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Sigma-term form factor of the nucleon in the large-Nc limit
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The scalar isoscalar form factors(t) of the nucleon is calculated in the limit of a large number of colors in
the framework of the chiral quark-soliton model. The calculation is free of adjustable parameters and based on
an approximation justified by the small packing fraction of instantons in the QCD vacuum model, from which
the chiral quark-soliton model was derived. The result fors(t) reproduces all features of the form factor
observed in previous exact numerical calculations in the chiral quark-soliton model and in chiral perturbation
theory, and agrees well with the available phenomenological information. The Feynman-Hellmann theorem is
used to study the pion mass dependence of the nucleon mass and a good agreement with lattice QCD results
is observed. The use of the present method to extrapolate lattice data to the chiral limit is discussed.
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I. INTRODUCTION

The pion-nucleon sigma termspN is of fundamental im-
portance for understanding chiral symmetry breaking effe
in the nucleon@1,2#. It can be inferred from pion-nucleo
scattering data@3# and the value is found to bespN
.(50–70) MeV@4–9#. The pion-nucleon sigma term has
wide phenomenological impact in many fields. For examp
it is related to partial restoration of chiral symmetry in t
nuclear medium@10,11# and to central nuclear forces@12#. It
is an important ingredient in the mass decomposition of
nucleon@13# and plays an important role in the searches
the Higgs boson@14#, dark matter, and supersymmetric pa
ticles@15,16#. Valuable insight into thespN physics was pro-
vided from studies in chiral perturbation theory@17–22#, lat-
tice QCD @23–25#, and numerous chiral models, e.g., Re
@26–40#.

In this paper the scalar isoscalar nucleon form fac
s(t), which at zero momentum transfert yields spN , is
studied in the chiral quark-soliton model (xQSM) @41,42#.
The picture of baryons as chiral solitons of the pion field
justified in the limit of a large number of colorsNc @43#.
Despite the fact that in natureNc53 does not seem to b
large, thexQSM has proven to describe successfully num
ous properties of the nucleon@44–47# and to provide valu-
able insight. E.g., in this model the observation was mad
the so-calledD term in generalized parton distribution fun
tions @48#—a fundamental characteristic of the nucleon@49#
which, when known, e.g., will provide information about th
‘‘distribution of strong forces’’ in the nucleon@50#. Another
recent highlight made on the basis of the soliton picture w
the accurate prediction of the exoticQ1 baryon @51# for
which by now strong experimental indications have be
collected@52#.

The xQSM was derived from the instanton model of t
QCD vacuum @53,54# and incorporates chiral symmetr
breaking. The field theoretical character of the model play
crucial role in ensuring the theoretical consistency of
approach. BothspN and s(t) were already studied in th
xQSM in Refs.@27–29#, where the model expressions we
exactly evaluated using involved numerical methods. Inst
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the calculation ofs(t) presented here is based on an a
proximation which is consistently justified by argumen
from the instanton vacuum model.

The approximate method not only considerably simplifi
the calculation—allowing a lucid interpretation of the resu
and suggesting an appealing explanation whyspN is so
large. In addition it has methodical advantages over the e
calculations@27–29#. For in thexQSM s(t) is quadratically
UV divergent and as such strongly sensitive to the details
regularization. The virtue of the approximate method is t
it yields a regularization scheme independent result. Anot
advantage is that the theoretical accuracy of the resul
which in models often has to be concluded from the co
parison to phenomenology—is here known in advance
under theoretical control. To within this accuracy resu
from the exactxQSM calculations@27–29# are reproduced,
and a good agreement with phenomenological informat
and results from other approaches is observed without
adjustable parameters.

Another advantage is that the approximation allows us
analytically study the properties ofs(t) in the chiral limit—
which is a rare occasion in thexQSM. Finally, by exploring
the Feynman-Hellmann theorem@55#, the pion mass (mp)
dependence of the nucleon mass (MN) is studied. An exact
treatment of this issue in thexQSM would be numerically
highly involved. The results forMN(mp) compare well to
lattice QCD results. This observation could be used to insp
Ansätze for the chiral extrapolation of lattice data.

This paper is organized as follows. In Sec. II the for
factor s(t) is defined and briefly discussed. In Sec. III th
model is introduced. The form factor is computed in Sec.
and the numerical results are discussed in Sec. V. Sectio
is devoted to the study ofs(t) and the nucleon mass a
functions of the pion mass. Section VII contains the conc
sions. Technical details of the calculation can be found
Appendixes A and B.

II. SCALAR ISOSCALAR NUCLEON FORM FACTOR

The nucleon sigma-term form factors(t) is defined as the
form factor of the double commutator of the strong intera
©2004 The American Physical Society03-1
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tion Hamiltonian with two axial isovector charges@1#. Dis-
regarding a ‘‘double isospin violating term’’ proportional t
(mu2md)(c̄ucu2c̄dcd) and commonly presumed to b
negligible the form factor can be expressed as

s~ t !ū~p8!u~p!5m^N~p8!u@c̄u~0!cu~0!

1c̄d~0!cd~0!#uN~p!&, t5~p2p8!2,

~1!

where m5 1
2 (mu1md). In Eq. ~1! uN(p)& is the spin-

averaged state of the nucleon of momentump normalized as
^N(p8)uN(p)&52p0d (3)(p2p8), and u(p) is the nucleon
spinor with ū(p)u(p)52MN .

At zero-momentum transfer the form factor yields t
pion-nucleon sigma term, i.e.,

spN[s~0!5
m

2MN
^N~p!u@c̄u~0!cu~0!

1c̄d~0!cd~0!#uN~p!&. ~2!

The pion-nucleon sigma termspN is normalization scale in-
variant. The form factors(t) describes the elastic scatterin
off the nucleon due to the exchange of an isoscalar spin-
particle. It is not known experimentally except for its valu
at the ~unphysical! Cheng-Dashen pointt52mp

2 . A low-
energy theorem@3# relates the value ofs(t) at the so-called
Cheng-Dashen pointt52mp

2 to the ~isoscalar even! pion-
nucleon scattering amplitude. The analysis of pion-nucle
scattering data yields

s~2mp
2 !55

~6468! MeV ~1982! @4#

~88615! MeV ~1999! @6#

~7169! MeV ~1999!@ 7#

~7967! MeV ~2001! @8#.

~3!

The recent analyses tend to yield a larger value fors(2mp
2 )

which can be explained by the more recent and accurate
@9#. The differences(2mp

2 )2s(0) has been calculated from
a dispersion relation analysis@5#,

s~2mp
2 !2s~0!5~15.260.4! MeV. ~4!

In Ref. @21# a similar result was obtained from a calculatio
in the chiral perturbation theory. From Eqs.~3!,~4! one con-
cludes

spN.~50–70! MeV. ~5!

The large value ofspN has been and still is a puzzle@1,2#.
According to the ‘‘standard interpretation’’spN can be

related to the so-called strangeness contenty

[2^Nuc̄scsuN&/^Nu(c̄ucu1c̄dcd)uN& of the nucleon as (1
2y)spN5ŝ, whereŝ can be determined by means of chir
perturbation theory from baryon mass splittings,ŝ5(35
65) MeV @17,56#. The value in Eq.~5! then implies y
;(0.3–0.4) while one would expecty;0 on the grounds of
03400
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the Okubo–Zweig–Iizuka~OZI! rule. It is worthwhile men-
tioning that such a sizeable value ofy naturally follows from
a Goldstone-boson-pair mechanism@26#.

III. CHIRAL QUARK SOLITON MODEL „xQSM…

This section briefly introduces the notions required in t
following. More complete presentations of the model can
found in, e.g., Refs.@27,41,42#. The xQSM is based on the
effective chiral relativistic quantum field theory of quark
antiquarks, and Goldstone bosons defined by the parti
function @54,57,58#

Zeff5E Dc Dc̄ DU expS i E d4xc̄~ i ]”2MUg52m!c D ,

~6!

U5exp~ i tapa!,

Ug55exp~ ig5tapa!5
1

2
~U1U†!1

1

2
~U2U†!g5 .

In Eq. ~6! M is the dynamical quark mass, which is due
spontaneous breakdown of chiral symmetry and in gen
momentum dependent.U5exp(itapa) denotes the SU(2)
chiral pion field andm the current quark mass, which explic
itly breaks the chiral symmetry. In many applicationsm can
be set to zero, but for certain quantities it is convenient
even necessary to consider finitem. The effective theory~6!
contains the Wess-Zumino term and the four-derivat
Gasser-Leutwyler terms with correct coefficients@42#. It has
been derived from the instanton model of the QCD vacu
@53,54# and is valid at low energies below a scale set by
inverse of the average instanton size

rav
21'600 MeV. ~7!

In practical calculations it is convenient to take the mome
tum dependent quark mass constant, i.e.,M (p)→M (0)
5350 MeV. In this caserav

21 is to be understood as th
cutoff, at which quark momenta have to be cut off with
some appropriate regularization scheme.

It is important to remark that (Mrav)
2 is proportional to

the parametrically small instanton packing fraction, i.e., w
Rav denoting the average distance between instantons in
clidean space-time,

~Mrav!
2}S rav

Rav
D 4

!1. ~8!

Numerically rav/Rav;1/3. The parameterical smallness
this quantity played an important role in the derivation of t
effective theory~6! from the instanton model of the QCD
vacuum@41,53#.

ThexQSM is an application of the effective theory~6! to
the description of baryons@41,42#. The large-Nc limit allows
to solve the path integral over pion field configurations in E
~6! in the saddle-point approximation. In the leading order
3-2
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the large-Nc limit the pion field is static, and one can dete
mine the spectrum of the one-particle Hamiltonian of t
effective theory~6!,

Ĥun&5Enun&, Ĥ52 ig0gk]k1g0MUg51g0m. ~9!

The spectrum consists of an upper and a lower Dirac c
tinuum, distorted by the pion field as compared to contin
of the free Dirac-Hamiltonian,

Ĥ0un0&5En0
un0&, Ĥ052 ig0gk]k1g0M1g0m,

~10!

and of a discrete bound-state level of energyElev , if the pion
field is strong enough. By occupying the discrete level a
the states of the lower continuum each byNc quarks in an
antisymmetric color state, one obtains a state with un
baryon number. The soliton energyEsol is a functional of the
pion field,

Esol@U#5NcS Elev1 (
En,0

~En2En0
! D U

reg

. ~11!

Esol@U# is logarithmically divergent and has to be regula
ized appropriately, which is indicated in Eq.~11!. Minimiza-
tion of Esol@U# determines the self-consistent solitonic pi
field Uc . This procedure is performed for symmetry reaso
in the so-called hedgehogAnsatz,

pa~x!5er
aP~r !, U~x!5cosP~r !1 i taer

asinP~r !,
~12!

with the radial ~soliton profile! function P(r ) and r 5uxu,
er5x/r . The nucleon massMN is given by Esol@Uc#. The
momentum and the spin and isospin quantum numbers o
baryon are described by considering zero modes of the
ton. Corrections in the 1/Nc-expansion can be included b
considering time-dependent pion field fluctuations arou
the solitonic solution. ThexQSM provides a practical real
ization of the large-Nc picture of the nucleon@43#.

The self-consistent profile satisfiesPc(0)52p and de-
cays in the chiral limit as 1/r 2 at large r. For finite m it
exhibits a Yukawa tail}exp(2mpr)/r with the pion massmp

connected tom by the Gell-Mann–Oakes–Renner relatio
see below, Eq.~34!. An excellent approximation to the sel
consistent profile, which exhibits all those features~and is
sufficient for our purposes! is given by the analytica
‘‘arctan-profile,’’

P~r !522 arctanS Rsol
2

r 2
~11mpr !e2mpr D , Rsol5M 21.

~13!

The quantityRsol is referred to as the soliton size. It is relate
to the nucleon axial coupling constantgA51.25 as@42,59#
~note that the order of the limits cannot be inversed!

lim
r→`S lim

mp→0
r 2P~r ! D522Rsol

2 52
3

8p

gA

f p
2

. ~14!
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The xQSM allows us to evaluate without adjustable para
eters nucleon matrix elements of QCD quark bilinear ope
tors as

^N~p8!uc̄~0!Gc~0!uN~p!&

5cGMNNc (
n,occ

E d3x ei (p82p)xF̄n~x!GFn~x!U
reg

1•••,

~15!

whereG is some Dirac and flavor matrix,cG is a constant
depending onG and the spin and flavor quantum numbers
the nucleon stateuN&5uS3 ,T3&, and Fn(x)5^xun& are the
coordinate space wave functions of the single quark st
un& defined in Eq.~9!. The sum in Eq.~15! goes over occu-
pied levelsn ~i.e., n with En<Elev), and vacuum subtraction
is implied for En,Elev analog to Eq.~11!. The dots denote
terms subleading in the 1/Nc expansion~which can be in-
cluded but will not be considered in this work!. The model
expressions can contain UV divergences which have to
regularized as indicated in Eq.~15!.

If in QCD the quantity on the left-hand side of Eq.~15! is
normalization scale dependent, the model result refers
scale ofO(rav

21), see Eq.~7!. In the way sketched in Eq.~15!
a large variety of static nucleon properties like form facto
axial properties, etc., were computed~see Refs.@44,45# for
reviews!. In Ref. @46# the approach was generalized to no
local quark bilinear operators on the left-hand side of E
~15! which paved the way to the study of the quark a
antiquark distribution functions@46,47# and off-forward dis-
tribution functions@48#. The model results agree typically t
within ~10–30! % with experimental data or phenomenolog
cal information.

IV. s„t… IN THE xQSM

In this section first the model expression fors(t) is dis-
cussed and the consistency of the approach is demonstr
Next the UV behavior ofs(t) is studied and the question o
regularization is addressed. Thereby is defined and justi
the approximation in which thens(t) is evaluated in the
following Section V.

Expression and consistency.The pion-nucleon sigma term
spN was studied in the framework of thexQSM in Refs.
@27,28# and the scalar isoscalar form factors(t) in Ref. @29#.
In leading order of the large-Nc limit the model expression
for the form factors(t) reads@29# @in the SU~2! flavor sec-
tor#

s~ t !5mNcE d3x j 0~A2tuxu! (
n,occ

Fn* ~x!g0Fn~x!U
reg

,

~16!

where the Bessel functionj 0(z)5sinz/z. In the large-Nc
limit the nucleon massMN5O(Nc) while the nucleon mo-
mentaupu and up8u5O(Nc

0) such thatt52(p82p)2. There-
fore Eq.~16! is valid for utu!MN

2 . ~Interestingly, in the case
of electromagnetic form factors the model results agree w
3-3
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with data up toutu;1 GeV2 @44#.! Equation~16! shows that
s(t)5O(Nc) in agreement with results from large-Nc chiral
perturbation theory@22#.

In the xQSM one is in a position to derive the mod
expression forspN in three different ways:

spN5 lim
t→0

s~ t !, ~17!

spN5m
]MN~m!

]m
, ~18!

spN5mE
0

1

dx~eu1ed1eū1ed̄!~x!. ~19!

The first method~17! consists in continuing analytically th
form factors(t) to t50. The second method~18! uses the
Feynman-Hellmann theorem@55#. The third method~19!
uses the sum rule for the first moment of the flavor sing
twist-3 chirally odd distribution functionea(x) @60#.1 The
three methods consistently yield

spN5mNcE d3x (
n,occ

Fn* ~x!g0Fn~x!ureg. ~20!

The result in Eq.~20! immediately follows from the mode
expression~16! @recalling j 0(z)→1 for z→0]. Relation~18!
was used to numerically computespN in Ref. @27#, and ex-
plicitly demonstrated to yield the expression in Eq.~20! in
Ref. @62#. The sum rule~19! was shown to be satisfied in th
xQSM @and to yield Eq.~20! for spN] in Refs. @62,63#. The
fact thatspN can consistently be computed in thexQSM in
three different ways illustrates the theoretical consistency
the model.

The UV behavior ofs(t). In this paragraph the known
result, cf. Refs.@27–29#, will be rederived that the mode
expression fors(t) contains quadratic and logarithmic dive
gences, i.e., that it is of the form

s~ t !5a2~ t !S Lcut

M D
reg

2

1alog~ t !logS Lcut

M D
reg

1a0~ t !S Lcut

M D 0

,

~21!

where the coefficientsai(t) are UV-finite functions oft and
Lcut is an UV cutoff. A similar study was presented in Re
@62#, however, for the more involved case of the twist-3 d
tribution functionea(x) which is related tospN by means of
the sum rule~19!.

Let us separately consider the contributions from the d
crete level and the negative continuum

1Equation ~19! is correct in a formal mathematical sense@60#.
However, the sum rule~19! is saturated by ad function atx50 in
ea(x) which means that the relation~19! is practically useless to
extract any information onspN from possible measurements o
ea(x) in deeply inelastic scattering experiments, see Ref.@61# and
references therein.
03400
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s~ t !5s~ t ! lev1s~ t !cont,

s~ t ! lev5mNcE d3xj 0~A2tuxu!F lev* ~x!g0F lev~x!, ~22!

s~ t !cont5mNcE d3x j 0~A2tuxu! (
En,0

Fn* (x)g0Fn(x)U
reg

.

~23!

For the discrete level the eigenvalue problemĤF lev(x)
5ElevF lev(x) can exactly be solved numerically, see, e.
Ref. @46#, and withF lev(x) one obtainss(t) lev . The contri-
bution of the discrete level is always finite and for our pu
poses it is sufficient to note

s~ t ! lev5UV finite. ~24!

The exact evaluation of the continuum contribution in R
~23! is far more involved. For that one either can place t
soliton in a finite 3D box, discretize and make finite th
spectrum of the free Hamiltonian~10! by imposing boundary
conditions and diagonalize the Hamiltonian~9! in the basis
of the free Hamiltonian states~Kahana-Ripka method@64#!.
Alternatively one can rewrite the continuum contributio
~23! in terms of Green functions and evaluate those
means of phase shift methods~see, e.g., Ref.@65#!. Both
methods are numerically involved.

Here we will use an approximate method—referred to
the interpolation formula in Ref. @46#—which consists in
expanding the continuum contribution~23! in gradients of
theU field and retaining the leading order only. The interp
lation formula yields exact results in three limiting cas
u¹Uu!M , u¹Uu@M , andu logUu!1. Therefore one can ex
pect that it yields useful estimates also for the general cas
was observed that this method approximates exact calc
tions in the model with good accuracy@46,47#.

Let us rewrite the continuum contribution in Eq.~23! ~re-
calling the implicit vacuum subtraction! as

s~ t !cont

5mNcE
C

dv

2p i
SpF j 0~A2tux̂u!g0

1

v1 iĤ
2~Ĥ→Ĥ0!G

reg

,

~25!

where the contourC is defined as going along the realv axis
and closed in the infinity in the upper half of the complexv
plane. The original expression~23! is recovered by saturating
the functional trace with the complete set of eigenfunctio
of respectivelyĤ andĤ0 in Eqs.~9!,~10!,2 performing thev
integration, and passing to the coordinate space represe
tion. Expanding Eq.~25! in a series in gradients of theU
field,

2I.e., Sp@•••2(Ĥ→Ĥ0)#[(all n^nu•••un&2(all n0
^n0u•••un0&.
3-4
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s~ t !cont5 (
k50

`

s~ t !cont
(k) , ~26!

where the indexk means that¹U appearsk times in
s(t)cont

(k) , we obtain~see Appendix A!

s~ t !cont
(k) 5H a B~ t ! for k50,

zero fork51,

UV-finite for k>2,

~27!

with the constanta and the ‘‘form factor’’B(t) defined as

a5mE d4pE

~2p!4

8NcM

pE
21M2U

reg

, ~28!

B~ t !5E d3xj 0~A2tuxu!S 12
1

2
trFU~x! D . ~29!

The factor 8NcMm is included into the definition ofa for
later convenience. The Euclidean integral in the constana
contains quadratic and logarithmic divergences. Combin
the results in Eq.~24! and Eqs.~27!, ~29! we see that the
form factor s(t) has the UV behavior~21! @and thata2(t)
}alog(t)}B(t)].

Instanton motivated approximation.In nonrenormalizable
effective ~low energy! theories the regularization procedu
‘‘keeps the memory’’ of the cutoffLcut. In such effective
theories—for which Eq.~6! is an example—the cutoff has
physical meaning: It sets the scale below which the deg
of freedom of the effective theory may be considered as
propriate to describe the physical situation, and above wh
they may not be sufficient. In the effective theory~6! the
cutoff

Lcut5O~rav
21!. ~30!

Using Eq.~30! and the results of the previous paragraph
see thats(t) can be written as

s~ t !5aB~ t !•$11O~M2rav
2 !% ~31!

with a andB(t) as defined in Eqs.~28!,~29!.
Thus in Eq. ~21! the UV-finite contributions are para

metrically strongly suppressed with respect to the U
divergent terms by the instanton packing fraction due to
~8!. Since thexQSM was derived from the instanton vacuu
model, it is consistent to use this argument based on E
~8!,~30! in this context. Equation~31! defines the approxima
tion in which s(t) will finally be evaluated, after regulariz
ing the divergent constanta in Eq. ~28!.

Regularization.There are several methods to regular
the divergent constanta in Eq. ~28!. Popular methods often
used in exact model calculations are the Schwinger pro
time regularization~see, e.g., Ref.@44#! or the Pauli-Villars
subtraction method~see, e.g., Refs.@62,66#!. The result will
be sensitive to the chosen regularization method and, e
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cially for a power divergent quantity, to the precise value
the cutoff—of which only the order of magnitude is know
cf. Eq. ~30!.

However, the practical problem of how to regularize t
constanta in Eq. ~28! can be solved elegantly and in a reg
larization independent way. Since the quark vacuum cond
sate^c̄c&vac is given in the effective theory~6! by @54#

^c̄c&vac[^vacu@c̄u~0!cu~0!1c̄d~0!cd~0!#uvac&

5E d4pE

~2p!4

~28NcM !

pE
21M2 U

reg

, ~32!

the constanta in Eq. ~28! can be expressed as

a52m^c̄c&vac. ~33!

At first glance Eq.~33! is based on the mere observation th
the same divergent integral appears in two different mo
expressions. However, as will be discussed in the next
tion, the relation~33! is not accidental from a physical poin
of view ~and implies an interesting interpretation ofspN). In
the next step one can use the Gell-Mann–Oakes–Renne
lation ~with f p denoting the pion decay constant!

mp
2 f p

2 52m ^c̄c&vac, ~34!

which is not imposed here by hand but valid in the effect
theory ~6! @54#. Thanks to Eqs.~33!,~34! the practical prob-
lem of regularizings(t) is shifted to the problem of regular
izing ^c̄c&vac in Eq. ~32! or f p . The latter is given in the
effective theory~6! by the logarithmically UV-divergent ex-
pression@54#

f p
2 5E d4pE

~2p!4

4NcM
2

~pE
21M2!2U

reg

. ~35!

Since the precise value of the cutoff is not known but only
order of magnitude, see Eq.~7!, it is customary to adjust the
cutoff~s! in the corresponding regularization scheme su
that the experimental values of^c̄c&vac and f p in Eqs.
~32,35! are reproduced@44#. In this way free parameters~cut-
off, current quark mass, etc.! are fixed in the vacuum and
meson sector of the effective theory~6! @44#. In this sense the
xQSM—i.e., the baryon sector of the effective theory~6!—
yields parameter-free results.@In some calculations in the
xQSM the massM was understood as a ‘‘free paramete
and allowed to vary in the range 350<M<450 MeV
@28,29,44#. The sensitivity of the model results to thes
variations was typically within (10–30) %. Here we rely o
notions from the instanton vacuum model and conseque
take the valueM5350 MeV which follows from the instan-
ton phenomenology@53,54#.#

Thus our final ~regularized! result for the form factor
reads@with B(t) defined in Eq.~29!#

s~ t !5mp
2 f p

2 B~ t !•$11O~M2rav
2 !%, ~36!
3-5
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FIG. 1. ~a! The form factor
s(t) evaluated in thexQSM by
means of Eq.~36! ~solid line! and
its dipole fit ~42! as functions oft.
~b! The analytical continuation of
the form factors(t) to unphysical
t>0. The dot marks the value o
s(t) at the Cheng-Dashen pointt
52mp

2 . At and above the thresh
old t>4mp

2 the form factor is not
defined, see text.
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wheremp and f p denote the physical pion mass and dec
constant, respectively. It should be stressed that the re
~36! does not follow from the interpolation formula of Re
@46# ~which would require to add the UV-finite discrete lev
contribution, cf. Ref.@62#!. Instead Eq.~36! has to be con-
sidered as an approximate result fors(t) in the xQSM,
which is justified by the parametrical smallness of the inst
ton packing fraction.

In the following the parametrically smallO(M2rav
2 ) cor-

rections often will not be indicated.

V. DISCUSSION AND INTERPRETATION
OF THE RESULTS

Evaluating the final expression~36! for the form factor
s(t) with the soliton profile~13! for M5350 MeV, mp

5140 MeV, and f p593 MeV yields the result shown in
Figs. 1~a! and~b! ~see Appendix B for detailed expressions!.
It should be noted that the error due to using the profile~13!,
instead of the self-consistent profile which truly minimiz
the soliton energy~11!, is far smaller than the theoretica
accuracy in Eq.~36!.

Apart from the values ofs(t) at the Cheng-Dashen poin
t52mp

2 and at t50, and their differenceDs5s(2mp
2 )

2s(0), there is another phenomenologically interesti
quantity—namely the scalar mean square radius relate
the slope of the form factors(t) at t50 as

s~ t !5spNS 11
1

6
^r S

2& t1O~ t2! D . ~37!

We obtain the results

spN567.9 MeV, ~38!

s~2mp
2 !582.6 MeV, ~39!

Ds514.7 MeV, ~40!

^r S
2&51.00 fm2. ~41!
03400
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A useful parametrization of the form factor for negativet is
given by @with spN from Eq. ~38!#

s~ t !.
spN

~12t/MS
2!2

, MS
2.0.55 GeV2. ~42!

The dipole fit ~42! approximatess(t) to within 2% for utu
&0.8 GeV2, cf. Fig. 1~a!. Thuss(t) decreases with increas
ing utu more quickly than the electromagnetic form facto
where the corresponding dipole mass is aboutMem

2

;0.7 GeV2 in a comparablet region.
The form factors(t), Eq. ~36!, is not defined at and

above the thresholdt>4mp
2 . In the vicinity of the threshold

the form factor behaves as~see Appendix B!

s~ t !5a1 lnS 1

12
At

2mp

D 1a2 as t→4mp
2 ~ t,4mp

2 !,

~43!

wherea1 ,a2 are positive constants. Interestingly, a simil
divergent behavior ofs(t) for t→4mp

2 is also observed in
heavy baryon chiral perturbation theory@18–20#. There this
feature arises as a peculiarity of the nonrelativistic expans
and can be avoided by considering baryon chiral perturba
theory in the manifestly Lorentz invariant form@21#. It is not
clear whether in thexQSM this unphysical feature could als
be cured—possibly by a more careful analytical continuat
of s(t) to t.0, e.g., by making use of~subtracted! disper-
sion relations.

Accuracy of the approximation.Before discussing the re
sults let us estimate the size of some of the contributi
neglected in Eq.~36!. The contribution of the discrete leve
in Eq. ~22! is (spN)lev512 MeV @62# ~cf. next paragraph!.
The contribution to the continuum part ofspN from the sec-
ond order of the gradient expansion is (spN)cont

(2) .26 MeV
~cf. Appendix A!. These are corrections ofO(15%) to Eq.
~38!, i.e., smaller than the theoretical accuracy of the a
proximation~36! which is O(M2rav

2 )5O(30%). This is an
3-6
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SIGMA-TERM FORM FACTOR OF THE NUCLEON IN . . . PHYSICAL REVIEW D69, 034003 ~2004!
indication ~and no more! that the approximation works. It
theoretical justification is anyway unquestioned due to
~8!.

Comparison to previous calculations in thexQSM. In
Refs. @27,28# spN was studied in SU~2! in leading order of
the large-Nc expansion. In Ref.@29# the form factor was
studied in the SU~3! version of the model and including 1/Nc

corrections. In Refs.@27–29# the proper time regularization
was used. Our result~38! for spN agrees with the number
quoted in Refs.@27–29# to within 30%.

In Ref. @29# it also was observed thats(t) is not defined
for t>4mp

2 . In the region 0,t,2mp
2 our result for the dif-

ferences(t)2s(0) agrees with the result of Ref.@29# to
within (10–20) %. In the regiont,0 the agreement of the
rescaled form factor, i.e.,s(t)/s(0), is even more impres-
sive ~a few percent!. It is not surprising to observe the ap
proximation to work differently in differentt regions. The
approximation~36! indicates the limitations of the numerica
~finite box! method used in Ref.@29#. From Eqs.~B1!,~B2! in
Appendix B it is clear that integrals~in coordinate space!
converge more and more slowly ast approachest54mp

2

~from below!. In the finite box method, however, it is nece
sary that integrals converge quickly in order to be in t
continuum~box size→`) limit. Therefore in Ref.@29# the
regiont.2mp

2 could not be explored and quantitative obs
vations of the kind~43! were not possible.

In Ref. @62# the twist-3 distribution functionea(x)
and—by exploring the sum rule~19!—alsospN were com-
puted in thexQSM by means of the interpolation formula o
Ref. @46#. To remind, the interpolation formula consists
estimating the continuum contribution essentially in the sa
way we did here, but to add also the exactly evaluated
crete level contribution, which is (spN)lev512 MeV. The
total resultspN580 MeV of Ref.@62# agrees with the resul
~38! obtained here to within 15%.

To summarize, the instanton-motivated approximation
s(t), Eq.~36!, yields results in agreement with earlier mod
calculations to within the expected accuracy.

Comparison to experimental information.The result
s(2mp

2 )583 MeV in Eq. ~39! agrees well with the more
recently extracted values ofs(2mp

2 )5(80–90) MeV@6–9#.
The result fors(t)2spN in the region (22mp

2 ),t,4mp
2 ,

cf. Fig. 1~b!, agrees with the result obtained from the disp
sion relation analysis with chiral constraints of Ref.@5# to
within ~2–5! %. This can be seen by comparing the diffe
ence Ds in Eqs. ~4!,~40! and the slope ofs(t) at t50,
namely s8(0)}spN^r S

2&572 MeV fm2 of Ref. @5# vs
68 MeV fm2 obtained here. The agreement with phenome
logical information can be considered as satisfactory.

Comparison to other approaches.Our result is consisten
with the values forspN obtained from lattice QCD result
@23–25# ~see also Sec. VI!. In Table I we compare our resu
also to calculations performed in chiral perturbation the
@18,20,21#, the linear sigma model@30#, Skyrme model
@31,32#, color-dielectric model @33#, cloudy bag model
@34,35#, Nambu–Jona-Lasinio model@36,37#, perturbative
chiral quark model@38#, a relativistic dynamical model base
on effective hadronic (N, D, p, r, ands) degrees of free-
03400
.
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dom @40#. Also the results of the data analyses and from
xQSM calculations@27,29# are included.

In several models it was observed that a sizable—if
dominant—contribution tospN is due to the pion cloud
~‘‘quark sea’’! as compared to the constituent quark co
~‘‘valence quarks’’! @33–35,38#. In the xQSM the discrete
level contribution corresponds to the quark core and the c
tinuum contribution to the pion cloud.3 Here we obtain an
extreme picture, wherespN is purely due to the pion cloud
Corrections to this picture are suppressed by the instan
packing fraction~and are practically of order 30%!.

Skyrmion and nonrelativistic limit.It is possible to re-
cover from expressions of thexQSM the results of the non
relativistic quark model and the Skyrme model by taki
appropriate~nonphysical! limits @67#.

The ‘‘Skyrmion limit’’ consists in takingRsol→`. Since
for the soliton solutionRsol.M 21 @42#, the limit is to be
understood as evaluating model quantities with, e.g., the
file in Eq. ~13! which allows us to varyRsol @67#. In this limit
the energy of the discrete levelElev→(2M ) @42#, such that
this contribution is enclosed in the contour of thev integral
in Eq. ~25!. With increasingRsol the contributions (spN)cont

(k)

in the series~26! behave as (spN)cont
(k) }Rsol

32k . For (spN)cont
(0)

and (spN)cont
(2) this can be seen directly from the expressio

in the Appendix. For arbitraryk one arrives at this conclusio
using general scaling arguments. Thus (spN)cont

(0) dominates
again—this time, however, justified by the unphysicalRsol
→` limit. The expression forspN obtained hereformally
coincides with the expressions in Refs.@31,32#. It should be
noted that what is an exact result in the Skyrme mode
here merely an approximation—though a well justified o
thanks to arguments from the instanton vacuum model.
coincidence of the expressions is purely formal since
Skyrmion is a topological soliton. E.g., in Ref.@32# a vector-
meson model was used to determine theU field.

In the opposite limit,Rsol→0, one recovers results from
the nonrelativistic constituent quark model~formulated for
arbitraryNc @68#!. TakingRsol→0 in the expression~16! one
obtains

s~ t !5MNGE~ t !, ~44!

whereGE(t) @normalized toGE(0)51] denotes the isosca
lar electric form factor—taken also in the nonrelativist
limit. This result follows from generalizing the discussion
Ref. @62# to the case of the form factors(t). That Eq.~44! is
the correct nonrelativistic relation betweens(t)
}^N8uc̄cuN& andGE(t)}^N8uc†cuN& follows from consid-
ering that in this limit the nucleon wave function has n

3This is to be understood in a loose sense in the ‘‘quark mo
language.’’ Strictly speaking there is no one-to-one corresponde
in the xQSM between the discrete level and continuum contrib
tions on the one hand and the notions of ‘‘valence’’ and ‘‘s
quarks’’ on the other hand. The latter are well defined, e.g., in
context of parton distribution functions. The point is that both d
crete level and continuum contribute each to valence and sea q
distributions@46,47#.
3-7
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TABLE I. Comparison of the results forspN , s(2mp
2 ), Ds[s(2mp

2 )2spN , and^r S
2& from data analy-

ses and theoretical approaches. The list is far from complete, only some of the more recent results are
For reviews on early approaches see Ref.@1#.

spN /MeV s(2mp
2 )/MeV Ds /MeV ^r S

2&1/2/fm

Data analyses

Koch ~1982! @4# 6468
Gasseret al. ~1991! @5# 4568 6068 15.260.4 ;1.3
Kaufmann and Hite~1999! @6# 88615
Olsson~2000! @7# 7169
Pavanet al. ~2002! @8# 7967

Theoretical approaches

Conventional heavy baryonxPT @20# 461
Manifestly Lorentz invariantxPT @21# 14

Lattice QCD, Donget al. ~1995! @23# 49.762.6 6.660.6 0.7260.09
Lattice QCD, Leinweberet al. ~2000! @24# 45–55
Lattice QCD, Leinweberet al. ~2003! @25# 37213

135–73215
115

SU~2! xQSM to LO Nc @27# 54
SU~3! xQSM to NLO Nc @29# 41 59 18 1.2
Linear sigma model@30# 86–89
SU~2! Skyrmion @31# 49
SU~3! Skyrmion @32# 60
Chiral color dielectric soliton@33# 37.8 1.1
Cloudy bag model@34# (37–47)69
Nambu–Jona-Lasinio@36# 50
Confined Nambu–Jona-Lasinio@37# 60
Perturbative chiral quark model@38# 4565
Effective model of hadrons@40# 74

This work ~accuracy;30%) 67.9 82.6 14.7 1.00
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lower ~antiquark! component such thatc†c5c̄c practically
holds, and that the current quark massm has to be under-
stood as a constituent quark mass equal toMN/3. The non-
relativistic relation spN5MN strongly overestimates th
phenomenological value ofspN in Eq. ~5!. Still, this result is
theoretically consistent and, e.g., correctly implies a van
ing strangeness contenty in the nucleon@61#.

Interpretation ofspN . In the effective theory~6! the pion-
nucleon sigma term and the quark vacuum condensate
proportional to each other

spN}2m^c̄c&vac, ~45!

up to parametrically smallO(M2rav
2 ) corrections. From a

physical point of view this observation based on Eq.~33! is
not surprising sincêc̄c&vac is the sigma term of the vacuum
~per unit volume, up to the explicit factor ofm). Thus in the
xQSM the picture emerges thatspN ~measure of chiral sym
metry breaking in the nucleon! is directly proportional to
03400
-

re

^c̄c&vac ~measure of spontaneous chiral symmetry breaki!
and m ~measure of explicit chiral symmetry breaking!. The
relation ~45! is also known from the Skyrme model@31,69#
which is not surprising, see the remarks in the previous pa
graph.

The proportionality factor in Eq.~45!, the functionB(t) at
t50 as defined in Eq.~29!, has the dimension of volume
Following the temptation to define ‘‘an effective volume
the nucleon’’ asVeff[B(0), the relation betweenspN and

^c̄c&vac can be written as

spN52m^c̄c&vacVeff , Veff[B~0!. ~46!

Numerically we find an effective volume which—taking th
nucleon to be a rigid sphere—would correspond to an eff
tive nucleon radius of 0.9 fm~for mp5140 MeV). This
value should not be taken too seriously. But it yields t
3-8
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SIGMA-TERM FORM FACTOR OF THE NUCLEON IN . . . PHYSICAL REVIEW D69, 034003 ~2004!
correct order of magnitude for the phenomenological size
the nucleon.Veff has a well defined chiral limit, see below
The concept of such an effective volume is useful, e.g., in
context of the ‘‘partial restoration of chiral symmetry
nuclear matter.’’ TheVeff[spN /(mp

2 f p
2 ) in Eq. ~46! is just

the inverse of the chiral nucleon densityrN
x introduced in

Ref. @10#.
Thus the value ofspN is large because (2m^c̄c&vac) is

sizableand because the nucleon is a large extended obj
Corrections to this picture are suppressed by the insta
packing fraction.

The strangeness content of the nucleon.Our resultspN
568 MeV implies a strangeness content in the nucleon
y;0.4, cf. Sec. II, as it is also inferred from the more rece
data analyses@6–9#. In view of such a large value for th
strangeness content some authors even suggest to reco
the ‘‘standard interpretation’’ relatingspN andy @8#. ~How-
ever, as argued in Ref.@13#—despite the large strangene
content—thetotal contribution of the strange degree of fre
dom to the nucleon mass is small.!

The calculation presented in this work definite
confirms—within its accuracy—thatspN is large, and sug-
gests an ‘‘explanation’’ why~‘‘because the nucleon is a larg
extended object,’’ see previous paragraph!. Being a calcula-
tion in a SU~2! model, however, it unfortunately cannot pr
vide any insights into the puzzle why the strangeness con
y appears to be so large. In this context it is worthwh
mentioning that in Ref.@29#, wherespN was studied in the
SU~3! version of the xQSM and the matrix elemen

^Nuc̄scsuN& directly evaluated, the strangeness content w
determined to bey;0.3.

The numerical result of Ref.@29# does not provide any
physical intuition why this value is so large. It would b
interesting to see whether the present approach could be
tended to the SU~3! sector and provide any insight in th
respect. Such a study, however, goes beyond the scope o
work.

VI. PION MASS DEPENDENCE OF spN AND M N

The result in Eq.~36! allows us to study the form facto
s(t) as a function ofmp , i.e., s(t,mp). Of particular inter-
est is hereby the behavior in the chiral limit which will b
investigated first. Maybe more interesting from a pheno
enological point of view is themp dependence of the
nucleon massMN which can be deduced fromspN(mp) by
means of the Feynman-Hellmann theorem. The underst
ing of the correlation betweenMN and mp is presently of
importance for extrapolations of lattice data—which cor
spond to pion masses of typicallymp*500 MeV—to the
physical value of the pion mass.

Leading nonanalytic contributions.Expanding the resul
in Eq. ~36! around the pointmp50 we obtain forspN(mp),
Ds(mp)[s(2mp

2 ,mp)2spN(mp) and the derivative
s8(0,mp) the following results:

spN~mp!5a0mp
2 2

27

64p

gA
2

f p
2

mp
3 1•••, ~47!
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Ds~mp!5
9

64p

gA
2

f p
2

mp
3 1•••, ~48!

s8~0,mp!5
9

256p

gA
2

f p
2

mp1•••, ~49!

where the constanta05(3A6pgA
3/2)/(32f p) and the dots de-

note higher-order terms in the limitmp→0 ~see Appendix
B!. Sincemp

2 }m, odd powers ofmp in Eqs. ~47!,~48!,~49!
are the, respectively, leading nonanalytic contributions in
current quark massm. Leading nonanalytic contributions ar
of particular interest, because they are model independ
The leading nonanalytic contributions in Eqs.~47!,~48! are
exactly three times larger than those obtained in chiral p
turbation theory. The discrepancy is explained by recall
that here we work in the large-Nc limit and that the limits
Nc→` andmp→0 do not commute@17,70#. In the large-Nc

countingMD2MN5O(Nc
21) while mp5O(Nc

0) such that it
is appropriate to consider first the large-Nc limit, which is
done here~though MD2MN.mp in nature would sugges
the opposite!. MN(mp) has a branching point at (mq})mp

2

5(MD2MN)2 which in the strict large-Nc limit contributes
to the nonanalytic behavior ofMN(mp) at mp

2 50. As a con-
sequence theD contributes as intermediate state in chir
loops to leading nonanalytic contributions, and its contrib
tion is twice ~for isoscalar quantities! that of intermediate
nucleon states in the strict large-Nc limit @71#.

The result in Eq.~49! means that the scalar isoscal
mean-square radius diverges in the chiral limit

^r S
2&5S 27gA

32p D 1/2 1

mp f p
•$11O~regular terms!%. ~50!

Another example of a square radius which diverges~how-
ever, as lnmp) in the chiral limit is the electric isovecto
charge mean-square radius.~Also this feature is observed in
the xQSM @44#.!

Interestingly, the correct leading nonanalytic contributio
follow here from the structure of the soliton, and not fro
chiral loops as in chiral perturbation theory. In Ref.@71# it
was shown that the leading nonanalytic contribution tospN
in Eq. ~47! is a general result in a large class of chiral solit
models of the nucleon. This result is reproduced here in
xQSM because the analytic profile~13! correctly describes
the long-distance behavior of the chiral pion field@71#.

Full dependence on mp . SincespN(mp) vanishes in the
chiral limit asmp

2 we consider the ratiospN(mp)/mp
2 . Fig-

ure 2~a! showsspN(mp)/mp
2 as function ofmp

2 . It is pref-
erable to plotmp

2 on thex axis since the chiral limit corre-
sponds to current quark massm}mp

2 →0. The solid line
shows the full result and the dashed line shows the expan
of spN(mp)/mp

2 in the model up to the leading nonanalyt
contribution, Eq.~47!. Clearly, only for rather small pion
massesmp!140 MeV the full result forspN(mp)/mp

2 is
reasonably approximated by its chiral expansion up to
leading nonanalytic contribution in Eq.~47!.
3-9
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FIG. 2. ~a! The ratiospN(mp)/mp
2 as function ofmp

2 ~with mp in units of the physical pion mass andspN(mp) in units of its physical
~model! valuespN568 MeV, i.e., the marked point corresponds to the physical situation!. The solid line is the full model result, the dashe
line is the chiral expansion in the model up to the leading nonanalytic contribution, cf. Eq.~47!. ~b! MN(mp) as function ofmp

2 ~in units of
the physical pion mass!. Solid line is the full result, Eq.~52!. Dashed line is the~large-Nc) chiral expansion ofMN(mp) up to the leading
nonanalytic contribution, i.e., Eq.~47! integrated by means of Eq.~51!.
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Figure 2 simultaneously shows the ‘‘effective volume’’
the nucleonVeff(mp) as defined in Eq.~46! in units of its
‘‘physical value’’ ~corresponding to about 3 fm3). In the chi-
ral limit Veff(mp) grows by more than 50% compared to
physical value. But it remains finite which means that t
quantity is indeed a useful measure of the ‘‘nucleon size’
the chiral limit—in contrast to, e.g., the scalar mean-squ
radius^r S

2&, cf. Eq. ~50!.
Nucleon mass as function of mp . The Feynman-Hellmann

theorem ~18!, reformulated by means of the Gell-Mann
Oakes–Renner relation in Eq.~34! as

spN~mp!5mp
2 ]MN~mp!

]mp
2

, ~51!

provides a means to study the nucleon mass as functio
mp ,

MN~mp!5MN~0!1E
0

mp
2

dm2
spN~m!

m2
, ~52!

whereMN(0) is an integration constant to be identified wi
the value of the nucleon mass in the chiral limit.

For the amount the nucleon mass is shifted in the ch
limit with respect to its physical value we obtain from E
~52! the result

MN~140 MeV!2MN~0!5E
0

mp
2

dm2
spN~m!

m2 U
mp5140 MeV

580 MeV ~53!

modulo corrections which are parametrically small in t
instanton packing fraction. Within this accuracy the mass
03400
s

e

of

l

f

the nucleon in the chiral limit isMN(0)5860 MeV ~taking
the physical mass as 940 MeV!, which is in the range of the
values considered in chiral perturbation theory. Since
work here in the large-Nc limit one obtains the same resu
for the mass shift of theD in the ~large-Nc) chiral limit.

Fixing the integration constantMN(0) in Eq. ~52! to 860
MeV we obtain forMN(mp) the result shown in Fig. 2~b!,
where the solid line shows the full result from Eq.~52! and
the dashed line shows the chiral expansion ofMN(mp) up to
the leading nonanalytic contribution, Eqs.~47!,~52!. Simi-
larly to the case ofspN(mp

2 ) the chiral expansion up to th
leading nonanalytic contribution reasonably approxima
the full result forMN(mp) only for mp below the physical
pion mass.

Several comments are in order. First, in thexQSM the
nucleon mass is given by the minimum of the soliton ene
~11! with respect to variations of the chiral fieldU. The ac-
curate~and numerically involved! procedure to study theex-
act dependence ofMN on the pion massmp in the xQSM
would consist in considering the soliton energy~11! as a
function of the current quark massm in Eqs. ~9!,~10! and
deducing the respective value of the pion mass from
Gell-Mann–Oakes–Renner relation~34!, or the Yukawa-like
decay of the self-consistent soliton profile}exp(2mpr)/r at
larger. Here, however, we can be confident to describe c
rectly thevariation of MN with mp to within the accuracy of
spN in Eq. ~36!.

Next, since Eq.~52! can be used to describe merely th
variation ofMN with mp it is clear that we are free to choos
the integration constantMN(0)5860 MeV and that there
would be no point in taking the precise model value f
MN(0) which, by the way, would have the drawback of i
troducing a regularization scheme dependence into the re
It should be noted that in thexQSM the baryon masses ten
to be overestimated by about 20% due to spurious contr
3-10



i-

SIGMA-TERM FORM FACTOR OF THE NUCLEON IN . . . PHYSICAL REVIEW D69, 034003 ~2004!
FIG. 3. The nucleon massMN

as a function ofmp
2 according to

Eq. ~52! with MN(0)5860 MeV
in comparison to~a! lattice QCD
results from Ref.@73#, and ~b!
from Ref. @74#. ~The thick dashed
line is actually the fit of Ref.@24#
to the lattice results@74#.! The
meaning of the thin dotted line is
explained in the text. In both fig-
ures the arrow denotes the phys
cal point.
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tions of the center of mass motion of the soliton@72#.
Finally, one has to consider that the description

MN(mp
2 ) by means of Eq.~52! can be considered as we

justified formp
2 rav

2 !1. This relation is analog to Eq.~8! and
means that only light pions—light with respect to the sc
rav

21—make sense as effective degrees of freedom in the l
energy theory~6!.

Though, of course, it is not their actual goal, lattice QC
simulations allow us to measureMN(mp). The result for
MN(mp) from Eq.~52! with MN(0)5860 MeV is compared
to results from lattice QCD simulations from Refs.@73,74# in
Figs. 3~a! and ~b!. @More precisely, what is plotted in Fig
3~b! as a thick dashed line is the parametrization of the
tice data@74# reported in Ref.@25#.#

Keeping in mind the above-mentioned reservations
observe in Fig. 3 a good agreement with the results for t
nucleon mass from lattice QCD simulations reported in Re
@73,74#. A similarly good agreement is observed with th
results reported by other lattice groups@75,76#.

Chiral extrapolation of lattice-QCD results.Eventually
one is interested in the chiral extrapolation of lattice d
from the currently available region 500 MeV&mp

&several GeV to the physical value of the pion mass. T
lattice data onMN(mp) are usually fitted toAnsätze of the
kind MN(mp)5a1bmp

2 or MN(mp)5a1bmp
2 1cmp

3 in-
spired by the chiral expansion of the nucleon mass, o
observing that bothAnsätze are equally acceptable@76#.
However, the approximation ofMN(mp) by its chiral expan-
sion up to the leading nonanalytic termO(mp

3 ) makes sense
only at small values ofmp below the physical pion mass—a
was emphasized in Ref.@24# @and can also be seen here
Fig. 2~b!#.

An interesting extrapolation method was introduced
Ref. @77# where it was suggested to regularize chiral pi
loops ~which simulate the pion cloud effect! by introducing
appropriate regulators~i.e., form factors which simulate th
extended structure of the nucleon!. This approach not only
incorporates the correct chiral behavior, but also reprodu
results of the heavy quark effective theory in the limitm
}mp

2 →`. This gives a certain legitimation that also the i
termediate mp region—as explored in lattice QCD
calculations—is reasonably described in this approach.
model dependence of this approach was studied in R
@24,25# by using different regulators. The thick dashed cur
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in Fig. 3~b! is the fit of Ref.@25# to the lattice data@74# in the
range 500 MeV&mp&1 GeV. ~The thickness of the curve
is comparable to the statistical error of the very accur
lattice data of Ref.@74#.! The extrapolation from this region
to the physical pion mass yields—within the statistical ac
racy of the lattice data and depending on the regulato
values for the nucleon mass which cover the reg
(7822122

1122
•••9482216

180 ) MeV. This demonstrates the sensitiv
ity to details of the extrapolation of even very accurate latt
data.

The approach of Refs.@24,25,77# basically corresponds to
chiral perturbation theory in different regularizatio
schemes. From the point of view of field theory, however
is unsatisfactory to observe a strong scheme depend
@78#. Considering the complexity of the problem it is impo
tant to have further~model independent! constraints. Re-
cently it was reported that chiral perturbation theory is a
to describe reliablyMN(mp) up to mp,600 MeV using re-
fined regularization techniques@78#. Presently most of the
lattice data are beyond that limit, however, a first match
of chiral perturbation theory and lattice results seems to
possible@78#.

The results reported in this work also could provi
useful—though certainly not model independent—insig
into this issue. Indeed, by reasonably fixing the integrat
constantMN(0), anagreement with lattice data to within th
accuracy of the approach is obtained, cf. Figs. 3~a! and ~b!.
This observation suggests that it would be worthwhile
tempting to fit lattice data with anAnsatzlike, e.g.,

MN~mp!5MN~0!fit1E
0

mp
2 dm2

m2
spN~m,Rsol

fit !. ~54!

The Ansatz~54! corresponds to Eq.~52! whereMN(0) and
the soliton sizeRsol @cf. Eq. ~13!# are allowed to be free
parameters,MN(0)fit andRsol

fit , to be fitted to lattice data. The
Ansatz~54! is of more general character: It is not only in
spired by thexQSM ~and the Skyrme model, cf. previou
Sec. V! but actually is based on the largeNc description of
the nucleon as a chiral soliton of the pion field@43,59#.

The ansatz~54! means that the pion cloud effect—whic
is responsible for the growth of the nucleon mass with
creasingmp—is modeled by the structure of the soliton. Th
is conceptually an independentAnsatzto consider pion mass
3-11
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effects than the method of Refs.@24,25,77#, and it has, more-
over, the advantage of being regularization scheme inde
dent.

In order to illustrate that theAnsatz~54! is reasonable
note thatMN(0)fit5780 MeV andRsol

fit 50.93Rsol fit the lat-
tice data@74# within their statistical accuracy. TheAnsatz
~54! with these parameters—shown in Fig. 3~b! as the thin
dotted line in comparison to the fit obtained in Ref.@25#—
yields for the physical nucleon mass about 850 MeV wh
is in the range of the values reported in Ref.@25#. A careful
study whether this is thebestfit and an estimate of its statis
tical and systematic errors both go beyond the scope of
work. The main systematic error in theAnsatz~54! is due to
the treatment of theD as a mass generated state to
nucleon in the large-Nc limit and could be estimated follow
ing Ref. @71#.

VII. SUMMARY AND CONCLUSIONS

The sigma-term form factors(t) of the nucleon was stud
ied in the limit of a large number of colors in the framewo
of the chiral quark-soliton model (xQSM). The consistency
of this field theoretical approach is illustrated by the fact t
the pion-nucleon sigma termspN can consistently be com
puted in thexQSM in three different ways. Apart from con
tinuing analytically the form factor tot50 one also can
make use of the Feynman-Hellmann theorem@55# and the
sum rule for the twist-3 distribution functionea(x) @60#.

The model expression fors(t) was evaluated in an ap
proximation justified by arguments from the instanton mo
of the QCD vacuum from which thexQSM was derived. The
approximation is therefore theoretically well controlled a
justified. A virtue of the approximation is that it allows us
regularizes(t), which is quadratically UV divergent in the
xQSM, in a regularization scheme independent way. T
theoretical accuracy of the results is governed by the sm
ness of the parameter characterizing the diluteness of
instanton medium and is practically ofO(30%). Results
from previous exact calculations in thexQSM are repro-
duced to within this accuracy. There are no adjustable par
eters in the approach.

For the form factor at the Cheng-Dashen point the va
s(2mp

2 )583 MeV is found—in good agreement with mo
recent analyses of pion-nucleon scattering data@6–9#. In the
region22mp

2 ,t,4mp
2 the result for the form factor agree

to within a few percent with the shape fors(t) obtained in
Ref. @5# on the basis of a dispersion relation analysis.
particulars(2mp

2 )2s(0)514.7 MeV is obtained which is
close to the value 15.2 MeV of Ref.@5#. Finally, for the
pion-nucleon sigma term the valuespN568 MeV is found.

An advantage of the present approximate result fors(t) is
its simple structure which allows us, e.g., to study the fo
factor in the chiral limit and to derive the leading nonanaly
~in the current quark mass! contributions in the model. It was
shown that the expressions from thexQSM contain the cor-
rect leading nonanalytic contributions in the large-Nc limit
@71#.

The results presented in this work fully confirm the o
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servation made in other chiral models that the dominant c
tribution to spN is due to the pion cloud. Indeed, here th
extreme situation emerges thatspN is solely due to the pion
cloud—modulo small corrections suppressed by the ins
ton packing fraction. Moreover, it is found thatspN is pro-
portional to the quark vacuum condensate, i.e., the order
rameter characterizing spontaneous chiral symme
breaking, and to the current quark mass, i.e., the param
characterizing explicit chiral symmetry breaking—a relati
previously known only from the Skyrme model. The propo
tionality factor can be interpreted as an effective volume
the nucleon, which yields the physically appealing expla
tion that spN is so sizeable because the nucleon is a la
extended object.

The large value ofspN implies according to the standar
interpretation a surprisingly sizeable strangeness conten

the nucleon of abouty[2^Nuc̄scsuN&/^Nuc̄ucu1c̄dcduN&
;0.4. The SU~2! calculation presented here unfortunate
cannot shed any light on this puzzle. Calculations in
SU~3! version of thexQSM, however, naturally accommo
date a large strangeness content@29#. Worth mentioning in
this context is the conclusion@13# that despite the large valu
of y the total contribution of strange quarks to the nucle
mass is small.

The dependence of the nucleon massMN on the pion
mass was obtained fromspN(mp) by exploring the
Feynman-Hellmann theorem. In the chiral limit the nucle
mass was found to be reduced by 80 MeV with respect to
physical value. This means that the mass of the nucleo
the chiral limit is about 860 MeV which is in the range of th
values considered in chiral perturbation theory. To within t
accuracy of the approach the functional dependence of
nucleon mass on the pion mass agrees with lattice QCD
sults up to the largest available lattice values ofmp . This
observation can be used to inspireAnsätze for the chiral ex-
trapolation of lattice QCD results.

Despite the considerable progress of the rigorous
proaches to QCD—lattice QCD and the effective-field theo
method of chiral perturbation theory—the description of t
pion-nucleon sigma term still is a demanding issue. The
rect calculation ofspN on the lattice meets the problem th
the corresponding operator is not renormalization scale
variant @23#. This complication is avoided by the method
determining spN from the pion mass dependence of t
nucleon mass@73–76#. In either case, however, the conce
tual problem appears of how to extrapolate lattice data fr
the presently availablemp*500 MeV down to the physica
value of the pion mass. A model-independent guideline c
in principle, be delivered by the chiral perturbation theo
where, however, the physical value ofspN cannot directly be
computed since it serves to absorb counter terms an
renormalized anew in each order of the chiral expansion

Recently a first promising matching of chiral perturbati
theory to the lowest presently available pion masses in lat
QCD was reported@78#. However, it will take some time to
demonstrate and establish the convergence of the chira
pansion up to values ofmp;500 MeV and higher. Until
then less rigorous but phenomenologically and theoretic
3-12
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well motivated approaches may have a chance to serv
helpful guidelines for the chiral extrapolation of lattice da
One such approach, suggested in Ref.@77#, consists in ex-
ploring physically motivated regularization technics to sim
late pion cloud effects. In order to investigate the mo
dependence it would be desirable to consider also other
ceptually different approaches.

The observations made in this work inspire an alternat
regularization scheme independent, extrapolationAnsatzin
which the pion cloud is modelled on the basis of the soli
picture of the nucleon. In view of the success of this pictu
in describing baryon properties suchAnsätze appear to be
promising. To provide a theoretically well controlled e
trapolationAnsatzit will, however, be necessary to introduc
systematically 1/Nc corrections which is subject to curren
investigations.

It would be interesting to study also other observables
the nucleon in this way, using arguments from the instan
vacuum model—which not only largely simplifies the calc
e

er
e

r
ea
-

03400
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lations but is crucial, e.g., to allow the derivation of leadi
nonanalytic contributions in thexQSM. However, it is ques-
tionable whether hereby one could obtain also aphenomeno-
logically satisfactory description of observables other th
quadratically UV divergent, and the only observable of su
kind as far as the author is aware of is the scalar form fac
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APPENDIX A: GRADIENT EXPANSION

By using 1/(v1 iH )5(v2 iH )/(v21H2) and Ĥ25p̂2

1M21 iM gk(¹kUg5)( x̂) in Eq. ~25! we arrive at the series
~26! with the s(t)cont

(k) given by
s~ t !cont
(k) 5mNcE

C

dv

2p i
SpF j 0~A2tux̂u!g0~v2 iĤ !

1

v21p̂21M2 S 2 iM gk~¹kUg5!~ x̂!
1

v21p̂21M2D k

2~Ĥ→Ĥ0!G
reg

.

~A1!
for
on

m-
In order to evaluate the zeroth-order contributions(t)cont
(0)

we saturate the functional trace by the complete set of eig
functions of the free momentum operator, i.e., Sp@•••#
[*@d3p/(2p)3#^putr•••up& where tr denotes the trace ov
flavor and Dirac indices. After taking the Dirac trace w
obtain

s~ t !cont
(0) 52mNc 4ME d3xj 0~A2tux̂u!

3trFS U1U†

2
21D E

C

dv

2p

3E d3p

~2p!3

1

v21p21M2U
reg

. ~A2!

The ‘‘21’’ under the flavor trace (trF) originates from the
vacuum subtraction term. Thev integration over the contou
C in Eq. ~28! can be replaced by an integration over the r
v axis, and we substitutev→pE

0 to use the convenient Eu
clidean space notation. Using trF U5trF U† we obtain the
result in Eq.~27!.

Similarly we obtain for thek51 term in Eq.~A1!

s~ t !cont
(1) 5E

C

dv

2p E d3p

~2p!3

imNcM 8gikpi

~v21p21M2!2

3E d3xj 0~A2tuxu!¹kcosP~ uxu!ureg

50, ~A3!
n-

l

which is zero due to rotational invariance.
The k52 term in Eq. ~A1! yields after a somehow

lengthy calculation,

s~ t !cont
(2) 52

mNcM

16p2 E d3xj 0~A2tuxu!

3trF U†~x!~¹kU !~x!~¹kU†!~x!. ~A4!

For our purposes it is sufficient to observe thats(t)cont
(2) is

finite, e.g., (spN)cont
(2) /m<2(3A2/16)NcMRsol. @The equal-

ity holds for mp50 in the profile Eq.~13!.# Higher orders
k>3 are also finite, i.e.,

s~ t !cont
(k) 5UV finite, k>2. ~A5!

APPENDIX B: s„t… AND THE CHIRAL LIMIT

Taking the trace over flavor indices in the expression
B(t) in Eq. ~29! and inserting the result into the expressi
~36! for s(t) we obtain for the soliton profile in Eq.~13!,

s~ t !5mp
2 f p

2 4pE
0

`

dr r 2 j 0~rA2t !„12cosP~r !…,

12cosP~r !5
2Rsol

4 ~11mpr !2 exp~22mpr !

r 41Rsol
4 ~11mpr !2 exp~22mpr !

.

~B1!

The form factor can be continued analytically to the pheno
enologically interesting regiont>0 as
3-13
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j 0~rA2t !55
sin~rA2t !

rA2t
t,0,

1 t50,

sinh~rAt !

rAt
t.0.

~B2!

The form factor~B1! is undefined fort>4mp
2 . For positive

values oft the integral overr in Eq. ~B1! converges only for
t,4mp

2 because only then at larger the decay ofr 2@1
2cosP(r)#}exp(22mpr) can compensate the rise o
j 0(rA2t)}exp(rAt)/r .

Chiral limit. The pion-nucleon sigma termspN(mp) as
function of mp is given by

spN~mp!5mp
2 f p

2 2Rsol
3 4pI ~mpRsol!,

I ~a![E
0

` dxx2~11ax!2exp~22ax!

x41~11ax!2exp~22ax!
. ~B3!

The zeroth order in the Taylor of the functionI (a) around
a50 is

I ~0!5E
0

` dx x2

x411
5

p

2A2
. ~B4!

The linear term in the Taylor expansion ofI (a) requires
careful treatment. ConsideraÞ0 and introduce an uppe
limit D@Rsol in the space integral in Eq.~B1!. This simu-
lates the ‘‘realistic situation’’ of computingspN in a finite
volume ~as it happens in many model calculations and
lattice QCD!. Then
r
ite

,

t,

03400
]I ~a!

]a
522aE

0

D/Rsol dx x8~11ax!exp~2ax!

@x4 exp~2ax!1~11ax!2#2

522E
0

Dmp dz z8~11z!exp~2z!

@z4 exp~2z!1a4~11z!2#2
, ~B5!

where we substitutedz5ax in the second step and useda
5mpRsol. Taking the continuum limitD→` first, and only
then mp→0 ~apparently these limits do not commute! we
arrive at

]I ~a!

]a
→

a→0

22E
0

`

dz~11z!exp~22z!52
3

2
. ~B6!

Thus we obtain

I ~a!5
p

2A2
2

3

2
a1O~higher orders ina!. ~B7!

Inserting the result~B7! into Eq.~B3! and making use of the
relation ~14! in order to eliminateRsol in favor of the pion
decay constantf p and nucleon axial coupling constantgA
yields the result in Eq.~47!. The results in Eqs.~48!,~49!
follow in an analogous way. It is not possible to proceed w
the Taylor expansion ofI (a) to still higher orders ofa. This
is possibly due to the fact that the next contribution in t
chiral expansion ofI (a) is }a2 ln a, as it is in chiral pertur-
bation theory.
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