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Black hole formation in perfect fluid collapse
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We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust
collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a
black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked
singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is
shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some
insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship
hypothesis, which is as yet a major unsolved problem in black hole physics.

DOI: 10.1103/PhysRevD.69.027502 PACS nunifer04.20.Dw, 04.20.Cv, 04.70.Bw

Black hole physics has attracted considerable attention in It is thus essential to study and analyze more general col-
recent years and has witnessed rapid theoretical develofapse situations in order to understand black hole formation
ments as well as numerous astrophysical applications. It is th more realistic stellar collapse scenarios. This is also essen-
be noted, however, that while few exact static or stationary;g| jn order to make any possible progress towardsctve

mo%els__of bIat(:ijholeil such as the S(_:hwarzschildl,l Reiz_sndeﬁﬁic censorship hypothesig], which broadly states that any
thor sttronw, an ; err-f b?WT?]n lspaciﬂmetﬁ a;e we Stlli '? physically realistic gravitational collapse must result in the
€ actuatormation ot black holes within the framework o development of a black hole. Such a conjecture has been

a dynamical gravitational collapse process is not really an absolutely fundamental to the theory of black holes and has

arena where much is known. : ) : S
In a realistic physical scenari¢stellar masgblack holes played a major r_ole n astrophysmz_al apphcapons of black
hole physics. This, however, remains a major unresolved

will be typically born when a massive star exhausts its bl . | relativi d black hole phvsi
nuclear fuel and then collapses endlessly under the influen@P€n Problem in general relativity and black hole physics

of its own gravitational field. Towards modeling such at0day. , .
physical process, a well-known model that has served as the From such a perspective, we study here a specific class of
basic paradigm in black hole physics is that of thecollapse models where matter obeys the perfect fluid equa-
Oppenheimer-Snyder Spherica”y symmetric C0||apse 50|uﬂ0n of state and construct models where the collapse always
tion [1], where a dust cloud undergoes a continued collapsgecessarily ends in the formation of a black hole. The models
to form a black hole. Here the collapse initiates from regulamwe study here are somewhat special in that the mass function
initial data, when there is no trapping of ligtite., light rays is assumed to be separable in the variables which are the
from the star can escape to faraway obsepveBbse- physical radius of the cloud and the time coordinate. How-
guently, as the collapse advances the process of the formaver, this is a class which generalizes the Oppenheimer-
tion of an event horizon and closed trapped surfaces takeSnyder dust collapse models in two important respects;
place, thus leading to the formation of a black hole and thenamely, inhomogeneities of density distribution are included
eventual spacetime singularity. The trapped surfaces and ttend also nonzero pressures have been incorporated now. As
event horizon form here well in advance of the epoch of thehe collapse always ends here in black hole formation as we
formation of the spacetime singularity, which is hence necshow, it is hoped that dynamical considerations such as these
essarily hidden within the black hole. will provide some useful insights into physically realistic
Even though this collapsing Friedmann model alreadycollapse and the actual process of black hole formation. It is
tells us a homogeneous dust collapse will always end in @ot unlikely that it is only such dynamical considerations
black hole rather than a naked singularity, it should be notedvhich would prove essential to resolve the issue of cosmic
that this scenario in fact has several limitations. For examplegensorship. The model here may be of interest as it includes
in this case the cloud has no pressures included, whereas apyessures which may be important in the later stages of col-
physically realistic collapse must include pressures. Anothelapse and because the equation of state is that of a perfect
restrictive assumption here is that the density profile is asfluid, which is physically a well-studied equation of state
sumed to be strictly homogeneous in space, at all timesvidely used in various astrophysical considerations.
throughout the evolution of the cloud. For any isolated object The fluid content of the cloud is in the form of a perfect
such as a star, one may rather like to study a physicallyluid with an equation of state of the forp=kp; i.e., at all
realistic density distribution which would be typically higher epochs the radial and tangential pressures are equal and iso-
at the center and decreasing as we move away from the cetropic, and are proportional to the density function of the
ter. cloud. Though the case of a general inhomogeneshust
collapse withk=0 can be completely solvel®], there are
still a number of open questions regarding the end state of a
*Electronic address: goswami@tifr.res.in general perfect fluid collapse. Our purpose here is to examine
"Electronic address: psj@tifr.res.in a class of solutions of the Einstein equations for a spherically
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symmetric perfect fluid to understand explicitly how an in- However, the later ones are due to shell crossings and these
homogeneous density profile should behave in the lateweak singularities can be possibly removed from the space-
stages of collapse and near the singularity, so that the findime [5], so we shall consider here only the shell-focusing
state of the collapse would always be a black hole necessasingularity atR=0, which is the genuine physical singular-
ily. ity where all matter shells collapse to a zero physical radius.
The spacetime geometry within the spherically symmetric Now let us incorporate the perfect fluid form of matter,
collapsing cloud can be described by the metric in the cowhere the radial and tangential pressures are equal, and take
moving coordinatest(r, 8,¢) as given by the equation of state for the collapsing matter to be

ds?= —e?tNdt2+ e/ tNdr2+ R(t,r)dQ?, (1) P (t,r)=py(t,r)=kp(t,r), (10)

whered()? is the line element on a two-sphere. The energywherek<1 is a constant. Then Eqg&) and (6) become
momentum tensor for any matter fieldstgpe 1[4] (this is a

broad class which includes most of the physically reasonable F’ 1 F
matter fields, including dust, perfect fluids, massless scalar p= @: X @ (11
fields, and such otherss then given in a diagonal form
t_ _ r_ 0_Téd_ k
Tt p(t!r)v Tr pr(t:r)r Tg T¢ pH(tlr)' (2) VI:_ k+1[|n(p)]l (12)

The quantitiesp, p,, andp, are the energy density, radial,

and tangential pressures, respectively, of the cloud. We tak€hus we see that there are five dynamical variables—namely,
the matter fields to satisfy theeak energy condition.e., the  p, ¢, v, R, andF—and there are five total field equations.
energy density measured by any local observer is nonAlso, using the scaling independence we can WR(& ,r)
negative. Then for any timelike vect®', we must have =r at the initial epocht=t; from where the collapse com-
mences. The timé=ty(r) corresponds to the formation of

TiV'V¥=0, 3 the shell-focusing singularity aR=0, where all matter
which amounts to shells collapse to a vanishing physical radjus. '
Now let us assume that the mass function can be explic-
p=0, p+p,=0, p+p,=0. (4) itlydwritten as a function of the physical radi&sof the cloud
andt:
Now for the metric(1) the Einstein equations take the
form, in the units (8:G=c=1), F(RH)=RM(R)Q(1). (13
E’ E That is, we consider the class of mass functiétngo be
pP= == =T 5o, (5 separable iR andt. Apart from that it is general in the sense
R°R R°R that M is any C? function, whereas the functio@(t) yet to
, , be determined by the field equations is a suitably differen-
= 2(pe—P) R" by () tiable function oft for t<ty, wheret=ts is the time for the
ptpr R ptp occurrence of the central singularity. One may consider Eq.
. (13) to be a somewhat strong assumption on the nature of the
—2R’+R'E+R—,=0 ) mass function. However, our basic purpose here is to con-
G H ' struct a class of dynamical collapse models, where the two
main constraints of the homogeneous dust collapse men-
tioned above are relaxed; namely, the density need not be
G-H=1- R’ (8) homogeneous at the initial epoch and later as well during the
collapse evolution, and second we want to allow for nonzero
where pressures while considering a dynamical collapse situation.
. As both these purposes are met by the above form of mass
G(t,r)=e 2Y(R")?, H(t,r)=e ?"(R)> (9)  function as we have chosen here, it is adequate for our

present purposes, as it allows us to construct explicit collapse
The arbitrary functionF=F(t,r) here has an interpreta- models which are more general and which necessarily end up
tion of the mass function for the cloud, and it gives the totalin a black hole as we shall see.
mass in a shell of comoving radiuson any spacelike slice  Another requirement that is frequently imposed on physi-
t=const. We havé&=0 from the energy conditions. In order cal grounds on the initial data from which the collapse
to preserve regularity at the initial epoch, we h@#;,0)  evolves is that the physical variables such as the density and
=0; that is, the mass function should vanish at the center ofressures be taken to be smooth or analytic functions at the
the cloud. Since we are considering collapse, we have initial surface. We can then write
<0; i.e., the physical radiuR of the cloud keeps decreasing
and ultimately reacheR=0. As seen from Eq6), there is a

1 1
= — —_— 2 ...
density singularity in the spacetime R&=0 and atR'=0. M(R) 3 MR- (14
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Then from Eq.(11) we getp(r,t)=p(R,t) with R=—C,A KD A" D1 TRZVQ, (23
P(RD=CBM+RMR)QM=ARQ), (19 whereC,=C; "1 is another constant. The negative sign
where the functiorA(R) is given by denotes the collapse conditi&< 0. Finally, substituting the
values of the functions andM we get, ignoring the higher-
A(R)=1+M,R%+ - .. (16)  order terms, as we are interested to find a solution close to

_ ) the singularity,
As seen from above, at the initial epothkt;, the density

function is given by
p(r.t)=po(r)=Q(t)[1+Myr2+- 1. (17

Thus we see that the gradients of the density and pressures of . . _
the cloud vanish at the center at the initial epoch as required We note that in Eq(24), the velocityR changes sign at
by the smoothness. Also, for the density to diverge at théhe valueR=\(1+k)/2k. This would correspond to a class

. 2k R?
R=-C,R[1- ——

\/_ k+1°

kr1| V|3 T sMR
(24

1 1 2} 2kM,

singularity, we must have of dynamic perfect fluid models where there is a bounce at
the above value of the physical radius. However, since we

lim Q(t) —e. (18 are interested in the collapse models only presently, we do

Sl not consider this bouncing branch of the solutions. This can

be achieved by fixing the boundary conditions suitably. For
example, for the extreme valude=1, this change corre-
sponds toR=1. Now as we have the scalifg=r at the
initial epoch, this means that the boundary of the object
(k+1)QA+ .EM'Q:O. (19) =r}, at the initial ep_och is to be giyen by<Or,<1. Then at
R all later epochs this condition will be of course respected
] ] ) becauseR<0, and the physical radiu® monotonically de-
The solution of the above equation determines the Masgeases witht and will be less than 1 for all shells at all
function completely. _ _ future times. For smaller values &f—that is,k<1—we of
In order now to construct a class of collapsing solutions o rse have larger values of the boundary of the cloud avail-
let us consider the case wher=v(R); i.e., let the metric g6 and in the extreme cake=0—i.e., the dust collapse
function v be a function of the physical radilonly. Again,  10dels—we can have arbitrarily largg without the veloc-
this restriction is good enough for us as it allows us to CON4y ever changing sign, or the cloud can be as big as we want,

struct the collapse models which include inhomogeneity andnq there will be no bounce at all possible in the dust case.
nonzero pressures and which end up in black holes, general- now let us solve Eq(19) close to the spacetime singular-

izing the collapsing Friedmann models. A further useful fea-,, ot R=0. In this approximationA(R)—1 and M(R)
ture of these choices may be considered to be that it aIIo.ws_>%' Using these approximations and H@4) in Eq. (19)
to be incorporated a perfect fluid with a reasonable equatiof),o get

of state, rather than any arbitrary forms of pressieesg., a

It follows that for the given mass function the perfect fluid
condition can be written as

purely tangential pressure, while assuming that the radial 1
pressures identically vanishs is done sometimes when con- (k+1)Q— Q=o. (25)
sidering gravitational collapse. Q 2k
One can now integrate E¢L2) to get 3C,\/ - —— M,
3 k+1
k
v(R)=———=In[C;A(R)]. (200 Considering thaM,<0 and solving the above equation with
k+1 i . :
the boundary condltloQ(tso)—mo as pointed out earlier, we
HereC, is a constant of integration. Now putting the value get
of H(t,r) in Eq. (7) and simplifying we get )
2a
'C_oR, (o — Q(t)z—a-i- a+ ’
RIG-2R1G=0. 1 [expl— V3C,(k+1)a(ty, ~ 1)} — 1]
It is now possible to solve the above equation and the func- (26)
tion G has the form
where
G(R)=A(R) 2Wk+1), 22
(R)=A(R) (22) NG

In other words, the above forms @f v, andG solve the TN k11 27

Einstein’s equation$6) and (7). Obtaining now the function
Q(t) will complete the solution. Putting in these functions in  Thus we see that the abo@t) is a solution to Einstein’s
Eq. (8) we get equations in the vicinity of the singularity with respect to the
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given forms ofp, v, andG. Now we can also solve for the rise to a covered central singularity =0, r=0, as there
metric functionR, which is the physical radius for the cloud. are no outgoing future-directed nonspacelike geodesics com-

Using Eq.(24) we get ing out from the same. Because if there were any such out-
Ca going geodesics, given by, say=t(r) in the (t,r) plane,
R(r.t)="f(r)e B0, (28)  which came out front=ts, r=0, then the time coordinate

must increase along these paths, which is impossible as there
is complete collapse at=tg and there is no spacetime be-
e‘\(ond that. Hence no values>tg are allowed within the

of the cloud vanishes, we must haf9)=0. The function spacetime which does not extend beyond the singularity.

wheref(r) is an arbitrary function of. To avoid any shell
crossing singularity we considérto be an increasing func-

B(t) is given as Thus, the collapse gives rise necessarily to a black hole in
the spacetime.
Q 2k Our main purpose here has been to generalize the homo-
B(t)=C2f V3~ g M0t (29 geneous dust collapse scenario to include nonzero pressures

and the inhomogeneities of density and pressures, which is
As noted earlier, the spacetime singularity occursRat physically more realistic situation, while ensuring that the
=0. We now need to decide if the singularity in the presentcollapse end state is a black hole only. While the perfect fluid
case is necessarily covered within an event horizon of graveollapse models we considered here allow for inhomogene-
ity (which is the case of a black hole formatjoor it could ities in density and pressure profiles, and do necessarily give
be visible to faraway observers in the spacetime. The way t@ise to black holes as we have shown here, it should be kept
decide this is to examine if there are any future directedn mind, as we have noted above, that the classes of mass
families of null geodesics which go out to external observergynctions and the velocity profiles for the collapsing shells as
in future and which in the past terminate at the singularity. Ifgetermined by the choice of metric functiefR) considered
such families do exist, then the singularity is naked, which inhere are rather special. It is an open problem to explore if we
principle can communicate with outside world, and in thec,,1q generalize these assumptions further, and if so to what
case otherwise we have a black h(_)le formmg_ as the end Sta{a‘?(tent, and still continue to get black holes only and not the
of collapse. We thus need to consider the existence or Otheﬁ'aked singularities as the final end product of gravitational

W'Se_Of such families of pgths from th? singularity. . collapse. The point is it is known, for example, for inhomo-

With the form ofR as given above in Eq28) and asR  geneous dust collap$é] that as long as the inhomogeneities
<0, the singularity happens at a tirhe t; when the physi-  5re within certain limits, the result of collapse is a black hole.
moving coordinate becomes zero. In oth_er worc_:is, there is acollapse could end in a naked singularity. Investigating
simultaneouscollapse of all shells to a singularity, and &S fyrther specific, but physically more realistic models may
—1s, all shells labeled by the coordinatecollapse simulta- jjlystrate better such features of gravitationally collapsing
neously to the singularity aR=0. This necessarily gives configurations.
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