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Kinematical bound in asymptotically translationally invariant space-times
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We present positive energy theorems in asymptotically translationally invariant space-times which can be
applicable to black strings and charged branes. We also address the bound property of the tension and charge
of branes.
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I. INTRODUCTION

Asymptotic flatness is a useful working assumption
studying four-dimensional general relativity, in particular
the field of black hole physics. Of course, this assumption
well justified for the gravitational phenomena of isolated s
tems within the Hubble horizon of our Universe. Within th
framework of string theory, on the other hand, we have
take account of nonasymptotically flat space-times, beca
the vacuum of the theory is considered to be fo
dimensional space-time times compact extra dimension
low energy to realize our apparently four-dimensional u
verse. For example, we need more insight into the bl
strings of branes, which are nonasymptotically flat solutio
typically arising in supergravity theories, to extract some
formation on quantum gravity or the unified theory of inte
actions.

The stability of the Schwarzschild space-time is one
fundamental properties of black holes in asymptotically
space-time. However, this is not the case for the black str
or branes; namely, they are unstable under the linear pe
bations of sufficiently long wave length along the brane@1#.
We have no definitive answer concerning the end point
this Gregory-Laflamme instability, but there are several p
sibilities; the final state might be naked singularities joini
array of black holes, or an inhomogeneous black string
brane @2#, and there also is a possibility that there is
equilibrium state. Since the subject concerns nonasymp
cally flat inhomogeneous space-time, the analysis will
quite difficult. We would ultimately need a dynamical anal
sis directly solving the Einstein equation@3,4#. However, it
might be also useful to have a kinematical bound irrelev
for the details of the underlying theory for such nonasym
totically flat space-times. Such a kinematical bound might
also useful to restrict the form of the metric like the uniqu
ness theorem in asymptotically flat space-times@5,6#.

In this Brief Report, utilizing the spinorial approach, w
present bound theorems~positive mass theorem
Bogomol’nyi-Prasad-Sommerfield~BPS! bound, positive
tension theorem! in asymptotically translationally invarian
space-times. Recently Traschen discussed the positive
theorem in such space-times without horizon and ga
fields @7#. In this Brief Report we will extend Traschen
work to cases with horizon in higher dimensions, which
relevant for black string or brane space-times, and incl
the gauge fields in four dimensions.

The rest of the present Brief Report is composed of t
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main parts. In Sec. II, we present the positive mass theo
in higher dimensions with the horizon. Then we prove t
positive energy and tension theorems for charged brane
Sec. III. Finally we give a discussion in Sec. IV. In the A
pendix we give formulas for the calculation of the bounda
term at horizon.

II. ASYMPTOTICALLY TRANSLATIONALLY INVARIANT
SPACE-TIMES

First of all, we must specify asymptotically translational
invariant space-times. The metric of full space-times is giv
by

ds25gmndxmdxn. ~1!

Let n}] t andz}]x1 to be timelike and spacelike unit vecto
fields such thatnmzm50. In addition,r̂}]x2 to be spacelike
perpendicular unit normal vector fields ton and z, r̂ mnm

5 r̂ mzm50. We assume thatz becomes proportional to th
asymptotically translational Killing vector toward the infinit
directed tor̂ . xm, xi , xI , xA andxa spans the full space-time
M, (n21)-dimensional spacelike hypersurfaceV0 normal
to n, the (n21)-dimensional timelike hypersurfaceV1 nor-
mal to z, (n22)-dimensional spacelike submanifoldV01 or-
thogonal ton and z, and the (n23)-dimensional spacelike
submanifoldV012 orthogonal ton, z, and r̂ . Each induced
metricies can be written as

qi j dxidxj5~gmn1nmnn!dxmdxn, ~2!

hIJdxIdxJ5~gmn2zmzn!dxmdxn, ~3!

pABdxAdxB5~gmn1nmnn2zmzn!dxmdxn, ~4!

sabdxadxb5~gmn1nmnn2zmzn2 r̂ m r̂ n!dxmdxn. ~5!

Then m,n50,1,2, . . . ,n, i 51,2, . . . ,n, I 50,2,3, . . . ,n,
A52,3, . . . ,n, anda53,4, . . . ,n ~see Fig. 1!.

We assume that the submanifoldV01 is a
(n22)-dimensional asymptotically Euclid space.
©2004 The American Physical Society03-1
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III. POSITIVE MASS THEOREM FOR BLACK STRING

In this section, we present the positive energy theorem
asymptotically translationally invariant space-time with ho
zon. See Ref.@7# for cases without a horizon. If one thinks o
the gravitational energy as evaluated in slices which h
appropriate asymptotic boundaries and a regular center,
not necessary to take the event horizon as the boundary t
However, the proof independent of the inner structure of
horizon is useful.

Let us consider a spinore satisfying a Dirac-type equatio
@7#

gA¹Ae50. ~6!

Note that we usually supposeg i¹ie50 for the spinor to
prove the original positive energy theorem@8#. In asymptoti-
cally translationally invariant space-times, it is likely that t
existence of solutions to Eq.~6!, which approaches a con
stant spinore0, is guaranteed rather than the solution
g i¹ie50. This is because the space spanned by coordi
$xA% is asymptotically flat and we can expect almost t
same proof of the existence of solutions as that in asymp
cally flat space-times.

Let us define the Nester tensorEmn by

Emn5 1
2 ~ ēgmna¹ae1c.c.!; ~7!

we obtain the formula

FIG. 1. Full space-timeM can be foliated by spacelike hype
surfacesV0 normal to the timelike vector fieldn}] t and timelike
hypersurfacesV1 normal to the spacelike vector fieldz}]x1. We
can define coordinate $xi%5(x1 ,x2 ,...,xn) in V0 , $xI%
5(x0 ,x2 ,...,xn) in V1 and $xA%5(x2 ,...,xn) in
(n22)-dimensional spacelike surfaceV01 normal to both vector
fields n andz. Furthermore, we set coordinate$xa%5(x3 ,...,xn) in
the (n23)-dimensional spacelike submanifoldV012 normal ton,z

and r̂}]x2.
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¹mEmn5 1
2 Gm

n jm1¹megmna¹ae, ~8!

where ē5e†g 0̂. According to Ref.@8#, a surface integral of
Nester tensor at spatial infinity overV02 gives the ADM
energy-momentum vectorPm, that is,

2Pmjm5
1

16pEV02
`

EmndSmn . ~9!

Integrating Eq.~8! over spacelike manifoldV02 and using
Stokes’s theorem and Eq.~6!, we obtain the formula

E
V02

`
dS0̂2̂E0̂2̂2E

V02
H

dS0̂2̂E0̂2̂

5E dV0~8pTn
mjnnm12u¹Aeu2!, ~10!

wherejm52 ēgme. Following the proof in Ref.@8#, we re-
quire that spinore approaches a constant spinore0 at infinity
V02

` . In the above we used the Einstein equationGmn

58pTmn . The first and second terms on the left-hand s
are boundary terms at infinity and the horizon. The first te
gives us the gravitational energy. Thus, what we must fo
on is the boundary term at the horizon. This is a nontriv
issue and the point here. We modify the proof in asympto
cally flat space-times with the horizon@9#. The detail of the
computation is described in the Appendix. As a result,
becomes

E
V02

H
dS0̂2̂E0̂2̂5

1

2E dS0̂2̂@e†~¹2̂2g 2̂g 1̂¹1̂!e1c.c.#

5 1
2 E dS0̂2̂e†@2 1

2 ~K2K 2̂2̂1k!g 2̂g 0̂e

2g 2̂g 1̂D 1̂e2g 2̂gadae1 1
2 Kâ2̂g âg 0̂e#1c.c.

5 1
2 E dS0̂2̂e†@2 1

2 ~K2K 2̂2̂1k!g 2̂g 0̂e1c#

1c.c. ~11!

where

c52g 2̂g 1̂D 1̂e2g 2̂gadae1 1
2 Kâ2̂g âg 0̂e. ~12!

Di , DA and da are covariant derivative with respect t
qi j , pAB and sab , respectively.Ki j and kab are defined by
Ki j 5qi

k¹knj andkab5sa
cDcr̂ b , respectively.

At the horizon we impose

g 2̂g 0̂e5e ~13!

and useu1}K2K 2̂2̂1k50 at the apparent horizon.u1 is
the expansion of the outgoing null geodesic congruen
Then we can see the boundary term at the horizon vanis
We used the fact thatc anti-commutes withg 2̂g 0̂ and then
the contribution ofc to Eq. ~11! disappears. Finally
3-2
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EADM5
1

8pue0u2
E

V02
`

dS0̂2̂E0̂2̂

5
1

8pue0u2
E dV0~8pTn

mjnnm12u¹Aeu2!. ~14!

Together with the dominant energy condition, we can
that EADM is positive definite.

Let us discuss theM50 cases. In this case,

¹Âe50 ~15!

and then

(n)RÂB̂mngmne50. ~16!

From the above we see that

(n)Rmnab50. ~17!

This means that the space-time with zero energy is flat. E
for asymptotically translationally invariant space-times, t
ground state is flat space-time.

IV. BOUND THEOREMS FOR CHARGED BRANES
IN FOUR DIMENSIONS

A. Positive energy theorem for charged brane

In this subsection, we extend Traschen’s study to ca
with gauge field in four dimensions. It is easy to extend
higher dimensions following Ref.@10#. For this we define the
following covariant tensor motivated by N52 supergravity
@11#:

¹̂me5¹me1
i

4
Fabgabgme . ~18!

Let us consider a spinore satisfying

gA¹̂Ae50. ~19!

The Nester tensor is defined by

Êmn5 1
2 ~ ēgmna¹̂ae1c.c.!5Emn2 i ē~Fmn2g5F̃mn!e

~20!

and we obtain the following formula:

¹mÊmn5 1
2 G m

n jm1¹̂megmna¹̂ae2 i ē~¹mFmn2g5¹nF̃mn!e

14pēTmn~F !gne ~21!

whereF̃mn5(1/2)emnabFab and
02750
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Tmn~F !5 ~4p!21 ~Fm
aFna2 1

4 gmnF2!. ~22!

Integrating over the spacelike hypersurface, the result is

8pe0
†@EADM2 ig 0̂~Qe2g5Qm!#e0

5E
V02

`
dSmnÊmn

5E
V0

dS@Gn
mjnnm12u¹̂Aeu222i ē~ j e

m2g5 j m
m!enm

28pTmn~F !jmnn#

5E
V0

dS@8pTn
mjnnm12u¹̂Aeu222i ē~ j e

m2g5 j m
m!enm#,

~23!

where

Qe5
1

8pE dSmnFmn, Qm5
1

8pE dSmnF̃mn ~24!

j e
m5¹nFnm, j m

m5¹nF̃nm. ~25!

From first line to the second one, we used the Einstein eq
tion Gmn58p(Tmn(F)1Tmn). Using the above a dominan
energy condition, we can obtain the BPS bound

EADM>AQe
21Qm

2 . ~26!

As the inequality is saturated,¹̂Âe50 holds. In general,

¹̂0̂eÞ0 and¹̂1̂eÞ0. Since¹̂Âe can be regarded as a infin
tesimal local supersymmetric transformation of the gravitin
it is well-known fact that a part of supersymmetry is broke

We note that the current BPS bound theorem is sligh
different from that given in Ref.@10#. Therein the term cor-
responding to¹Ae in Eqs.~19! and ~23! is ¹ie.

B. Positive tension theorem for charged branes

Let discuss the issue of the positive tension theorem@7# or
BPS bound@13#. As discussed in Ref.@7#, we can expect the
tension of a brane is a conserved charge associated wit
asymptotic spatial translational Killing vector parallel to th
brane, as just the ADM energy is one associated with
asymptotic time translational Killing vector. In analogy wit
the construction of positive energy theorem, the Nester t
sor is defined by

B̂mn5 1
2 ~ ẽgmna¹̂ae1c.c.!

5 1
2 ~ ẽgmna¹ae1c.c.!2 1

2 @ i ẽ~Fmn2g5F̃mn!e1c.c.#

5 1
2 ~ ẽgmna¹ae1c.c.!5Bmn ~27!

where ẽ5e†g 1̂. The integration over time is taken to b
finite intervalDt. We should note that time direction in th
3-3
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construction of the previous theorem is replaced withx1 di-
rection. In a way similar to that in Sec. III, we can eas
show

8pmue0u25
1

DtEV1

dtdSÂBÂ2̂

5
1

DtE dV1~2u¹Aeu228pTm1̂
tot

j̃m! ~28!

wherej̃m5 ẽgme andTmn
tot 5Tmn(F)1Tmn . We followed the

Traschen’s definition of the tension. See Refs.@7,12,13# for
the issue of the definition.

Note that the gauge field does not contribute to the t
sion. Thus the BPS bound cannot be proven although it
been argued in Ref.@13#. To prove that in general cases, w
must improve the proof nontrivially.

V. SUMMARY

In this paper we proved several bound theorems in
ymptotically translationally invariant space-times. More p
cisely we could prove the positive energy theorem for spa
times with an event horizon such as black strings. We a
proved a positive energy and tension theorem for char
brane configurations. For a current definition of the tensi
the gauge field does not contribute to the tension.

The positive energy theorem for black string space-tim
might be used to gain insight into the issue of the final fa
We might be able to prove a sort of uniqueness theo
using the positive energy theorem. Indeed, in asymptotic
flat space-times, the uniqueness theorem for static b
holes can be proved in this line@6#.

APPENDIX: BOUNDARY TERM AT THE HORIZON

Here we present some useful formulas. Using the Dir
Witten equation,¹2̂e, which appeared as the first term in th
integrand of the right-hand side in the first line of Eq.~11!,
can be written as
.

le-

.
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¹ 2̂e52g 2̂g â¹âe

52g 2̂g â~Dâe1 1
2 Kâîg

îg 0̂e!

52g 2̂g â~Dâe1 1
2 JâÂg Âg 1̂e1 1

2 Kâîg
îg 0̂e!

52g 2̂g â~dâe1 1
2 kâb̂g b̂g 2̂e1 1

2 JâÂg Âg 1̂e

1 1
2 Kâîg

îg 0̂e!

52g 2̂g âdâe2 1
2 ke2 1

2 JâÂg 2̂g âg Âg 1̂e

2 1
2 Kâîg

2̂g âg îg 0̂e ~A1!

whereJAB is defined byJAB5pA
CDCzB .

Let us define a scalar fieldf by

fªe†JâÂg 2̂g âg Âg 1̂e52e†Jâ2̂g 2̂g âg 1̂e1e†Jâ
â
g 2̂g 1̂e.

~A2!

It is easy to see thatf is pure imaginal,f* 52f. Then

Re~e†¹2̂e!52e†g 2̂g âdâe2 1
2 kueu21 1

2 Kâ2̂e†g âg 0̂e

2 1
2 Kâ

â
e†g 2̂g 0̂e. ~A3!

In the same way, we obtain the following formula for th
second term of the integrand in the right-hand side in the fi
line of Eq. ~11!:

Re~e†g 2̂g 1̂¹1̂e!5Re@e†g 2̂g 1̂~D 1̂e1 1
2 K 1̂ îg

îg 0̂e!#

5Re@e†g 2̂g 1̂D 1̂e#1 1
2 K 1̂1̂Re@e†g 2̂g 0̂e#.

~A4!
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