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A parametrization for the neutrino mixing matrix
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and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste, Italy
~Received 23 September 2003; published 25 February 2004!

We propose a flexible and model independent parametrization of the neutrino mixing matrix, which takes
advantage of the fact that there are up to three small quantities in neutrino mixing phenomenology:~i! the
deviation from maximal mixing of solar neutrinos,~ii ! the mixing matrix elementUe3, and~iii ! the deviation
from maximal mixing of atmospheric neutrinos. It is possible to quantify those three observations with a
parameterl;0.2, which appears at least linearly in all elements of the mixing matrix. The limitl→0
corresponds to exact bimaximal mixing. Present and future experiments can be used to pin down the power of
l required to usefully describe the observed phenomenology. Observing that the ratio of the two measured
mass squared differences is roughlyl2 allows us to further study the structure of the Majorana mass matrix.
We comment on the implications of this parametrization for neutrinoless double beta decay and on the oscil-
lation probabilities in long-baseline experiments.
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I. INTRODUCTION

Neutrino physics has made impressive progress in re
years@1#. In particular, the structure of the neutrino mixin
matrix has been identified to a reasonable precision. The
step for the determination of its structure has come from
KamLAND experiment@2#, which confirmed the large mix
ing angle solution for the solar neutrino problem, after
preference for this parameter space was already implied
the data of the various solar neutrino experiments@3#. Very
recently, the SNO salt phase data@4# rejected maximal sola
mixing by more than 5s @4–6#. The ~almost! maximal mix-
ing of atmospheric neutrinos has been found by the Supe
miokande experiment@7# and confirmed by the K2K Col-
laboration@8#. Finally, the presence of a small if not ze
angle was implied by reactor experiments@9#.

In the present paper we wish to propose a parametriza
of the neutrino mixing matrix in terms of a small parame
l, whose magnitude is interestingly around 0.2, i.e., clos
the Wolfenstein parameter used to parametrize the Cabi
Kobayashi-Maskawa~CKM! matrix @10#. In any parametri-
zation of the neutrino mixing matrix~for earlier attempts, see
Refs. @11–13#!, it is convenient to start from a referenc
matrix and describe deviations from it. Our reference ma
is the one corresponding to exact bimaximal neutrino m
ing. The parameterl describes up to three small deviatio
from this mixing scheme; namely, the deviation from ma
mal mixing of solar neutrinos, the deviation from zeroUe3,
and the deviation from maximal mixing of atmospheric ne
trinos. The magnitude ofl is defined by the observed non
maximality of solar neutrino mixing@4–6# and future preci-
sion experiments can be used to pin down the power ofl to
usefully describe the other two deviations. In addition,
ratio of the mass squared differences governing solar
atmospheric neutrino oscillations is given byl2, so that it is
possible to analyze also the structure of the neutrino m
matrix ~provided neutrinos are Majorana particles!. We also
analyze the oscillation probabilities for long baseline expe
ments and the effective mass as measured in neutrino
0556-2821/2004/69~3!/033005~16!/$22.50 69 0330
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double beta decay within our parametrization.
The paper is organized as follows: In Sec. II we descr

the neutrino mixing parameters as implied by current d
and outline the idea of our parametrization. Then, in Sec.
we give the form of the mixing matrix for various speci
cases of the parametrization and analyze in Sec. IV the f
of the neutrino mass matrix. In Sec. V we apply our para
etrization to the effective mass as measured in neutrino
double beta decay and to long-baseline oscillation exp
ments. We conclude in Sec. VI.

II. QUARK VERSUS LEPTON MIXING

The Wolfenstein parametrization@10# of the CKM matrix
uses the fact that the quark mixing is very small, i.e.,
mixing matrix is approximately the unit matrix with onl
small corrections to the off-diagonal entries. In terms of m
ing angles, a hierarchy of the formu12;0.1.u23;0.01
.u13;0.001 is observed. This has been used by Wolfens
to introduce an expansion parameterl describing the mixing
betweenu and s quarks. The observation thatc2b(u2b)
mixing is roughly one~two! orders of magnitude suppresse
then leads to

VCKM.S 12
1

2
l2 l Al3~r2 ih!

2l 12
1

2
l2 Al2

Al3~12r1 ih! 2Al2 1

D
1O~l4!. ~1!

Of course, l corresponds to the Cabibbo angle sinuC
.0.22, whereas the other parameters are about@14# A
.0.83, r.0.23, andh.0.36. The latter parameter de
scribes theCP violation in the quark sector; all such effec
have to be proportional to@15#
©2004 The American Physical Society05-1
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JCP5Im$VudVcbVub* Vcd* %.2A2l6h;2331025. ~2!

Therefore,CP violation in the quark sector is a small effect.

A. Neutrino mixing

The neutrino oscillation data can consistently be described within a 3-neutrino mixing scheme with massive neut
which the flavor statesna (a5e,m,t) are mixed with the mass statesn i( i 51,2,3) viaUPMNS, the unitary Pontecorvo-Maki-
Nagakawa-Sakata@16# lepton mixing matrix. It can be parametrized as

UPMNS5S c12c13 s12c13 s13

2s12c232c12s23s13e
id c12c232s12s23s13e

id s23c13e
id

s12s232c12c23s13e
id 2c12s232s12c23s13e

id c23c13e
idD diag~1,eia,eib!, ~3!
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whered is a DiracCP violating phase,a andb are possible
Majorana CP violating phases@17#, ci j 5cosuij , and si j
5sinuij . We shall not consider the two Majorana phases
this section. The anglesu12 andu23 control the oscillations of
solar and atmospheric neutrinos, respectively. The angleu13

is mainly limited by reactorn̄e experiments: The Dirac phas
d can be measured in long baseline neutrino oscillation
periments~see, e.g., Ref.@18#!.

To obtain information about the PMNS matrix one fi
@5,6,19# the results of neutrino experiments to the hypothe
of neutrino oscillations. The relevant formula for the oscil
tion probabilities is

P~na→nb!5dab22 Re(
j . i

Ua iUa j* Ub i* Ub j

3S 12exp
iDmji

2 L

2E D , ~4!

where Dmji
2 5mj

22mi
2 . The 1s (3s) ranges of recen

analyses read in terms of the parametrization Eq.~3!:

~0.27!0.35<tan2u12<0.52~0.72! ~Ref.@5# !,

~0.45!0.75<tan2u23<1.3~2.3! ~Ref.@19# !, ~5!

0~0!<sin2u13<0.029~0.074! ~Ref.@5# !.

The best-fit points are given by

tan2u1250.43 ~Ref.@5# !, tan2u2351 ~Ref.@19# !. ~6!

For u23 there is an ambiguity corresponding tou23↔p/2
2u23, i.e., the angle lies on the ‘‘light’’ or ‘‘dark side.’’
Matter effects in future long-baseline experiments will r
solve this. In terms of the often used parameter sin22u23,
which is blind to this ambiguity, one has a
1s (3s)sin22u23>0.86 (0.84).

Regarding the mass squared differences, the best-fit
ues are (Dm(

2 )BF57.231025 eV2 @5# and (DmA
2)BF52.6

31023 eV2 @19#. A recent preliminary analysis of the Su
perKamiokande collaboration, taking into account, e.g.,
03300
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proved identification criteria and neutrino fluxes, yields
value of (DmA

2)BF52.031023 eV2 @20#.
There are two possible mass orderings, the normal and

inverse mass ordering:

normal mass ordering:

Dm(
2 5Dm21

2 !Dm32
2 .Dm31

2 5DmA
2,

inverse mass ordering:

Dm(
2 5Dm21

2 !2Dm31
2 .2Dm32

2 5DmA
2.

~7!

Extreme cases are the normal~inverse! hierarchy withm3

5DmA
2@m25Dm(

2 @m1 (m25DmA
2.m1@m3) and the

quasidegenerate mass scheme for whichm3
2.m2

2.m1
2

@DmA
2. The latter is fulfilled for values of the neutrin

masses larger than;0.2 eV.
Ignoring the phases, the ‘‘best-fit PMNS matrix’’ reads

UPMNS
BF 5S 0.84 0.55 0

20.39 0.59 0.71

0.39 20.59 0.71
D . ~8!

In the pre-SNO salt-phase analysis of Ref.@19# there was
given the 3s range of the PMNS matrix:

uUPMNSu5S 0.7320.88 0.4720.67 020.23

0.1720.57 0.3720.73 0.5620.84

0.2020.58 0.4020.75 0.5420.82
D ,

~9!

where the phased was allowed to take arbitrary values.
Next-generation long-baseline experiments will be able

probe DmA
2 and sin 2u23 to % accuracy@21#. The element

Ue3 can be probed down to the level 1023 in future long-
baseline or reactor experiments@22#. Neutrino factories@23#
can improve these bounds considerably. The solar neut
5-2
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mixing angle tan2usol will see its error reduced below 10%
by experiments investigating the low energy neutrino flux
from the sun@24#.

Currently no information about leptonicCP violation ex-
ists. In oscillation experiments one can detectCP violating
effects@18#, which have to be proportional to@25#

JCP5Im$Ue1 Um2 Um1* Ue2* %

5
1

8
sin 2u12sin 2u23sin 2u13cosu13sind

.
u13

4
~12corrections fromu13 and

nonmaximal u12 and u23!, ~10!

where the valueu13/4 is the limit for smallu13, maximalu12
andu23.

B. The strategy

As a very useful limit, the bimaximal mixing pattern@26#,
corresponding tou125u235p/4 andu1350, can be consid-
ered. The resulting mixing matrix, ignoring theCP violating
phases, reads

UPMNS
bimax5S 1/A2 1/A2 0

2
1

2

1

2
1/A2

1

2
2

1

2
1/A2

D . ~11!

The nonzero entries therefore take values of 1/A2 and6 1
2 .

This form of UPMNS shall be our reference matrix, whos
deviations are to be described by some small parameterl. In
some sense, the matrix~11! is the analogue to the unit matri
in case of quark mixing. Corrections of orderl and higher to
the unit matrix lead to the CKM matrix as parametrized
Eq. ~1!. In the same way, corrections toUPMNS

bimax of order l
and higher can lead to the observed neutrino mixing p
nomenology with nonmaximal solar neutrino mixing, po
sible nonmaximal atmospheric neutrino mixing and nonz
Ue3. One might state that the unit matrix in the quark sec
and the bimaximal mixing matrix in Eq.~11! are the zeroth
order form of the relevant mixing matrix. We shall comme
on a possible origin of corrections to bimaximal mixin
~along the lines of Ref.@27#! in Sec. III G.

Tries to parametrize the PMNS matrix in analogy to t
CKM matrix suffer in general from the fact that from the
elements ofUPMNS only one is small, namely the eleme
uUe3u&0.27. The other eight entries take typically valu
around 1/2 or 1/A2. There are to our knowledge two oth
approaches to do something similar to the PMNS matrix
has been done so successfully with the CKM matrix. T
analysis from Ref.@11# usesUe2.A2l, atmospheric neu-
trino mixing remains maximal, andUe3 is proportional to
l2. The work @12# chooses the expansion parameterl
03300
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5Um3.1/A2. Solar neutrino mixing is governed byUe2
5Al2 and the small quantityUe3 has to be introduced a
least the eights power ofl. Effects due toCP violation in
neutrino oscillations are—courtesy of Eq.~10!—proportional
to at least l11. An ansatz for UPMNS corresponding to
tan2u1250.5, maximal atmospheric mixing, and zeroUe3
has been used in Ref.@13#. To describe deviations from it, i
has been multiplied with a Wolfenstein-like matrix.

In this article we wish to propose a purely phenomen
logical and model independent parametrization of the PM
matrix by using a small ‘‘expansion’’ parameterl. For a
useful analysis in terms of a small parameter one requ
small quantities in the mixing matrix. The basic idea is giv
by the identification of up to three such small numbers
neutrino mixing phenomenology, namely:

@~i!# the deviation from maximal mixing of solar neutr
nos,

@~ii !# the small mixing elementUe3, and
@~iii !# the possible deviation from maximal mixing of a

mospheric neutrinos.
Those three aspects describe all possible deviations f

the bimaximal mixing scheme in Eq.~11!. Observation~i! is
now solid experimental evidence, after inclusion of the SN
salt phase data@4#; it now holds that tan2u( ,1 at more than
5s @4–6#. Regarding observation~ii !, only the mentioned
limit of uUe3u2<0.07 ~at 3s) exists. Best-fit points of three
flavor analyzes of all neutrino data typically yield very sm
if not vanishing values for this quantity. Finally, atmosphe
neutrino mixing must be described by solutions with a b
fit corresponding to maximal mixing. This remains true al
when the K2K data are included or separately analyzed~e.g.,
Ref. @19#!. Though exactly maximal mixing and zeroUe3
would hint at some underlying symmetry in the lepton sec
one cannot expect radiative corrections to allow these
treme values to persist down to low energy@28#. Thus, one
expects nonextreme values foru13 andu23. See, e.g., Refs
@27,29# for ways to generate deviations from the bimaxim
mixing scheme.

All in all, the three observations~i! to ~iii ! together with
the mixing matrices~8! and ~9! lead us to parametrize thre
elements of the mixing matrix as

Ue25A1

2
~12l!,

Ue35Aln, ~12!

Um35A1

2
~12Blm!eid.

For l50 one would have the bimaximal scheme from E
~11!.1 The two Majorana phases are left out for the mome
Unitarity of UPMNS suffices to calculate the remaining el
ments. The parametersA and B are numbers of order one

1Deviation from maximal solar neutrino mixing has also be
analyzed in terms of the parametere5122 sin2u12 @30#, which
roughly corresponds tol: e.l1O(l2).
5-3
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Theu23↔p/22u23 ambiguity reflects in a sign ambiguity o
B. The power ofl in the expressions forUe3 (Um3) can be
adjusted when more stringent limits~more precision data!
are available.

We can take the best-fit value from Eq.~6! to calculate
l.0.22, which is remarkably similar to the Wolfenstein p
rameter or the sine of the Cabibbo angle. The maximal
lowed value ofuUe3u250.07 corresponds toUe35Al with
A.1.2. At 1s (3s), the range ofl lies in

l.~0.08!0.1820.28~0.35!. ~13!

For the best-fit points of the many available analyzes@6#,
which lie in the range between 0.41 and 0.44 for tan2u12, l
is between 0.24 and 0.22.

If indeed l.0.22, then form51 it must hold thatB
&0.91 in order to fulfill the requirement sin22u23*0.85. In
the following we shall work with the ‘‘best-fit’’ value ofl
50.22. If the limit onuUe3u2 goes below;1022 one should
take the powern52 in Eq. ~12! in order to keepA of order
one. If uUe3u2&1024, thenn53 is advantageous to choos

Analogously, since typically~see below! sin22u23.1
24B2l2m one should for values larger than sin22u23
.0.95 (0.99) use the powerm52 (m53) in Eq. ~12!. Val-
ues ofm54 would be required if a precision in sin22u23 of
order 1024 was present, which seems improbable unles
neutrino factory will be operative. In terms of tan2u23,
which in the future will be more appropriate to use, one w
find that tan2u23.124Blm. Thus, for tan2u23*0.7 ~or
a

-
t

03300
l-

a

l

&1.3) one should takem52, while for tan2u23*0.9 ~or
&1.1) the valuem53 is more useful.

We shall now consider several different cases for the po
ers of l in Eq. ~12!. The considerations from this sectio
indicate that current data and the precision of future exp
ments onu23 and u13 limit the realistic values ofm and n
between 1 and 3.

III. THE MIXING MATRIX

A. CasemÄnÄ1

In this case we haveUe35Al and Um35A1
2 (1

2Bl)eid. It corresponds to rather large deviations from t
extreme bimaximal values. One ‘‘predicts’’Ue3 very close to
its current limit and also sin22u23 is on the edge of its 3s
range. We identify

tan2u12.124l12~51A2!l21O~l3!,

sin22u23.124B2l21O~l3!,

tan2u23.124Bl12~A215B2!l21O~l3!,

sin2u135A2l2. ~14!

The fact that sin22u23 is blind to theu23↔p/22u23 ambigu-
ity is reflected in the fact thatB appears quadratically in th
last expression. The form ofUPMNS is rather lengthy, and we
shall give it therefore only to orderl:
UPMNS.S A1

2
~11l! A1

2
~12l! Al

2
1

2
@12~12B2Aeid!l#

1

2
@11~11B2Aeid!l# A1

2
~12Bl!eid

1

2
@12~11B1Aeid!l# 2

1

2
@11~12B1Aeid!l# A1

2
~11Bl!eid

D 1O~l2!. ~15!
The precise form to a given order ofl is easily obtained by
using the unitarity of the mixing matrix. The corrections qu
dratic in l are functions ofA andB except forUe1, which
receives only corrections depending onA. It is important to
note that the corrections froml are responsible for the de
viations from the values61/2 of the entries in the lower lef
12 block. Finally, the invariant measure ofCP violation in
neutrino oscillations is

JCP5
Al

4
@12~21A212B2!l2#sind1O~l4!. ~16!

Noting thatAl.u13, the corrections stemming fromu13 and
nonmaximal u12,23—as indicated in Eq.~10!—are easily
identified. The larger the deviations from maximalu12,23,
i.e., the largerA andB, the smaller becomesJCP . The ‘‘pre-
diction’’ is that CP violating effects are up to;5%. Note,
-
however, that actual experiments searching for leptonicCP
violation will not just measureJCP ~see Sec. V B!.

B. CasemÄ1 and nÄ2

For these values we haveUe35Al2 and Um3

5A 1
2 (12Bl)eid. We can identify

tan2u12.124l110l21O~l3!,

sin22u23.124B2l21O~l3!,

tan2u23.124Bl110B2l21O~l3!,

sin2u135A2l4. ~17!
5-4
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The ‘‘predictions’’ areuUe3u2;1023 and atmospheric mixing very close to the end of its allowed 3s range. The mixing matrix
UPMNS reads

UPMNS.S A1

2
~11l! A1

2
~12l! Al2

2
1

2
@12~12B!l#

1

2
@11~11B!l# A1

2
~12Bl!eid

1

2
@12~11B!l# 2

1

2
@11~12B!l# A1

2
~11Bl!eid

D 1O~l2!. ~18!

It is obtained by removing the termAeid from the PMNS matrix in the case ofm5n51 as given in Eq.~15!. The corrections
of orderl2 for the lower left 2 by 2 submatrix are functions ofA andB. They are constant forUe1 and only depending onB
for Ut3. Effects ofCP violation are proportional tol2,

JCP.
Al2

4
@122~11B2!l2#sind1O~l5!, ~19!

and not more than a few %.

C. CasemÄ2 and nÄ1

Now our parameters readUe35Al andUm35A1
2 (12Bl2)eid. The mixing angles are

tan2u12.124l12~51A2!l21O~l3!,

sin22u23.12~A222B!2l41O~l5!,

tan2u23.112~A222B!l21O~l4!,

sin2u135A2l2. ~20!

Thus, Ue3 is close to its current limit and the deviation from sin22u2351 is not more than a few %. The mixing matri
UPMNS is given by

UPMNS.S A1

2
~11l! A1

2
~12l! Al

2
1

2
@12~12Aeid!l#

1

2
@11~12Aeid!l# A1

2
~12Bl2!eid

1

2
@12~11Aeid!l# 2

1

2
@11~11Aeid!l# A1

2
~11Bl2!eid

D 1O~l2!, ~21!

which is obtained from Eq.~15! by removingB from the lower left 2 by 2 submatrix and by the presence ofl2 in Um3 and
Ut3. The quadratic corrections are functions ofA andB except forUe1, which only depends onA. The rephasing invariantCP
violation measure is

JCP.
Al

4
@12~21A2!l2#sind1O~l4! ~22!

being rather sizable but not exceeding 5%.
033005-5
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D. CasemÄnÄ2

Now it holdsUe35Al2 andUm35A1
2 (12Bl2)eid.

tan2u12.124l110l21O~l3!,

sin22u23.124B2l41O~l5!,
~23!

tan2u23.124Bl21O~l3!,

sin2u135A2l4.

The deviation from sin22u2351 is not more than a few percent anduUe3u is on the level of 1023. The mixing matrixUPMNS is
given by

UPMNS.S A1

2
~11l2l2! A1

2
~12l! Al2

2
1

2
@12l1~B1Aeid!l2#

1

2
@11l2~12B1Aeid!l2# A1

2
~12Bl2!eid

1

2
@12l2~B1Aeid!l2# 2

1

2
@11l2~11B2Aeid!l2# A1

2
~11Bl2!eid

D 1O~l3!. ~24!

It is seen that for the lower left 2 by 2 submatrix the linear corrections to the ‘‘bimaximal’’ values61/2 are constant and th
quadratic ones are functions ofA andB. The rephasing invariantCP violation measure is given by

JCP.
Al2

4
~122l2!sind1O~l5!, ~25!

again on the level of a few percent.

E. The ‘‘Wolfenstein case’’ mÄ2 and nÄ3

How could one not be tempted to put the third power of the expansion parameter in theUe3 and the second power in th

Um3 element. This would resemble the Wolfenstein parametrization Eq.~1!. In this case, i.e.,Ue35Al3 and Um35A1
2 (1

2Bl2)eid, we have

tan2u12.124l110l21O~l3!,

sin22u23.124B2l41O~l5!,

tan2u23.124Bl21O~l3!, ~26!

sin2u135A2l6.

The ‘‘prediction’’ for sin22u2321 is not more than a few percent anduUe3u2 is on the level of 1024. For the PMNS matrix one
has

UPMNS.S A1

2
~11l2l21l3! A1

2
~12l! Al3

2
1

2
@12l1Bl22~B2Aeid!l3#

1

2
@11l2~12B!l21~11B2Aeid!l3# A1

2
~12Bl2!eid

1

2
@12l2Bl21~B2Aeid!l3# 2

1

2
@11l2~11B!l21~12B1Aeid!l3# A1

2
~11Bl2!eid

D 1O~l4!. ~27!
033005-6
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In contrast to the Wolfenstein parametrization, however,l appears linearly in e.g. theUm2 element. Also,CP violation is
proportional to the third power ofl,

JCP.
Al3

4
~122l2!sind1O~l6!, ~28!

not exceeding one percent.

F. The remaining cases

The remaining interesting cases arem53 with n52 and alsom5n53. The former case—that isUm35A1
2 (1

2Bl3)eid andUe35Al2—yields

tan2u12.124l110l21O~l3!,

sin22u23.124B2l61O~l7!,
~29!

tan2u23.124Bl31O~l4!,

sin2u135A2l4,

with uUe3u2;1023 and sin22u23Þ1 with a precision of less than 1%. For the PMNS matrix holds:

UPMNS.S A1

2
~11l2l21l3! A1

2
~12l! Al2

2
1

2
@12l1Aeidl21~B1Aeid!l3#

1

2
@11l2~11Aeid!l21~11B1Aeid!l3# A1

2
~12Bl3!eid

1

2
@12l2Aeidl22~B1Aeid!l3# 2

1

2
@11l2~12Aeid!l21~12B2Aeid!l3# A1

2
~11Bl3!eid

D 1O~l4!.

~30!

As for the casem5n52 one obtains

JCP.
Al2

4
~122l2!sind1O~l5!, ~31!

again at most a few percent.

If m5n53, i.e.,Um35A1
2 (12Bl3)eid andUe35Al3, then it holds for the mixing parameters:

tan2u12.124l110l21O~l3!,

sin22u23.124B2l61O~l7!,
~32!

tan2u23.124Bl31O~l4!,

sin2u135A2l6,

i.e., except for sin2u13 to the given order identical for them53 andn52 case above. The parametersA andB appear in the
mixing matrix only a third order inl:
033005-7



UPMNS.S A1

2
~11l2l21l3! A1

2
~12l! Al3

2
1

2
@12l1~B1Aeid!l3#

1

2
@11l2l21~11B2Aeid!l3# A1

2
~12Bl3!eidD 1O~l4!. ~33!

e
,

MNS

WERNER RODEJOHANN PHYSICAL REVIEW D69, 033005 ~2004!
1

2
@12l2~B1Aeid!l3# 2

1

2
@11l2l21~12B1Aeid!l3# A1

2
~11Bl3!eid

There are no quadratic terms in the elementsUm1 andUt1. Finally, CP violation is governed by

JCP.
Al3

4
~122l2!sind1O~l6! ~34!

being below one percent.
The remaining casesm53 andn51 (m51 andn53) are obtained from the casesm52 andn51 (m51 andn52) by

settingB50 (A50) in the relevant expressions for the mixing parameters andJCP .

G. Speculations

One can speculate about the origin of the corrections induced by thel terms. It is possible to imagine, e.g., that th
bimaximal mixing scheme from Eq.~11! stems from the diagonalization of the neutrino mass matrix~this is possible, e.g.
when aLe2Lm2Lt symmetry is present@31#! and any corrections are implied by the unitary matrixU, that diagonalizes the
charged lepton mass matrix@27#. Recall that in a basis in which the charged lepton mass matrix is not diagonal the P
matrix is given byU,

†U, whereU diagonalizes the neutrino mass matrix in that basis. If we define the matrixUl , which
induces the correction to the bimaximal scheme, we may writeUPMNS[UlUPMNS

bimax , whereUPMNS
bimax is given in Eq.~11!.2 Then

one can simply solve forUl . Taking for definiteness the examplem53 andn52, one finds

Ul.S 12l2/2 2l/A21
112A

2A2
l2 l/A21

2A21

2A2
l2

l/A22
112Aeid

2A2
l2

11eid

2
2

l2

4

211eid

2
1

l2

4

2l/A21
122A

2A2
l2

211eid

2
1

l2

4

11eid

2
2

l2

4
2 1O~l3!. ~35!
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It is seen that 23 and 32 entries are in general of order
but reduce to orderl2 for CP conservation. Those entrie
can also be of orderl, however, only for the casesm5n
51 and m51 with n52. Thus, if CP is conserved and
atmospheric neutrino mixing is very close to maximal, t
matrix Ul takes the unit matrix as the dominant form wi
corrections of orderl. The typical ‘‘CKM structure’’ with
very smalll3 terms is however not necessary.

IV. THE MAJORANA MASS MATRIX

A. Basics

Up to now our analysis assumed only the neutrino os
lation explanation of the experimental data. Now we assu
in addition that neutrinos are Majorana particles, which
e.g., a prediction of the see-saw mechanism@32#. Thus, the
03300
e

l-
e
,

neutrino mass matrixmn in the basis in which the charge
lepton mass matrix is diagonal is given by

mn5UPMNSmn
diagUPMNS

T . ~36!

Heremn
diag is a diagonal matrix containing the massesm1,2,3

of the three massive Majorana neutrinos. An immediate c
sequence of the Majorana nature of the neutrinos is the p
ence of two Majorana phasesa and b to which neutrino
oscillations are insensitive@33#. Information about these
phases can be obtained by studying processes in which
total lepton chargeL changes by two units, e.g., neutrinole

2This is similar to the strategy in@13#, where however a differen
mixing matrix to start with was used.
5-8
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double beta decay,K1→p21m11m1, etc. Realistically,
only neutrinoless double beta decay can expected to be m
sured@34#. The decay width of this process is sensitive to t
eeelement ofmn .

An interesting observation is that the ratio of typical be
fit values of the mass squared differences correspo
roughly to the expansion parameterl:

R[A~Dm(
2 !BF

~DmA
2 !BF

.A7.231025

2.031023
.0.19;l. ~37!

We took for DmA
2 the best-fit point of the preliminary new

analysis of the SuperKamiokande collaboration@20#. Using
for DmA

2 the 90% confidence limit~CL! analysis from@20#,
which is (1.3–3.1)31023 eV2, with the 90% CL range of
Dm(

2 from Ref. @5#, we find thatR lies between 0.13 and
0.28. This corresponds to a good precision to the 3s range of
l as given in Eq.~13!. In the following we shall assume tha
R.l and study the resulting structure of the neutrino m
matrix. The results do not change much unlessDmA

2 , Dm(
2 ,

and tan2u12 are on the very edges of their allowed rang
Before we perform this analysis, it is useful to study t
mass matrix again in the limit of exact bimaximal mixing.
the following, we will neglect theCP violating phases, see
e.g., Ref.@35# for an analysis of the structure ofmn in case of
complex entries. Using Eqs.~3! and ~36!, the mass matrix
reads

mn5S A B 2B

• D1
A

2
D2

A

2

• • D1
A

2

D , ~38!

where

A5
m11m2

2
, B5

m22m1

2A2
, D5

m3

2
. ~39!

As mentioned, there are three extreme cases for the m

hierarchies, the normal hierarchy~NH! with ADmA
25m3

@m2.ADm(
2 @m1.0, the inverse hierarchy~IH! with

ADmA
25m2.m1@m3.0, and quasidegenerate neutrin

~QD! with m0[m3.m2.m1. Depending on the relative
signs of the mass states, several extreme forms of the m
matrix result. In case of NH, one finds form1,250:

mn5
ADmA

2

2 S 0 0 0

• 1 1

• • 1
D , ~40!

i.e., a mass matrix with a leadingmt block. Regarding IH,
the third massm3 can safely be neglected. The form ofmn

then depends on the relative sign of the two mass statesm1
andm2:
03300
ea-
e

-
ds
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ss

ss

mn5ADmA
23

¦

S 1 0 0

•

1

2
2

1

2

• •

1

2

D same sign

S 0
1

A2
2

1

A2

• 0 0

• • 0

D opposite sign.

~41!

For the QD spectrum one finds

mn5m03

¦

S 1 0 0

• 1 0

• • 1
D ,

S 0 21/A2 1/A2

•

1

2

1

2

• •

1

2

D ,

S 0 1/A2 21/A2

•

1

2

1

2

• •

1

2

D ,

S 1 0 0

• 0 21

• • 0
D ,

sgn~m1!5sgn~m2!

5sgn~m3!

sgn~m1!5sgn~m2!

5sgn~m3!

sgn~m1!5sgn~m2!

5sgn~m3!

sgn~m1!5sgn~m2!

5sgn~m3!

~42!

We can expect that in our parametrization the parametel
will appear in the neutrino mass matrix at least linearly
order to correct the extreme values 0,61/A2,61 and61/2.

B. Normal hierarchy

In case of the normal hierarchy we have

m35ADmA
2, m25ADm(

2 l andm15DADmA
2l21 l , l>0.

~43!

The expression form1 with D5O(1) expresses our lack o
its knowledge. A similar ansatz for the structure ofmn in
case of a normal hierarchical mass scheme has been ma
Ref. @11#. For m5n5 l 51 and all mass states positive th
mass matrix looks like
5-9
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mn5
ADmA

2

2 S l @~112A!/A2#l @~2A21!/A2#l

• 11S 1

2
22BD l 12l/2

• • 11S 1

2
12BD l

D ,

~44!

neglecting terms of orderO(l2). The characteristic ‘‘leading
mt block’’ structure ofmn from Eq. ~40! is identified. Cor-
rections at orderl depend onA in thee row of mn and onB
for the mm and tt entries. Higher powers ofl in m1
n

n

o

p
.

e

he

03300
will—to order l2—lead to the disappearance ofD in the
formula formn . SettingUe35Al2 leads to a mass matrix in
which to orderl2 the parameterA does not appear in themt
submatrix as well as in theeeentry. It is obtained by remov-
ing A from the last equation in the indicated entries. T

matrix for Um35A1
2 (12Bl2) but Ue35Al is given by Eq.

~44! by removingB from the first row and from the linea
terms of themm andtt entries. The ‘‘Wolfenstein-like’’ pa-

rametrization withUe35Al3 and Um35A1
2 (12Bl2) to-

gether withm15DADmA
2l3 leads to the particularly simple

form
mn5
ADmA

2

2 S l22l2 l/A2 2l/A2

• 11l/21~122B!l2 12l/22l2

• • 11l/21~112B!l2
D 1O~l3!. ~45!
e of

x-

ple
The u23↔p/22u23 ambiguity, which translates into a sig
ambiguity ofB, is seen to have origin in the size of themm
andtt entries, e.g., for all masses positive andu23.p/4 the
tt entry is larger. The structure of the mass matrix does
depend on the exactness of the relationR5l or the relative
signs of the mass states. When sgn(m1)52sgn(m2)5
2sgn(m3), then the mass matrix looks as above. F
sgn(m1)52sgn(m2)5sgn(m3) and sgn(m1)5sgn(m2)5
2sgn(m3) one has to replace3 A with 2A, B with 2B and
the 1 in themt block with 21. If we further chooseUm3

5A 1
2 (12Bl3)eid, then we obtain a mass matrix which u

to orderl2 the parametersA, B, andD do not appear at all
It is obtained by setting in the last equationB50.

C. Inverse hierarchy

In this case we have

m25ADmA
2, m1.ADmA

2~12l2/2!,

m35DADmA
2l21 l , l>0. ~46!

The dependence on the power ofl in m3 is almost vanish-
ing. The form ofmn depends strongly on the signs of th
massesm1 andm2. For identical relative signs betweenm1
and m2, the em and et entries are suppressed byl or l2,
depending on the powers ofl in Um3 or Ue3. If, e.g., m

3The convention here and in the following will be such that t
sign of theeeentry is positive.
ot

r

52 andn51 or m5n51, then the entries are of orderl.
For all other cases under consideration, these terms ar
orderl2. The remaining independent entries ofmn are order
one. Ifm1 andm2 have opposite relative signs, thenmem and
met are of order one and the remaining entries ofmn are
linear in l, independent ofm and n. One finds form5n
51 that for same signs ofm1 andm2

mn.ADmA
2S 1 2~A/A2!l 2~A/A2!l

•

1

2
1Bl 2

1

2
1Bl

• •

1

2
2Bl

D 1O~l2!,

~47!

while for opposite signs

mn.ADmA
2S 2l 21/A22~B/A2!l 1/A22~B/A2!l

• ~A21!l l

• • 2~A11!l
D

1O~l2!. ~48!

The parameterl appears at least linearly to correct the e
treme ‘‘bimaximal’’ mass matrices from Eq.~41!. For same
signs,A appears in thee row andB in themt sector, whereas
for opposite signs it is vice versa. Taking as another exam
again the ‘‘Wolfenstein-like’’ casem52 andn53 one finds
to orderl2:
5-10



mn.ADmA
23

¦

S 12
1

4
l2 ~1/4A2!l2 2~1/4A2!l2

•

1

2
1S B2

1

8
D l2 2

1

2
1

1

8
l2

• •

1

2
2S B1

1

8
D l2

D same signs

S 2l2
5

4
l2 21/A21@~924B!/4A2#l2 1/A22@~914B!/4A2#l2

• 2l1
3

8
l2 l2

3

8
l2

3
D opposite signs.

~49!
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• • 2l1
8

l2
t

a ame
As usual,B will not appear for higher orders ofl in Um3,
leading to a mass matrix that is at orderl2 only a function of
l. It is again obtained by settingB50 in the last equation.

D. Quasidegenerate neutrinos

For quasidegenerate neutrinos, i.e.,m3
2.m2

2.m1
2@DmA

2,
there is another small quantity introduced, namely the ra
of the common mass scalem0 with DmA

2 . For simplicity we
work with the normal mass ordering. In this case we c
express the three mass states as
03300
io

n

m3[m0 , m25am0 , m15bm0 ,
~50!

where a512h, b512h~11l2!, h5
DmA

2

2m0
2

.

The common mass scale is denoted bym0. These expres-
sions for the masses are valid to orderh. Since the spectrum
is quasidegenerate form0*0.2 eV, we can estimateh
&0.04 eV, thereforel2.h.

First, we take the case that all mass states have the s
relative sign. Form5n51 we find:
~mn!1115m0S 12h ~A/A2!hl ~A/A2!hl

• 12h/22Bhl h/2

• • 12h/21Bhl
D 1O~hl2!. ~51!

Taking the casem52 andn53 we have

~mn!1115m0S 12h2hl2/2 hl2/2A2 2hl2/2A2

• 12h/22@~114B!/4#hl2 h/21hl2/4

• • 12h/21@~4B21!/4#hl2
D 1O~hl3!. ~52!

It is seen that forh50 the mass matrix is proportional to the unit matrix, irrespective ofm andn. The corrections to the zero
values of the extreme bimaximal form from Eq.~42! are very small.

If sgn(m1)52sgn(m2)5sgn(m3), then the dependence onh is not so important. Neglectingh with respect to terms of
order 1, we find form5n51:

~mn!1215m0S 2l 21/A21@~A2B!/A2#l 1/A21@~A2B!/A2#l

•

1

2
1~A2B21!l

1

2
1l

• •

1

2
2~A112B!l

D 1O~h,l2! ~53!

and form52, n53:
5-11
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~mn!1215m0S 2l2l2 2~12h!/A21@~22B!/A2#l2 ~12h!/A22@~B12!/A2#l2

•

1

2
2l1S 1

2
2BD l2

1

2
1l2

1

2
l2

• •

1

2
2l1S 1

2
1BD l2

D 1O~hl,l3!. ~54!

For the case sgn(m1)52sgn(m2)52sgn(m3) one finds form5n51

~mn!1225m0S 2l 21/A22@~A1B!/A2#l 1/A22@~A1B!/A2#l

• 2
1

2
1~A1B21!l 2

1

2
1l

• • 2
1

2
2~A1B11!l

D 1O~h,l2! ~55!

and form52, n53:

~mn!1225m0S 2l2l2 2~12h!/A21@~22B!/A2#l2 ~12h!/A22@~B12!/A2#l2

• 2
1

2
2l1S 1

2
1BD l2 2

1

2
1l2

1

2
l2

• • 2
1

2
2l1S 1

2
2BD l2

D 1O~hl,l3!. ~56!

These two last cases look very similar. Finally, the situation for sgn(m1)5sgn(m2)52sgn(m3) looks simpler: e.g., when
m5n51:

~mn!1125m0S 122A2l2 2A2Al1A2ABl2 2A2Al2A2ABl2

• 2Bl2B2l2 211~A212B2!l2

• • 22Bl1~2A21B2!l2
D 1O~h,l3!. ~57!

The corrections to the entry 1~0! that is present in the extreme bimaximal form from Eq.~42! are at least quadratic~linear!.
For m52 andn53 the following holds:

~mn!1125m0S 12h2
1

2
hl2 ~1/2A2!hl2 2~1/2A2!hl2

• 2
h

2
1@B~22h!2h/4#l2 211h/21

1

4
hl2

• • 2h/22@B~22h!1h/4#l2

D 1O~l3!. ~58!
on
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E. Summary for the mass matrix

Looking at the cases considered in the last subsecti
the following summarizing statements can be made:

Roughly, for uUe3u;0.01 and sin22u23&0.9, corrections
to the extreme forms of the mass matrices in Eqs.~40!–~42!
are linear inl. When uUe3u&1023 and sin22u23*0.95, the
corrections become quadratic.

For the normal hierarchy, corrections to the exact bima
mal form are at least orderl. To lowest order, the paramete
A appears in thee row of mn and B in the mm and tt
elements. The numberD, parametrizing the unknown lightes
mass state, appears in all entries. There is basically no
pendence on the relative signs of the mass states.
03300
s,

i-

e-

For the inverse hierarchy, the dependence onD is highly
suppressed. For identical signs of the two heaviest m
states, the correction to theeeentry, whose extreme value i
case of bimaximal mixing is~in units of DmA

2) 1, is at least
orderl2. The remaining elements receive at least linear c
rections.A appears at leading order in thee row andB in the
mt sector. Opposite signs of the two leading mass states
to linear corrections to the entries and the appearance ofA in
the mt sector andB in the e row.

In case of a quasidegenerate spectrum and identical s
of the masses, the corrections to the unit matrix are at le
quadratical. The cases sgn(m1)52sgn(m2)5sgn(m3) and
sgn(m1)52sgn(m2)52sgn(m3) look very similar. For
sgn(m1)5sgn(m2)52sgn(m3) there are only quadratic cor
5-12
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rections to theeeandmt entries.
The mt entry is special in our parametrization since t

parametersA andB do typically only appear there for rathe
large deviations from zeroUe3 and from maximal atmo-
spheric neutrino mixing.

If we would consider the inverse ordering in the QD ma
spectrum, one has to change Eq.~50! to m25m0 , m1
5am0 andm35bm0. Only simple sign changes forA and/or
B in some elements ofmn would be the result. The main
difference would be for the case sgn(m1)5sgn(m2)
5sgn(m3), where the corrections to theem andet elements
are now orderh and not justhl or hl2.

V. APPLICATIONS

It is surely useful to study formulas that are obtained
expansions in small parameters or by certain simplificati
within our parametrization. We shall perform this analy
now for the effective mass as measurable in neutrino
double beta decay and the oscillation probabilities for lo
baseline neutrino oscillations.

A. Neutrinoless double beta decay

We shall analyze now within our parametrization the fo
of the ee element ofmn , which is denoted bŷ m&. In a
given mass scheme or hierarchy one can considerably
plify the expression for̂m& @36#. We first note that since

^m&5U( miUei
2 U, ~59!

the results are independent of the power ofl in Um3.

1. Normal hierarchy

With the help of Eqs.~43! and ~59! we can evaluate the
effective mass in case of the normal hierarchy. We find
Ue35Al andm35Dl2:

^m&.
ADmA

2

2 Fl22l2S 12
D

2
c2a2A2c2(a2b)D G1O~l3!,

~60!

wherec2a5cos 2a and so on. Terms of orderl3 depend on
A,D and the two Majorana phases. Choosingm35Dl3 or
higher powers ofl leads to the disappearance ofD in the
formula. Form35Dl2 and higher orders ofl in Ue3, i.e.,
n>2, the following holds:

^m&.
ADmA

2

2
Fl22l2S 12

D

2
c2aD

1
l3

4
@4~112Dc2a!1D2~12c4a!#G1O~l4!.

~61!

The formulas form35Dl3 correspond to settingD250 in
this last equation. Roughly, we can estimate the effec
mass in the normal hierarchy as
03300
s

y
s

ss
-
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r

e

^m&;
l

2
ADmA

2&0.005 eV. ~62!

2. Inverse hierarchy

From Eqs.~46! and ~59! one sees that in the expressio
for ^m& the dependence onb practically vanishes. The resu
for Ue35Al is

^m&.ADmA
2Aca

21
1

4
@724A22~914A2!c2a#l2

1O~l3!. ~63!

Higher powers ofl in Ue3 lead to the disappearance ofA in
this equation. The maximal and minimal values are obtain
whena takes the values 0 andp/2, respectively. Thus,

2ADmA
2l&^m&&ADmA

2 F12S A21
1

4
D l2G , ~64!

up to corrections ofO(l3). For no extreme values ofa, the
scale of the effective mass is

^m&;ADmA
2*0.05 eV. ~65!

Comparing this with the value of̂m& in the normal hierar-
chy in Eq. ~62!, one sees that the expansion parametel
shows up as the ratio of the typical values of^m& in the
inverted and normal hierarchy. It is known that extraction
information from a measurement of 0nbb suffers from a
large uncertainty stemming from the calculation of t
nuclear matrix elements. This uncertainty is a number
order one@37#. It is therefore an important question to as
and an even more important one to answer whether futu
nbb experiments can distinguish@36,38# between the nor-
mal and inverted mass hierarchy. Let us parametrize
nuclear matrix element uncertainty with a factorj as done in
Ref. @39#. In order to distinguish the normal from the in
verted hierarchy it must hold that the maximal value
^m& in the normal hierarchy times the uncertaintyj has to
be smaller than the minimal value of^m& in the inverted
hierarchy. Therefore, choosingUe35Al and smallm3 we
find from Eqs.~60! and ~64!

j&4@112l~16A2!#1O~l3!. ~66!

Needless to say,A vanishes for smaller values ofUe3. If that
is the case, thenj&6, which is a very realistic number
Thus, with our expansion parameterl.0.2 and uUe3u2

&0.01 it is easily possible to distinguish between the norm
and inverted mass hierarchy.
5-13
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3. Quasidegenerate neutrinos

The formulas for the mass states are given in Eq.~43!. Ignoringh and takingUe35Al one finds

^m&

m0

.Aca
21@22A22~21A2!c2a12A2caca22b#l21O~l3!. ~67!

Interesting cases correspond toCP conservation, which are obtained by settinga,b to p/2,p. They read up toO(hl2,l3):

^m&
m0

.5
12h, a5b50 ↔ sgn~m1!5sgn~m2!5sgn~m3!

2l, 2a5b5p ↔ sgn~m1!52sgn~m2!5sgn~m3!

2l, a5b5p/2↔ sgn~m1!52sgn~m2!52sgn~m3!

12h22A2l2, a52b5p ↔ sgn~m1!5sgn~m2!52sgn~m3!.

~68!
th

-
hi

n
r

n
e

tri
g
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-
s

g

b-

e

for
As usual, forUe35Al2 and above, the dependence onA
~and thus also onb) drops and appears only to orderl4.
Noting that the minimal value of̂m& is 2lm0, we can in-
vestigate if future experiments can distinguish between
normal and quasidegenerate mass hierarchy@39#. In analogy
to the discussion leading to Eq.~66!, it follows from Eqs.
~60! and ~68!

j&2A2

h
@112l~16A2!#, ~69!

which will be easily possible. It is a bit more tricky to dis
tinguish between the quasidegenerate and the inverted
archies. The requirement forj is

j&A2

h
lF11S A21

1

4Dl2G , ~70!

which is suppressed roughly by a factorl with respect to the
limit on j in order to distinguish the normal and quasidege
erate mass hierarchy. Also in this aspect the parametel
shows up as a scaling factor.

B. Long baseline oscillation experiments

There is another field of neutrino physics in which expa
sion in small parameters gives insight in the physics involv
and which is therefore useful to study within our parame
zation. These are the oscillation probabilities for lon
baseline experiments@18#. The determination of some cu
rently unknown neutrino parameters, namely,Ue3, the sign
of DmA

2 , and the Dirac-likeCP violating phase, are the pur
pose of such experiments. There are helpful expansion
the relevant oscillation probabilities in vacuum@40#. Here,
we do not consider matter effects since they will not chan
our conclusions. Let us first comment onCP violation. Using
Eq. ~4!, one finds for the difference of the oscillation pro
abilities:
03300
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e

DP[P~ne→nm!2P~ n̄e→ n̄m!

58JCPS sin
Dm31

2 L

2E
2sin

Dm32
2 L

2E
2sin

Dm21
2 L

2E D ,

~71!

which, usingDm32
2 5Dm31

2 2Dm21
2 , can easily be shown to

vanish for two masses being equal. The invariantJCP was
defined in Eq.~10!. SinceDm21

2 /Dm31
2 56l2, where ‘1’ is

for the case of normal ordering and ‘2 ’ for inverse ordering,
we can expand the last equation:

DP.64JCPl2
DmA

2L

2E
sin2

DmA
2L

4E
1O~l3!. ~72!

Thus, theCP violating effects in realistic experiments ar
suppressed by another two orders ofl in addition to the
suppression present inJCP . If n is the power ofl in Ue3,
then the total suppression isl21n.

One can also consider the bare oscillation probability
the ‘‘golden channel,’’ which is given byne→nm oscilla-
tions. Using the form ofP(ne→nm) as given, e.g., in Ref.
@22#, one finds for the oscillation probability in case ofm
5n51:

P~ne→nm!.2A2sin2D32l
2

22A sin2D32@2AB1cos~d7D32!#l
3

1O~l4!. ~73!

Here the2 ’ sign is for neutrinos and the1 for antineutrinos.
We definedD325(m3

22m2
2)L/4E. The first term proportional

to l2 is the term that probesUe3 whereas the second term
proportional tol3 is the one probing theCP phased.

As another example, assumen5m52. Then, the terms
probing Ue3 and CP violation will both be proportional to
l4:
5-14
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P~ne→nm!

.
sin2D32

2
@114A224A cos~d7D32!#l

41O~l6!.

~74!

The parameterB only appears at orderl6, since there are no
terms of orderl5. For m52 andn53 the following holds:

P~ne→nm!

.
sin2D32

2
l422A sin2D32cos~d7D32!l

51O~l6!.

~75!

A characteristic combination of the oscillation paramet
that appears in the relevant probabilities
Dm21

2 /Dm31
2 sin 2u12 @40#. Neglecting terms of orderl6, we

find for this parameter in our parametrization that

Dm21
2

Dm31
2

sin 2u12

.6l23H ~122l212~11A2!l3! for n51

~122l212l3! for n52

~122l212l3! for n53,

~76!

where again the1 is for normal ordering and the2 for
inverse ordering. The difference between the casesn52 and
n53 appears only at the seventh order inl. The character-
istic parameter is therefore to orderl4 independent of the
precise form of the parametrization.

VI. CONCLUSIONS

The zeroth order approximation for neutrino mixing c
be the bimaximal scheme with two maximal and one z
angle in the mixing matrix. It can be used as a refere
matrix, whose corrections can be described in a similar m
ner as the Wolfenstein parametrization describes correct
to the unit matrix. Indeed, at least one of the angles in n
trino mixing is different from the extreme value correspon
ing to bimaximal mixing, namely the angle describing so
N
;
E

03300
s

o
e
n-
ns
-

-
r

neutrino oscillations. To take this into account, a flexib
parametrization of the neutrino mixing matrix was propos
in which the expansion parameterl.0.2 is introduced to
quantify this deviation from maximal mixing of solar neutr
nos. It can also be used to quantify the possible devia
from zeroUe3 and maximal mixing of atmospheric neutr
nos. The power ofl to usefully describe these two latte
aspects can be adjusted to future data. Depending on
power of l, rather simple forms of the PMNS matrix ar
obtained, where the deviations from the ‘‘bimaximal’’ value
0, 61/2, and61/A2 are implied byl. If Um3 andUe3 are
close to their maximally allowed values,l appears at first
order in all elements ofUPMNS. For values ofuUe3u&1023

and sin22u23*0.95, the corrections become quadratic. T
invariant measure for leptonicCP violation is proportional to
ln, wheren is the power ofl in Ue3. One can interpret thes
corrections to the exact bimaximal mixing scheme in t
same way as corrections to the unit matrix lead to the CK
matrix for the quark sector. Observing further that the ra
of the mass squared differences as measured in experim
is roughly l2 allows us to study the form of the Majoran
neutrino mass matrixmn . Also here, the corrections to th
extreme forms ofmn in case of bimaximal mixing and ex
treme hierarchies are linear or quadratic inl, depending on
the precise values ofUe3 , Um3 or the value of the smalles
mass state. Theeeelement ofmn can be measured in exper
ments probing neutrinoless double beta decay. Here,l ap-
pears as the scale factor of the typical values of^m& in the
normal and inverted hierarchy. It also influences the maxim
value of the uncertainty in the calculations of the nucle
matrix elements allowed to distinguish the normal, invert
or quasidegenerate mass hierarchies. We furthermore c
mented on how our parametrization applies to realistic lo
baseline oscillation experiments. Simple forms of the r
evant oscillation probabilities are obtained. In particular, d
to the small ratio of the two independent mass squared
ferences, effects ofCP violation are suppressed by anoth
two orders ofl.
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