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Amplification of coupling for Yukawa potentials
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It is well known that Yukawa potentials permit bound states in the Stthger equation only if the ratio of
the exchanged mass to bound mass is below a critical multiple of the coupling constant. However, arguments
suggested by the Darwin term imply a more complex situation. By numerically studying the Dirac equation
with a Yukawa potential we investigate this “amplification” effect.
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[. INTRODUCTION wave equations open up numerous conundrums. Can a bound
state energy exist below the onset of negative energy free
In recent years neutrino oscillation experiments have alwave solutiongKlein paradoX4,5])? How does particle sta-
but proved that neutrino mass states ejigt These are lin- tistics and in particular the Pauli exclusion principle contrib-
ear combinations of neutrino flavor states. The neutrinos arete to or modify this? The use of field theory will be men-
subject only to weak interaction@eglecting gravitation  tioned in the conclusions of this work.
More precisely, they participate only in weak vertidésop The weak interactions are characterized by the exchange
diagrams in which a neutrino couples to a charged lepto®f very massive particles//™, Z° exchanggand parity vio-
virtual pair W* would of course allow for higher order elec- lation which constitute a complicatédut calculablg mix of
tromagnetic interactions via the charged virtual particles ~ attractive and repulsive forces. For simplicity, one can con-
Since neutrinos have mass and couple via exchanged isider only thez® exchangeZ® exchange allows for a poten-
termediate mass bosons to leptons one may legitimately agial treatment since it is well represented by a single Feyn-
if a neutrino-lepton bound state could exist. Exchange ofman graph in momentum space from which a Yukawa
W=*,Z% means the treatment of Yukawa potentials and theootential can be derived by Fourier transform. As a conse-
question of when bound states exist for Yukawa potentialgjuence of thev—A nature of weak interactions, it can be
[2]. Such weak bound states would provide very interestinghown that according to the total spin state of the two-
effects in superconductivity as they would constitute afermion system the potential is either attractive or repulsive.
“bosonic atom” which reminds us of one of the multiple A similar attractive or repulsive alternative occurs for the
roles played by Cooper pairs in standard theory. isospin state in @-n system from which the deuteron singlet
The question of the existence, or not, of a bound state fopound state emerges. The limitation for the existence of an
a given potential seems a simple theoretical question with glectron-neutrino bound state is set by the enormous value of
straightforward method for finding an answer. Given a po-u/m, where u (=91 GeV) is thez® mass[6] and m the
tential and the corresponding reduced mass wave equatiorgduced neutrino mass. As we have said, oscillation experi-
one solves it, normally numerically, and sees if bound stategients are consistent with the existence of neutrino mass
exist. Bound states are characterized by normalitechl-  states but these have masses of less than a few electron volts.
ized) solutions and a discrete energy spectrum below the free In this paper, we wish to investigate a small part of this
particle thresholdE<me Eyz=E—m<0, whereE is the question. We concentrate our attention upon the Yukawa po-
relativistic energy andEyg the nonrelativistic energy of the tential and ask what are the limits upon the exchanged mass
particle with reduced masa. The existence of either normed for two-fermion bound states to exist. The attractive Cou-
states or a discrete spectrum suffices to identify a bound statemb potential yields infinite bound state solutions indepen-
regime. Of course, nothing is quite so simple. For exampledent of the coupling strength for both the Safirger and
there are limits for the validity of the use of potentials. Fur-Dirac equations. A Yukawa potential will on the contrary not
thermore, coupling constants have the “annoying” tendencyyield a bound state unless the coupling is sufficiently
to run and hence are anything but constants. “strong.” This is proven only numerically since no analytic
Even within the realm of nonrelativistic quantum mechan-solution is known for the Yukawa potential. Using the Sehro
ics potential theory, we have surprising subtleties. A onedinger equation and
dimensional square well always yields a bound state. A

three-dimensional spherical well must be sufficiently “deep” e A

or extended to allow a bound state soluti@). Relativistic VYK(r)=—\ 1)
*Electronic address: deleo@ime.unicamp.br (A>0 for bound statesit is known that the condition for the
"Electronic address: rotelli@le.infn.it existence of the lowest lying S states is
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It is instructive to make the nonrelativistic limit in Eq&)
r>0.84~ (2) by settingE=m—e (>0 for bound statésand assuming
e<m. Eliminatingg (the “small” componentsyields a sec-
An analytic approximation to this result can be found byond order equation fof [we drop bothe and V(r) with
using the Hulthe potential[2,7] in the Schidinger equa- respect to & in the second of Eqg6)]
tion,

() ') k(k+1) .

[+ VNI =5 =

2un (7)

Hul _
VY(r)= )\ezf”—l'

()
or equivalently

The numerator in this potential has been chosen not only

because of dimensional requirements but also to agree with f’(ry f'(r)

Eqg. (1) up to the linear term inur. The imposition of a 2m  mr
normalized wave function here requires

I(1+1)
2mr?

V(r)|f(r)=—€f(r). (8

This is just the radial part of the Sclimger equation

o
. . . i ) 5= +V(r) |p(r)=Enge(T) 9
The radial solution for the Hulthreground state is m

whereEyg=—€e<0 and¢(r)=f(r)Ym (7).

A more sophisticated limit exists, where relativistic cor-
rections are maintaine@ip to orderp*). This equation can
An equivalent potential(with analytic solution to the be derived either by a Foldy-Wouthuysen transformation
Hulthen for the Dirac equation is not known. We must [11], or in the more heuristic method used by Sak{itZi, in
qualify this last statement. If one allows for a vector as wellwhich thef function is corrected in order to be normalized to

as a scalar potential, and one makes a very partlcular choiesrder p*. This equation readgalways assuming a spherical
then one can find analytic solutions with a Hulthscalar potential so thaWV(r)=\V' (r)r]
potential [8]. This technique derives from some ingenious

R(r,I :O)=2\/m)\(mz)\z—ﬂz)%em*r.

suggestions by Alhaidairi9] for solving the Dirac-Morse Heip(r) =Enre(T) (10)
problem.
with
Il. DIRAC EQUATION AND YUKAWA POTENTIALS ) .
1
The Dirac equation in the presence of a general spherical He= P —+V(r)— p—+—[V V(r)]
. . 2m
potentialV(r) can be written as
V(r)+m —io-V (11
E‘If(r)—( iV V(r)_m)‘lf(r) )
By using Now consider the Yukawa potentis™(r). For the casé
=0 (S wave Eq. (11) reduces to
fir) Vi (1)
J Jmy 2 4 -
w(r)=| K ,kj ~ H[IZO]:p__p__)\ 1+iv e (12
ig}{(1) Vi () o T2m g gm? | 1 |

whereyJm (r) are the spherical functions obtained by sum-The last term in the above equation contains the Darwin
ming the sphencal harmoni¢§ , -1» with the spinor eigen- delta term

states ank= = (j +1/2) for | =j=1/2 (for details, see Ref. Lo T e M

[10]), Eq. (5) reduces(dropping the subscripts and super- \Y =u?
scripts for the radial functionﬁ andg}‘) to two coupled first
order ordinary differential equations

— 47 8%(r). (13

r

This term is essential in the Coulomb cage<0) to repro-
duce to ordemp* the bound state energy dependencenon
1-k U )
[E-m—V(r)]f(r)=—g'(r)— —g(r), (principal quantum numbgandj only. Whenu # 0, we note
r that this term contains an additional piece proportionatfo
14k and hence with the same sign as the original potential term.
[E+m—V(r)]g(r)=Ff'(r)+ £(r). 6) l;ﬂgﬁf?ggs an effective potential with the coupling constant
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2
. M
Veﬁ(r)—_)\<1+ﬁ

e M

(14)

r

If this result is combined with the numerical ScHiger
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while

Uoir(X—>°C)—>eXP( I

calculations mentioned previously, we might expect the conyng

dition for the existence of a bound state to be

~0.84~.
m

2

%
Nef=A| 1+ w (15

If true, not only would there be bound states for a giwen

VE —m? )
— X/

vDir(X—>°c)—>exp( -

The Dirac limits constrain the possible values of the bound
state energy bjE2< m? or m>E>—m, otherwise the solu-

with values ofu/m higher than otherwise expected, but far tion will not be localized. The lower limit is an example of

more spectacularly, for/m>1 the condition for the exis-
tence of a bound state is “inverted” and reads

m m
A>6.62— (—<1
moo\p

. (16

the Klein paradox, here involving a bound state fermion.
Indeed, sinc&/(«)=0 for E<—m we would have at infin-
ity E-V<-—m, which for a step potential is exactly the
condition for the Klein paradox.

There is also a substantial difference between the ‘Schro
dinger and Dirac equations in the limit gf~0 (recall thatx

Of course, such a conclusion is highly speculative since it iss proportional to the radial parameteFor Schralinger one
based upon the combination of Sctiimger results and only has

a part of the relativistic correction to the ScHioger equa-

tion. Higher order corrections could greatly modify this hy-
pothesis. At this point it is logical to go directly to the fully

relativistic Dirac equation anthumerically solve it for the

Yukawa potential. We wish to see if there is an amplification

effect and its comparison with E¢L5).

All our results are conveniently expressed in terms of th

dimensionless parameters

}\'W:mi)\' and n=(;—1)/(\/1—x2—1).

Using these variables Eq&) can be written as

K 1-\—1 e
v (x)—;v(x)+ 7 N +A u(x)=0,
2 _
) k 1-\ -1 e WX
u (x)+;u(x)— K+77 X +A v(x)=0,
17

wherex=m\r, u=f/x, andv=g/x. Note that herex ap-
pears explicitly. The Schrdbnger limit (\<1) is particular
in that it can be expressed purely in termsyodndw with no
explicit dependence upax,

N (Y

Ugg X) TUSCI{X)_WUSCP{X)

—WX

+2
X

UscX) =0 [Uscd X)=F(x)/x]. (18)

The asymptotic behavior for—o andx—0 is substan-

tially different in the Schrdinger and Dirac equations. In the

former, we have

Ugc{ X—®)—e~ WX,

Use X—0)—x' 71,

while

v+1

Upir(x—0)—x"*1 and also vpi(x—0)—x

awith v?=k?—\?%. Since v must be real and greater than

— 3 for a normalizable solution, this sets a limit upon the
size of A whose value depends upé@ni.e., angular momen-
tum. Given that the minimum value of is zero, we have
that

AN2<K2. (19
For the S wave K=—1) which we expect to be the lowest
energy bound statéf a bound state existswe obtain

ASwaves (20)

We also recall the well-known resylt0] that since
y=vV1-\"<1 (k=-1)

the Dirac S-wave function is infinite at—0, for both
Yukawa and Coulomb potentials. This is in stark contrast
with the Schrdlinger results.

In Figs. 1 and 2, we show the numerical results for the
S-wave ground state. In Fig. 1 the Dirac equation resuly of
versusw is plotted. As the ratio of exchanged to bound state
massu/m is increasedincreasingw) the value ofy is re-
duced. This corresponds to the bound state energy increasing
toward the limit of E=m beyond which the bound state
ceases to exist. For the case displayed with0.01, we
essentially reproduce the Schimger equation curve, which
is \ independent as long as<1. This curve confirms the
well-known conditionu/m<1.19\ or w<1.19 for Schre
dinger. On the same graph, we display the results of the
numerical solutions to the Dirac equation for various values
of N. As \ increases the Dirac results yield higher values of
Wnax @nd hence evidence for an amplification effect. In Fig.
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_‘ Dirac equation - Yukawa potential ]
\ e X=009
0.8 R —
) A=05
= - A=0.01 .
FIG. 1. » versusw for the
o.6 L ] grou_nd state.of the Yukgwa poten-
\ tial in the Dirac equation. Three
values of\ are shown. Foh <1
B N (the dot-dashed curyewne repro-
\ duce essentially the Schtimger
0.4 |- A 1 equation result. The value of 4
when =0 shows an increase
» _ with increasingh.
o.2 | N N i
o ' Ol2 ' Ol4 ' Ot6 ' Ol8 ' 1 lO 1.2 = w
2, we plot an interpolation curve ¥, against\ (up to its ) Sen
maximum S-wave value of)1for the Dirac results. The m =119 (22)

Schralinger curve is a flat line at 1.19 on this plot. Again the

max

magnification effect is evident. As a comparison, we displayyith the Dirac equation we find

in the same plot the prediction of the Darwin term, which
stimulated this analysis. For<<0.8 the Dirac amplification

is lower than for the Darwin term, but it exceeds the latter for
A~1. At A=1 the Schrdinger equation predicts as a limit
for an S-wave bound state

Dir
(“) ~1.68, 22)

while the Darwin term yields

Wmax T T T T T T T

1.20

................... S Darwin term

1.6 _ Dirac equation /

q

———————— Darwin term

/ ——— Dirac equation

———— Schrédinger equation

FIG. 2. Comparison ofw,,y
against\ for the ground state in
the Dirac and Schainger equa-
tions. The dashed curve is the
magnification effect of the
Yukawa version of the Darwin
term alone.
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Dar
(ﬁ) —1.54. 23)
m
max

IlI. CONCLUSIONS

Within the validity of the Dirac equation\é<k?), we

have confirmed by numerical calculations that the effectiv
Yukawa coupling constant is amplified with respect to the
nonrelativistic Schrdinger potential. However, we have not
detected the spectacular “turnover” phenomenon as su
gested by the Darwin term for the Yukawa potential. At th
very least our results imply that bound states exist for highe
mass exchanges than otherwise expected. We have also iden-

tified in the analytic studies of Gu, Zheng, and }&j the

presence of an amplification effect. However, the particular
choice of potential makes this result of doubtful application.

e
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planned. Furthermore, the limitation set by the Klein effect
(E>—m) is very interesting for a bound state fermion. Con-
ventionally, this effect is interpreted by invoking pair pro-
duction[5]. Since, an attractivébinding potential for, say, a
fermion is repulsive for the corresponding antifermion, we
expect, if pair production occurs, an antifermion flux to leak
from the system while the density of trapped fermions in-
creases. However, the Pauli exclusion principle will eventu-
ally block an increase in the number of bound fermions. For
example, with the Yukawa potential there may be only one

gbound state level which could accommodate at most two spin
1

fermions. This suggests that the Pauli principle could block
he Klein effect and allow for bound states witB€ —m).
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