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Sigma-term form factor of the nucleon in the largeN. limit
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The scalar isoscalar form factet(t) of the nucleon is calculated in the limit of a large number of colors in
the framework of the chiral quark-soliton model. The calculation is free of adjustable parameters and based on
an approximation justified by the small packing fraction of instantons in the QCD vacuum model, from which
the chiral quark-soliton model was derived. The result é@§t) reproduces all features of the form factor
observed in previous exact numerical calculations in the chiral quark-soliton model and in chiral perturbation
theory, and agrees well with the available phenomenological information. The Feynman-Hellmann theorem is
used to study the pion mass dependence of the nucleon mass and a good agreement with lattice QCD results
is observed. The use of the present method to extrapolate lattice data to the chiral limit is discussed.
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[. INTRODUCTION the calculation ofo(t) presented here is based on an ap-
proximation which is consistently justified by arguments
The pion-nucleon sigma terma .y is of fundamental im-  from the instanton vacuum model.
portance for understanding chiral symmetry breaking effects The approximate method not only considerably simplifies
in the nucleon1,2]. It can be inferred from pion-nucleon the calculation—allowing a lucid interpretation of the results
scattering data[3] and the value is found to ber .\ and suggesting an appealing explanation whyy is so
=(50-70) MeV[4-9|. The pion-nucleon sigma term has a large. In addition it has methodical advantages over the exact
wide phenomenological impact in many fields. For examplegcalculationd27-29. For in theyQSM o (t) is quadratically
it is related to partial restoration of chiral symmetry in the UV divergent and as such strongly sensitive to the details of
nuclear mediunj10,11] and to central nuclear forc¢$2]. It regularization. The virtue of the approximate method is that
is an important ingredient in the mass decomposition of thét yields a regularization scheme independent result. Another
nucleon[13] and plays an important role in the searches foradvantage is that the theoretical accuracy of the results—
the Higgs bosomh14], dark matter, and supersymmetric par- which in models often has to be concluded from the com-
ticles[15,16. Valuable insight into ther . physics was pro- parison to phenomenology—is here known in advance and
vided from studies in chiral perturbation thegty7—22, lat-  under theoretical control. To within this accuracy results
tice QCD[23-25, and numerous chiral models, e.g., Refs.from the exactyQSM calculation§27-29 are reproduced,
[26-40. and a good agreement with phenomenological information
In this paper the scalar isoscalar nucleon form factorand results from other approaches is observed without any
a(t), which at zero momentum transferyields o, is  adjustable parameters.
studied in the chiral quark-soliton modefQSM) [41,42. Another advantage is that the approximation allows us to
The picture of baryons as chiral solitons of the pion field isanalytically study the properties of(t) in the chiral limit—
justified in the limit of a large number of colod, [43].  which is a rare occasion in thegQSM. Finally, by exploring
Despite the fact that in natutd,=3 does not seem to be the Feynman-Hellmann theoref5], the pion massmn,,)
large, theyQSM has proven to describe successfully numerdependence of the nucleon mads,() is studied. An exact
ous properties of the nucleqd4—47 and to provide valu- treatment of this issue in theQSM would be numerically
able insight. E.g., in this model the observation was made ofiighly involved. The results foMy(m,) compare well to
the so-called term in generalized parton distribution func- lattice QCD results. This observation could be used to inspire
tions [48]—a fundamental characteristic of the nucldd®]  Ansazefor the chiral extrapolation of lattice data.
which, when known, e.g., will provide information about the  This paper is organized as follows. In Sec. Il the form
“distribution of strong forces” in the nucleof60]. Another  factor o(t) is defined and briefly discussed. In Sec. lll the
recent highlight made on the basis of the soliton picture wasnodel is introduced. The form factor is computed in Sec. IV
the accurate prediction of the exoti@* baryon[51] for  and the numerical results are discussed in Sec. V. Section VI
which by now strong experimental indications have beeris devoted to the study o#(t) and the nucleon mass as
collected[52]. functions of the pion mass. Section VII contains the conclu-
The yQSM was derived from the instanton model of the sions. Technical details of the calculation can be found in
QCD vacuum|[53,54 and incorporates chiral symmetry Appendixes A and B.
breaking. The field theoretical character of the model plays a
crucial role in ensuring the theoretical consistgncy of the || SCALAR ISOSCALAR NUCLEON EORM EACTOR
approach. Bothr,\ and o(t) were already studied in the
xQSM in Refs.[27-29, where the model expressions were  The nucleon sigma-term form factox(t) is defined as the
exactly evaluated using involved numerical methods. Insteatbrm factor of the double commutator of the strong interac-
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tion Hamiltonian with two axial isovector charggs|. Dis-  the Okubo—-Zweig—lizuk&OZlI) rule. It is worthwhile men-
regarding a “double isospin violating term” proportional to tioning that such a sizeable valueyhaturally follows from
(mu_md)(aulpu_adlpd) and Commomy presumed to be aGOldStone'boson'pair mechaniﬁ%].

negligible the form factor can be expressed as

Ill. CHIRAL QUARK SOLITON MODEL  (xQSM)

t ! =m(N(p’
oOu(pup) (_(p NEA0)94(0) This section briefly introduces the notions required in the
+ 44(0)h4(0)]IN(p)), t=(p—p")? following. More complete presentations of the model can be
) found in, e.g., Refs[27,41,43. The yQSM is based on the
effective chiral relativistic quantum field theory of quarks,

where m=3%(m,+mg). In Eq. (1) |[N(p)) is the spin- antiquarks, and Goldstone bosons defined by the partition
averaged state of the nucleon of momentumormalized as function[54,57,5§
(N(p")IN(p))=2p°5®(p—p’), and u(p) is the nucleon
spinor withu(p)u(p) =2My. zeﬁzf Dy Dy DU exp(if d*xyp(ib—MUs—m) |,

At zero-momentum transfer the form factor yields the
pion-nucleon sigma term, i.e., 6)

m _ U=expi rm?),
on=0(0)= WN(N(PH[%(O)%(O)

1 1
+14(0) r(0)IN(p)). ) U’5=exp(i757awa)=§(U+UT)+ E(U—UT)ys.

The pion-nucleon sigma term,y iS. normalizatio_n scale ir." In Eq. (6) M is the dynamical quark mass, which is due to
variant. The form factor(t) describes the elastic scattering spontaneous breakdown of chiral symmetry and in general

off the nucleon due to the exchange of an isoscalar spin-zer omentum dependent)=exp(#+% denotes the SU(2)

particle. It is not known experimentally excepzt for its value .- pion field andn the current quark mass, which explic-
at the (unphysical Cheng-Dashen point=2m7. A low- iy prears the chiral symmetry. In many applicatianscan
energy theoren3] relates t2he value af(t) at the so-called g st to zero, but for certain quantities it is convenient or
Cheng-Dashen point=2m7, to the (isoscalar evenpion-  eyen necessary to consider finite The effective theory6)
nucleon scattering amplitude. The analysis of pion-nucleorontains the Wess-zumino term and the four-derivative
scattering data yields Gasser-Leutwyler terms with correct coefficieftg]. It has
been derived from the instanton model of the QCD vacuum

(64:8) Mev (1983 [4] [53,54 and is valid at low energies below a scale set by the

(8815 MeV (1999 [6] inverse of the average instanton size

(71=9) MeV (1999 7] ®
(79=7) MeV (2001 [8].

o(2m?)=

ko

pai=600 MeV. (7)

In practical calculations it is convenient to take the momen-
artgm dependent quark mass constant, iM.(p)—M(0)
=350 MeV. In this casep,, is to be understood as the
cutoff, at which quark momenta have to be cut off within
some appropriate regularization scheme.
a(2mf,)—o(0)=(15.2t 0.4) MeV. (4) It is impor_tant to remr_slrk that\] pa\,)zlis propqrtional to .
the parametrically small instanton packing fraction, i.e., with
In Ref.[21] a similar result was obtained from a calculation Ray denoting the average distance between instantons in Eu-
in the chiral perturbation theory. From Ed8),(4) one con-  clidean space-time,
cludes

The recent analyses tend to yield a larger valueoft2m?)
which can be explained by the more recent and accurate d
[9]. The differencer(2m?2) — o(0) has been calculated from
a dispersion relation analydis],

4
o.n=(50-70 MeV. (5) (Mpav)zoc(g—av) <1. (8

av

The large value ofr ,\ has been and still is a puzZ,?2]. ) i
g ™ puzz|e,2] Numerically p,,/Ra~1/3. The parameterical smallness of

According to the “standard interpretationy .\ can be . . ] , A
related to the so-called strangeness contegt this qgantlty played an |mpor'gant role in the derivation of the
— — — effective theory(6) from the instanton model of the QCD

EZ<N|¢S</;§|N)/(N|(A<AU¢U+ Wqthq)|N) of the nucleon as (1 vacuum[41,53.

—Y)o.n=0, whereo can be determined by means of chiral - The yQSM is an application of the effective thea(§) to
perturbation theory from baryon mass splittings=(35  the description of baryori€l1,42. The largeN, limit allows
+5) MeV [17,56. The value in Eq.(5) then impliesy to solve the path integral over pion field configurations in Eq.
~(0.3-0.4) while one would expegt-0 on the grounds of (6) in the saddle-point approximation. In the leading order of

034003-2



SIGMA-TERM FORM FACTOR OF THE NUCLEON IN . .. PHYSICAL REVIEW 9, 034003 (2004

the largeN, limit the pion field is static, and one can deter- The yQSM allows us to evaluate without adjustable param-
mine the spectrum of the one-particle Hamiltonian of theeters nucleon matrix elements of QCD quark bilinear opera-
effective theory(6), tors as

HIn)=Eq[n), H==i7"ya+y°"MU”+9m. (9  (N(p")[§(0)T ¢(0)|N(p))

The spectrum consists of an upper and a lower Dirac con- 30 (0 DX
tinuum, distorted by the pion field as compared to continua :CFMNNcnzoccf d*x P TP )T (X)) A,
of the free Dirac-Hamiltonian, ’ re9
(15
|:|o|no>:Eno|no>a Ho=—i7°Y*o+ y’M +7°m, , ] o
(10) whereT" is some Dirac and flavor matrixgr is a constant
depending od” and the spin and flavor quantum numbers of
and of a discrete bound-state level of enelfgy;, if the pion  the nucleon statéN)=|S;,T3), and ®,(x)=(x|n) are the
field is strong enough. By occupying the discrete level andcoordinate space wave functions of the single quark states
the states of the lower continuum each My quarks in an  |n) defined in Eq(9). The sum in Eq(15) goes over occu-
antisymmetric color state, one obtains a state with unitypied levelsn (i.e., n with E,<E,,), and vacuum subtraction
baryon number. The soliton ener§y,, is a functional of the is implied for E,<E, analog to Eq(11). The dots denote
pion field, terms subleading in the f expansion(which can be in-
cluded but will not be considered in this workrhe model
(11) expressions can contain UV divergences which have to be
regularized as indicated in E¢L5).

red If in QCD the quantity on the left-hand side of E45) is

E.[U] is logarithmically divergent and has to be regular- normalizatioin1 scale dependent, the model resqlt refers to a
ized appropriately, which is indicated in E@.1). Minimiza- ~ scale ofO(p,,), see Eq(7). In the way sketched in E¢15)
tion of E¢,J U] determines the self-consistent solitonic pion @ large variety of static nucleon properties like form factors,

field U,. This procedure is performed for symmetry reasongixial properties, etc., were computésee Refs[44,45 for

Eoof UI=Nc| Eeyt 2 (En—Ep)
E, <0

in the so-called hedgehofnsatz reviews. In Ref.[46] the approach was generalized to non-
local quark bilinear operators on the left-hand side of Eq.
m3(x)=eP(r), U(x)=cosP(r)+ir*e2sinP(r), (15 which paved the way to the study of the quark and

(120  antiquark distribution functiong46,47 and off-forward dis-
tribution functiong[48]. The model results agree typically to

with the radial (soliton profilg function P(r) andr=|x|,  ithin (10-30 % with experimental data or phenomenologi-
g =x/r. The nucleon mas#y is given byEg,[U.]. The 3] information.

momentum and the spin and isospin quantum numbers of the
baryon are described by considering zero modes of the soli-
ton. Corrections in the N .-expansion can be included by
considering time-dependent pion field fluctuations around |n this section first the model expression foft) is dis-
the solitonic solution. ThegQSM provides a practical real- cussed and the consistency of the approach is demonstrated.
ization of the largeN, picture of the nucleoii43]. Next the UV behavior ofr(t) is studied and the question of
The self-consistent profile satisfi€(0)=—= and de- regularization is addressed. Thereby is defined and justified
cays in the chiral limit as &f at larger. For finite m it the approximation in which thew(t) is evaluated in the
exhibits a Yukawa taitcexp(—m,r)/r with the pion mass,, following Section V.
connected tan by the Gell-Mann—Oakes—Renner relation;  Expression and consistendhe pion-nucleon sigma term
see below, Eq(34). An excellent approximation to the self- 4 was studied in the framework of theQSM in Refs.
consistent profile, which exhibits all those featutesd is  [27,28 and the scalar isoscalar form factsft) in Ref.[29].
sufficient for our purposgsis given by the analytical |n |eading order of the largBk, limit the model expression
“arctan-profile,” for the form factoro(t) reads[29] [in the SU2) flavor sec-
tor]

IV. o(t) IN THE xyQSM

R§O| —m.r -1
P(r)=—2arctap —-(1+m,rje" "= |, Rg=M"".
r

13 o(t>=mch d* Jo(V= 1) 2 @R (0 Pr(x)|

reg
The quantityR,,, is referred to as the soliton size. It is related (16)

to the nucleon axial coupling constagf=1.25 as[42,59

2 i where the Bessel functiofy(z)=sinz'z. In the largeN
(note that the order of the limits cannot be invepsed o(2) 9Ne

limit the nucleon mas$1y=O(N;) while the nucleon mo-
3 g menta|p| and|p’|=O(N?) such that=—(p’—p)?. There-
lim ( lim rZP(r)) — —2R%—— o _2A (14)  fore Eq.(16) is valid for |t|<MZ. (Interestingly, in the case
m,—0 o of electromagnetic form factors the model results agree well

r—o
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with data up tot|~1 Ge\? [44].) Equation(16) shows that a(t) =0 (t) eyt () conts
a(t)=0O(N,) in agreement with results from lardé- chiral
perturbation theory22]. 3 . 0
In the yQSM one is in a position to derive the model a(t)|ev=mch d3Xj o(V—tIXD D () YO Pey(x),  (22)
expression foir .y in three different ways:

7en=lim o), 1D o0 PxioV =T S ®5007%,(0

t— n< reg
23

UﬁN:mmﬁLn(,lrn)a (18)

For the discrete level the eigenvalue probletb,.,(x)
1 _ =EPe(X) can exactly be solved numerically, see, e.g.,

TN= mj dx(e'+ed+e"+e%)(x). (190  Ref.[46], and with®(x) one obtainsr(t),.,. The contri-
0 bution of the discrete level is always finite and for our pur-

. L . i poses it is sufficient to note
The first method17) consists in continuing analytically the

form factor o(t) to t=0. The second method8) uses the o ()= UV finite. (24)
Feynman-Hellmann theorerfb5]. The third method(19)

uses the sum rule for the first moment of the fIavlor singletrhe exact evaluation of the continuum contribution in Ref.
twist-3 chirally odd distribution functiore®(x) [60]." The (23 is far more involved. For that one either can place the
three methods consistently yield soliton in a finite 3D box, discretize and make finite the
spectrum of the free Hamiltonigi0) by imposing boundary
_ 3 * 0 conditions and diagonalize the Hamiltoni&®) in the basis
7N mch d Xn%:ccq)”(x)y Pn(X)lreg: 20 of the free Hamiltonian state&ahana-Ripka methofb4]).
Alternatively one can rewrite the continuum contribution
The result in Eq(20) immediately follows from the model (23) in terms of Green functions and evaluate those by
expressior(16) [recallingjo(z)—1 for z—0]. Relation(18)  means of phase shift methodsee, e.g., Ref[65]). Both
was used to numerically compute,y in Ref.[27], and ex- methods are numerically involved.
plicitly demonstrated to yield the expression in E0) in Here we will use an approximate method—referred to as
Ref.[62]. The sum rulg19) was shown to be satisfied in the the interpolation formulain Ref. [46]—which consists in
xQSM [and to yield Eq(20) for o] in Refs.[62,63. The expanding the continuum contributid@3) in gradients of
fact thato . can consistently be computed in tg®SM in  the U field and retaining the leading order only. The interpo-
three different ways illustrates the theoretical consistency ofation formula yields exact results in three limiting cases
the model. |[VU|<M, |VU|>M, and|logU|<1. Therefore one can ex-
The UV behavior ofr(t). In this paragraph the known pectthat it yields useful estimates also for the general case. It
result, cf. Refs[27-29, will be rederived that the model was observed that this method approximates exact calcula-
expression forr(t) contains quadratic and logarithmic diver- tions in the model with good accura¢¥6,47.
gences, i.e., that it is of the form Let us rewrite the continuum contribution in EQJ3) (re-
calling the implicit vacuum subtractidras

_ cut 2 | Acut Acut 0
o) =axt)| =] Fangblog =] +a| ] () cont
reg reg
(21) dw ) Ao 1 ~
3 o —mN, [ SR i)Y —— — (A fio)|
where the coefficientg;(t) are UV-finite functions ot and cem o+iH reg
Ayt IS an UV cutoff. A similar study was presented in Ref. 25

[62], however, for the more involved case of the twist-3 dis-
tribution functione?(x) which is related tar .\ by means of
the sum rulg(19).

Let us separately consider the contributions from the dis
crete level and the negative continuum

where the contou€ is defined as going along the realaxis
and closed in the infinity in the upper half of the complex
plane. The original expressi@f3) is recovered by saturating
the functional trace with the complete set of eigenfunctions

of respectivelyd andH, in Egs.(9),(10),2 performing thew
integration, and passing to the coordinate space representa-

'Equation (19) i t in a formal mathematical : . : , S ;
quation (19) is correct in a formal mathematical ser] tion. Expanding Eq(25) in a series in gradients of the

However, the sum rulél9) is saturated by @ function atx=0 in

e?(x) which means that the relatiofd9) is practically useless to field,

extract any information onr_y from possible measurements of

e?(x) in deeply inelastic scattering experiments, see F&f] and

references therein. e, S~ (H—=Ho)]=Zain(n|- - -[M) == a1 n (Mol - - [no).
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o

(1) con= go ()&, (26)

where the indexk means thatVU appearsk times in
a(t) . we obtain(see Appendix A

a B(t)
zZero

for k=0,
fork=1, (27
UV-finite for k=2,

a(HE=

cont™

with the constantr and the “form factor”B(t) defined as

f d*pg  8NM
a=m
(2m)* p2+M?2

(28

reg

B(t)= | d3jo(V—t|X|) 1—1trFU(x) . (29)
2

The factor &N ;Mm is included into the definition of for

PHYSICAL REVIEW 9, 034003 (2004

cially for a power divergent quantity, to the precise value of
the cutoff—of which only the order of magnitude is known,
cf. Eq. (30).

However, the practical problem of how to regularize the
constantx in Eq. (28) can be solved elegantly and in a regu-
larization independent way. Since the quark vacuum conden-

sate( rih)yac is given in the effective theorg6) by [54]

(Ph)ya=(vad[ ,(0) ¢,(0) + 1h4(0) hy(0) ]| vac)

d*pe (—8NM
:J pE4( . c 2)‘ (32)
(2m* pEtm? |
the constantx in Eq. (28) can be expressed as
a=— m<$’p>vac- (33

At first glance Eq(33) is based on the mere observation that
the same divergent integral appears in two different model
expressions. However, as will be discussed in the next sec-
tion, the relation(33) is not accidental from a physical point

later convenience. The Euclidean integral in the constant Of view (and implies an interesting interpretatione®fy). In
contains quadratic and logarithmic divergences. Combininghe next step one can use the Gell-Mann—Oakes—Renner re-

the results in Eq(24) and Egs.(27), (29 we see that the

form factor o(t) has the UV behaviof21) [and thata,(t)
ocalog(t)ocB(t)]_

Instanton motivated approximatiom nonrenormalizable

lation (with f_ denoting the pion decay constant

mifi: -m <E¢>vacv (34

effective (low energy theories the regularization procedure Which is not imposed here by hand but valid in the effective

“keeps the memory” of the cutoffA ;. In such effective

theory (6) [54]. Thanks to Eqs(33),(34) the practical prob-

theories—for which Eq(6) is an example—the cutoff has a lem ofLeguIarizingfr(t) is shifted to the problem of regular-
physical meaning: It sets the scale below Which the degreeging (i) o in EQ. (32) or f.. The latter is given in the
of freedom of the effective theory may be considered as apeffective theory(6) by the logarithmically UV-divergent ex-
propriate to describe the physical situation, and above whichression54]

they may not be sufficient. In the effective thedi§) the
cutoff

Acu=0(pah)- (30)

4N M?

d4pE
f2= 35
" f<2w>4<pé+M2>2 (39

reg

Using Eq.(30) and the results of the previous paragraph weSince the precise value of the cutoff is not known but only its

see thato(t) can be written as
a(t)=aB(t)-{1+O(M%p3)} (3D

with @ andB(t) as defined in Eq928),(29).

order of magnitude, see E({), it is customary to adjust the
cutoff(s) in the corresponding regularization scheme such
that the experimental values df/i),,c and f, in Egs.
(32,35 are reproducef#4]. In this way free parametefsut-

off, current quark mass, ejcare fixed in the vacuum and

Thus in Eq.(21) the UV-finite contributions are para- Meson sector of the effective thed®) [44]. In this sense the
metrically strongly suppressed with respect to the UV-XQSM—i.e., the baryon sector of the effective the(y—
divergent terms by the instanton packing fraction due to Eqyi€lds parameter-free resultfin some calculations in the
(8). Since theyQSM was derived from the instanton vacuum XQSM the massVl was understood as a “free parameter”
model, it is consistent to use this argument based on Eq@nd allowed to vary in the range 35M <450 MeV
(8),(30) in this context. Equatiof31) defines the approxima- [28,29,44. The sensitivity of the model results to these
tion in which o(t) will finally be evaluated, after regulariz- Vvariations was typically within (10-30) %. Here we rely on

ing the divergent constani in Eq. (28).

notions from the instanton vacuum model and consequently

Regularization.There are several methods to regularizetake the valueM =350 MeV which follows from the instan-
the divergent constant in Eq. (28). Popular methods often ton phenomenolog§/53,54.]

used in exact model calculations are the Schwinger proper- Thus our final(regularized result for the form factor
time regularization(see, e.g., Ref44]) or the Pauli-Villars ~ reads[with B(t) defined in Eq(29)]

subtraction methodsee, e.g., Ref§62,66]). The result will - )2
be sensitive to the chosen regularization method and, espe- a(t)=m2f7B(t) - {1+ O(Mp3)}, (36)
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o(t) [MeV] o(t)-0(0) [MeV]
40 —
60 [ i FIG. 1. (a) The form factor
- 30 - ] o(t) evaluated in theyQSM by
[ ] means of Eq(36) (solid line) and
40 I 2 L ] its dipole fit(42) as functions of.
[ ] (b) The analytical continuation of
I I . ] the form factoro(t) to unphysical
| 10 - : 7] t=0. The dot marks the value of
20 r i o(t) at the Cheng-Dashen point
I ol ; 1 =2m?. At and above the thresh-
i ' 1 old t=4m? the form factor is not
F 1 i : defined, see text.
0 . I . I . 1 . | . .10 P P I IR B
-1 08 06 04 02 t[GeV] 210 1 2 3 gyl
(a) (b)

wherem,, and f . denote the physical pion mass and decayA useful parametrization of the form factor for negativis
constant, respectively. It should be stressed that the resujiven by[with o from Eq. (38)]

(36) does not follow from the interpolation formula of Ref.

[46] (which would require to add the UV-finite discrete level O N
contribution, cf. Ref[62]). Instead Eq(36) has to be con- o(t)= MTZ)Z
sidered as an approximate result foft) in the yQSM, S

which is justified by the parametrical smallness of the instantpe dipole fit(42) approximatess(t) to within 2% for |t|

M2=0.55 Ge\f. (42

ton packing fraction. _ - =<0.8 Ge\?, cf. Fig. 1(a). Thusc(t) decreases with increas-
In the following the parametrically smafl(Mp5,) cor-  jng |t| more quickly than the electromagnetic form factors
rections often will not be indicated. where the corresponding dipole mass is abduf,
~0.7 GeV in a comparablé region.
V. DISCUSSION AND INTERPRETATION The form factoro(t), Eq. (36), is not defined at and
OF THE RESULTS above the thresholt=4m? . In the vicinity of the threshold

Evaluating the final expressiof36) for the form factor the form factor behaves dsee Appendix B

o(t) with the soliton profile(13) for M =350 MeV, m,,

> . 1
=140 MeV, andf_=93 MeV yields the result shown in _ 2 2
Figs. 1@ and(b) (see Appendix B for detailed expressipns s(=aln V%t Ta ast—am; - (t<4ms),
It should be noted that the error due to using the profi®, 1— ——
instead of the self-consistent profile which truly minimizes 2m,
the soliton energy(11), is far smaller than the theoretical (43)

accuracy in Eq(36). . . -
Apart from the values of(t) at the Cheng-Dashen point where a,a, are.posmve constants.2Ipterestlngly, a smylar
t=2m2 and att=0, and their differenced,=c(2m?) divergent behavior ofr(t) for t—4m?7 is also observed in
—o0(0), there is another phenomenologically interestinghe"’“/y baryon chiral pertgrt_)atlon thed@B—Zq._There this .
guantity—namely the scalar mean square radius related tfgature arsesas a pecuharlt.y Of. the nonrelatlylstlc expansion
the slope of the form factas(t) att=0 as and can be av0|d(_ad by conS|der|_ng baryon chiral pe_:rturbatlon
theory in the manifestly Lorentz invariant forf@1]. It is not
1 clear whether in thg QSM this unphysical feature could also
o(t)y=o,n 1+ 5 (rd) t+O(t?) |. (37)  be cured—possibly by a more careful analytical continuation
of o(t) to t>0, e.g., by making use dbubtracted disper-
sion relations.
Accuracy of the approximatioiBefore discussing the re-
sults let us estimate the size of some of the contributions

We obtain the results

7an=67.9 MeV, (38) neglected in Eq(36). The contribution of the discrete level
in Eq. (22) is (o, =12 MeV [62] (cf. next paragrapk
o(2m?)=82.6 MeV, (39) The?:ontributif)n t’\(l)) Iter\{e continuum part of, froF:n th% 522-
ond order of the gradient expansion is.{) 2\~ —6 MeV
A,=14.7 MeV, (40) (cf. Appendix A. These are corrections @(15%) to Eq.
5 (38), i.e., smaller than the theoretical accuracy of the ap-
(rg)=1.00 fnt. (41)  proximation(36) which is O(M?2p2)=(30%). This is an
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indication (and no morg that the approximation works. Its dom[40]. Also the results of the data analyses and from the
theoretical justification is anyway unguestioned due to EqyQSM calculationg27,29 are included.

(8). In several models it was observed that a sizable—if not
Comparison to previous calculations in thegQSM. In  dominant—contribution too,y is due to the pion cloud
Refs.[27,28 o, Was studied in S(2) in leading order of (“quark sea”) as compared to the constituent quark core

the largeN, expansion. In Ref[29] the form factor was (“valence quarks) [33-35,38. In the yQSM the discrete
studied in the S(B) version of the model and includingN Igvel contannon correspond_s to the quark core and_the con-
corrections. In Refg27—29 the proper time regularization tinuum contribution to the pion cloutiHere we obtain an

was used. Our resu(B8) for o agrees with the numbers extreme picture, where . is purely due to the pion cloud.
quoted in Refs[27-29 to With?n 30%. Corrections to this picture are suppressed by the instanton

In Ref.[29] it also was observed that(t) is not defined packing fraction(and are practically of order 3026
fort>4ﬁz In the region G<t<2m2 our result for the dif- Skyrmion and nonrelativistic limitlt is possible to re-
feren/ceazrt.)—o(O) a%rees with thg result of Ref29] to cover from expressions of thegQSM the results of the non-
within (10-20) %. In the region<0 the agreement of the relativistic quark model and the Skyrme model by taking

. . . appropriate(nonphysical limits [67].

re;scaled form factor, 'Zeq(t)/o(o).’ 'S ven more impres- The “Skyrmion limit” consists in takingRs,— . Since
sive _(a fe_w percent It is not surprising to obse_rve the ap- for the soliton solutionRe, =M ~* [42], the limit is to be
proximation to wo_rk _dlfferently n _dlff_erent regions. The understood as evaluating model quantities with, e.g., the pro-
apprOX|mat|on(36) |nd|ca§es the limitations of the nume_rlcal file in Eq. (13) which allows us to vanR, [67]. In this limit
(finite b9><) mgthod used in R¢[29]. From Eqs(_Bl),(BZ) N the energy of the discrete IevE|ev—>(—SRA) [42], such that
Appendix B it is clear that integraléin coordinate Spage this contribution is enclosed in the contour of thentegral
converge more and. more slowly asapproachegf4mv in Eq. (25). With increasingRy, the contributions ¢ )
(from below). In the finite box method, however, it is neces-. series26) behave aS£OIN)(k) <R3, For (07:)?35“

i i i | m t : m t
igzi;Hitnl{lgggr;lzse:o?o\;elzgrﬁt qgacggfér:e%deRre;(Ezg]e trl]r; the nd ()3, this can be seen dicrgctlysﬁom the exprecggions
regiont>2m?2 could not be explored and quantitative obser-'l?sgzg 322‘2?;'2;;%32‘:53%22; arlr;:/lf;,,(?)t(g?lsdg?nni(r?::elgn
vations of the kind43) were not possible. : cont

In Ref. [62] tcrfe )twist—3 disFt)ribution functione?(x) ~ again—this time, however, justified by the unphysieal
and—by exploring the sum rul9—also o, were com- % limit. The expression fowr, Obtained herdormally

puted in theyQSM by means of the interpolation formula of €0incides with the expressions in Ref81,32. It should be
Ref. [46]. To remind, the interpolation formula consists in N0téd that what is an exact result in the Skyrme model is

estimating the continuum contribution essentially in the sam&€r€ merely an approximation—though a well justified one

way we did here, but to add also the exactly evaluated dist_hanks to arguments from the instanton vacuum model. The

crete level contribution, which iso{y) =12 MeV. The coincidence of the expressions is purely formal since the

total resulto,y=80 MeV of Ref.[62] agrees with the result Skyrmion is a topological soliton. Eg in _RéBZ] a vector-
(38) obtained here to within 15%. meson model was used to determine théeld.

To summarize, the instanton-motivated approximation forh In the ?ppo.ere “m't‘R.SO'_}O’ onek recov;)rs relsultj ;rom
(1), Eq.(36), yields results in agreement with earlier model ("€ nonrelativistic constituent quark modébrmulated for
calculations to within the expected accuracy. arblt_rarch [68]). TakingRsq— 0 in the expressio(l6) one

Comparison to experimental informationThe result ©Ptains
o(2m,27)=83 MeV in Eqg. (39 agrees well with the more
recently extracted values of(2m?)=(80-90) MeV[6-9].

The result foro(t) — oy in the region (-2m2)<t<4m’,  \yhereGg(t) [normalized toG(0)=1] denotes the isosca-
cf. Fig. 1(b), agrees with the result obtained from the disper-lar electric form factor—taken also in the nonrelativistic
sion relation analysis with chiral constraints of RES] to  |imit. This result follows from generalizing the discussion in
within (2—5 %. This can be seen by comparing the differ- Ref.[62] to the case of the form factar(t). That Eq.(44) is
enceA, in Egs. (4),(420) and the slope ofr(t) att=0, the correct nonrelativistic relation betweens(t)
namely O"(O)OC(?'WNO'S):?Z MeV fn?  of REf [5] VS “<N'|¢¢|N> andGE(t)OC<N/|(ﬂT¢|N> follows from consid-
68 MeV fm’ obtained here. The agreement with phenomenogring that in this limit the nucleon wave function has no
logical information can be considered as satisfactory.

Comparison to other approache®ur result is consistent
with the values foro .y obtained from lattice QCD results 3This is to be understood in a loose sense in the “quark model

[23-29 (see also Sec. ViIn Table | we compare our result |anqage.” Strictly speaking there is no one-to-one correspondence
also to calculations performed in chiral perturbation theoryi, the yQSM between the discrete level and continuum contribu-
[18,20,23, the linear sigma mode[30], Skyrme model ons on the one hand and the notions of “valence” and “sea
[31,32, color-dielectric model[33], cloudy bag model quarks” on the other hand. The latter are well defined, e.g., in the
[34,39, Nambu—Jona-Lasinio mod¢B6,37, perturbative  context of parton distribution functions. The point is that both dis-
chiral quark modef38], a relativistic dynamical model based crete level and continuum contribute each to valence and sea quark
on effective hadronicN, A, 7, p, ando) degrees of free- distributions[46,47.

o(t)=MnGe(1), (44)
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TABLE I. Comparison of the results far .y, o(2m2), A,=o(2m2)— oy, and(r3) from data analy-
ses and theoretical approaches. The list is far from complete, only some of the more recent results are shown.
For reviews on early approaches see REgf.

o.n/MeV  g(2m?)/MeV A, /MeV  (rd¥3fm

Data analyses

Koch (1982 [4] 64+8

Gassert al. (199 [5] 45+8 60+8 15.2-0.4 ~1.3
Kaufmann and Hit€1999 [6] 88+15

Olsson(2000 [7] 71+9

Pavanet al. (2002 [8] 79+7

Theoretical approaches

Conventional heavy baryopPT [20] 4+1

Manifestly Lorentz invarianyPT [21] 14

Lattice QCD, Donget al. (1995 [23] 49.7+2.6 6.650.6  0.72:0.09
Lattice QCD, Leinwebeet al. (2000 [24] 45-55

Lattice QCD, Leinwebeet al. (2003 [25]  37"35-73'12

SU(2) YQSM to LON, [27] 54

SU(3) YQSM to NLO N, [29] 41 59 18 1.2
Linear sigma mod€]30] 86-89

SU(2) Skyrmion[31] 49

SU(3) Skyrmion[32] 60

Chiral color dielectric solitor}33] 37.8 1.1
Cloudy bag mode[34] (37-47)x+9

Nambu—Jona-Lasinif36] 50

Confined Nambu-Jona-Lasinj87] 60

Perturbative chiral quark modgs8] 45+5

Effective model of hadronp40] 74

This work (accuracy~30%) 67.9 82.6 14.7 1.00

lower (antiquark component such that'y= g practically  (yy),.. (measure of spontaneous chiral symmetry breaking

holds, and that the current quark masshas to be under- andm (measure of explicit chiral symmetry breakinghe

stood as a constituent quark mass equallig'3. The non-  relation (45) is also known from the Skyrme modg81,69

relativistic relation o,ny=My strongly overestimates the which is not surprising, see the remarks in the previous para-

phenomenological value ef  in Eq.(5). Still, this resultis  graph.

theoretically consistent and, e.g., correctly implies a vanish- The proportionality factor in Eq45), the functionB(t) at

ing strangeness conteptin the nucleor{61]. t=0 as defined in Eq(29), has the dimension of volume.
Interpretation ofo .y . In the effective theory6) the pion-  Following the temptation to define “an effective volume of

nucleon sigma term and the quark vacuum condensate atRe nucleon” asV.s=B(0), therelation betweers and

proportional to each other (1h)yac CAN be written as

O aN* — m<$‘//>va01 (45) .

: . Ton= ~ M) vaVer,  Ver=B(0). (46)
up to parametrically smal)(M?p2) corrections. From a N () vac et of
physical point of view this observation based on E§) is
not surprising sincéy i), is the sigma term of the vacuum Numerically we find an effective volume which—taking the
(per unit volume, up to the explicit factor af). Thus in the  nucleon to be a rigid sphere—would correspond to an effec-
xQSM the picture emerges that . (measure of chiral sym- tive nucleon radius of 0.9 frmfor m,=140 MeV). This
metry breaking in the nuclegns directly proportional to value should not be taken too seriously. But it yields the
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correct order of magnitude for the phenomenological size of gf\

9
the nucleonV.4 has a well defined chiral limit, see below. A,(m,)= _mi+ (48)

The concept of such an effective volume is useful, e.g., in the 64w f727

context of the “partial restoration of chiral symmetry in

nuclear matter.” TheV 4= o, /(M2f2) in Eq. (46) is just 9 @

the inverse of the chiral nucleon density, introduced in o' (0m;)= %f—zmqﬁ e (49

Ref. [10].

Thus the value obr\ is large because—(m(%/;}vac) is (2. [and i
sizableand because the nucleon is a large extended objecv.vhere Fhe constardo=(3 .6W9A2)./(.32f”) and the dots d.e
ote higher-order terms in the limih,—0 (see Appendix

Corrections to this picture are suppressed by the instanto ) Sincemioc m. odd powers ofn_. in Eqs. (47),(48).(49)

acking fraction. ; . . o .
P g are the, respectively, leading nonanalytic contributions in the

The strangeness content of the nucle@ur resulto .y . ) .
—68 MeV implies a strangeness content in the nucleon ofurrent quark mass\. Leading nonanalytic contributions are

y~0.4, cf. Sec. Il, as it is also inferred from the more recenLcl)_fh pa}rticu_lar interest, pecause_ thgy are model independent.
data analysef6-9]. In view of such a large value for the € leading npnanalytlc contributions in E.qg'?)i(d'g) are
strangeness content some authors even suggest to reconsig® ctl_y three times Iarg_er than thoge obta|_ned in chiral per-
the “standard interpretation” relating .y andy [8]. (How- twrbation theory. Th_e d|screpancy IS explained by r_ec_allmg
ever, as argued in Ref13]—despite the large Strangenessthat here we work in the largd; limit and that the limits

content—thetotal contribution of the strange degree of free- Ne—o0 andm,—0 do no}lcommuté17,7(]. Ig the IargeNC.
dom to the nucleon mass is small. countingM , —My=O(N; 7) while m_,=O(N;) such that it

The calculation presented in this work definitely is appropriate to consider first the larbe-limit, which is
confirms—uwithin its accuracy—that  is large, and sug- done herethoughM,—My>m, in nature would 3U99295t
gests an “explanation” why“because the nucleon is a large the opposite My(m;) has a branching point atr{,<)m?,
extended object,” see previous paragrapBeing a calcula- = (M,—My)? which in the strict largeN,, limit contributes
tion in a SU2) model, however, it unfortunately cannot pro- to the nonanalytic behavior &fl(m,;) atm?=0. As a con-
vide any insights into the puzzle why the strangeness contesequence thel contributes as intermediate state in chiral
y appears to be so large. In this context it is worthwhileloops to leading nonanalytic contributions, and its contribu-
mentioning that in Ref[29], whereo, was studied in the tion is twice (for isoscalar quantitigsthat of intermediate
SU(3) version of the yQSM and the matrix element nucleon states in the strict largés limit [71].

(N[Wsth|N) directly evaluated, the strangeness content was The result in Eq.(49 means that the scalar isoscalar

determined to bg/~0.3. mean-square radius diverges in the chiral limit
The numerical result of Ref29] does not provide any p7g\ V2 1
physical intuition why this value is so large. It would be 2\ _ 9a A1+ |
interesting to see whether the present approach could be ex- {rg 32w ) m.f, {1+ O(regularterms}.  (50)

tended to the S(B) sector and provide any insight in this
respect. Such a study, however, goes beyond the scope of thAsiother example of a square radius which diver¢iesw-

work. ever, as Im_) in the chiral limit is the electric isovector
charge mean-square radifélso this feature is observed in
VI. PION MASS DEPENDENCE OF &,y AND My the yQSM [44].)

. Interestingly, the correct leading nonanalytic contributions
The result in Eq(36) allows us to study the form factor {515\ here from the structure of the soliton, and not from
o(t) as a function ofn., i.e., o(t,m;). Of particular inter-  cpira| joops as in chiral perturbation theory. In REF1] it
est is hereby the behavior in the chiral limit which will be 55 shown that the leading nonanalytic contributiorrtg,
investigated first. Maybe more interesting from a phenoms, gq (47) is a general result in a large class of chiral soliton
enological point of view is them, dependence of the oqels of the nucleon. This result is reproduced here in the

nucleon mas$1y which can be deduced from.(m;) by QSM because the analytic profi{@3) correctly describes
means of the Feynman-Hellmann theorem. The understanéﬁe long-distance behavior of the chiral pion figkL].

?ng of the correlation betyveeMN anq m, is presently of Full dependence on m Sincea(m,) vanishes in the
importance for extrapolations of lattice data—which corre-.i a1 imit asm2 we consider the ratio- (m.)/m?2 . Fig-

spond to pion masses of typicaliy,.=500 MeV—to the ure 2a) showsa (M. )/m2 as function ofm?. It is pref-

physical value of the pion mass. p) S T i
Leading nonanalytic contribution€Expanding the result erablg to plotmy, on theiaX'S S|Or:ce2 th% CT_Lal I|m:.tdc<|)'rre
in Eq. (36) around the point_=0 we obtain foron(m,), sEon shtofcllljrrentl quadr hmgmhn::iwr h € sr?' ine
A,(m)=c(2m? ,m,)—o.(m,) and the derivative shows the fu ge_sutan the dashed line shows the expansion
, ; . of o ,n(m,)/mZ in the model up to the leading nonanalytic
o' (0,m,) the following results: N U .
contribution, Eq.(47). Clearly, only for rather small pion

27 9/2\ massesm, <140 MeV the full result forawN(mW)/me is
o-n(M,)=ag f,— a—szﬁ cee (47) reasonably approximated by its chiral expansion up to the
Tt leading nonanalytic contribution in EE47).
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FIG. 2. (@) The ratio<rwN(m7,)/m,2T as function ofrnfT (with m_, in units of the physical pion mass awd,\(m,) in units of its physical

(mode) valueo =68 MeV, i.e., the marked point corresponds to

the physical situafidre solid line is the full model result, the dashed

line is the chiral expansion in the model up to the leading nonanalytic contribution, cf48q(b) My(m,) as function ofrnfT (in units of

the physical pion magsSolid line is the full result, Eq(52). Dashed

line is thélargeN,) chiral expansion oM y(m,) up to the leading

nonanalytic contribution, i.e., Eq47) integrated by means of E¢G1).

Figure 2 simultaneously shows the “effective volume” of
the nucleonVz(m,) as defined in Eq(46) in units of its
“physical value” (corresponding to about 3 fih In the chi-

the nucleon in the chiral limit i8(0)=860 MeV (taking
the physical mass as 940 MgMWvhich is in the range of the
values considered in chiral perturbation theory. Since we

ral limit Vez(m,;) grows by more than 50% compared to its work here in the largd, limit one obtains the same result
physical value. But it remains finite which means that thisfor the mass shift of thé in the (largeN,) chiral limit.

guantity is indeed a useful measure of the “nucleon size” in

Fixing the integration constamd (0) in Eq.(52) to 860

the chiral limit—in contrast to, e.g., the scalar mean-squarg/eV we obtain forMy(m,,) the result shown in Fig. (),

radius(r), cf. Eq.(50).

Nucleon mass as function of mThe Feynman-Hellmann
theorem (18), reformulated by means of the Gell-Mann-—
Oakes—Renner relation in E(B4) as

2 IM N(m’IT)

2 1
m

o an(My)=m (51)

m

om

provides a means to study the nucleon mass as function
m

T

a’ﬂ'N(M)
2

m2
M(m,)=Mp(0) + fo "du? . 2

whereM(0) is an integration constant to be identified with
the value of the nucleon mass in the chiral limit.

For the amount the nucleon mass is shifted in the chirajj

limit with respect to its physical value we obtain from Eq.
(52) the result

2
M (140 MeV) — M (0) = fmﬁdﬂszL(ZM)
0

m,, =140 MeV

=80 MeV (53)

where the solid line shows the full result from E§2) and

the dashed line shows the chiral expansioMgf{(m,) up to

the leading nonanalytic contribution, Eqel7),(52). Simi-
larly to the case ofrwN(mf,) the chiral expansion up to the
leading nonanalytic contribution reasonably approximates
the full result forMy(m_) only for m_ below the physical
pion mass.

Several comments are in order. First, in th@SM the
éucleon mass is given by the minimum of the soliton energy
(11) with respect to variations of the chiral field. The ac-
curate(and numerically involvedprocedure to study thex-
act dependence oMy on the pion massn,. in the yQSM
would consist in considering the soliton energhyl) as a
function of the current quark mass in Egs. (9),(10) and
deducing the respective value of the pion mass from the
Gell-Mann—0Oakes—Renner relati¢dd), or the Yukawa-like
ecay of the self-consistent soliton profiteexp(—m,r)/r at
arger. Here, however, we can be confident to describe cor-
rectly thevariation of M with m_. to within the accuracy of
o in EQ. (36).

Next, since Eq(52) can be used to describe merely the
variation of M with m_. it is clear that we are free to choose
the integration constanil(0)=860 MeV and that there
would be no point in taking the precise model value for
My(0) which, by the way, would have the drawback of in-
troducing a regularization scheme dependence into the result.

modulo corrections which are parametrically small in thelt should be noted that in theQSM the baryon masses tend
instanton packing fraction. Within this accuracy the mass oto be overestimated by about 20% due to spurious contribu-
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My(m,)/GeV Mpy(m,)/GeV
— ; — FIG. 3. The nucleon madd
as a function ofm2 according to
Eq. (52 with M(0)=860 MeV
in comparison toa) lattice QCD
results from Ref.[73], and (b)
from Ref.[74]. (The thick dashed
line is actually the fit of Ref[24]
to the lattice result§74].) The
meaning of the thin dotted line is
explained in the text. In both fig-

| L 0 [ L L L L | L L L L | L i
0 1 2 mi G eVZ 0 1 2 mrzt /GeVz ures the arrow denotes the physi-
cal point.
(a) (b)
tions of the center of mass motion of the solifat2]. in Fig. 3(b) is the fit of Ref.[25] to the lattice data74] in the

Finally, one has to consider that the description ofrange 500 Me¥sm_=<1 GeV. (The thickness of the curve
My(m?2) by means of Eq(52) can be considered as well is comparable to the statistical error of the very accurate
justified for mipg\gl_ This relation is analog to E¢8) and  lattice data of Ref[74].) The extrapolation from this region
means that only light pions—light with respect to the scaleto the physical pion mass yields—within the statistical accu-

pi—make sense as effective degrees of freedom in the lowacy of the lattice data and depending on the regulator—

energy theory(6). values for the nucleon mass which cover the region

Though, of course, it is not their actual goal, lattice QCD(782°155 - -948"3%) MeV. This demonstrates the sensitiv-

simulations allow us to measufd (m,). The result for ity to details of the extrapolation of even very accurate lattice
My(m.) from Eq.(52) with M (0)=860 MeV is compared data.
to results from lattice QCD simulations from Reffg3,74 in The approach of Ref$24,25,77 basically corresponds to
Figs. 3a) and (b). [More precisely, what is plotted in Fig. chiral perturbation theory in different regularization
3(b) as a thick dashed line is the parametrization of the latschemes. From the point of view of field theory, however, it
tice data[74] reported in Ref[25].] is unsatisfactory to observe a strong scheme dependence
Keeping in mind the above-mentioned reservations wé78]. Considering the complexity of the problem it is impor-
observe in Fig3 a good agreement with the results for thetant to have furthemodel independentconstraints. Re-
nucleon mass from lattice QCD simulations reported in Refscently it was reported that chiral perturbation theory is able
[73,74. A similarly good agreement is observed with the to describe reliabiMy(m;) up tom,<600 MeV using re-
results reported by other lattice groujrs,76. fined regularization techniqud§8]. Presently most of the
Chiral extrapo|ation of lattice-QCD resu|tsEventua||y lattice data are beyond that limit, however, a first matching
one is interested in the chiral extrapolation of lattice datadf chiral perturbation theory and lattice results seems to be
from the currently available region 500 Meim_  Possible[78].
<several GeV to the physical value of the pion mass. The The results reported in this work also could provide
lattice data orMy(m,) are usually fitted toAnsaze of the ~ useful—though certainly not model independent—insights
kind My(m,)=a+ bme or My(m,)=a+ bmiJrcme in- into this issue. Indeed, by reaspnably fixing the |r.1te.grat|on
spired by the chiral expansion of the nucleon mass, oftefonstanMy(0), anagreement with lattice data to within the
observing that bothAnsize are equally acceptablgze].  accuracy of the approach is obtained, cf. Figs) &nd (b).
However, the approximation ofl y(m..) by its chiral expan- This (_)bserva_ltlon _suggests _that it Woul_d be worthwhile at-
sion up to the leading nonanalytic ter(ﬁ(mfr) makes sense t€mpting to fit lattice data with aAnsatzlike, e.g.,
only at small values afn,_, below the physical pion mass—as 22
was emphasized in Reff24] [and can also be seen here in MN(mw):MN(O)flt+J'mwio'wN(/“aRggl . (54
Fig. 2(b)]. 0 u?
An interesting extrapolation method was introduced in
Ref. [77] where it was suggested to regularize chiral pionThe Ansatz(54) corresponds to Eq52) whereMy(0) and
loops (which simulate the pion cloud effecby introducing  the soliton sizeRg, [cf. Eq. (13)] are allowed to be free
appropriate regulator§.e., form factors which simulate the parametersi (0)™ andR™ , to be fitted to lattice data. The
extended structure of the nuclgoiThis approach not only Ansatz(54) is of more general character: It is not only in-
incorporates the correct chiral behavior, but also reproducespired by theyQSM (and the Skyrme model, cf. previous
results of the heavy quark effective theory in the liiit  Sec. \j but actually is based on the lard& description of
ocm727—>00. This gives a certain legitimation that also the in- the nucleon as a chiral soliton of the pion fi¢#3,59.
termediate m, region—as explored in lattice QCD The ansatZ54) means that the pion cloud effect—which
calculations—is reasonably described in this approach. This responsible for the growth of the nucleon mass with in-
model dependence of this approach was studied in Refsreasingn,—is modeled by the structure of the soliton. This
[24,25 by using different regulators. The thick dashed curveis conceptually an independefihsatzto consider pion mass
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effects than the method of Ref®4,25,77, and it has, more- servation made in other chiral models that the dominant con-
over, the advantage of being regularization scheme indepetribution to o is due to the pion cloud. Indeed, here the
dent. extreme situation emerges that, is solely due to the pion

In order to illustrate that thé\nsatz(54) is reasonable cloud—modulo small corrections suppressed by the instan-
note thatM(0)™=780 MeV andR{,=0.9Rg, fit the lat-  ton packing fraction. Moreover, it is found that.y is pro-
tice data[74] within their statistical accuracy. Th&nsatz  portional to the quark vacuum condensate, i.e., the order pa-
(54) with these parameters—shown in FigbBas the thin  rameter characterizing spontaneous chiral symmetry
dotted line in comparison to the fit obtained in REF5|—  preaking, and to the current quark mass, i.e., the parameter
yields for the physical nucleon mass about 850 MeV whichcparacterizing explicit chiral symmetry breaking—a relation
is in the range of the values reported in Reb]. A careful previously known only from the Skyrme model. The propor-

study whether this is thestfit and an estimate of its statis- tionality factor can be interpreted as an effective volume of

tical and systematic errors both go beyond the scope of thi§h . ; . .
. ; . i e nucleon, which yields the physically appealing explana-
work. The main systematic error in t#e1satz(54) is due to tion that o\ is so sizeable because the nucleon is a large

the treatment of thel as a mass generated state to the

nucleon in the larg®, limit and could be estimated follow- extended object. N .
ing Ref.[71]. The large value otr . implies according to the standard

interpretation a surprisingly sizeable strangeness content of

the nucleon of abouy=2(N| s NY(N|thythy+ thahg|N)
VII. SUMMARY AND CONCLUSIONS ~0.4. The SW2) calculation presented here unfortunately

) cannot shed any light on this puzzle. Calculations in the
~ The sigma-term form factar(t) of the nucleon was stud- - gy3) version of theyQSM, however, naturally accommo-
ied in the limit of a large number of colors in the framework y,¢e 5 large strangeness conti2d]. Worth mentioning in
of the chiral quark-soliton modelQSM). The consistency s context is the conclusidii3] that despite the large value
of this field theoretical approach is illustrated by the fact that ¢ y the total contribution of strange quarks to the nucleon
the pion-nucleon sigma termr,y can consistently be com- |~ is small.
puted in theyQSM in three different ways. Apart from con- The dependence of the nucleon mads, on the pion
tinuing analytically the form factor td=0 one also can | .ass was obtained fromr W(m.) by exploring the
make use of the Feynman-Hellmann theorg58] and the oy nman-Hellmann theorem. In the chiral limit the nucleon

sum rule for the twist-3 distribution functioef(x) [60]. mass was found to be reduced by 80 MeV with respect to its

The model expression far(t) was evaluated in an ap- ppysical value. This means that the mass of the nucleon in
proximation justified by arguments from the instanton modekpg chira) limit is about 860 MeV which is in the range of the

of the QCD vacuum from which theQSM was derived. The 45 considered in chiral perturbation theory. To within the
approximation is therefore theoretically well controlled a”daccuracy of the approach the functional dependence of the

justified. A virtue of the approximation is that it allows us t0 1, ,cleon mass on the pion mass agrees with lattice QCD re-
regularizeo(t), which is quadratically UV divergent in the g ts yp to the largest available lattice valuesnof. This

XQSM, in a regularization scheme independent way. Th&pservation can be used to inspikesazefor the chiral ex-
theoretical accuracy of the results is governed by the Sma"frapolation of lattice QCD results.

ness of the parameter characterizing the diluteness of the Despite the considerable progress of the rigorous ap-
instanton medium and is practically @(30%). Results r9aches to QCD—lattice QCD and the effective-field theory
from previous exact calculations in theQSM are repro-  method of chiral perturbation theory—the description of the
duced to within this accuracy. There are no adjustable parankion-nucleon sigma term still is a demanding issue. The di-

eters in the approach. _ rect calculation ofr . on the lattice meets the problem that

For the form factor at the Cheng-Dashen point the valugne corresponding operator is not renormalization scale in-
o(2m7) =83 MeV is found—in good agreement with more yariant[23]. This complication is avoided by the method of
recent analyses of pion-nucleon scattering @éted]. In the  getermining o, from the pion mass dependence of the
region — 2mZ <t<4m? the result for the form factor agrees nucleon mas§73—76. In either case, however, the concep-
to within a few percent with the shape for(t) obtained in  tual problem appears of how to extrapolate lattice data from
Ref. [5] on the basis of a dispersion relation analysis. Inthe presently availablen, =500 MeV down to the physical
particular o(2m2) — o(0)=14.7 MeV is obtained which is value of the pion mass. A model-independent guideline can,
close to the value 15.2 MeV of Ref5]. Finally, for the in principle, be delivered by the chiral perturbation theory
pion-nucleon sigma term the value,y=68 MeV is found.  where, however, the physical value®fy cannot directly be

An advantage of the present approximate resulbf@) is  computed since it serves to absorb counter terms and is
its simple structure which allows us, e.g., to study the formrenormalized anew in each order of the chiral expansion.
factor in the chiral limit and to derive the leading nonanalytic  Recently a first promising matching of chiral perturbation
(in the current quark magsontributions in the model. It was theory to the lowest presently available pion masses in lattice
shown that the expressions from th®SM contain the cor- QCD was reported78]. However, it will take some time to
rect leading nonanalytic contributions in the lafgg-imit demonstrate and establish the convergence of the chiral ex-
[71]. pansion up to values ofn,~500 MeV and higher. Until

The results presented in this work fully confirm the ob-then less rigorous but phenomenologically and theoretically
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well motivated approaches may have a chance to serve #ations but is crucial, e.g., to allow the derivation of leading
helpful guidelines for the chiral extrapolation of lattice data.nonanalytic contributions in theQSM. However, it is ques-
One such approach, suggested in R&¥], consists in ex- tionable whether hereby one could obtain alggthanomeno-
ploring physically motivated regularization technics to simu-logically satisfactory description of observables other than
late pion cloud effects. In order to investigate the modelquadratically UV divergent, and the only observable of such
dependence it would be desirable to consider also other cotkind as far as the author is aware of is the scalar form factor.
ceptually different approaches.

The observations made in this work inspire an alternative, ACKNOWLEDGMENTS
regularization scheme independent, extrapolafimsatzin )
which the pion cloud is modelled on the basis of the soliton The author thanks S. Boffi, K. Goeke, and M.V. Polyakov
picture of the nucleon. In view of the success of this picturefor fruitful discussions. This work has partly been performed
promising. To provide a theoretically well controlled ex- Commission.
trapolationAnsatzt will, however, be necessary to introduce
systematically M corrections which is subject to current APPENDIX A: GRADIENT EXPANSION
investigations. ) o ] 5 o e

It would be interesting to study also other observables of BY using l/+iH)=(w—iH)/(o"+H?) and H*=p
the nucleon in this way, using arguments from the instantont M2+iM y*(V¥U 75)(X) in Eq. (25) we arrive at the series
vacuum model—which not only largely simplifies the calcu- (26) with the o(t)),, given by

d - - -
(1) gon=MNe fcz—;", Sp[io( V=HX)y (@ —iH) —IMA(TIU9(0 —

(A1)

In order to evaluate the zeroth-order contributieft)(®),  which is zero due to rotational invariance.
we saturate the functional trace by the complete set of eigen- The k=2 term in Eq. (Al) yields after a somehow
functions of the free momentum operator, i.e.,[ Sp] lengthy calculation,

= [[d3p/(27)3](pltr- - -|p) where tr denotes the trace over

flavor and Dirac indices. After taking the Dirac trace we MNM )
obtain ()=~ — deXJo(V—t|X|)
167
(1) {oh=— MmN 4M f A o(V=tIX)) xtre UTO0 (VKU 00 (VKUD (0. (Ad)
U+u? do For our purposes it is sufficient to observe the(t)(2), is
X tre - — finite, €.g., @) 2/m=—(32/16)N;MR,. [The equal-
ity holds for m,.=0 in the profile Eq.(13).] Higher orders
2 c2m ity holds f 0 inth file Eq.(13).] High d
3 k=3 are also finite, i.e.,
d°p 1 ‘
Xf Py B o(H% =V finite, k=2. (AS5)
reg
The “—1" under the flavor trace (# originates from the APPENDIX B: o(t) AND THE CHIRAL LIMIT

vacuum subtraction term. The integration over the contour
Cin Eq. (28) can be replaced by an integration over the real
w axis, and we substitute— p to use the convenient Eu-
clidean space notation. Using=td=trrU" we obtain the
result in Eq.(27).

Taking the trace over flavor indices in the expression for
B(t) in Eqg. (29 and inserting the result into the expression
(36) for o(t) we obtain for the soliton profile in Eq13),

Similarly we obtain for thek=1 term in Eq.(A1) a(t)=mif§,4wf dr r2jo(rV—t)(1—cosP(r)),
0
O j do [ d®p imN.M 8gp' . ,
ag = — + —
i Je2m ] (2m)? (0P pem?)? - cosP(r) = —rel L Mal)” OXR = 2MAT)
r4+ R (1+m,r)2exp —2m,r)
% | (V=) T4c05P (X e )
The form factor can be continued analytically to the phenom-
=0, (A3)  enologically interesting regiot=0 as
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[ sin(ry—t) 0
r—t ’
jo(ry=t=4 1 t=0, (B2)
sinh(r\t)
\ T t>0.

The form factor(B1) is undefined fort>4me. For positive
values oft the integral over in Eq. (B1) converges only for
t<4me because only then at large the decay ofr?[1
—cosP(r)]«exp(~=2m_r) can compensate the rise of
jo(rV—t)=expt)/r.

Chiral limit. The pion-nucleon sigma termx(m,) as
function of m_ is given by

o (M) =m2F22R3 Al (M, Ry,

o 2 _
I(a)Ef dxX%(1+ax)%exp( —2ax) 3)

0 x*+(1+ax)%exp —2ax)

The zeroth order in the Taylor of the functidfa) around

a=0is
o dx X2
I(O):fo x4+1:ﬁ'

w

(B4)

The linear term in the Taylor expansion ofa) requires
careful treatment. Considea#0 and introduce an upper
limit D>Rg, in the space integral in EdB1). This simu-
lates the “realistic situation” of computing .,y in a finite

PHYSICAL REVIEW D69, 034003 (2004

dl(a) B
da

—ZaJD/Rsm dx »8(1+ax)exp(2ax)
0o [x*exp(2ax)+(1+ax)?]?

- ij7T dz Z(1+2z)exp2z)
o [Z'exp2z)+a*(1+2)%%

(B5)

where we substituted=ax in the second step and used
=m_Rs,. Taking the continuum limiD—< first, and only
thenm_—0 (apparently these limits do not commutee
arrive at

dl(a)a—0 wad - . 3 56
Ja . Z(1+z)exp —2z)= 7 (B6)
Thus we obtain
3 . .
I(a)=—=— —a+O(higher orders ira).  (B7)

22 2

Inserting the resul(B7) into Eq.(B3) and making use of the
relation (14) in order to eliminateRy, in favor of the pion
decay constanf . and nucleon axial coupling constagg
yields the result in Eq(47). The results in Eqs(48),(49)
follow in an analogous way. It is not possible to proceed with
the Taylor expansion df(a) to still higher orders of. This

is possibly due to the fact that the next contribution in the

volume (as it happens in many model calculations and inchiral expansion of(a) is <a®Ina, as it is in chiral pertur-

lattice QCD. Then

bation theory.
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