation

E
0

v0 ds

s2v
rP~s!→E

0

v0
dse2s/MrP~s! ~14!

introducing the variableM ~Borel parameter! instead of the
energyv in order to suppress higher-order nonperturbat
corrections and minimize the dependence on the continu
model. The resulting sum rule for the correlation functi
P(v) is well known @22,23,25#:

1

2
F2~m!e2L̄/M5

Nc

2p2E0

v0
dss2e2s/M

3F11
as

p S 17

3
1

4p2

9
22 ln

2s

m D G
2

1

2
^q̄q&F11

2as

p
2

m0
2

16M2G . ~15!

Here as5as(m), ^q̄q&.2(240 MeV)3 is the quark con-
densate andm0

2 is the ratio of the quark-gluon and quar

condensatesm0
25^q̄g(sG)q&/^q̄q&.0.8 GeV2. The given

numbers correspond to the renormalization scalem

51 GeV. With the choice L̄50.4–0.5 GeV and v0
50.8–1.0 GeV the sum rule in Eq.~15! is satisfied for a
wide range of values of the Borel parameter 0.3 GeV,M
,` and is used@22,23# to determine theB-meson decay
constantF(m) in the heavy quark limit. In the numerica
estimates in this paper we will take the ‘‘window’’ 0.3 Ge
,M,0.6 GeV in which the matching is done@24# and use
the valueas(1 GeV)50.5 (LQCD

(3)NLO.360 MeV) which is
consistent with the world average.

Our task in this work is to derive the similar sum rule f
the correlation functionT(t,v) defined in Eq.~10!. The per-
turbative contributions are shown in Fig. 2. The correspo
ing sum rule reads, so far without nonperturbative corr
tions:
4-3
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1

2
F2~m!e2L̄/Mf1~k,m!

5ku~2v02k!F E
k/2

v0
dse2s/Mr,~s,k,m!

1E
0

k/2

dse2s/Mr.~s,k,m!G
1ku~k22v0!E

0

v0
dse2s/Mr.~s,k,m! ~16!

where

r,~s,k,m!

5
Nc

4p2 H 11
asCF

2p F7

2
1

7p2

24
2 ln2

k

m

2
5

2
ln~x21!2~x21!ln~x21!2

1

2
ln2~x21!

22 ln
k

m
@11 ln~x21!#1x ln x1Li2S 1

12xD G J ,

r.~s,k,m!5
asCFNc

8p3 F2x1 ln~12x!22~12x!ln~12x!

12 ln2~12x!12 ln
k

m
@x1 ln~12x!#G . ~17!

Here Li2(x) is the Euler dilogarithm function and we use
the shorthand notationx52s/k.

Neglecting as corrections for a moment, one gets th
simple expression

FIG. 2. Correlation function~10! in QCD perturbation theory to
first order.
03401
1

2
F2~m!e2L̄/Mf1~k,m!5

Nc

4p2
u~2v02k!kE

k/2

v0
dse2s/M.

~18!

In the local duality limitM→` using the sum rule expres
sion for F(m) @Eq. ~15!# with the same accuracy, 1/2F2(m)
.(Nc/6p2)v0

3, one obtains

f1~k!LD5
3

4v0
3
u~2v02k!k~2v02k! ~19!

which resembles the asymptotic light-cone distribution a
plitude of light mesons if rewritten in terms of the scalin
variablej5k/(2v0). For finite values of the Borel param
eter M the B-meson distribution amplitude gets skewed t
ward smaller values of the momentum but qualitatively
mains the same; see Fig. 3. Note that it has finite suppok
,2v0 and can be interpreted as the probability amplitude
find the light quark~on shell! in the B meson with momen-
tum k.

Beyond the Born approximation this simple parton-mod
interpretation is lost since the distribution amplitude dev
ops a high-momentum ‘‘tail’’ withk.2v0 and in this region
cannot be thought of as a probability amplitude for the tw
particle state on the mass shell. TheO(as) radiative correc-
tion turns out to be very large (;100% of the Born term! but
cancels to a large extent against the similar large radia
correction toF(m) @22,25#.

The numerical results for two values of the Borel para
eterM50.3 GeV andM50.6 GeV are shown in Fig. 3. We
choosev051 GeV for this plot and substitute the couplin
F2(m) appearing on the LHS of the sum rule~16! by the sum
rule ~15! to the same accuracy, i.e. neglecting nonpertur
tive corrections. In this way the dependence onL̄ cancels out
and the sensitivity to other parameters (v0 and M ) is
strongly reduced. Indeed, it is seen in Fig. 3 that depende
on the Borel parameter is rather mild. Note that for largek
the distribution amplitude becomes negative. The asympt
behavior is

f1~k!;k for k→0,

f1~k!;2
1

k
ln~k/m! for k@m,

~20!

in agreement with@16#. Also the scale dependence of th
distribution amplitude extracted from the sum rule~16!
agrees with@16#. All results are shown form51 GeV.

Of particular interest for the QCD description ofB decays
is the value of the first negative moment

lB
21~m!5E

0

`dk

k
f1~k,m!. ~21!

We obtain from the sum rules

lB
2151.4921.83 GeV21 for v051.0 GeV,
4-4
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FIG. 3. B-meson distribution amplitudef1(k,m51 GeV) calculated from the sum rule~16! in QCD perturbation theory to leading orde
~dashed curves! and next-to-leading order~solid curves! for the continuum thresholdv051 GeV and two values of the Borel paramet
M50.3 GeV~left panel! and M50.6 GeV~right panel!. The value of the decay constantF(m) appearing on the LHS of the sum rule
substituted by the corresponding sum rule~15! with the appropriate accuracy~LO or NLO! and neglecting the condensate contributions
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lB
2151.7922.08 GeV21 for v050.8 GeV, ~22!

where the lower value corresponds toM50.6 GeV and the
higher one toM50.3 GeV for each choice ofv0. Notice
that lB

21 decreases asM increases and in the local dualit
limit we obtain

lB
21~m52v0!LD5

3

2v0
F12

as~2v0!

p S 5

3
1

5p2

36 D G , ~23!

where it is taken into account that in the limitM→` the sum
rules effectively become normalized at the scalem52v0
because of subtraction of the continuum from the runn
coupling; cf.@26#. To avoid misunderstanding we recall th
all results of this section correspond to the sum rules in Q
perturbation theory and the given numbers will be sup
seded by those in the next section where we consider
nonperturbative corrections.
03401
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IV. SUM RULES: NONPERTURBATIVE CORRECTIONS

The primary source of nonperturbative corrections to
sum rules in HQET is provided by the quark condensate. T
corresponding diagrams~leading and next-to-leading orde!
are shown in Fig. 4. The leading-order contribution in Fig.
is simply

T^q̄q&~ t,v!5
^q̄q&
2v

. ~24!

It does not depend on the quark-antiquark separation
gives rise to thed-function type contribution to the RHS o
the sum rule in Eq.~16!:

. . . 2
1

2
^q̄q&d~k!. ~25!

Condensates of higher dimension produce even more si
lar terms; the expansion goes in derivatives of thed function
at k50. This is a well-known problem which is familia
-
FIG. 4. Quark condensate con
tribution to the correlation func-
tion ~10!.
4-5
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BRAUN, IVANOV, AND KORCHEMSKY PHYSICAL REVIEW D 69, 034014 ~2004!
from the QCD sum rule studies of light-cone distributio
amplitudes of light mesons@13# and nucleon parton distribu
tions @27,28#: The short-distance OPE which is the the ba
of the Shifman-Vainstein-Zakharov approach is inadequ
for a calculation of distribution functions point by point i
the momentum fraction space. As a consequence, QCD
rules cannot be used for a direct calculation of distribut
amplitudes~unless they are supplemented by additional
sumptions! but rather provide constraints which have to
implemented within QCD-motivated parameterizatio
~models! of the distributions, consistent with perturbativ
QCD. For a model to be self-consistent, there are three c
ditions:

The end-point behavior of the distributions has to be c
sistent with QCD.

The model has to be closed under the QCD evolution,
calculation of the scale dependence has to be possible
not involve nonperturbative parameters other than th
specified by the model at the reference scale.

The model has to involve a minimum possible number
nonperturbative parameters.

The Chernyak-Zhitnitsky models of light-cone distrib
tion amplitudes of light mesons give the classical example
such an approach. In this case one expands the distribu
amplitude in a series over orthogonal polynomials, e.g.
the pion

fp~j,m!56j~12j! (
p50,2, . . .

`

wp~m!Cp
3/2~2j21!,

~26!

so that coefficients in this expansion correspond to~Gegen-
bauer! moments offp(j), and defines amodelby truncating
this expansion at a certainp5pmax. The first pmax coeffi-
cients are then estimated using QCD sum rules.~In practice
one takespmax52 since estimates of higher-order coef
cients turn out to be unreliable.! The model satisfies all the
above criteria since the correct end-point behavior is buil
by construction and higher-order coefficients can get mi
only with lower-order coefficients but not vice versa; it fo
lows that the set of coefficients$w0 ,w2 , . . . ,wkmax

% is closed
under renormalization@29# and the distribution amplitude
fp(j,m) can be calculated at arbitrary scale from its mo
at m5m0. It indeed involves a minimum number of param
eters, each of which has a clear meaning in QCD as
matrix element of a certain local operator and can eventu
be calculated e.g. on the lattice.

In contrast to Eq.~26!, the B-meson distribution ampli-
tude cannot be written as asumof independent terms tha
have autonomous QCD evolution but rather is given by
integral in the complex moment plane@16#. This feature re-
minds one of the evolution of parton distributions in t
deep-inelastic inclusive lepton-hadron scattering, but in c
trast to the latter case one cannot obtain complex momen
the B-meson distribution amplitude by analytic continuati
from the set of real integers@as we mentioned in Sec. II
every non-negative moment off1(k,m) diverges#. As a re-
sult, one necessarily has a continuous rather than discret
of nonperturbative parameters.
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One option@14,28,30# is to parametrize theB-meson dis-
tribution amplitude by the matrix element of the bilocal o
erator in Eq.~1! at imaginary light-cone separation

t52 i t, w1~t,m!5F1~2 i t,m!. ~27!

Obviously

w1~t,m!5E
0

`

dke2tkf1~k,m! ~28!

and the parameterlB is given by the simple integral

lB
21~m!5E

0

`

dtw1~t,m!. ~29!

The purpose of going over to imaginary light-cone tim
~distances! is similar to that of the usual Wick rotation: In
this way the oscillating exponents corresponding to the lig
cone time dependence of intermediate states propaga
along the light cone are converted to falling exponents s
pressed by the energy of the state, where the light-cone q
tization is implied. Simultaneously, the normalization sca
m acquires the physical meaning of the cutoff in energy
the intermediate states. Note that the renormalization
w1(t,m) involves only the distribution at smaller light-con
separations@cf. Eq. ~7!#. This implies that knowledge o
w1(t,m) at small distances up tot,tmax is sufficient to
calculate its scale dependence in the same distance rang
agreement with the self-consistency criterion formula
above.

On the other hand, it is easy to understand that the fu
tion w1(t,m) can be calculated at smallt using OPE; ex-
pansion in vacuum condensates of increasing dimension
responds to the Laurent expansion ofw1(t,m) in powers of
t, which is modified by calculable perturbative correction
The condensate expansion seems to be under control u
distances of ordert;1 GeV21 ~that is, of order 0.2 fm!. At
larger distances the OPE diverges and one has to either
catew1(t,m) at a certaintmax or rely on a certain model for
the larget behavior. Provided that the nonperturbative c
rections decrease sufficiently fast for larget one can hope
that the model assumptions do not lead to a large uncerta
in the overall result.

To illustrate this construction, we have calculated t
quark condensate contribution including theas correction
~see Fig. 4!, the contribution of the gluon condensate~Fig.
5!, and the contribution of the mixed condensate^q̄sgGq&
.m0

2^q̄q& which is obtained as the expansion of the diagr
in Fig. 4a in the background gluon field. The resulting su
rule in which we have also included the perturbative con
bution of Fig. 2 reads
4-6
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1

2
F2~m!e2L̄/Mw1~t,m!

5E
0

v0
dse2s/Mrpert~s,t,m!

2
1

2
^q̄q&H 11

asCF

2p F32
5p2

24
2 ln2~tmegE!

2 ln~tmegE!2 ln~112tM !2Li2~22tM !G J
1

1

48K as

p
G2L Mt2

~112tM !2
1

1

32

m0
2

M2
^q̄q&

3~112tM !, ~30!

where the perturbative spectral density can be read off
~16!. The contribution of the gluon condensate turns out
be very small and will be neglected in what follows. W
further note that the sum of the diagram in Fig. 4d and o
half of the heavy quark self-energy correction in Fig. 4f d
fines the universal renormalization factor of the Wilson li
built of the lightlike segment of length2 i t and the timelike

FIG. 5. Gluon condensate contribution to the correlation fu
tion ~10!. Only this diagram contributes in the Fock-Schwing
gauge.
03401
q.
o

-
-

segment of length2 i /M . It can be shown that the corre
sponding contributions;(asCF)n exponentiate to all orders
@31# and produce a Sudakov-like exponential suppress
factor

S~t,M ,m!5expH 2
asCF

2p F ln2~tmegE!1
5p2

24
212 ln

megE

2M

1Li2~22tM !G J ~31!

which is the same for the quark and the quark-gluon cond
sate. Note that Li2(22tM );2 1

2 ln2(2tM) for t@1/M . We
end up with an improved sum rule

1

2
F2~m!e2L̄/Mw1~t,m!

5E
0

v0
dse2s/Mrpert~s,t,m!2

1

2
^q̄q&S~t,M ,m!

3H 11
asCF

2p F22 ln~tmegE!2 ln
megE

2M
2 ln~112tM!G

2
1

16

m0
2

M2
~112tM!J , ~32!

in which the double-logarithmic corrections to the quark a
quark-gluon chiral condensates are resummed. We do
attempt a similar resummation in the perturbative contrib
tion since its effect is negligible compared to the 1/t2 falloff
inherited from the Born term.

The perturbative and the nonperturbative contributions
the sum rule result~32! for w1(t,m) are shown separately a
a function of distancet in Fig. 6 (v051 GeV) and Fig. 7
(v050.8 GeV) for two different values of the Borel param
eter M50.3 GeV andM50.6 GeV. Note that at small dis
tances the nonperturbative corrections are significa
smaller than the perturbative contribution. The nonpertur
tive correction turns to zero at a certain value oft as a result

-

e

FIG. 6. Perturbative~solid curves! and nonperturbative~long dashes! contributions to theB-meson distribution amplitudew1(t,m
51 GeV) calculated from the sum rule~32! to NLO accuracy. In addition, the nonlocal condensate models~35!, ~36! of resummed
nonperturbative contributions to the sum rule, cf. Eq.~37!, are shown by short dashes. The continuum threshold is chosen to bv0

51 GeV and two values of the Borel parameter are used:M50.3 GeV~left panel! andM50.6 GeV~right panel!. The value of the decay
constantF(m) appearing on the LHS of Eq.~32! is substituted by the corresponding sum rule~15!.
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FIG. 7. Same as in Fig. 6, with a different value of the continuum thresholdv050.8 GeV.
ib

nd
y
D

e
te

th

ro
ti
f

is
up

r
th
r

vi

um

her
-
a-

ent
ion

for
is
y
sate
n-

l
ex-

the
rable
on-
rks
. 7

cor-
of the cancellation between the quark condensate contr
tion (; const! and that of the mixed condensate (;t). This
cancellation of course cannot be taken seriously and i
cates only that the OPE breaks down since the hierarch
contributions is lost. We conclude that the classical QC
sum rule is valid only up to light-cone distances of ord
1 –3 GeV21, depending on the value of the Borel parame
A rough estimate for the nonperturbative contribution tolB

21

in the strict OPE-based approach is, therefore, given by
integral over the region of smallt where the correction is
still positive, that is up to the crossing point with the ze
axis. In order to get an estimate of a possible nonperturba
contribution from large distances we use the concept o
nonlocal quark condensate introduced in@32# and later used
rather extensively in QCD sum rule calculations of the d
tribution amplitudes of light mesons by the Dubna gro
@33,34#. The same approach was taken up in@14#.

The nonlocal quark condensate presents a model fo
partial resummation of the OPE to all orders in terms of
vacuum expectation value of the single nonlocal operato

^0uq̄~x!@x,0#q~0!u0&5^q̄q&E
0

`

dnenx2/4f ~n!. ~33!

The first two moments off (n) are fixed by the OPE:

E
0

`

dn f ~n!51,

E
0

`

dnn f ~n!5
1

4
m0

2 , ~34!

and in addition one requires that the correlation function~33!
decreases exponentially at large Euclidian separationsx2

→2`. The two simplest choices are

model I: f ~n!5d~n2m0
2/4! @32# ~35!

corresponding to the Gaussian large-distance beha
;exp@2ux2um0

2/16# and

model II: f ~n!5
lp22

G~p22!
n12pe2l/n,
03401
u-

i-
of

r
r.

e

ve
a

-

a
e

or

p531
4l

m0
2 @28# ~36!

corresponding tô 0uq̄(x)q(0)u0&;exp@2lA2x2#. Here l
is a parameter with the physical meaning of the vacu
quark correlation length. In this work we takel
5400 MeV as a representative number; cf.@34,35#. We will
see that sensitivity of the sum rules to the shape off (n) is in
fact small; the major shortcoming of this approach is rat
that other condensates~e.g. the nonlocal quark-antiquark
gluon condensate! are not included and there exists no p
rameter that would justify such a truncation.

Nonlocality of the quark condensate is easy to implem
within our sum rules and it amounts to a simple substitut
in Eq. ~32! ~cf. @14#!:

2
1

2
^q̄q&S~t,M ,m!H 11O~as!2

m0
2

16M2
~112tM !J

→2
1

2
^q̄q&S~t,M ,m!E

0

`

dn f ~n!e2n(112tM )/(4M2).

~37!

One sees that an unphysical rise of power corrections
larget is replaced by an exponential falloff so that with th
substitution the sum rule~32! can be extended to arbitraril
large light-cone distances. Note that the mixed conden
contribution is now included as a part of the nonlocal co
densate and we are forced to neglect theas correction to the
~local! quark condensate in Eq.~32! apart from the universa
Sudakov exponent. The size of this correction does not
ceed 10–15 % fort in the few GeV21 region so that its
sacrifice is numerically not important. In the same region,
Sudakov perturbative suppression appears to be compa
to the nonperturbative suppression incorporated in the n
local condensates which is due to a finite vacuum qua
correlation length. The results are shown in Fig. 6 and Fig
by short dashes; the lower and the higher of the curves
respond to the choices in Eq.~35! and Eq.~36!, respectively.
The corresponding results forlB

21 are, form51 GeV,
4-8



21

0.26
21
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v051 GeV, M50.6 GeV: lB 51.231H 0.60

0.83

51.9560.23 GeV ,

v051 GeV, M50.3 GeV: lB
2151.321H 0.13

0.54

0.88

52.0360.29 GeV21,

v050.8 GeV, M50.6 GeV: lB
2151.361H 0.35

0.84

1.16

52.3660.33 GeV21,

v050.8 GeV, M50.3 GeV: lB
2151.391H 0.15

0.64

1.05

52.2460.35 GeV21, ~38!
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t:

a

where the first number gives the perturbative contribut
@the difference from Eq.~22! is due to the different value
used forF(m)] and the three numbers under the brace c
respond to three different estimates for the nonperturba
contribution:~1! quark and mixed condensate contribution
Eq. ~32! restricted to the positivity region,~2! nonlocal con-
densate model I@Eq. ~35!# and ~3! nonlocal condensate
model II @Eq. ~36!#. The first~upper! number should be con
sidered as an estimate of the nonperturbative correction f
below while the difference between the two lower ones ch
acterizes the uncertainty in the choice of the parametriza
of the nonlocal condensate. We take the average betwee
two models as our central value, and one half of the diff
ence between this central value and the first~upper! number,
coming from local OPE, as an estimate of the overall unc
tainty of the result. In other words, we ascribe 50% unc
tainty to the extrapolation of the nonperturbative contribut
to large distances as suggested by the nonlocal conde
model, which is rather conservative; cf.@33#. From the num-
bers in Eq.~38! we obtain the final result

lB
21~m51 GeV!52.1560.5 GeV21 ~39!

or

lB~m51 GeV!54606110 MeV. ~40!

Several other models of theB meson distribution amplitude
have been proposed in the literature. Our value in Eq.~40!
can be compared with

lB53506150 MeV @6,36#,

lB5L̄;400–500 MeV @20#,

lB5473 MeV @37#,

lB.600 MeV @15#. ~41!
03401
n

r-
e

m
r-
n

the
-

r-
r-

ate

One observes a good overall agreement which is gratify
given the very different approaches involved.

As follows from Eqs.~5! and~6!, the scale dependence o
lB also involves the first logarithmic moment of the dist
bution amplitude@12,16#

lB
21~m!5F11

asCF

2p
ln

m

m0
GlB

21~m0!

2
asCF

p
ln

m

m0
E

0

`dk

k
ln

m0

k
f1~k,m0!, ~42!

where (asCF /p)ln(m/m0),1. We define

sB~m!5lB~m!E
0

`dk

k
ln

m

k
f1~k,m! ~43!

5lB~m!E
0

`

dt ln~tmegE!w1~t,m!

and calculatesB(1 GeV) from the QCD sum rule~32! re-
peating the same procedure as explained above forlB .
Without going into details we simply quote the final resul

sB~m51 GeV!51.460.4. ~44!

Note thatsB(m) defines the average value of lnm/k in the
integral for the first inverse momentlB

21 , so that the number
in Eq. ~44! implies that main contribution tolB

21 comes from
momenta;250 MeV. With this value forsB , the two con-
tributions O(as) in Eq. ~42! tend to cancel each other to
large extent, so that the remaining scale dependence oflB

21

is weak.
A simple model of the distribution amplitudef1(k,m)

with given values of the parameterslB and sB and correct
asymptotic behavior can be chosen as
4-9
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f1~k,m51 GeV!5
4lB

21

p

k

k211
F 1

k211
2

2~sB21!

p2
ln kG
~45!

(k in units of GeV!. Using the values oflB andsB in Eqs.
~39!,~44! one obtains the distribution shown in Fig. 8 by th
solid curve. For comparison, we also show in this plo
typical distribution amplitude obtained from QCD sum rul

FIG. 8. A QCD model for theB-meson distribution amplitude
~45! ~solid curve! compared with the perturbative sum rule pred
tion ~16! with M50.45 GeV,v051 GeV ~dashed curve!.
t.

.

rt,

.C

D

03401
in perturbation theory~16! in Sec. III; cf. Fig. 3. The effect
of nonperturbative corrections is to shift the distribution t
ward softer momenta, which is natural. One minor drawba
of such a parametrization is that the set of parameterslB and
sB is not closed under renormalization. In view of a ve
limited range of scales that are interesting forB-decay phe-
nomenology this seems to be not a problem, however.

To summarize, in this paper we have derived QCD s
rules for theB-meson distribution amplitude~1! and, in par-
ticular, obtained an estimate of its first inverse momentlB

21

~39! and the parametersB ~43! that characterizes the shap
of the distribution; see Eq.~44!. A simple model is suggeste
@Eq. ~45!# that incorporates all existing constraints. We b
lieve that our estimates are interesting for the studies of
heavy quark limit in exclusiveB decays and can be used in
broad context. Concrete applications go beyond the aim
this work.
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