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Kinematical bound in asymptotically translationally invariant space-times
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We present positive energy theorems in asymptotically translationally invariant space-times which can be
applicable to black strings and charged branes. We also address the bound property of the tension and charge
of branes.
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I. INTRODUCTION main parts. In Sec. Il, we present the positive mass theorem

Asymptotic flatness is a useful working assumption inin higher dimensions with the horizon. Then we prove the
studying four-dimensional general relativity, in particular in positive energy and tension theorems for charged branes in
the field of black hole physics. Of course, this assumption isSec. Ill. Finally we give a discussion in Sec. IV. In the Ap-
well justified for the gravitational phenomena of isolated sys-Pendix we give formulas for the calculation of the boundary
tems within the Hubble horizon of our Universe. Within the term at horizon.
framework of string theory, on the other hand, we have to
take account of nonasymptotlc_ally flat _space-umes, becausEl ASYMPTOTICALLY TRANSLATIONALLY INVARIANT
the vacuum of the theory is considered to be four- SPACE-TIMES
dimensional space-time times compact extra dimensions at
low energy to realize our apparently four-dimensional uni-  First of all, we must specify asymptotically translationally
verse. For example, we need more insight into the blacknvariant space-times. The metric of full space-times is given
strings of branes, which are nonasymptotically flat solutionsy
typically arising in supergravity theories, to extract some in-
forr_natlon on quantum gravity or the unified theory of inter- ds?=g,, dx“dx". (1)
actions. m

The stability of the Schwarzschild space-time is one of
fundamental properties of black holes in asymptotically flatLet ned; andz=d,: to be timelike and spacelike unit vector
space-time. However, this is not the case for the black stringfields such thah*z,=0. In addition,r «<d,2 to be spacelike

or t_)ranes; nar’_ngly, they are unstable under the linear pert“b‘erpendicular unit normal vector fields t and z, FM”M
bations of sufficiently long wave length along the brahg 4z 0. We assume that becomes proportional to the
We have no definitive answer concerning the end point of o . . S
this Gregory-Laflamme instability, but there are several posg_symptotchally translalmozal Killing vector toward the |n_f|n|ty
sibilities; the final state might be naked singularities joiningdirected tar. x#, x', x', x andx* spans the full space-times
array of black holes, or an inhomogeneous black string o/ (n—1)-dimensional spacelike hypersurfadg normal
brane[2], and there also is a possibility that there is not© N the (h—1)-dimensional timelike hypersurfacé, nor-
equilibrium state. Since the subject concerns nonasymptotMal toz, (n—2)-dimensional spacelike submanifdi}, or-
cally flat inhomogeneous space-time, the analysis will béhogonal ton andz, and the (- 3)-dimensional spacelike
quite difficult. We would ultimately need a dynamical analy- submanifoldV,;, orthogonal ton, z, andr. Each induced
sis directly solving the Einstein equati¢8,4]. However, it  metricies can be written as
might be also useful to have a kinematical bound irrelevant
for the details of the underlying theory for such nonasymp-
totically flat space-times. Such a kinematical bound might be
also useful to restrict the form of the metric like the unique-
ness theorem in asymptotically flat space-tif&$)]. h,de'dez(gw—zﬂz,,)dx“dx”, 3)
In this Brief Report, utilizing the spinorial approach, we
present bound theorems(positive mass theorem,

gijdxX'dx =(g,,+n,n,)dx*dx”, 2

AAqvB v
Bogomol'nyi-Prasad-SommerfieldBPS bound, positive PasdX dX®=(g,,+n,n,—2,z,)dx*dx", 4)
tension theoremin asymptotically translationally invariant
space-times. Recently Traschen discussed the positive mass sabdxadxb=(gw+nMnV—szV—FMFV)dx“dx”. )

theorem in such space-times without horizon and gauge

fields [7]. In this Brief Report we will extend Traschen’s

work to cases with horizon in higher dimensions, which is Thenu,»=0,12...,n, i=12,...n,1=0,23...n,

relevant for black string or brane space-times, and includé&=2,3,...n, anda=34, ... n (see Fig. 1

the gauge fields in four dimensions. We assume that the submanifoldvy; is a
The rest of the present Brief Report is composed of two(n—2)-dimensional asymptotically Euclid space.
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V.EM'=5 Gl 4V, e Ve, ®

M wheree= €' 'ya. According to Ref[8], a surface integral of
Xo=t Nester tensor at spatial infinity ovary, gives the ADM
energy-momentum vectd?*, that is,

1
— pM — mv
PrE,= 1o fvng ds,, . (9)

. Integrating Eq.(8) over spacelike manifold/y, and using
—> :5;{ Stokes’s theorem and E¢), we obtain the formula

D A R .02 02
/ f - da)zE - f H d %ZE
V02 V02

= f dVo(87TEE N, +2|Vael?), (10

where é#= — ey*e. Following the proof in Ref[8], we re-
quire that spinok approaches a constant spiregrat infinity
Vgo. In the above we used the Einstein equatiGn,
FIG. 1. Full space-timeM can be foliated by spacelike hyper- — 87 1« The first and second terms on the left-hand side
surfacesV,, normal to the timelike vector field= s, and timelike ~ &€ boundary terms at infinity and the horizon. The first term
hypersurfaces/; normal to the spacelike vector fieltg,.. We ~ 9ives us the gravitational energy. Thus, what we must focus
can define coordinate {x}=(X;,X,,...X,) in Vo, {x'}  0nis the boundary term at the horizon. This is a nontrivial
= (X0, X2, Xn) in VvV, and  {X*}=(Xy,...X,) in issue and the point here. We modify the proof in asymptoti-
(n—2)-dimensional spacelike surfadé, normal to both vector cally flat space-times with the horizg8]. The detail of the
fieldsn andz Furthermore, we set coordinafe®} = (x5,...,x,) i~ computation is described in the Appendix. As a result, it
the (n—3)-dimensional spacelike submanifoly;, normal ton,z becomes
andr«d,e.

.1 L.
.. 02_ — TV — 20l ) e+

IIl. POSITIVE MASS THEOREM FOR BLACK STRING fvgzdsozE 2f dSpzle'(Va— 7y Vi)etc.cl
In this section, we present the positive energy theorem in o

asymptotically translanonall_y invariant space-time W|.th hori- = %j dSse— 2 (K—K33+k)y%9%€

zon. See Ref.7] for cases without a horizon. If one thinks of

the gravitational energy as evaluated in slices which have

appropriate asymptotic boundaries and a regular center, it is

not necessary to take the event horizon as the boundary term.

—v?*y'Die— y?y2d,e+ 3 K;372y%€]+c.c.

However, the proof independent of the inner structure of the - %f dSsse’T— L (K—K33+K) 12 e+ ]
horizon is useful.
mLet us consider a spinarsatisfying a Dirac-type equation +e.c. (11)
where
Y Vae=0. (6)

Note that we usually supposgV.e=0 for the spinor to y=—7"y'Die~ y’ydaet 1 Kzy*y e (12)
prove the original positive energy theor¢8]. In asymptoti-
cally translationally invariant space-times, it is likely that the
existence of solutions to Ed6), which approaches a con- " o A ]
stant spinore,, is guaranteed rather than the solution to/ij =0 %nj @ndKap=S,Dcry,, respectively.
y'V.e=0. This is because the space spanned by coordinate At the horizon we impose
{xA} is asymptotically flat and we can expect almost the 5 5
same proof of the existence of solutions as that in asymptoti- Yy e—e (13
cally flat space-times.

Let us define the Nester tensy,, by

D;, D, and d, are covariant derivative with respect to
dij» Pag ands,y,, respectivelyK;; andk,, are defined by

and usef, «K—Kj5+k=0 at the apparent horizom., is
the expansion of the outgoing null geodesic congruence.

Erv=1 (ey*?V, e+c.C): 7 Then we can see the bour-1dary term at t.heAhoArlzon vanishes.
We used the fact thap anti-commutes withy?y° and then
we obtain the formula the contribution ofy to Eq. (11) disappears. Finally
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Erone ——— [ ds;E® Tu(F)=(4m) 1(F,Fr— §0,F). (22
2|
8leol” Ve Integrating over the spacelike hypersurface, the result is

_87T|6 |2f dVo(BrT4E, +2|Vael®). (14 8mellEaon—i7(Qe~ 75Qm)leq

. . . = ds, E*Y
Together with the dominant energy condition, we can see L;;Z wy
that Eapy IS positive definite.

Let us discuss th&1 =0 cases. In this case, _ fv dE[Gi‘f”nMJrZI@AeIZ—Zi?(je — ysjhyen,,
0

Vie=0 (15 —8aT,,(F)én"]
and then - _
= | dS[8wTEE N, +2|Vae|?—2ie(j5— ysik)en,],
Vo
(MRAB.,Y* €=0. (16) 23
From the above we see that where
R,,0p=0. (17 ! . ! Euv
prap Qfgf ds,, F*, Qm=§f ds,,F* (29

This means that the space-time with zero energy is flat. Even

for asymptotically translationally invariant space-times, the jE=V,F"#, jgﬁ:VVT: VE, (25
ground state is flat space-time.

From first line to the second one, we used the Einstein equa-
tion G,,=8m(T,,(F)+T,,). Using the above a dominant

V. BOUND THEOREMS FOR CHARGED BRANES energy condition, we can obtain the BPS bound

IN FOUR DIMENSIONS

A. Positive energy theorem for charged brane Eaom= VQ2+ Q3. (26)

In this subsection, we extend Traschen’s study to cases
with gauge field in four dimensions. It is easy to extend toAs the Inequallty is Saturated?Ae 0 holds. In general,
hlgher dimensions fO”OWlng Re[lO] For this we define the Voe-;&o andvlé-;éo_ S|nceVA6 can be regarded as a infini-
following covariant tensor motivated by A2 supergravity  tesimal local supersymmetric transformation of the gravitino,
[11]: it is well-known fact that a part of supersymmetry is broken.
i We note that the current BPS bound theorem is slightly
V,e=V,e+ ZFHB)’“BV;LE- (19  different from that given in Ref.10]. Therein the term cor-
responding tdvVe in Egs.(19) and(23) is Vie.

Let us consider a spinar satisfying B. Positive tension theorem for charged branes

R Let discuss the issue of the positive tension thedréhor
Y AVae=0. (19 BPS bound 13]. As discussed in Ref7], we can expect the
tension of a brane is a conserved charge associated with an
asymptotic spatial translational Killing vector parallel to the
brane, as just the ADM energy is one associated with an
_ - _ ~ asymptotic time translational Killing vector. In analogy with
EF'= 7 (ey*"*V,e+c.c)=EF"—ie(F*" — ysF*")e the construction of positive energy theorem, the Nester ten-

(200 sor is defined by

The Nester tensor is defined by

and we obtain the following formula: Brr= 1 (ey*"V e+c.c)

3 (ey""*V,e+c.c)— 5 [ie(F*— ysF")e+c.cl

VMIAE’“’Z 3 G”M§“+ %Mey’“’“%ae— i:(VMF’“’— ySVVﬁ"”)e

1
_ = 1 (ey*"*V, e+c.c)=BH" (27)
+A4meTH"(F)y, e (21) :
~ where’e=e'y!. The integration over time is taken to be
whereF“V=(1/2)e“V“3FaB and finite interval At. We should note that time direction in the
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construction of the previous theorem is replaced withdi- Vie=— yéy‘:"Vée

rection. In a way similar to that in Sec. lll, we can easily o o
show == 7" (Dzet+ 1 K57 Y€
87| €o|?= dtolsz\BA2 . . .
At ==Y’y (Dae+ 3 Jaay v e+ 3 Kaiv'y%)
1
_ 2 tot~ A A PPN A A
= EJ dV;(2|Vae|*— 87T i) (28 = — 2 yA(dse+ LkapyPrlet  IsirPyte
e f 0
whereé#="ey*e and T\, =T,,(F)+T,,. We followed the + 3Kz %)
Traschen’s definition of the tension. See R¢%12,13 for o
the issue of the definitior). . =—v ?,ad e— tke— L I:av2 vy yle
Note that the gauge field does not contribute to the ten- o
sion. Thus the BPS bound cannot be proven although it has — K522y e (A1)

been argued in Ref13]. To prove that in general cases, we
must improve the proof nontrivially.
whereJ g is defined byJag=pSD 7z .
V. SUMMARY Let us define a scalar field by

In this paper we proved several bound theorems in as- o o .
ymptotically translationally invariant space-times. More pre-  ¢:=€'J;3y°y*y v e= — €' 3337212y e+ €132y %y e
cisely we could prove the positive energy theorem for space- (A2)
times with an event horizon such as black strings. We also
proved a positive energy and tension theorem for charged |t is easy to see thap is pure imaginalg$* = — ¢. Then
brane configurations. For a current definition of the tension,
the gauge field does not contribute to the tension.

The positive energy theorem for black string space-times ~Re(€'Vze)=— €'y’ dze— S K|e|2+ EKzzeTyyle
might be used to gain insight into the issue of the final fate. S
We might be able to prove a sort of uniqueness theorem -3 KZGTVZYOE- (A3)
using the positive energy theorem. Indeed, in asymptotically
flat space-times, the uniqueness theorem for static black In the same way, we obtain the following formula for the
holes can be proved in this lirié]. second term of the integrand in the right-hand side in the first

line of Eq. (11):

APPENDIX: BOUNDARY TERM AT THE HORIZON

I T L PRV I
Here we present some useful formulas. Using the Dirac- Re(e'y"y Vie)=Re ey’ y (Diet 3 Kijy'ye)]

Witten equationV;e, which appeared as the first term in the t.2.1M- 1pean t.2.0

. AN e ST =R Dje]+ 5 KjiR .

integrand of the right-hand side in the first line of Egd), gy yDielt 2 KiiRd €'y y el

can be written as (A4)
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