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Black hole formation in perfect fluid collapse

Rituparno Goswami* and Pankaj S Joshi†
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~Received 15 July 2003; published 30 January 2004!

We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust
collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a
black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked
singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is
shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some
insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship
hypothesis, which is as yet a major unsolved problem in black hole physics.
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Black hole physics has attracted considerable attentio
recent years and has witnessed rapid theoretical deve
ments as well as numerous astrophysical applications. It
be noted, however, that while few exact static or station
models of black holes such as the Schwarzschild, Reiss
Nordström, and Kerr-Newman spacetimes are well studi
the actualformationof black holes within the framework o
a dynamicalgravitational collapse process is not really
arena where much is known.

In a realistic physical scenario,~stellar mass! black holes
will be typically born when a massive star exhausts
nuclear fuel and then collapses endlessly under the influe
of its own gravitational field. Towards modeling such
physical process, a well-known model that has served as
basic paradigm in black hole physics is that of t
Oppenheimer-Snyder spherically symmetric collapse s
tion @1#, where a dust cloud undergoes a continued colla
to form a black hole. Here the collapse initiates from regu
initial data, when there is no trapping of light~i.e., light rays
from the star can escape to faraway observers!. Subse-
quently, as the collapse advances the process of the fo
tion of an event horizon and closed trapped surfaces ta
place, thus leading to the formation of a black hole and
eventual spacetime singularity. The trapped surfaces and
event horizon form here well in advance of the epoch of
formation of the spacetime singularity, which is hence n
essarily hidden within the black hole.

Even though this collapsing Friedmann model alrea
tells us a homogeneous dust collapse will always end i
black hole rather than a naked singularity, it should be no
that this scenario in fact has several limitations. For exam
in this case the cloud has no pressures included, whereas
physically realistic collapse must include pressures. Anot
restrictive assumption here is that the density profile is
sumed to be strictly homogeneous in space, at all tim
throughout the evolution of the cloud. For any isolated obj
such as a star, one may rather like to study a physic
realistic density distribution which would be typically high
at the center and decreasing as we move away from the
ter.
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It is thus essential to study and analyze more general
lapse situations in order to understand black hole forma
in more realistic stellar collapse scenarios. This is also es
tial in order to make any possible progress towards thecos-
mic censorship hypothesis@2#, which broadly states that an
physically realistic gravitational collapse must result in t
development of a black hole. Such a conjecture has b
absolutely fundamental to the theory of black holes and
played a major role in astrophysical applications of bla
hole physics. This, however, remains a major unresol
open problem in general relativity and black hole phys
today.

From such a perspective, we study here a specific clas
collapse models where matter obeys the perfect fluid eq
tion of state and construct models where the collapse alw
necessarily ends in the formation of a black hole. The mod
we study here are somewhat special in that the mass func
is assumed to be separable in the variables which are
physical radius of the cloud and the time coordinate. Ho
ever, this is a class which generalizes the Oppenheim
Snyder dust collapse models in two important respe
namely, inhomogeneities of density distribution are includ
and also nonzero pressures have been incorporated now
the collapse always ends here in black hole formation as
show, it is hoped that dynamical considerations such as th
will provide some useful insights into physically realist
collapse and the actual process of black hole formation.
not unlikely that it is only such dynamical consideratio
which would prove essential to resolve the issue of cos
censorship. The model here may be of interest as it inclu
pressures which may be important in the later stages of
lapse and because the equation of state is that of a pe
fluid, which is physically a well-studied equation of sta
widely used in various astrophysical considerations.

The fluid content of the cloud is in the form of a perfe
fluid with an equation of state of the formp5kr; i.e., at all
epochs the radial and tangential pressures are equal and
tropic, and are proportional to the density function of t
cloud. Though the case of a general inhomogeneousdust
collapse withk50 can be completely solved@3#, there are
still a number of open questions regarding the end state
general perfect fluid collapse. Our purpose here is to exam
a class of solutions of the Einstein equations for a spheric
©2004 The American Physical Society02-1
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symmetric perfect fluid to understand explicitly how an i
homogeneous density profile should behave in the l
stages of collapse and near the singularity, so that the
state of the collapse would always be a black hole neces
ily.

The spacetime geometry within the spherically symme
collapsing cloud can be described by the metric in the
moving coordinates (t,r ,u,f) as given by

ds252e2n(t,r )dt21e2c(t,r )dr21R2~ t,r !dV2, ~1!

wheredV2 is the line element on a two-sphere. The ener
momentum tensor for any matter fields oftype I @4# ~this is a
broad class which includes most of the physically reasona
matter fields, including dust, perfect fluids, massless sc
fields, and such others! is then given in a diagonal form

Tt
t52r~ t,r !, Tr

r5pr~ t,r !, Tu
u5Tf

f5pu~ t,r !. ~2!

The quantitiesr, pr , andpu are the energy density, radia
and tangential pressures, respectively, of the cloud. We
the matter fields to satisfy theweak energy condition; i.e., the
energy density measured by any local observer is n
negative. Then for any timelike vectorVi , we must have

TikViVk>0, ~3!

which amounts to

r>0, r1pr>0, r1pu>0. ~4!

Now for the metric~1! the Einstein equations take th
form, in the units (8pG5c51),

r5
F8

R2R8
, pr52

Ḟ

R2Ṙ
, ~5!

n85
2~pu2pr !

r1pr

R8

R
2

pr8

r1pr
, ~6!

22Ṙ81R8
Ġ

G
1Ṙ

H8

H
50, ~7!

G2H512
F

R
, ~8!

where

G~ t,r !5e22c~R8!2, H~ t,r !5e22n~Ṙ!2. ~9!

The arbitrary functionF5F(t,r ) here has an interpreta
tion of the mass function for the cloud, and it gives the to
mass in a shell of comoving radiusr on any spacelike slice
t5const. We haveF>0 from the energy conditions. In orde
to preserve regularity at the initial epoch, we haveF(t i ,0)
50; that is, the mass function should vanish at the cente
the cloud. Since we are considering collapse, we havṘ
,0; i.e., the physical radiusR of the cloud keeps decreasin
and ultimately reachesR50. As seen from Eq.~6!, there is a
density singularity in the spacetime atR50 and atR850.
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However, the later ones are due to shell crossings and t
weak singularities can be possibly removed from the spa
time @5#, so we shall consider here only the shell-focusi
singularity atR50, which is the genuine physical singula
ity where all matter shells collapse to a zero physical rad

Now let us incorporate the perfect fluid form of matte
where the radial and tangential pressures are equal, and
the equation of state for the collapsing matter to be

pr~ t,r !5pu~ t,r !5kr~ t,r !, ~10!

wherek,1 is a constant. Then Eqs.~5! and ~6! become

r5
F8

R2R8
52

1

k

Ḟ

R2Ṙ
, ~11!

n852
k

k11
@ ln~r!#8. ~12!

Thus we see that there are five dynamical variables—nam
r, c, n, R, andF—and there are five total field equation
Also, using the scaling independence we can writeR(t i ,r )
5r at the initial epocht5t i from where the collapse com
mences. The timet5ts(r ) corresponds to the formation o
the shell-focusing singularity atR50, where all matter
shells collapse to a vanishing physical radius.

Now let us assume that the mass function can be exp
itly written as a function of the physical radiusR of the cloud
and t:

F~R,t !5R3M ~R!Q~ t !. ~13!

That is, we consider the class of mass functionsF to be
separable inR andt. Apart from that it is general in the sens
that M is anyC2 function, whereas the functionQ(t) yet to
be determined by the field equations is a suitably differ
tiable function oft for t,ts0

, wheret5ts0
is the time for the

occurrence of the central singularity. One may consider
~13! to be a somewhat strong assumption on the nature of
mass function. However, our basic purpose here is to c
struct a class of dynamical collapse models, where the
main constraints of the homogeneous dust collapse m
tioned above are relaxed; namely, the density need no
homogeneous at the initial epoch and later as well during
collapse evolution, and second we want to allow for nonz
pressures while considering a dynamical collapse situat
As both these purposes are met by the above form of m
function as we have chosen here, it is adequate for
present purposes, as it allows us to construct explicit colla
models which are more general and which necessarily en
in a black hole as we shall see.

Another requirement that is frequently imposed on phy
cal grounds on the initial data from which the collap
evolves is that the physical variables such as the density
pressures be taken to be smooth or analytic functions at
initial surface. We can then write

M ~R!5
1

3
1

1

5
M2R21•••. ~14!
2-2
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Then from Eq.~11! we getr(r ,t)5r(R,t) with

r~R,t !5~3M1RM,R!Q~ t !5A~R!Q~ t !, ~15!

where the functionA(R) is given by

A~R!511M2R21•••. ~16!

As seen from above, at the initial epocht5t i , the density
function is given by

r~r ,t i !5r0~r !5Q~ t i !@11M2r 21•••#. ~17!

Thus we see that the gradients of the density and pressur
the cloud vanish at the center at the initial epoch as requ
by the smoothness. Also, for the density to diverge at
singularity, we must have

lim
t→ts0

Q~ t !→`. ~18!

It follows that for the given mass function the perfect flu
condition can be written as

~k11!QA1
R

Ṙ
MQ̇50. ~19!

The solution of the above equation determines the m
function completely.

In order now to construct a class of collapsing solutio
let us consider the case whenn5n(R); i.e., let the metric
functionn be a function of the physical radiusR only. Again,
this restriction is good enough for us as it allows us to c
struct the collapse models which include inhomogeneity
nonzero pressures and which end up in black holes, gen
izing the collapsing Friedmann models. A further useful fe
ture of these choices may be considered to be that it all
to be incorporated a perfect fluid with a reasonable equa
of state, rather than any arbitrary forms of pressures~e.g., a
purely tangential pressure, while assuming that the ra
pressures identically vanish! as is done sometimes when co
sidering gravitational collapse.

One can now integrate Eq.~12! to get

n~R!52
k

k11
ln@C1A~R!#. ~20!

HereC1 is a constant of integration. Now putting the valu
of H(t,r ) in Eq. ~7! and simplifying we get

R8Ġ22Ṙn8G50. ~21!

It is now possible to solve the above equation and the fu
tion G has the form

G~R!5A~R!22k/(k11). ~22!

In other words, the above forms ofr, n, and G solve the
Einstein’s equations~6! and~7!. Obtaining now the function
Q(t) will complete the solution. Putting in these functions
Eq. ~8! we get
02750
of
d
e

ss

,

-
d
al-
-
s
n

al

c-

Ṙ52C2A2k/(k11)AA22k/(k11)211R2MQ, ~23!

whereC25C1
2k/(k11) is another constant. The negative sig

denotes the collapse conditionṘ,0. Finally, substituting the
values of the functionsA andM we get, ignoring the higher-
order terms, as we are interested to find a solution clos
the singularity,

Ṙ52C2RF12
2kR2

k11 GAF1

3
1

1

5
M2R2GQ2

2kM2

k11
.

~24!

We note that in Eq.~24!, the velocityṘ changes sign a
the valueR5A(11k)/2k. This would correspond to a clas
of dynamic perfect fluid models where there is a bounce
the above value of the physical radius. However, since
are interested in the collapse models only presently, we
not consider this bouncing branch of the solutions. This c
be achieved by fixing the boundary conditions suitably. F
example, for the extreme valuek51, this change corre-
sponds toR51. Now as we have the scalingR5r at the
initial epoch, this means that the boundary of the objecr
5r b at the initial epoch is to be given by 0,r b,1. Then at
all later epochs this condition will be of course respec
becauseṘ,0, and the physical radiusR monotonically de-
creases witht and will be less than 1 for all shells at a
future times. For smaller values ofk—that is,k,1—we of
course have larger values of the boundary of the cloud av
able, and in the extreme casek50—i.e., the dust collapse
models—we can have arbitrarily larger b without the veloc-
ity ever changing sign, or the cloud can be as big as we w
and there will be no bounce at all possible in the dust ca

Now let us solve Eq.~19! close to the spacetime singula
ity at R50. In this approximation,A(R)→1 and M (R)
→ 1

3 . Using these approximations and Eq.~24! in Eq. ~19!
we get

~k11!Q2
1

3C2AQ

3
2

2k

k11
M2

Q̇50. ~25!

Considering thatM2,0 and solving the above equation wit
the boundary conditionQ(ts0

)→` as pointed out earlier, we
get

Q~ t !52a1Fa1
2a

@exp$2A3C2~k11!a~ ts0
2t !%21#G

2

,

~26!

where

a5A6kuM2u
k11

. ~27!

Thus we see that the aboveQ(t) is a solution to Einstein’s
equations in the vicinity of the singularity with respect to t
2-3



.

-
nt

t
en
ra

y
te
er
. I
i

he
sta
he

o-
a

om-
out-

here
-

rity.
in

mo-
ures
h is
he
uid
ne-
give
ept
ass
as

we
hat

the
nal
o-
s
le.
he
ng
ay
ng

BRIEF REPORTS PHYSICAL REVIEW D69, 027502 ~2004!
given forms ofr, n, andG. Now we can also solve for the
metric functionR, which is the physical radius for the cloud
Using Eq.~24! we get

R~r ,t !5 f ~r !e2B(t), ~28!

where f (r ) is an arbitrary function ofr. To avoid any shell
crossing singularity we considerf to be an increasing func
tion of r, and since the area radius of the geometrical ce
of the cloud vanishes, we must havef (0)50. The function
B(t) is given as

B~ t !5C2EAQ

3
2

2k

k11
M2dt. ~29!

As noted earlier, the spacetime singularity occurs aR
50. We now need to decide if the singularity in the pres
case is necessarily covered within an event horizon of g
ity ~which is the case of a black hole formation! or it could
be visible to faraway observers in the spacetime. The wa
decide this is to examine if there are any future direc
families of null geodesics which go out to external observ
in future and which in the past terminate at the singularity
such families do exist, then the singularity is naked, which
principle can communicate with outside world, and in t
case otherwise we have a black hole forming as the end
of collapse. We thus need to consider the existence or ot
wise of such families of paths from the singularity.

With the form ofR as given above in Eq.~28! and asṘ
,0, the singularity happens at a timet5ts when the physi-
cal radius for all the shells with different values of the c
moving coordinater becomes zero. In other words, there is
simultaneouscollapse of all shells to a singularity, and ast
→ts0

all shells labeled by the coordinater collapse simulta-

neously to the singularity atR50. This necessarily gives
l
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rise to a covered central singularity atR50, r 50, as there
are no outgoing future-directed nonspacelike geodesics c
ing out from the same. Because if there were any such
going geodesics, given by, say,t5t(r ) in the (t,r ) plane,
which came out fromt5ts , r 50, then the time coordinate
must increase along these paths, which is impossible as t
is complete collapse att5ts and there is no spacetime be
yond that. Hence no valuest.ts are allowed within the
spacetime which does not extend beyond the singula
Thus, the collapse gives rise necessarily to a black hole
the spacetime.

Our main purpose here has been to generalize the ho
geneous dust collapse scenario to include nonzero press
and the inhomogeneities of density and pressures, whic
physically more realistic situation, while ensuring that t
collapse end state is a black hole only. While the perfect fl
collapse models we considered here allow for inhomoge
ities in density and pressure profiles, and do necessarily
rise to black holes as we have shown here, it should be k
in mind, as we have noted above, that the classes of m
functions and the velocity profiles for the collapsing shells
determined by the choice of metric functionn(R) considered
here are rather special. It is an open problem to explore if
could generalize these assumptions further, and if so to w
extent, and still continue to get black holes only and not
naked singularities as the final end product of gravitatio
collapse. The point is it is known, for example, for inhom
geneous dust collapse@6# that as long as the inhomogeneitie
are within certain limits, the result of collapse is a black ho
However, beyond that criticality of inhomogeneities, t
collapse could end in a naked singularity. Investigati
further specific, but physically more realistic models m
illustrate better such features of gravitationally collapsi
configurations.
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