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Amplification of coupling for Yukawa potentials
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It is well known that Yukawa potentials permit bound states in the Schro¨dinger equation only if the ratio of
the exchanged mass to bound mass is below a critical multiple of the coupling constant. However, arguments
suggested by the Darwin term imply a more complex situation. By numerically studying the Dirac equation
with a Yukawa potential we investigate this ‘‘amplification’’ effect.

DOI: 10.1103/PhysRevD.69.034006 PACS number~s!: 13.66.2a, 03.65.Ge, 03.65.Pm
a

a

to
-

a
o

th
ia
in
a

e

fo
th
o
tio
te

fre

d
ta

ple
r
c

n
ne
.
p’

ound
free
-
ib-
n-

nge

on-
-
yn-
wa
se-
e
o-

ve.
he
et

an
e of

eri-
ass
volts.
is
po-
ass
u-
n-

ot
tly
c
o

I. INTRODUCTION

In recent years neutrino oscillation experiments have
but proved that neutrino mass states exist@1#. These are lin-
ear combinations of neutrino flavor states. The neutrinos
subject only to weak interactions~neglecting gravitation!.
More precisely, they participate only in weak vertices~loop
diagrams in which a neutrino couples to a charged lep
virtual pairW6 would of course allow for higher order elec
tromagnetic interactions via the charged virtual particles!.

Since neutrinos have mass and couple via exchanged
termediate mass bosons to leptons one may legitimately
if a neutrino-lepton bound state could exist. Exchange
W6,Z0 means the treatment of Yukawa potentials and
question of when bound states exist for Yukawa potent
@2#. Such weak bound states would provide very interest
effects in superconductivity as they would constitute
‘‘bosonic atom’’ which reminds us of one of the multipl
roles played by Cooper pairs in standard theory.

The question of the existence, or not, of a bound state
a given potential seems a simple theoretical question wi
straightforward method for finding an answer. Given a p
tential and the corresponding reduced mass wave equa
one solves it, normally numerically, and sees if bound sta
exist. Bound states are characterized by normalized~local-
ized! solutions and a discrete energy spectrum below the
particle thresholdE,m⇔ENR5E2m,0, whereE is the
relativistic energy andENR the nonrelativistic energy of the
particle with reduced massm. The existence of either norme
states or a discrete spectrum suffices to identify a bound s
regime. Of course, nothing is quite so simple. For exam
there are limits for the validity of the use of potentials. Fu
thermore, coupling constants have the ‘‘annoying’’ tenden
to run and hence are anything but constants.

Even within the realm of nonrelativistic quantum mecha
ics potential theory, we have surprising subtleties. A o
dimensional square well always yields a bound state
three-dimensional spherical well must be sufficiently ‘‘dee
or extended to allow a bound state solution@3#. Relativistic
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wave equations open up numerous conundrums. Can a b
state energy exist below the onset of negative energy
wave solutions~Klein paradox@4,5#!? How does particle sta
tistics and in particular the Pauli exclusion principle contr
ute to or modify this? The use of field theory will be me
tioned in the conclusions of this work.

The weak interactions are characterized by the excha
of very massive particles (W6, Z0 exchange! and parity vio-
lation which constitute a complicated~but calculable! mix of
attractive and repulsive forces. For simplicity, one can c
sider only theZ0 exchange.Z0 exchange allows for a poten
tial treatment since it is well represented by a single Fe
man graph in momentum space from which a Yuka
potential can be derived by Fourier transform. As a con
quence of theV2A nature of weak interactions, it can b
shown that according to the total spin state of the tw
fermion system the potential is either attractive or repulsi
A similar attractive or repulsive alternative occurs for t
isospin state in ap-n system from which the deuteron singl
bound state emerges. The limitation for the existence of
electron-neutrino bound state is set by the enormous valu
m/m, wherem ('91 GeV) is theZ0 mass@6# and m the
reduced neutrino mass. As we have said, oscillation exp
ments are consistent with the existence of neutrino m
states but these have masses of less than a few electron

In this paper, we wish to investigate a small part of th
question. We concentrate our attention upon the Yukawa
tential and ask what are the limits upon the exchanged m
for two-fermion bound states to exist. The attractive Co
lomb potential yields infinite bound state solutions indepe
dent of the coupling strength for both the Schro¨dinger and
Dirac equations. A Yukawa potential will on the contrary n
yield a bound state unless the coupling is sufficien
‘‘strong.’’ This is proven only numerically since no analyti
solution is known for the Yukawa potential. Using the Schr¨-
dinger equation and

VYuk~r !52l
e2mr

r
~1!

(l.0 for bound states!, it is known that the condition for the
existence of the lowest lying S states is
©2004 The American Physical Society06-1
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l.0.84
m

m
. ~2!

An analytic approximation to this result can be found
using the Hulthe´n potential@2,7# in the Schro¨dinger equa-
tion,

VHul~r !52l
2m

e2mr21
. ~3!

The numerator in this potential has been chosen not o
because of dimensional requirements but also to agree
Eq. ~1! up to the linear term inmr . The imposition of a
normalized wave function here requires

l.
m

m
. ~4!

The radial solution for the Hulthe´n ground state is

R~r ,l 50!52Aml~m2l22m2!
sinh~mr !

mr
e2mlr .

An equivalent potential~with analytic solution! to the
Hulthén for the Dirac equation is not known. We mu
qualify this last statement. If one allows for a vector as w
as a scalar potential, and one makes a very particular ch
then one can find analytic solutions with a Hulthe´n scalar
potential @8#. This technique derives from some ingenio
suggestions by Alhaidari@9# for solving the Dirac-Morse
problem.

II. DIRAC EQUATION AND YUKAWA POTENTIALS

The Dirac equation in the presence of a general sphe
potentialV(r ) can be written as

EC~r!5S V~r !1m 2 i s•“

2 i s•“ V~r !2mDC~r!. ~5!

By using

C~r!5S f j
k~r !Yjmj

k ~ r̂!

ig j
k~r !Yjmj

2k ~ r̂!
D ,

whereYjmj

k ( r̂) are the spherical functions obtained by su

ming the spherical harmonicsYl ,mj 61/2 with the spinor eigen-

states andk56( j 11/2) for l 5 j 61/2 ~for details, see Ref
@10#!, Eq. ~5! reduces~dropping the subscripts and supe
scripts for the radial functionsf j

k andgj
k) to two coupled first

order ordinary differential equations

@E2m2V~r !# f ~r !52g8~r !2
12k

r
g~r !,

@E1m2V~r !#g~r !5 f 8~r !1
11k

r
f ~r !. ~6!
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It is instructive to make the nonrelativistic limit in Eqs.~6!
by settingE5m2e (e.0 for bound states! and assuming
e!m. Eliminatingg ~the ‘‘small’’ components! yields a sec-
ond order equation forf @we drop bothe and V(r ) with
respect to 2m in the second of Eqs.~6!#

@e1V~r !# f ~r !5
f 9~r !

2m
1

f 8~r !

mr
2

k~k11!

2mr2
f ~r ! ~7!

or equivalently

2
f 9~r !

2m
2

f 8~r !

mr
1F l ~ l 11!

2mr2
1V~r !G f ~r !52e f ~r !. ~8!

This is just the radial part of the Schro¨dinger equation

F2
¹

2

2m
1V~r !Gf~r!5ENRf~r! ~9!

whereENR[2e,0 andf(r)5 f (r )Ylml
( r̂).

A more sophisticated limit exists, where relativistic co
rections are maintained~up to orderp4). This equation can
be derived either by a Foldy-Wouthuysen transformat
@11#, or in the more heuristic method used by Sakurai@12#, in
which thef function is corrected in order to be normalized
order p4. This equation reads@always assuming a spherica
potential so that“V(r )5V8(r ) r̂]

Hefff~r!5ENRf~r! ~10!

with

Heff5
p2

2m
1V~r !2

p4

8m3
1

1

8m2
@¹

2
V~r !#

1
1

4m2r
V8~r !s•L. ~11!

Now consider the Yukawa potentialVYuk(r ). For the casel
50 ~S wave! Eq. ~11! reduces to

Heff
[ l 50]5

p2

2m
2

p4

8m3
2lF S 11

1

8m2
¹

2D e2mr

r G . ~12!

The last term in the above equation contains the Dar
delta term

¹
2 e2mr

r
5m2

e2mr

r
24pd3~r!. ~13!

This term is essential in the Coulomb case (m50) to repro-
duce to orderp4 the bound state energy dependence onn
~principal quantum number! andj only. WhenmÞ0, we note
that this term contains an additional piece proportional tom2

and hence with the same sign as the original potential te
It produces an effective potential with the coupling const
‘‘amplified:’’
6-2
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Veff~r !52lS 11
m2

8m2D e2mr

r
. ~14!

If this result is combined with the numerical Schro¨dinger
calculations mentioned previously, we might expect the c
dition for the existence of a bound state to be

leff5lS 11
m2

8m2D .0.84
m

m
. ~15!

If true, not only would there be bound states for a givenl
with values ofm/m higher than otherwise expected, but f
more spectacularly, form/m@1 the condition for the exis-
tence of a bound state is ‘‘inverted’’ and reads

l.6.62
m

m S m

m
!1D . ~16!

Of course, such a conclusion is highly speculative since
based upon the combination of Schro¨dinger results and only
a part of the relativistic correction to the Schro¨dinger equa-
tion. Higher order corrections could greatly modify this h
pothesis. At this point it is logical to go directly to the full
relativistic Dirac equation and~numerically! solve it for the
Yukawa potential. We wish to see if there is an amplificati
effect and its comparison with Eq.~15!.

All our results are conveniently expressed in terms of
dimensionless parameters

l,w5
m

ml
, and h5S E

m
21D Y ~A12l221!.

Using these variables Eqs.~6! can be written as

v8~x!2
k

x
v~x!1Fh

A12l
2
21

l
1l

e2wx

x
Gu~x!50,

u8~x!1
k

x
u~x!2F 2

l
1h

A12l
2
21

l
1l

e2wx

x
Gv~x!50,

~17!

wherex5mlr , u5 f /x, andv5g/x. Note that herel ap-
pears explicitly. The Schro¨dinger limit (l!1) is particular
in that it can be expressed purely in terms ofh andw with no
explicit dependence uponl,

uSch9 ~x!2
l ~ l 11!

x2
uSch~x!2huSch~x!

12
e2wx

x
uSch~x!50 @uSch~x![ f ~x!/x#. ~18!

The asymptotic behavior forx→` andx→0 is substan-
tially different in the Schro¨dinger and Dirac equations. In th
former, we have

uSch~x→`!→e2Ahx,
03400
-

is

e

while

uDir~x→`!→expS 2
AE

2
2m2

ml
xD

and

vDir~x→`!→expS 2
AE

2
2m2

ml
xD .

The Dirac limits constrain the possible values of the bou
state energy byE

2
,m2 or m.E.2m, otherwise the solu-

tion will not be localized. The lower limit is an example o
the Klein paradox, here involving a bound state fermio
Indeed, sinceV(`)50 for E,2m we would have at infin-
ity E2V,2m, which for a step potential is exactly th
condition for the Klein paradox.

There is also a substantial difference between the Sc¨-
dinger and Dirac equations in the limit ofx→0 ~recall thatx
is proportional to the radial parameter!. For Schro¨dinger one
has

uSch~x→0!→xl 11,

while

uDir~x→0!→xn11 and also vDir~x→0!→xn11

with n25k22l2. Since n must be real and greater tha
2 1

2 for a normalizable solution, this sets a limit upon th
size ofl whose value depends uponk, i.e., angular momen-
tum. Given that the minimum value ofn2 is zero, we have
that

l2<k2. ~19!

For the S wave (k521) which we expect to be the lowes
energy bound state~if a bound state exists!, we obtain

lmax
S wave<1. ~20!

We also recall the well-known result@10# that since

n5A12l
2
,1 ~k521!

the Dirac S-wave function is infinite atx→0, for both
Yukawa and Coulomb potentials. This is in stark contr
with the Schro¨dinger results.

In Figs. 1 and 2, we show the numerical results for t
S-wave ground state. In Fig. 1 the Dirac equation result oh
versusw is plotted. As the ratio of exchanged to bound sta
massm/m is increased~increasingw) the value ofh is re-
duced. This corresponds to the bound state energy increa
toward the limit of E5m beyond which the bound stat
ceases to exist. For the case displayed withl50.01, we
essentially reproduce the Schro¨dinger equation curve, which
is l independent as long asl!1. This curve confirms the
well-known conditionm/m,1.19l or w,1.19 for Schro¨-
dinger. On the same graph, we display the results of
numerical solutions to the Dirac equation for various valu
of l. As l increases the Dirac results yield higher values
wmax and hence evidence for an amplification effect. In F
6-3
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FIG. 1. h versus w for the
ground state of the Yukawa poten
tial in the Dirac equation. Three
values ofl are shown. Forl!1
~the dot-dashed curve! we repro-
duce essentially the Schro¨dinger
equation result. The value ofwmax

when h50 shows an increase
with increasingl.
he
la
ch

fo
it
2, we plot an interpolation curve ofwmax againstl ~up to its
maximum S-wave value of 1! for the Dirac results. The
Schrödinger curve is a flat line at 1.19 on this plot. Again t
magnification effect is evident. As a comparison, we disp
in the same plot the prediction of the Darwin term, whi
stimulated this analysis. Forl,0.8 the Dirac amplification
is lower than for the Darwin term, but it exceeds the latter
l;1. At l51 the Schro¨dinger equation predicts as a lim
for an S-wave bound state
03400
y

r

S m

mD
max

Sch

51.19; ~21!

with the Dirac equation we find

S m

mD
max

Dir

51.68, ~22!

while the Darwin term yields
e

FIG. 2. Comparison ofwmax

againstl for the ground state in
the Dirac and Schro¨dinger equa-
tions. The dashed curve is th
magnification effect of the
Yukawa version of the Darwin
term alone.
6-4
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S m

mD
max

Dar

51.54. ~23!

III. CONCLUSIONS

Within the validity of the Dirac equation (l2<k2), we
have confirmed by numerical calculations that the effect
Yukawa coupling constant is amplified with respect to t
nonrelativistic Schro¨dinger potential. However, we have n
detected the spectacular ‘‘turnover’’ phenomenon as s
gested by the Darwin term for the Yukawa potential. At t
very least our results imply that bound states exist for hig
mass exchanges than otherwise expected. We have also
tified in the analytic studies of Gu, Zheng, and Xu@8# the
presence of an amplification effect. However, the particu
choice of potential makes this result of doubtful applicatio

We are somewhat unsatisfied by the limits upon coupl
constant and bound state energy set by the asymptotic D
equations. To go beyond this, we must necessarily use
theory. This involves a numerical analysis of the Beth
Salpeter equation@13#, and such an analysis is indee
03400
e

g-

r
en-

r
.
g
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planned. Furthermore, the limitation set by the Klein effe
(E.2m) is very interesting for a bound state fermion. Co
ventionally, this effect is interpreted by invoking pair pro
duction@5#. Since, an attractive~binding! potential for, say, a
fermion is repulsive for the corresponding antifermion, w
expect, if pair production occurs, an antifermion flux to le
from the system while the density of trapped fermions
creases. However, the Pauli exclusion principle will even
ally block an increase in the number of bound fermions. F
example, with the Yukawa potential there may be only o
bound state level which could accommodate at most two s
1
2 fermions. This suggests that the Pauli principle could blo
the Klein effect and allow for bound states with (E,2m).
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