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We propose a flexible and model independent parametrization of the neutrino mixing matrix, which takes
advantage of the fact that there are up to three small quantities in neutrino mixing phenomefioldwy:
deviation from maximal mixing of solar neutrinai,) the mixing matrix element) .3, and(iii) the deviation
from maximal mixing of atmospheric neutrinos. It is possible to quantify those three observations with a
parameter\~0.2, which appears at least linearly in all elements of the mixing matrix. The NmHO
corresponds to exact bimaximal mixing. Present and future experiments can be used to pin down the power of
\ required to usefully describe the observed phenomenology. Observing that the ratio of the two measured
mass squared differences is roughfy allows us to further study the structure of the Majorana mass matrix.

We comment on the implications of this parametrization for neutrinoless double beta decay and on the oscil-
lation probabilities in long-baseline experiments.
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[. INTRODUCTION double beta decay within our parametrization.
The paper is organized as follows: In Sec. Il we describe

Neutrino physics has made impressive progress in receitiie neutrino mixing parameters as implied by current data
years[1]. In particular, the structure of the neutrino mixing and outline the idea of our parametrization. Then, in Sec. Il
matrix has been identified to a reasonable precision. The finave give the form of the mixing matrix for various special
step for the determination of its structure has come from th€ases of the parametrization and analyze in Sec. IV the form
KamLAND experimen{2], which confirmed the large mix- of the neutrino mass matrix. In Sec. V we apply our param-
ing angle solution for the solar neutrino problem, after agetrization to the effective mass as measured in neutrinoless
preference for this parameter space was already implied bgouble beta decay and to long-baseline oscillation experi-
the data of the various solar neutrino experimgBis Very ~ ments. We conclude in Sec. VI.
recently, the SNO salt phase dd#f rejected maximal solar
mixing by more than & [4—-6]. The (almos) maximal mix- Il. QUARK VERSUS LEPTON MIXING
ing of atmospheric neutrinos has been found by the SuperKa-
miokande experimenit7] and confirmed by the K2K Col- The Wolfenstein parametrizatigd 0] of the CKM matrix
laboration[8]. Finally, the presence of a small if not zero uses the fact that the quark mixing is very small, i.e., the
angle was implied by reactor experimefi$s. mixing matrix is approximately the unit matrix with only

In the present paper we wish to propose a parametrizatiosmall corrections to the off-diagonal entries. In terms of mix-
of the neutrino mixing matrix in terms of a small parametering angles, a hierarchy of the forri;,~0.1> 6,3~0.01
N, whose magnitude is interestingly around 0.2, i.e., close t6> 6,3~ 0.001 is observed. This has been used by Wolfenstein
the Wolfenstein parameter used to parametrize the Cabibbde introduce an expansion parametedescribing the mixing
Kobayashi-Maskaw#CKM) matrix [10]. In any parametri- betweenu and s quarks. The observation that-b(u—Db)
zation of the neutrino mixing matrior earlier attempts, see mixing is roughly ongtwo) orders of magnitude suppressed
Refs.[11-13), it is convenient to start from a reference then leads to
matrix and describe deviations from it. Our reference matrix
is the one corresponding to exact bimaximal neutrino mix-

ing. The parametex describes up to three small deviations 1- 57\2 A AN (p—in)
from this mixing scheme; namely, the deviation from maxi-

mal mixing of solar neutrinos, the deviation from zedyg,, Vekm= - 1— })\2 AN2
and the deviation from maximal mixing of atmospheric neu-

trinos. The magnitude of is defined by the observed non- ANS(1—p+izn) —AN?2 1

maximality of solar neutrino mixing4—6] and future preci-

sion experiments can be used to pin down the power tuf 4

usefully describe the other two deviations. In addition, the +OMY). @
ratio of the mass squared differences governing solar and

atmospheric neutrino oscillations is given b, so thatitis Of course, A corresponds to the Cabibbo angle &in
possible to analyze also the structure of the neutrino mass0.22, whereas the other parameters are alja@dt A
matrix (provided neutrinos are Majorana partigled/e also  =0.83, p=0.23, and »=0.36. The latter parameter de-
analyze the oscillation probabilities for long baseline experiscribes theCP violation in the quark sector; all such effects
ments and the effective mass as measured in neutrinolesgve to be proportional tal5]

0556-2821/2004/63)/03300%16)/$22.50 69 033005-1 ©2004 The American Physical Society



WERNER RODEJOHANN PHYSICAL REVIEW 39, 033005 (2004

Jep=IM{V gVepVi VE L= —A%\b5~—-3X10°. 2

Therefore,CP violation in the quark sector is a small effect.

A. Neutrino mixing

The neutrino oscillation data can consistently be described within a 3-neutrino mixing scheme with massive neutrinos, in
which the flavor states, (a=e,u,7) are mixed with the mass stategi=1,2,3) viaUpyns, the unitary Pontecorvo-Maki-
Nagakawa-Sakatdl 6] lepton mixing matrix. It can be parametrized as

C12C13 S12C13 S13

—S1003 C15518'°  C1Los S15518°  SpCrae'’ diag 1€'*,e'#), 3)

Upuns= : ) )
12523~ C12C23515€" > - C12823— S12€23515€ 2 Cp3C15€" 0

where§ is a DiracCP violating phaseq and 8 are possible proved identification criteria and neutrino fluxes, yields a
Majorana CP violating phases[17], c;j=cos#;, and's;  value of (Am3)ge=2.0x10 3 eV? [20].
=sing; . We shall not consider the two Majorana phases in  There are two possible mass orderings, the normal and the
this section. The angles;, and 6,5 control the oscillations of inverse mass ordering:
solar and atmospheric neutrinos, respectively. The afgle
is mainly limited by reactop, experiments: The Dirac phase Normal mass ordering:
S can be measured in long baseline neutrino oscillation ex-
periments(see, e.g., Ref.18)). Amg=Am3<Amd,=Am3,=Am3,
To obtain information about the PMNS matrix one fits
[5,6,19 the results of neutrino experiments to the hypothesisnverse mass ordering:
of neutrino oscillations. The relevant formula for the oscilla-
tion probabilities is Amd =Am3,<—Am3,;=—Am3,=Ama.
%
P(v,—vp) =845~ 2 REX, U, Uk U%Uy _ _ _
I>i Extreme cases are the norrr(aiverse) hierarchy withmg

iAm; L) =Ami>my=AmZ>m; (my=Ami=m;>m;) and the

(4  quasidegenerate mass scheme for whic§=mj=m?
>Am3i. The latter is fulfilled for values of the neutrino
masses larger than 0.2 eV.

Ignoring the phases, the “best-fit PMNS matrix” reads

1—exp

where Am:=m’—m. The Io (30) ranges of recent
analyses read in terms of the parametrization (By.

(0.27)0.35<tarf0,,<0.520.72 (Ref[5]), 084 055 0
-0.39 059 071, (8)

039 -0.59 0.7

(0.45)0.75<tarff,,<1.32.3) (Ref[19]), (5) Upins=

0(0)=<sirf#,3<0.0290.074 (Ref[5]). _
In the pre-SNO salt-phase analysis of Rf9] there was

The best-fit points are given by given the 3r range of the PMNS matrix:
tarf 6;,=0.43 (Ref[5]), tarff3=1 (Ref[19]). (6) 0.73-0.88 0.47-0.67 0-0.23
For 6,5 there is an ambiguity corresponding s /2 [Upung =| 0:17-0.57 0.370.73 0.56-0.84],
— 6,3, i.e., the angle lies on the “light” or “dark side.” 0.20-0.58 0.40-0.75 0.54-0.82
Matter effects in future long-baseline experiments will re- 9

solve this. In terms of the often used parametef2si,

which is blind to this ambiguity, one has at where the phasé was allowed to take arbitrary values.

1o (30)sirf26,;=0.86 (0.84). Next- generation long-baseline experiments will be able to
Regardlng the mass squared differences, the best-fit vaprobe Am% and sin 2,3 to % accuracy{21]. The element

ues are Am3)gr=7.2<10"° eV? [5] and (Am3)gr=2.6 U, can be probed down to the level 1in future long-

x 103 eV? [19]. A recent preliminary analysis of the Su- baseline or reactor experimei22]. Neutrino factorie§23]

perKamiokande collaboration, taking into account, e.g., iman improve these bounds considerably. The solar neutrino
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mixing angle taRdg, will see its error reduced below 10% =UM321/\/§. Solar neutrino mixing is governed by,
by experiments investigating the low energy neutrino fluxes= AN? and the small quantityJ¢; has to be introduced at
from the sun[24]. least the eights power of. Effects due toCP violation in
Currently no information about leptonicP violation ex-  neutrino oscillations are—courtesy of E@0)—proportional
ists. In oscillation experiments one can det€f violating to at leastA!’. An ansatz forUpyys corresponding to

effects[18], which have to be proportional {@5] tarf6,,=0.5, maximal atmospheric mixing, and zeth
has been used in RdflL3]. To describe deviations from it, it
Jep=Im{Uy U, u;;lu;z} has been multiplied with a Wolfenstein-like matrix.

In this article we wish to propose a purely phenomeno-

=}sin 20,,5IN 20,55iN 20,5C080,:5iN & logical and model independent parametrization of the PMNS

8 matrix by using a small “expansion” parametar. For a

p useful analysis in terms of a small parameter one requires
~ —2(1—corrections from 6,5 and small quantities in the mixing matrix. The basic idea is given

4 by the identification of up to three such small numbers in

neutrino mixing phenomenology, namely:
[(i)] the deviation from maximal mixing of solar neutri-
nos,
[(ii)] the small mixing element .3, and
[(iii)] the possible deviation from maximal mixing of at-
mospheric neutrinos.
Those three aspects describe all possible deviations from
As a very useful limit, the bimaximal mixing pattef26], the bimaximal mixing scheme in E¢l1). Observatiori) is
corresponding td#,,= 0,3=m/4 and#,3=0, can be consid- now solid experimental evidence, after inclusion of the SNO
ered. The resulting mixing matrix, ignoring ti&P violating  salt phase datg]; it now holds that taf¥, <1 at more than
phases, reads 50 [4-6]. Regarding observatiofii), only the mentioned
limit of |U43|?<0.07 (at 307) exists. Best-fit points of three
N2 N2 0 flavor analyzes of all neutrino data typically yield very small
1 1 if not vanishing values for this quantity. Finally, atmospheric
b -3 > 12 neutrino mixing must be described by solutions with a best
UpNiNs= . (13) fit corresponding to maximal mixing. This remains true also
12 when the K2K data are included or separately analyeegl,
Ref. [19]). Though exactly maximal mixing and zekd.;
would hint at some underlying symmetry in the lepton sector,
one cannot expect radiative corrections to allow these ex-
The nonzero entries therefore take values Q@.bndi% treme values to persist down to low enem]' ThUS, one
This form of Upyys shall be our reference matrix, whose expects nonextreme values fér; and 6,5. See, e.g., Refs.
deviations are to be described by some small parameter  [27 29| for ways to generate deviations from the bimaximal
some sense, the matri%1) is the analogue to the unit matrix mixing scheme.
in case of quark mixing. Corrections of orderand higher to All in all, the three observationg) to (iii) together with
the unit matrix lead to the CKM matrix as parametrized inthe mixing matriceg8) and (9) lead us to parametrize three
Eg. (1). In the same way, corrections m’;‘mg of order\ elements of the mixing matrix as
and higher can lead to the observed neutrino mixing phe-
nomenology with nonmaximal solar neutrino mixing, pos- \/I
sible nonmaximal atmospheric neutrino mixing and nonzero Uer= 5(1_)\)'
Uq3. One might state that the unit matrix in the quark sector

nonmaximal 6;, and 6,53), (10

where the value#, 44 is the limit for small6,5, maximal 6,
and 6,s.

B. The strategy

and the bimaximal mixing matrix in Eq11) are the zeroth Ugg=AN", (12)
order form of the relevant mixing matrix. We shall comment

on a possible origin of corrections to bimaximal mixing 1 )

(along the lines of Refl27]) in Sec. Ill G. Uus= \[z(l— BAMe'?.

Tries to parametrize the PMNS matrix in analogy to the
CKM matrix suffer in general from the fact that from the 9 For A=0 one would have the bimaximal scheme from Eq
elements ofUpyys only one is small, namely the element (11).! The two Majorana phases are left out for the moment.
|Ues|=0.27. The other eight entries take typically valuesunitarity of Upyys Suffices to calculate the remaining ele-

around 1/2 or 1y2. There are to our knowledge two other ments. The parameters and B are numbers of order one.
approaches to do something similar to the PMNS matrix as

has been done so successfully with the CKM matrix. The———

analysis from Ref[11] usesU¢,= V2x, atmospheric neu-  !Deviation from maximal solar neutrino mixing has also been
trino mixing remains maximal, antl .z is proportional to  analyzed in terms of the parameter1— 2 sirfé;, [30], which
\2. The work [12] chooses the expansion parameder roughly corresponds th: e=\+ O(\2).
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The 6,5 7/2— 6,3 ambiguity reflects in a sign ambiguity of <1.3) one should taken=2, while for tarf6,3=0.9 (or

B. The power ofA in the expressions fdde; (U ,3) can be  =<1.1) the valuem=3 is more useful.

adjusted when more stringent limitsnore precision daja We shall now consider several different cases for the pow-

are available. ers of A in Eq. (12). The considerations from this section
We can take the best-fit value from E@) to calculate indicate that current data and the precision of future experi-

A=0.22, which is remarkably similar to the Wolfenstein pa- ments onf,; and 6,5 limit the realistic values ofm andn

rameter or the sine of the Cabibbo angle. The maximal albetween 1 and 3.

lowed value of|Ug3|?=0.07 corresponds tb),3=AN with

A=1.2. At 1o (30), the range ol lies in IIl. THE MIXING MATRIX
A=(0.080.18-0.280.35. (13 A. Casem=n=1

For the best-fit points of the many available analygék In this case we haveUg=AN and U ,3= Vi

which lie in the range between 0.41 and 0.44 foPtan, A —B\)e'’. It corresponds to rather large deviations from the

is between 0.24 and 0.22. extreme bimaximal values. One “predictt/y; Very close to

If indeed A\=0.22, then form=1 it must hold thatB its current limit and also sf26,; is on the edge of its 3
=0.91 in order to fulfill the requirement $i29,5=0.85. In  range. We identify
the following we shall work with the “best-fit” value ok
=0.22. If the limit on|U4;|? goes below~10"2 one should
take the powen=2 in Eq.(12) in order to keepA of order
one. If[Uqg|2<10 4, thenn=3 is advantageous to choose.

tarf0,=1— 4N+ 2(5+ A2)\%+ O(\3),

SIP2 0,5~ 1—4B2\2+ O(\?),

Analogously, since typically(see below sirf26,;=1 P01 — ABN + 2( A2+ 5B2)\2 4 3
—4B2\?™ one should for values larger than %f,, tart a3 M 2(ATHSBONTH OO,
=0.95 (0.99) use the powen=2 (m=3) in Eq.(12). Val- SirP0,5= A2\ 2. (14)

ues ofm=4 would be required if a precision in $B¥,; of

order 10* was present, which seems improbable unless @he fact that sif26y is blind to thed,z— m/2— 6,3 ambigu-
neutrino factory will be operative. In terms of fahs, ity is reflected in the fact thad appears quadratically in the
which in the future will be more appropriate to use, one will ast expression. The form &fpyys is rather lengthy, and we
find that tal@,3=1—4B\™. Thus, for taRf,3=0.7 (or  shall give it therefore only to ordex:

\f \ﬁ M
E(l‘i‘)\) E(l—)\)

1 i 1 i 1 io 2
Upnns=| —5[1-(1=B=A€’\]  [1+(1+B-Ae))] S(1=BNe? | +O(N?). (15)

1 _ 1 _
Sl B+AEON] - E[1+(1—B+Ae'5)>\] \/§(1+ Br)e”

The precise form to a given order afis easily obtained by however, that actual experiments searching for lept@tc
using the unitarity of the mixing matrix. The corrections qua-violation will not just measurdqp (see Sec. V B

dratic in N are functions ofA and B except forU.,, which
receives only corrections depending Anlt is important to
note that the corrections from are responsible for the de-
viations from the valuest 1/2 of the entries in the lower left For these values we haveli=AN? and U,;
12 block. Finally, the invariant measure 6P violation in = \/§ (1-B\)e'?. We can identify

neutrino oscillations is

B. Casem=1 and n=2

AN tarff1,~1— 4N+ 1002+ O(\3),
JCP=T[1—(2+A2+282))\2]sin5+ O(\%. (16)
SiMP260,5=1—4B%\2+ O(\3),
Noting thatA\ = 6,3, the corrections stemming from; and
nonmaximal 8, ,3—as indicated in Eq.(10—are easily
identified. The larger the deviations from maximej, ,s,
i.e., the largeA andB, the smaller becomek.r. The “pre-
diction” is that CP violating effects are up te-5%. Note, Sirf 6,5=A2\%, (17

tarf O,5=1— 4B\ + 10B2\ %+ O(\°),
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The “predictions” are|U 45|~ 10~ 2 and atmospheric mixing very close to the end of its allowed@nge. The mixing matrix

\fl)\ \ﬁl)\ AN?
§(+) 5(—)

1 1 1 )
—5[1—(1—8))\] 5[1+(1+B))\] \ﬁ(l—B)\)e'a +O(N\?). (18

Upuns reads

Upnmns™

1
z[1—(1+B)>\] ——[1+ 1-B)\ \[(1+B)\ o

It is obtained by removing the terie'? from the PMNS matrix in the case ai=n=1 as given in Eq(15). The corrections
of order\? for the lower left 2 by 2 submatrix are functions AfandB. They are constant fdd,; and only depending oB

for U 5. Effects of CP violation are proportional ta.?,

AN? 2o 2
JCP:T[1—2(1+B )N2]sin 8+ O(\°), (19

and not more than a few %.
C. Casem=2 andn=1

Now our parameters redd.;=AN andU 3= \/g(l— BA?)e'?. The mixing angles are

tarf0,=1— 4N+ 2(5+ A2)\%+ O(\3),
SIMP20,5=1—(A2—2B)2\*+ O(\),

tarf,5=1+ 2(A2—2B)\2+ O\ %),
Sinf6,3=A2\2. (20)

Thus, Ug; is close to its current limit and the deviation from %#,;=1 is not more than a few %. The mixing matrix

Upuns IS given by
\ﬁ L \ﬁ L \
—2( +\) —2( -\) A

1 , 1 , 1 .
—5[1—(1—Ae'5)>\] E[1+(1—Ae'5))\] \/:(1—Bx2)e"9 +0O(N?), (21

Upnns=

1 _
E[17(1+Ae'5)>\] f—[1+(1+Ae'5 \/>(1+B>\2)e'5

which is obtained from Eq(15) by removingB from the lower left 2 by 2 submatrix and by the presence din U,s and
-3- The quadratic corrections are functionsfoindB except forU.,, which only depends oA. The rephasing invariai@P

violation measure is

A\ _
JcpzT[l—(2+A2))\2]S|n5+O()\4) (22

being rather sizable but not exceeding 5%.
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D. Casem=n=2
Now it holdsUg3=AN? andU ,3= JVi(1-BrY)e”,
tarf6,,=1—4x+ 1002+ O(\®),
SiNf26,5~=1—4B%\*+ O()\%),
(23

tarf6,5=1—4BN2+ O(\3),
Sin2013= AZ)\4.

The deviation from sif26,5=1 is not more than a few percent afid,3| is on the level of 102. The mixing matrixU pys is

given by
\/Il+)\—)\2 \ﬁl—k AN?
2( ) 2( )

1 i0\\ 2 1 16\ 2 1 2\@l b 3
Upnns=| —5[1-A+(B+AEN’]  J[1+1—(1-B+Ae)\?] S(1=BA)E? | +O(N®). (24

1 _ 1 _ 1 _
E[l—)\—(B+Ae'§))\2] - E[1+>\—(1+|3—Ae5)>\2] \/;(1-1- BA2)e'?

It is seen that for the lower left 2 by 2 submatrix the linear corrections to the “bimaximal” vatube? are constant and the
guadratic ones are functions AfandB. The rephasing invariar@P violation measure is given by

AN? .
JCP:T(l—ZA )sind+ O(\%), (25)

again on the level of a few percent.

E. The “Wolfenstein case”m=2 and n=3
How could one not be tempted to put the third power of the expansion parameterlndled the second power in the
U,3 element. This would resemble the Wolfenstein parametrization(BglIn this case, i.e.e3=AN® and U= \/g(l
—BA?)e'?, we have

tarf61,=1—4x + 10\2+ O(\3),

SiP2 0,5~ 1— 4B2\*+ O(\Y),

tarf 0,3=1—4BN2+ O(\°), (26)
Sin2013: AZ)\G.
The “prediction” for sirf26,5— 1 is not more than a few percent altdi,;|? is on the level of 10, For the PMNS matrix one
has
1 1
—(1+N—NZ+N3 \/:1—)\ AN®
\[2( ) 2( )
1 ) 1 . 1 .
Upuns=| — E[l—)\+B)\2—(B—Ae'5))\3] E[l-i—)\—(l—B)}\2+(1+B—Ae'5))\3] \/;(1—8)\2)65 +O(\%. (27

1 _ 1 _ 1 _
E[l—)\—B)\2+(B—Ae'5)>\3] - E[H)‘_(H B)A%+(1-B+A€?)\3] \/;(1-1- BA?)el?
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In contrast to the Wolfenstein parametrization, howexeappears linearly in e.g. the ,, element. Also,CP violation is
proportional to the third power of,

AN . .
Jep=——(1-2) )sind+ O(\®), (28)

not exceeding one percent.

F. The remaining cases

The remaining interesting cases ame=3 with n=2 and alsom=n=3. The former case—that it 3= \/g(l
—BA%)e'? andU =AN>—yields

tarf61,=1—4x + 10\2+ O(\3),

SiMP260,,=1—4B%\5+ O(\7),

(29)
tarf6,5=1—4B\3+ O\ %),
Sin2013:A2)\4,
with |Ug3|2~10 3 and sif26,5# 1 with a precision of less than 1%. For the PMNS matrix holds:
1 1
S(LHA=AZ+3 \ﬁ 1-\ AN2
\/;( + +A%) 2( )
1 ) : 1 ) : 1 :
Upuns= —5[1—7\+Ae'5)\2+(B+Ae'5))\3] §[1+)\—(1+Ae'5))\2+(1+ B+A€)\%] \[5(1—&3)@5 +O(\Y).
1 ) ) 1 ) ) 1 )
E[l—)\—Ae'5)\2—(B+Ae'§))\3] —§[1+)\—(1—Ae'5))\2+(1—B—Ae'5)>\3] \[5(1+ BA%)e'?
(30)
As for the casen=n=2 one obtains
AN 2\ i 5
Jep= 7~ (1=2\%)siné+ O(\?), (3D
again at most a few percent.
If m=n=3, i.e.,,U,= \/g(l—B)@)e“S andU.;=AM\3, then it holds for the mixing parameters:
tarf61,=1— 4\ + 10\2+ O(\3),
SiMP260,5=1—4B%\5+ O(\7),
(32

tarf 0,5=1—4BN3+ O\ %),
Sin2013: AZ)\G,

i.e., except for sif;5 to the given order identical for the=3 andn=2 case above. The parametérandB appear in the
mixing matrix only a third order ir:
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1 1
- ZX\21)3 Z(1— AN
\[2(1+)\ ATHN7) \/;(1 N)

1 A 1 . 1 _

U pns= —5[1—)\+(B+Ae'5))\3] §[1+)\—)\2+(1+B—Ae"$))\3] \[5(1—8)\3)e'5 +O(\Y). (33
1 _ 1 _ 1 _
5[1—)\—(8+Ae'5)>\3] —§[1+)\—)\2+(1—B+Ae'5)7\3] \[5(1+B)\3)e'5

There are no quadratic terms in the elemesits andU ;. Finally, CP violation is governed by

ANS .
JCPzT(l—Z)\ )ysin&+ O(\°) (34)

being below one percent.
The remaining casas=3 andn=1 (m=1 andn=3) are obtained from the cases=2 andn=1 (m=1 andn=2) by

settingB=0 (A=0) in the relevant expressions for the mixing parametersJanpd

G. Speculations

One can speculate about the origin of the corrections induced by teems. It is possible to imagine, e.g., that the
bimaximal mixing scheme from Eq11) stems from the diagonalization of the neutrino mass mdthis is possible, e.g.,
when alL.—L ,—L, symmetry is preseri8l]) and any corrections are implied by the unitary matixthat diagonalizes the
charged lepton mass matri27]. Recall that in a basis in which the charged lepton mass matrix is not diagonal the PMNS
matrix is given byU}U, whereU diagonalizes the neutrino mass matrix in that basis. If we define the nmagrixwhich
induces the correction to the bimaximal scheme, we may Wtitgys=U, UBI&X  whereUB&X is given in Eq.(11).2 Then
one can simply solve fod, . Taking for definiteness the exampie=3 andn=2, one finds

1+2A 2A—1
1—\2/2 —NA2+ A2 N2+ A2
242 22
1+2A€° 1+e'? \? —1+€e'? A?
U~ MAy2— )2 - — +— \3 35
= 22 2 4 2 4 |[TON). (35
1-2A —1+e'? N2 1+e? N2
—MA2+ A2 +— -
2./2 2 4 2 4

It is seen that 23 and 32 entries are in general of order oneeutrino mass matrixn, in the basis in which the charged
but reduce to ordek? for CP conservation. Those entries lepton mass matrix is diagonal is given by
can also be of ordex, however, only for the caseas=n diac T

=1 andm=1 with n=2. Thus, if CP is conserved and m,=UpungMy, "V pyins-
atmospheric neutrino mixing is very close to maximal, the
matrix U, takes the unit matrix as the dominant form with
corrections of ordei. The typical “CKM structure” with
very small\® terms is however not necessary.

(36)

Herem%@is a diagonal matrix containing the masses, 5
of the three massive Majorana neutrinos. An immediate con-
sequence of the Majorana nature of the neutrinos is the pres-
ence of two Majorana phases and 8 to which neutrino

IV. THE MAJORANA MASS MATRIX oscillations are insensitivg33]. Information about these
A Basi phases can be obtained by studying processes in which the
- basics total lepton chargé changes by two units, e.g., neutrinoless

Up to now our analysis assumed only the neutrino oscil-
lation explanation of the experimental data. Now we assume
in addition that neutrinos are Majorana particles, which is, ?This is similar to the strategy if.3], where however a different
e.g., a prediction of the see-saw mechanj8@|. Thus, the  mixing matrix to start with was used.
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double beta decayK™— =7 +u"+u™, etc. Realistically, 1
only neutrinoless double beta decay can expected to be mea-
sured[34]. The decay width of this process is sensitive to the
eeelement ofm,,.

An interesting observation is that the ratio of typical best-
fit values of the mass squared differences corresponds ..

roughly to the expansion parameter m,= VAmMz X 2

(Am2) 7.2x10°° 0
R= \/ o~ ~0.19-\. (37)
(Am3)ge 2.0x10°3

0
We took forAmf\ the best-fit point of the preliminary new o 0
analysis of the SuperKamiokande collaboratj@0]. Using (41)
for Ami the 90% confidence limifCL) analysis from[20],
which is (1.3-3.1x 10 % eV?, with the 90% CL range of .
Am? from Ref.[5], we find thatR lies between 0.13 and For the QD spectrum one finds
0.28. This corresponds to a good precision to ther@nge of

NI O
[En

2 same sign

opposite sign.

O%dlﬂ
o

\ as given in Eq(13). In the following we shall assume that ( 1 0 0
RA:)\. and study the resulting structure of the neutrintz) mass 1o sgnm;) = sgn(m,)
matrix. The results do not change much unlass; , Am2 , ' — sgn(my)
and taré,, are on the very edges of their allowed ranges. 1 gnims
Before we perform this analysis, it is useful to study the _
mass matrix again in the limit of exact bimaximal mixing. In 0 N2 1n2
the following, we will neglect theCP violating phases, see, ' 1 1
e.g., Ref[35] for an analysis of the structure of, in case of 2 2 |, sgnimy)=sgrm,)
complex entries. Using Eg$3) and (36), the mass matrix _
reads 1 =sgrims)
2
_ m,=mgX
A B B 0 0 1N2 —-1n2
. b2 p_A 11 sgr(my) =sgr(m,)
m,= 2 2|, (38) 2 2 =sgrms)
A 1
D+ E _
2
here 1 0 O
v sgr(my) =sgr(m,)
0 -1/,
m; +m, m,—m; ms =sgnms)
A= , B= , D=—. (39 - -0
2 242 2 (42)

As mentioned, there are three extreme cases for the mass

, . . : N2 — We can expect that in our parametrization the parameter
hierarchies, the normal hierarcfiNH) with VAM,=ms will appear in the neutrino mass matrix at least linearly in

>my=\Am3>m;=0, the inverse hierarchylH) with  grger to correct the extreme values-@/\/2,+1 and= 1/2.
VAmM3=m,=m;>m;=0, and quasidegenerate neutrinos
(QD) with my=mz=m,=m,. Depending on the relative
signs of the mass states, several extreme forms of the mass
matrix result. In case of NH, one finds far ,=0: In case of the normal hierarchy we have

B. Normal hierarchy

/Ami 0 0O my=\VAmMZ, my=+VAmA\ andm;=D yAmir2"', 1=0.

m,= > -1 1), (40 (43
1

The expression fom; with D=0O(1) expresses our lack of
i.e., a mass matrix with a leadingr block. Regarding IH, its knowledge. A similar ansatz for the structure rof in
the third massn; can safely be neglected. The formmf,  case of a normal hierarchical mass scheme has been made in
then depends on the relative sign of the two mass stajes Ref. [11]. For m=n=1=1 and all mass states positive the
andm,: mass matrix looks like
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N [(1+2A)N2]N  [(2A—1)/\2]\ will—to order N>—lead to the disappearance Bfin the
1 formula form, . SettingU .3=A\? leads to a mass matrix in
\/Ami 1+(——23) A 1-N/2 which to order\? the parameteA does not appear in ther
m,= > 2 , submatrix as well as in theeentry. It is obtained by remov-
1 ing A from the last equation in the indicated entries. The
1+<§+ZB) A matrix forU 3= \/§(1—B>\2) butUg3=AN is given by Eq.

(44) (44) by removingB from the first row and from the linear

] ) o ) terms of theuu and 77 entries. The “Wolfenstein-like” pa-
neglecting terms of ordegP(\ ). The characteristic “leading

w7 block” structure ofm, from Eq. (40) is identified. Cor- ~rametrization withUez=A\® and U 3= \/;(1— BA?%) to-
rections at ordek depend orA in theerow of m, and onB  gether withm;=D yA mAz)\3 leads to the particularly simple
for the up and 77 entries. Higher powers ok in m;  form

Jam? A—2\2 M2 YN

A

m,=— : 1+ N2+ (1—2B)A2 1—N/2—\?2 +O(N\3). (45)
1+N/2+(1+2B)A?

The 0,3~ 7/2— 6,3 ambiguity, which translates into a sign =2 andn=1 or m=n=1, then the entries are of ord&r
ambiguity ofB, is seen to have origin in the size of tjg For all other cases under consideration, these terms are of
and 7 entries, e.g., for all masses positive afyd> /4 the  order\?. The remaining independent entriesnof are order

77 entry is larger. The structure of the mass matrix does notne. Ifm; andm, have opposite relative signs, them,, and
depend on the exactness of the relatioa\ or the relative m,, are of order one and the remaining entriesnof are
signs of the mass states. When sgp(=—sgn(m,)= linear in A, independent ofm and n. One finds form=n
—sgn(mg), then the mass matrix looks as above. For=1 that for same signs of; andm,

sgn(m;) = —sgn(my) =sgn(mg) and sgnf) =sgn(m,)=

—sgn(m;) one has to replaceA with —A, B with —B and

the 1 in theu block with —1. If we further choos&J 5 1 —(A/\/E)x —(A/\/E)x
= \/g(l—B)ﬁ)ei‘s, then we obtain a mass matrix which up 1 1
to order\? the parameteré, B, andD do not appear at all. el ~+BA — - +BA 2
It is obtained by setting in the last equatiBr=0. m, =AM, 2 2 +O(%),
1
——BA\
2
C. Inverse hierarchy (47)

In this case we have

while for opposite signs

my=\VAMZ, m=\VAmMi(1-1%/2),
2v  —1n2—BI2n 12— (BIN2)A

mz=DVAmMINZ*!, 1=0. (46) m,=AmZ| . (A—1)\ N

The dependence on the power)ofin m; is almost vanish- —(A+DIn

ing. The form ofm, depends strongly on the signs of the +0O(\?). (48)

massesn; andm,. For identical relative signs betweem,

andm,, theeu ander entries are suppressed hyor \?, The parametek appears at least linearly to correct the ex-

depending on the powers af in U3 or Ug. If, e.g.,m  treme “bimaximal” mass matrices from E¢41). For same
signs,A appears in the row andB in the w7 sector, whereas
for opposite signs it is vice versa. Taking as another example

3The convention here and in the following will be such that the again the “Wolfenstein-like” casen=2 andn=3 one finds
sign of theeeentry is positive. to order\?:
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1
( 1- 2 (U222 —(Ua2)\2

m, = VAmM3 X (49
20— —\2  —1N2+[(9—4B)/AV2]N2  1N2—[(9+4B)/42]\2
—A+ =2 A——=\2 opposite signs.
8 8
—N+=\?
\ 8
|
As usual,B will not appear for higher orders of in U 3, ms=my, My=am,, m;=bmy,
leading to a mass matrix that is at ordeéronly a function of (50)
\. It is again obtained by settinB=0 in the last equation. Ami

where a=1—17, b=1-7(1+\?), 7= 5"
2mg

D. Quasidegenerate neutrinos .
Q g The common mass scale is denotedrby. These expres-

For quasidegenerate neutrinos, ilg=m5=mi>Am3,  sions for the masses are valid to orderSince the spectrum
there is another small quantity introduced, namely the ratids quasidegenerate fomy;=0.2 eV, we can estimatep
of the common mass scame, with Ami. For simplicity we ~ <0.04 eV, therefore.?> 7.
work with the normal mass ordering. In this case we can First, we take the case that all mass states have the same
express the three mass states as relative sign. Fom=n=1 we find:

1-7  (A2)pn  (AI2);
(M) =mg : 1-nl2—By\ nl2 +O(9\?). (51
1—-nl2+Bya

Taking the casen=2 andn=3 we have

1—n— 7\%2 IN2I2+[2 — 2242
(M) 1++=Mg . 1— 9/2—[(1+4B)/4] y\2 nl2+ p\?/4 +0(7\3). (52)
1— p/2+[(4B—1)/4]yA?

It is seen that forp=0 the mass matrix is proportional to the unit matrix, irrespectiven@indn. The corrections to the zero
values of the extreme bimaximal form from E42) are very small.

If sgn(m;) = —sgn(m,)=sgn(mng), then the dependence onis not so important. Neglecting with respect to terms of
order 1, we find fom=n=1:

2N —1N2+[(A=B)/\2In  1\2+[(A—B)/\2]\

1 1
—+(A-B-1)\ —+\
> ) 2 +0(n,\?) (53

(my);_4y=mg
! A+1—B)\
R — + —
> ( )
and form=2, n=3:
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2N=A2 —(1- )2+ [(2-B)/N2]\2  (1— p)/\2—[(B+2)/\[2]\2

1 1 1 1
: ——\+{=—B|\? —+N—=\? 3
(m,),_,=mg 2 2 2 2 +O(g\,\°). (54
1
——\+|{=+B|\?
2

For the case sgn{;) = —sgn(m,) = —sgn(ms) one finds form=n=1

20 —1\2—[(A+B)/I\N2IN  1\2—[(A+B)/\2]n

1 1
— 5+ (A+B-1) — =+

(m,);__=my 2 +0(7,\?) (55)

1
5 (A+BTI)

and form=2, n=3:

2x—\% —(1-p)/\2+[(2-B)/\2]\2  (1— m)/\2—[(B+2)/\2]\?

1 1 1 1
———\+|=+BJ|\? ——+A—=\? 3
(m,),__=mg 2 2 2 2 +O( 7\, N°). (56)
1
— -\t ——B))\z
2

These two last cases look very similar. Finally, the situation for sgh€ sgn(m,) = —sgn(mz) looks simpler: e.g., when
m=n=1:
1-2A22  —\2AN+\2ABN2  —\2AN—\2AB\?
(M) 4_=mg : 2BA—B2\2 —1+(A2+2BHN? | +O(n,\3). (57)
— 2B\ +(2A%+ B?)\?

The corrections to the entry (D) that is present in the extreme bimaximal form from E4R) are at least quadrati¢inear).
For m=2 andn=3 the following holds:

1
==\ (1/2y2) m\? —(1/2\2) ;\2
m _=m 1 +O(\°). 58
(M) + 0 —g+[B(2—77)—7;/4])\2 — 14 gl2+ )2 o9 58)
— pl2—[B(2— 7) + pl4]\?
[
E. Summary for the mass matrix For the inverse hierarchy, the dependenceDois highly

suppressed. For identical signs of the two heaviest mass

Looking at the cases considered in the last subsectionstates, the correction to theentry, whose extreme value in
the following summarizing statements can be made: case of bimaximal mixing igin units of Am3) 1, is at least

Roughly, for|U.g/~0.01 and sif26,;<0.9, corrections ordern?. The remaining elements receive at least linear cor-
to the extreme forms of the mass matrices in E48)—(42) rections.A appears at leading order in tegow andB in the
are linear in\. When|U5|=<10"2 and sirf26,;=0.95, the w7 sector. Opposite signs of the two leading mass states lead
corrections become quadratic. to linear corrections to the entries and the appearanéeimof

For the normal hierarchy, corrections to the exact bimaxithe w7 sector and in the e row.
mal form are at least order. To lowest order, the parameter  In case of a quasidegenerate spectrum and identical signs
A appears in thee row of m, and B in the uu and 77 of the masses, the corrections to the unit matrix are at least
elements. The numb&, parametrizing the unknown lightest quadratical. The cases sgm{) = —sgn(m,)=sgn(mz) and
mass state, appears in all entries. There is basically no degn({m;)=—sgn(m,)=—sgn(m) look very similar. For
pendence on the relative signs of the mass states. sgn(m,) =sgn(m,) = —sgn(mz) there are only quadratic cor-
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rections to theeeand w7 entries. Y
The u7 entry is special in our parametrization since the (my~— AmiS0.00S ev. (62
parameteré\ andB do typically only appear there for rather 2
large deviations from zerdJ.; and from maximal atmo-
spheric neutrino mixing. 2. Inverse hierarchy
If we would consider the inverse ordering in the QD mass
spectrum, one has to change E&O) to m,=mg, m;
=am, andmg=bm,. Only simple sign changes férand/or

From Egs.(46) and (59) one sees that in the expression
for (m) the dependence g practically vanishes. The result

X . f =A\Ni
B in some elements ofm, would be the result. The main Or Ues=AN Is
difference would be for the case sgm)=sgn(m,)
=sgn(mg), where the corrections to thex ander elements 1
are now ordery and not justyx or 7\ (m)=Amz \/c2+ Z[?—4A2—(9+4A2)02a])\2
V. APPLICATIONS OO, 63)

It is surely useful to study formulas that are obtained by
expansions in small parameters or by certain simplification%gher powers of in U

within our parametrization. We shall perform this analysisy,ig equation. The maximal and minimal values are obtained

now for the effective mass as measurable in neutrinole%hena takes the values 0 and/2, respectively. Thus
double beta decay and the oscillation probabilities for long- ' ' ’

baseline neutrino oscillations.

N2 N2
A. Neutrinoless double beta decay 2\AMEA=(m)= VAmj

We shall analyze now within our parametrization the form
of the ee element ofm,, which is denoted bym). In a . 3
given mass scheme or hierarchy one can considerably sifyP to corrections o(X*). For no extreme values af, the
plify the expression fofm) [36]. We first note that since ~ Scale of the effective mass is

3 lead to the disappearance Afin

1

1- A2+Z A2, (64

: (59 (my~Am3=0.05 eV. (65

(my=|2> muZ

the results are independent of the powenah U 5. . o . )
Comparing this with the value gim) in the normal hierar-

1. Normal hierarchy chy in Eg. (62), one sees that the expansion paramater

) shows up as the ratio of the typical values(aof) in the
With the help of Eqs(43) and(59) we can evaluate the inverted and normal hierarchy. It is known that extraction of

effective mass in cas;e of the normal hierarchy. We find forinformation from a measurement oivB3 suffers from a
Ug=AN andmz=DA~:

large uncertainty stemming from the calculation of the
nuclear matrix elements. This uncertainty is a number of
+O(\?), order one[37]. It is therefore an important question to ask
and an even more important one to answer whether future 0
(60 vBB experiments can distinguidl36,38 between the nor-
mal and inverted mass hierarchy. Let us parametrize the
nuclear matrix element uncertainty with a factoas done in
Ref. [39]. In order to distinguish the normal from the in-
verted hierarchy it must hold that the maximal value of
(m) in the normal hierarchy times the uncertairtyhas to
be smaller than the minimal value ¢f) in the inverted

Amz
(Mm=—

D
A— 2x2< 1—§c2a—A2c2(aﬁ))

wherec,,=cos 2v and so on. Terms of ord&r® depend on
A,D and the two Majorana phases. Choosing=D\? or
higher powers of\ leads to the disappearance Bfin the
formula. Formz=D\? and higher orders ok in U, i.e.,
n=2, the following holds:

[Am2 D hierarchy. Therefore, choosing.;=AMN and smallm; we
(m)= . A )\_2)\2(1_502&) find from Eqgs.(60) and (64)
A3 E<A[1+2N (1A% ]+O(N3). (66)

+O\Y.

+ l4(1+2Dcz0)+ D*(1-cy,)]

(61) Needless to say vanishes for smaller values bf.;. If that
is the case, theg=<6, which is a very realistic number.
The formulas formz=DA\?® correspond to settin?=0 in  Thus, with our expansion parametar=0.2 and |U|?
this last equation. Roughly, we can estimate the effectives0.01 it is easily possible to distinguish between the normal
mass in the normal hierarchy as and inverted mass hierarchy.
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3. Quasidegenerate neutrinos
The formulas for the mass states are given in @8). Ignoring » and takingU .;= A\ one finds
(m)

= N2+ [2— A% (2+A2)Cp,+ 2A%C,Co 5N 2+ O(ND). (67)
0

Interesting cases correspond@® conservation, which are obtained by setting3 to 7/2,7. They read up ta@( A% \5):

1-7, a=p=0 < sgnm)=sgr(m;)=sgnm)
<m>~ 2\, 2a=pB=m < sgnmy) = —sgnm,)=sgnms) 69)
mo | 2X, a=p=ml2 sgnim;) = —sgnmy) = —sgnmy)
1-7=2A°\?, a=2B=m < sgnm;)=sgr(m,)=—sgrms).
|
As usual, forU,;=AN2 and above, the dependence An AP=P(vo—v,)—P(ve—1,)
(and thus also orB) drops and appears only to ordef. e €
Noting that the minimal value ofm) is 2xm,, we can in- CAm3L AmEL  AmiL
vestigate if future experiments can distinguish between the =8Jcp| sin T =
normal and quasidegenerate mass hieraf88y. In analogy
to the discussion leading to E¢66), it follows from Egs. (72)

(60) and(68)

which, usingAm3,=Am3,—Am3,, can easily be shown to
> vanish for two masses being equal. The invaridgt was
£<2 \[[1+ 20 (1+A?)] (69)  defined in Eq(10). SinceAm3,/Am3,= =2, where “+'is

for the case of normal ordering and * for inverse ordering,
we can expand the last equation:

which will be easily possible. It is a bit more tricky to dis-

tinguish between the quasidegenerate and the inverted hier- Am L

. . . A
archies. The requirement f@ris Ap:¢4\]CP)\ — = Sir?

\F
I
7

AmA

+0ON\3%. (72

1+

A2+ 3)7\2}, (70 Thus, theCP violating effects in realistic experiments are
4 suppressed by another two orders fin addition to the
suppression present iyp. If nis the power of\ in Ugg,

; ‘2 +
which is suppressed roughly by a factowith respect to the then the total suppression xS ™",

limit on ¢ in order to distinguish the normal and quasidegen-, ©One can also consider the bare oscillation probability for
the “golden channel,” which is given by.— v, oscilla-

erate mass hierarchy. Also in this aspect the parameter ©

shows up as a scaling factor. tions. Usm_g the form oP(ye—>_v ) as glve_n e.g., in Ref.
[22], one finds for the oscillation probability in case wf
=n=1:

B. Long baseline oscillation experiments
There is another field of neutrino physics in which expan-  P(ve— v,,)=2A%siPAz,\2

sion in small parameters gives insight in the physics involved i B 3

and which is therefore useful to study within our parametri- —2ASinPA 5 2AB+ €08 6F Agy) I\

zation. These are the oscillation probabilities for long- +OOA). (73)

baseline experimentsl8]. The determination of some cur-

rently unknown neutrino parameters, namelys, the sign

of AmZ, and the Dirac-likeCP violating phase, are the pur- Here the—"sign is for neutrinos and the- for antineutrinos.
pose of such experiments. There are helpful expansions oie definedA s,= (m3—m3)L/4E. The first term proportional
the relevant oscillation probabilities in vacuu#0]. Here, to \? is the term that probes .; whereas the second term
we do not consider matter effects since they will not changeroportional tox® is the one probing th€P phases.

our conclusions. Let us first comment GR violation. Using As another example, assume=m=2. Then, the terms
Eq. (4), one finds for the difference of the oscillation prob- problng Uz and CP violation will both be proportional to
abilities: A%
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P(ve—v,) neutrino oscillations. To take this into account, a flexible
A parametrization of the neutrino mixing matrix was proposed
SIN"A3z 2 _ 4 6 in which the expansion parametgr=0.2 is introduced to
= + - + . : . L ; = :
2 [1+4A%=4ACOL5F Azl N+ O quantify this deviation from maximal mixing of solar neutri-

nos. It can also be used to quantify the possible deviation
from zeroU.; and maximal mixing of atmospheric neutri-
nos. The power ol to usefully describe these two latter
aspects can be adjusted to future data. Depending on the
power of A, rather simple forms of the PMNS matrix are

(74

The parameteB only appears at ordex®, since there are no
terms of orden®. Form=2 andn=3 the following holds:

P(ve—v,) obtained, where the deviations from the “bimaximal” values
. 0, +1/2, and=1/y/2 are implied byx. If U 5 andU; are
SinfAz, _ : , ~ .
~ T)\ — 2A SirPA 3,008 6F A3) N>+ O(N8). close to their maximally allowed values, appears at first

order in all elements o) pyns. For values offUgs|<1072

and sirf26,5=0.95, the corrections become quadratic. The
invariant measure for leptoniP violation is proportional to

A characteristic combination of the oscillation parameters\", wheren is the power of\ in U,3;. One can interpret these
that appears in the relevant probabilities iscorrections to the exact bimaximal mixing scheme in the
Am3,/Amj;sin 26, [40]. Neglecting terms of ordex®, we  same way as corrections to the unit matrix lead to the CKM
find for this parameter in our parametrization that matrix for the quark sector. Observing further that the ratio
of the mass squared differences as measured in experiments
is roughly A2 allows us to study the form of the Majorana
neutrino mass matrixn, . Also here, the corrections to the
extreme forms ofm, in case of bimaximal mixing and ex-
treme hierarchies are linear or quadraticindepending on
the precise values dfi 3, U3 or the value of the smallest
mass state. Theeelement ofm, can be measured in experi-
ments probing neutrinoless double beta decay. Herap-
pears as the scale factor of the typical valuegrof in the
normal and inverted hierarchy. It also influences the maximal
value of the uncertainty in the calculations of the nuclear
matrix elements allowed to distinguish the normal, inverted,
or quasidegenerate mass hierarchies. We furthermore com-
mented on how our parametrization applies to realistic long-
baseline oscillation experiments. Simple forms of the rel-
evant oscillation probabilities are obtained. In particular, due
to the small ratio of the two independent mass squared dif-
ferences, effects oEP violation are suppressed by another

) . ) o two orders of\.
The zeroth order approximation for neutrino mixing can

be the bimaximal scheme with two maximal and one zero
angle in the mixing matrix. It can be used as a reference
matrix, whose corrections can be described in a similar man-
ner as the Wolfenstein parametrization describes corrections | thank S.T. Petcov for encouragement and helpful com-
to the unit matrix. Indeed, at least one of the angles in neuments and am grateful to P.H. Frampton for discussions. This
trino mixing is different from the extreme value correspond-work was supported by the EC network HPRN-CT-2000-

ing to bimaximal mixing, namely the angle describing solar00152.

(79

2
Amg,
— sin26;,
Amg,

(1—-2\%+2(1+A?)N%) forn=1
(1—2N%+2)\%)

(1—2\2+2)\%)

=+ \2X for n=2
for n=3,

(76)
where again thet+ is for normal ordering and the- for
inverse ordering. The difference between the case2 and
n=3 appears only at the seventh ordeninThe character-

istic parameter is therefore to ordef independent of the
precise form of the parametrization.

VI. CONCLUSIONS
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