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One-pion-exchange final-state interaction and thep near threshold enhancement
in J/ »— ypp decays
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For theNN system, the one-pion-exchan@PEBE interaction gives the largest attractive force foN with
an isospinl =0 and spinS=0, while a near-threshold enhancement was observeg fowith | =0 andS
=0 inJ/¢— 7pa decays. With &K-matrix approach, we find that the OPE final-state interaction makes an
important contribution to the near-threshold enhancement irpEenass spectrum id/ ¢— ypadecays.
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Recently the BES Collaboration has observed a near- It was noticed[10—17 that for a multiquark or quasi-

threshold enhancement in tf@invariant mass spectrum
from the radiative decayd/— ypp [1]. The enhancement
can be fitted with either aB- or P-wave Breit-Wigner reso-
nance function. No similar structure is seendiy— 7 pp
decays. In theSwave case, the peak mass is beloM 2
around M=1859 MeV with a total widthI’<30 MeV.

bound hadronic system close to its dissociation threshold,
two hadrons will experience their long-range interaction, in

particular the pion exchange. “Hadronic molecule” states

might be formed. Because of its long-range nature, pion ex-
change plays a crucial role in achieving the binding of some
configuration, especially for two hadrons in a relativstate.

In a chiral unitary approach it was also foufiB] that solv-

These observations together with other similar results in th;cé‘g the lcc_)u_pled-ck:)hannel_ Bethe-Salpeter equationsdis crucial
decays ofB mesons[2] have stimulated further investiga- bor exp_a[{nmgt_o serg/_atl_(l)nsl "t1h mes:)n-_mesont an rgesct)_n-
tions of the quasibound nuclear baryonium or multiquark®2YO" Interactions. simiarly, the outgoing proton and anti-
resonance near thelB, threshold. What is the origin of the Proton from the radiative decays— ypp will experience

5 enhancement ¥l —~2M. in the radiative decava/ the long-range final-state interaction before they are detected.
PP enn PP P ysl i In order to better understand the nature of the experimental
—ypp? Dattaet al [3] describe the enhancement as the ,,sqation of the near-threshold enhancement ipfnén-
flormat|0n of a zero baryon number, Qeuteronllke singlet | - iant mass spectrum from the radiative decal/ss

Sy state. Does it come from any quasibound nuclear baryo- — . .

. . — ypp one has to evaluate the final-state-interacti66l)
nium or multiquark resonance near th&g threshold? In o . . Z

: ._contribution to the invariant mass spectrum neer;,

order to draw a conclusion we must study other dynamics

. - . —~ p .
which might affect the spectrum of the outgoing proton and In this note, with the one-pion-exchan@PB potential

antiproton. . —
P between the proton and antiproton, we study the Fa_bp)f

boUnd statos was.raised many years ago. in partilar oY {e¥-malrx approach for radative decagéy  ypp.
Yy 90 P It is well known [14] that for theNN system, the central

Fermi and Yand4]. In the 1960’s, explicit attempts were OPE potential is attractive for(l)=(0,1) (deuterop or

made to describe the spectrum of ordinary mesonslis (S,1)=(1,0) and repulsive foB=1=0 (strong or S=1=1

bound states. It was notic¢8], however, that th&IN pic-  (weak. For theNN system, the meson-exchange interaction

ture hardly reproduces the observed pattens of the MesqQ 1o |ated to the corresponding one for Bl system by the
spectrum. Encouraged by evidence from many intriguing exg_parity transformation, and the OPE potential gets an addi-
perimental investigations, new types of mesons with @ Masgonal negative sign due to the negati@eparity of the pion.
near theNN threshold and specific decay properties wereHence the central OPE potential gives the largest attractive
proposed[6,7]. However, at the time when several candi- force for NN with S=1=0. The attractive force is 3 times

dates for baryonium were proposed, the quasinuclear apgronger than the corresponding one for the deuteron. The

proach was seriously challenged by a direct quark picture,aar-threshold narrow enhancement observed in Jhe
Stimulated by the success of the quark models, exotic mul-

: : : ; ; P happens to have quantum numb&s|=0 pre-
tiquark configurations were studied extensivgdy. The ob- —ypp .
servation of the pentaquark stdt@] has stimulated further ferred[1]. From the one-pion-exchange thedda, 15, the

searches for other multiquark bound states. nucleon-antinucleon potential can be written as
Slg2
. Cf

V == ,
PP 2 me

()

*Mailing address.
0556-2821/2004/63)/0340043)/$22.50

69 034004-1 ©2004 The American Physical Society



B. S. ZOU AND H. C. CHIANG PHYSICAL REVIEW D69, 034004 (2004

with C%= -3 for S=1=0, C*=-1/3, andC!°=C"=1 « 1.2
Heref . is the NN coupling constantfrl477:0.08 andm,, - r
the mass of ther mesonq is the three-momentum transfer L
between the proton and antiproton. Th@ with |=S=L - T T T
=0 from the radiative decay® ¢— ypp will experience the 0.8
largest attractive long-range OPE final-state interaction.
From the one-pion-exchange potential, in principle, one 0.6
could calculate the two-bodi N scattering amplitude by -
solving the Bethe-Salpeter equation 04

T=V+VGT. (2) i

0.2 -

Here G is the loop function of a proton and an antiproton -
propagator. It has been shoWt6] that theK-matrix formal- o L b b b L
ism provides an elegant way of expressing the unitarity of ¢ 001 00z 005 004 005
the S matrix for processes of the type+b—c+d. In the Mc—2m, (CeV/c*)

K-matrix approach the invaria@wave pﬁscatteringT ma-

. FIG. 1. T matrix squared withi(solid line) and without(dashed
trix can be expressed as

line) OPE FSI's, with an arbitrary normalization.
_ K — .
T=— (3)  betweeny and thepp('Sy) to beL=1, so that theT® is
1-iKsppp proportional to the momentum of the photsn, in the J/y
_ rest system—i.e.,
wherep; is the phase space factor for th@ system:

T —=CK,. ®

2k JIp—ypp
Ppp= 7T\/‘ @ In reality, C should be ars-dependent function. Here to il-
lustrate the OPE FSI effect, we assu@&s a constant. In

with s the invariant mass squared of tpg system anck  Fi9- 1 we show theT matrix squared as a function of the

/—23/4 M2 the momentum magnitude of the proton in thelnvarlant mass of the proton and antiproton for thi)

proton antlproton c.m. system. Following a usual approach~ YPP(*So) process. The solid line corresponds to that with
for the Strong interaction in thK-matrix formahsm[l? ]_a the FSI and the dashed line is that without the FSI. We find

the K, is taken as theSwave projection of theNN that the_flnal -state interaction has an important ccmtrlbutlon
potential—i.e., to the pp enhancement neavl ,,;=2M, in J/¢— ypp de-
cays. Compared with plateau region well above threshold,
0 - the OPE FSI enhancement factor at rethreshold is larger
4k2 ak zdthB(t)* ©) than 2. The phenomenon of a narrow near-threshold peak
due to thet-channel pion exchange is not new. For example,
the striking narrow peak negrw threshold in theyp— wp
process is found to be produced by thehannel pion ex-

s—

where t=—q2. For the |=S=0 case,Ks can be easily
evaluated from Eq(5) as

chang€g/19].
3f2 4K2 It is well known that there is a very large production of
Ko=— _’T|n( 1+ _> ) (6)  two gluon system witl"©=0"" below 2M, from the J/
4k? f, radiative decay$20—26. So C should at least have some

broad resonance peaks belowig, which have not been
In this approach, by considering the OPE FSI of the proye|| understood. It is quite possible that interference of those
ton and antiproton, th& matrix for J/ ¢— yp p( Sy) decays components plus the narrow OPE FSI structure could explain

can be written as the pp near threshold enhancement in they— ypp pro-
) ) cess. Note that the FSI through arthannel subthreshold
T . Uly—ypp Ilp—ypp resonance haKS=gzl(M§—s), which is always negative
Hy—ypp~— 1—i Ppﬁ<s_ 3M2 f2 4k2 ' and interferes with the-channel attractivérepulsive force
+i —\/_4—In constructively(destructively.

) For J/ y— wopa decays, the dominant mechanism is ex-
pected to bel/ y— pN* + H.c. with N* — p#° [27]. So thep
Here T(?)H —is the T matrix of the barel/y— ypp('S,)  andp are not produced from the same hadronic vertex, hence

without con5|der|ng the FSI. Conservation of parity and totaishould experience much less FSI than in the casé/g¢f
angular momentum requires the orbital angular momentuma- ypp where pp come from the same hadronic vertex.

034004-2



ONE-PION-EXCHANGE FINAL-STATE INTERACTION . ..

Moreover, because of the isospin aBeparity conservation,
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experiment$28] at pEthreshoId may also play some role in

the pp system must have isospin 1 and spin 1 for the nearyarious narrow structures observed recently neathresh-

threshold S wave. The correspondingrchannel pion ex-
changepainteraction is a factor of 9 weaker than for the
isoscalarpa(lso) system. Hence one should find negligible
near-thresholgpp enhancement. In the decays®inesons,

B°—D°p andB*—K*pp, the isospin of thepp system

has isospin 0. The enhancement of the low-n@ssystems

old.

We would like to thank Professor Zhang Zong-Ye, Profes-
sor Yu You-wen, and Professor Shen Peng-nian for stimulat-
ing discussions. This work is supported in part by the Na-
tional Natural Science Foundation of China under grant Nos.
10225525, 10055003, 10075057, 10147208, and 19975053
in B decays may also be understood by the FSI. The vergnd by the Chinese Academy of Sciences under project No.

narrow proton-antiproton atomic states observed by LEARKICX2-SW-NO2.

[1] J.Z. Baiet al,, Phys. Rev. Lett91, 022001(2003.

[2] K. Abe et al, Phys. Rev. Lett88, 181803(2002; K. Abe
et al, ibid. 89, 151802(2002.

[3] A. Dattaet al, Phys. Lett. B567, 273 (2003.

[4] E. Fermi and C.N. Yang, Phys. Rek6, 1739(1949.

[5] J.S. Ballet al, Phys. Rev142 1000(1966.

[6] I.S. Shapiro, Phys. Re35, 129 (1978.

[7] C.B. Dover and J.M. Richard, Ann. Phy$§N.Y.) 121, 70
(1979.

[8] R.L. Jaffe, Phys. Rev. 07, 1444(1978.

[9] T. Nakanoet al, Phys. Rev. Lett91, 012002 (2003; V.V.
Barmin et al, Yad. Fiz.66, 1763 (2003 [Phys. At. Nucl.66,
1715(2003]; S. Stepanyaet al, Phys. Rev. Lett91, 252001
(2003; J. Barthet al, Phys. Lett. B572 127 (2003.

[10] N.A. Tornqvist, Phys. Rev. Let67, 556(1991); Z. Phys. C61,
525 (1994; hep-ph/0308277.

[11] T.E.O. Ericson and G. Karl, Phys. Lett. 39, 426 (1993.

[12] J.M. Richard, Nucl. Phys. BProc. Supp). 86, 361 (2000.

[13] J.A. Oller, E. Oset, and J.R. Pelaez, Phys. Rev. 18813452
(1998.

[14] T.E.O. Ericson and W. Weis&ions and NucleiClarendon,
Oxford, 1988.

[15] C.B. Dover, T. Gutsche, M. Maruyama, and A. Faessler, Prog.

Part. Nucl. Phys29, 87 (1992.

[16] A.D. Martin and T.D. Spearmarklementary Particle Theory
(North-Holland, Amsterdam, 1970

[17] B.S. Zou and D.V. Bugg, Phys. Rev. &0, 591 (1994); L. Li,
B.S. Zou, and G.L. Lijbid. 67, 034025(2003.

[18] M.P. Locher, V.E. Markushin, and H.Q. Zheng, Phys. Rev. D

55, 2894(1997).

[19] V. Burkert, in theProceedings of the NSTAR2000 Conference

(World Scientific, Singapore, 20p1Y. Oh, A.l. Titov, and
T.S.H. Lee, Phys. Rev. 63, 025201(2001); B. Friman and M.
Soyeur, Nucl. PhysA600, 477 (1996.

[20] L. Kopke and N. Wermes, Phys. Reji74, 67 (1989.

[21] D.V. Bugg, L.Y. Dong, and B.S. Zou, Phys. Lett. 458 511
(1999.

[22] BES Collaboration, Phys. Lett. B40, 217 (1998.

[23] BES Collaboration, Phys. Lett. B46, 356 (1999.

[24] BES Collaboration, Phys. Lett. B72 200 (2000.

[25] BES Collaboration, Phys. Lett. B72 208 (2000.

[26] BES Collaboration, Phys. Lett. B76, 25 (2000.

[27] B.S. Zouet al, Eur. Phys. J. Al1, 341(2001); BES Collabo-
ration, Phys. Lett. B510, 75 (2002J.

[28] C.A. Bakeret al, Nucl. Phys.A483, 631(1988; C. van Eijk
et al, ibid. A486, 604(1988; R. Bacheret al,, Z. Phys. A334,
93(1989.

034004-3



