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Brane in 6D with an increasing gravitational trapping potential
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A new solution to the Einstein equations in-5 spacetime with an embedded-8 brane is given. This
solution localizes the zero modes of all kinds of matter fields and four-gravity orf1th8) brane by an
increasing, transverse gravitational potential. This localization occurs despite the fact that the gravitational
potential is not a decreasing exponential, and asymptotically approaches a finite value rather than zero.
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The main question of brane models is how to localize®R is the scalar curvature\ is the cosmological constant,
fields on the brane. To localize multidimensional fields onandL is the Lagrangian of matter fields. All of these quanti-
the brane the effective “coupling” constants appearing afterties are six dimensional.
integration of the Lagrangian over the extra coordinates must Einstein’s six-dimensional equations with stress-energy
be nonvanishing and finite. For reasons of economy onénsorT,g are
would like to have a single, universal trapping mechanism

that works for all fields. It is natural to try gravitational trap- 1 6 1
ping of the physical fields on the brane, since gravity is Ras=59a8 R=W(A9AB+TAB)- ()
known to have a universal coupling with all matter fields.

In (1+4)-dimensional models the following results were Capital latin indices run oveA,B, ...=0,1,2,3,5,6.

established: spin 0 and spin 2 fields are localized on the

brane with a decreasing, exponential gravitational warp facai

tor, spin 1/2 fields are localized on the brane with an increas-

ing warp factof1,2], and spin 1 fields are not localized at all ds?= p2A(X') ,5(x")dx*dxP + g;;(x)dX'dx.  (3)

[3]. For the case of £ 5 dimensions it was found that spin

0, 1 and 2 fields are localized on the brane with a decreasinghe metric of ordinary four-dimensional spa%ﬁ(x”), has

warp factor and spin 1/2 fields are localized on the branehe signature ¢,—,—,—). The greek indicesa,p, ...

with an increasing warp factdi5]. So in both(1+4)- and  =0,1,2,3 refer to the coordinates of these four-dimensions,

(1+5)-space models one is required to introduce some nonyhile small latin indices,j, . . . =5,6 refer to coordinates of

gravitational interaction in order to localize the standardihe transverse space. It is assumed thatAhsatz(3) de-

model particles. pends only on the extra coordinates through the four-
Here we want to show that zero modes of spin 0, 1/2, 1dimensional conformal facto®? and the metric tensor of

and 2 fields can all be localized on the brane inda5lspace  transversal two-space;; .

by an increasing warp factor which is not an exponential. A Since gravity in the transverse two-space is trivial, the

similar solution for a(2+4)-5ignature metric was found in metric of the extra Spacg,ij(xi)’ has 0n|y one independent

previous work|6]. Having a growing gravitational potential component. We will choose its diagonal component as inde-
(warp factoy is opposite to the choice of the Randall- pendent:

Sundrum model where the warp factor maximum is on the

brane[1]. However, Newton's law still holds on the brane as gij(xi): — &ii\(r), (4)
a result of the cancellation mechanism introduced[4h

which allows both increasing and decreasing types of graviwhere §;; is the metric of Euclidean two-space.

We will look for solutions of Eq. 2 that contain four-
mensional Minkowski geometry with the followirfgnsatz

tational potential. We require cylindrical symmetry of the transverse two-
The action of the gravitating system in six dimensions carspace. It is convenient to write the two extra spatial dimen-
be written in the form sionsx® and x® using polar coordinates (6), where O<r
M4 = \x2+x3<o and O< #< 2. Thus theAnsatz(3) takes the
s=f d®x\/—5g 7(6R+2A)+L , (1 form

ds?= qsz(r)naﬁ(x”)dx“dxﬁ— A(r)(dr2+r2d6?). (5
where/—®g is the determinantyl is the fundamental scale,
This metric is slightly different from the metrics investi-
gated in other1+5)-space brane mode[$,7,8. The inde-
*Electronic address: gogber@hotmail.com pendent metric function of the extra spakér), serves as a
"Electronic address: dougs@csufresno.edu conformal factor for the Euclidean two-dimensional metric
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of the transverse space just as the functd(r) does for the and should approach zero only on the brare0 and at
four-dimensional part. Usually in six-dimensionahsadze infinity r—o. Therefore we must look for a solutiog
the independent metric function multiples only the angulamwhich is a monotone function afand increases or decreases
part (d6?) of the metric(5) and corresponds to a cone like from the brane to some finite value at infinity.

geometry of a string like defect with a singularity at the Afield will be trapped on the brane if the integral over the
centerr =0. We want to look for nonsingular solutions, and extra coordinates, § converges. From the metrinsatz(5)

so we choose the metric to take the fofB) where the extra and the solution foi(r) in Eq. (10) the general expression

part is conformally equivalent to Euclidean two-space. for these integrals is
The nonzero components of the stress-energy tehggr
2 %
are assumed to be J' def dr ¢%(8")°—Fg
0 0

Tu=—0uF(), Tij=—gi;K(r), Ti,=0. (6

The two source function§(r) and K(r) are assumed to =27-rf dr ¢%(¢")%r ¢*N\ V-7
depend only on the radial coordinate 0
For the four-dimensional Einstein equations outside the o
brane we require the ordinary form without a cosmological =27Tp2f0 dro"(¢p')™ -7, (11
term,

where 7 is the determinant of the ordinary four-dimensional

Ruv= 5 7,R=0. (7)  metric tensorg andd are numbers that depend on the type of
field being trapped, and=c+4 andm=d+1. To have

The Ricci tensor in four dimensiorig, 4 is constructed from '023“%33 physical fields on the brane the integral of
the four-dimensional metric tensof, z(x") in the standard #"(¢")™ must go to zero fast enough es-=, and not have
way. Then with theAnsize (5) and (6) the Einstein field any essentially singularities in the rangesf<«. For the

equations(2) become fields that we will considefspin 0, spin 1/2, spin 1, and spin
2), mis positive whilen can be either positive or negative.
¢ P (H)Z LN L (N2 1N One standard possibility is to have an exponential warp fac-
33 +3@+3?+ 2% 2 2 toN tor, ¢(r)ce " [5,7,8. In this case for fields witm>0 ¢"

and (¢')™ go to zero ag—o and the integral11) con-
A verges and the fields will be trapped. However,riet0 (for
=—4(F(r)—A), example, with spinor fielgsthe integral diverges and the
M fields are not trapped.
In this work we present a different type of solution where
ﬂ+2¢—,+3(¢,)2—L(K D-A) @® the gravitational potentiap is not an exponential and goes
N roé $? oM ( ' to a finite value at =« [i.e., ¢p() = const], yet nevertheless
is able to trap the zero modes of all types of fields since
N ¢'—0. A similar nonexponential solution for the signature
(K(r)—A), 2+4 was found in previous worl6]. This type of solution
M4 is impossible in the five-dimensional case where only an
o ) exponential warp factor is possible.
where the prime indicate® dr. These equatlons are for the Based on the above discussion we choose the boundary

¢H ¢/)\r Q(¢r)2_
23— 5 +3 ¢2 =

aa, rr, and #0 components, respectively. conditions on the brane as
Subtracting ther from the 66 equation and multiplying
by #/¢' we arrive at d(r<e)=1, ¢'(r<e)=0, (12
" N1 where e is the brane width. The boundary conditions at in-
; N 770 9 finity are
This equation has the solution P(r—)—a, ¢ (r—=)=0, (13
24 wherea>1 is some constant. Since the functign is pro-
)= P , (100  portional to the metric of the extra two-spacg,, the

r boundary conditiong12) and (13) imply that on the brane

and at infinity the effective geometry of space-time is four-
dimensional.
The energy-momentum conservation equation

wherep is an integration constant with units of length.
We want to find a solutiorp(r) [and thereby alsa (r)

via Eg. (10)] which will provide a universal, gravitational

trapping for all kinds of matter fields. In the above the brane 1

is located at the origim=0. From Eq.(10) we see that to VAT ag=——0da(\/— g TAB)+ T8 TCP=0 (14)

avoid singularities the functiol«¢’ cannot change sign he \/—Gg A P
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gives a relationship between the two source functiB(is) ) ,a—1
andK(r) in Eqg. 6. In terms of thé\nsatzfunctions the con- =€ —, (22)
servation law reads
) wheree is the brane width.
K’+4¢;(K—F)=O. (15) It is easy to show that four-dimensional gravity is local-
¢ ized on the brane by the soluti@®l) in spite of its growing
character. We will consider only spin-2 modes, which are
This equation places a restriction on the form of the sourceransverse, traceless fluctuatidrg, around the background
functions, which will allow us to determine a simple form for metric (5):
F(r) andK(r). We assume that they are smooth functions of 24
the radial coordinate and describe a continuous matter dis- , PP
tribution within a core of radiug. We also assume that they ds*= ¢*(1) (7, + H ) dXdX _T(dr2+ r’de?),
decrease rapidly when>e¢. Below we will find that the (23
transverse gravitational potentigl?(r) can be a growing
function as one moves off the brane, so the factet?(y)  Where¢ has the form21).
has &-like behavior. Thus outside the core we will set the In the gaugev#H ,,=H=0, Einstein's equations reduce
source functions proportional tod?. This form satisfies Eq. t0 the form of the linearized equations
(15) with the sources functions given by

1
—da(N—99"®dgH,,)—2AH,,=0. (24)

V-9

f f
F(r>e)=——, K(r>e)=—, 16
(r>0= 75 Kr>o= (16) |
We look for solutions of the form

wheref is some constant. _

Now we shall find the outer solutiorr ¢ ¢€) of the six- H,, (XN =h,,(x*) X ap(r)e'"’, (25)
dimensional Einstein equatior{) for the brane when the Im
metric and matter energy-momentum tensor have the gener\?}hereh

u . L . i .
forms given in Eqs(5) and (16), respectively. The system ur(X") satisty the four-dimensional field equations

(8), after the insertion of Eq910) and (16), has only one (A—2A ¢?)h (X,L):_mcz)h (XM, (26)
independent equation. Taking either thieor 9 component r r
of these equations and multiplying bys* gives with the definition of
2 44 11
pep P’ f 1
ré¢3¢"+ ¢3¢’ +3rp?(p')°=——| — —A|. A=—0,(J— “Ya,). 2
¢ P+ b P d(¢") o | g2 \/_—7]#( n n*'d,) (27)

Note that the presence of the cosmological constant term
Taking the first integral of this equation and setting the inte-2A ¢? in Eq. (26), which appears in most studies of the

gration constant to zero yield$§] localization of spin-2 field$1,5,7,§, is problematic since it
implies a negative energy, tachyonic spin-0 mode for the
r¢’' =A(-¢*+a’), (18)  fluctuationh,, on the brane. One could consider fluctuations
coming from the extra coordinates, which might have a
where we have introduced the parameters chance to cancel this contribution. Without a satisfactory
quantum theory of gravity it is not certain how to properly
p2A , O5f resolve this difficulty, and we will not consider its resolution
A= m, a :ﬁ' (19) here.
Using Eq.(26), Eq. (24) reduces to
From the Eq(18) we see that to have an increasing function 1 , m2o? &' |2
¢ (¢'>0) we must require the following conditions: o+ Z+4 % o'+ oP ¢_2__2) o=0. (28)
r r ¢ r
a> g, A>0, f>0. (20
It is easy to see that this equation has the zero-mags (
Equation(18) is easy to integrate: =0) ands-wave (=0) constant solutiowry= const. Substi-
tution of this zero mode into the Einstein-Hilbert action leads
r r2b_o2b to
¢=atan|{b|n(€ =am, (21

/_6
S(°)~02J2Wd0fwdr gJ d*x[a*h#*a h,,+ - -]
0 a'luv .
0 0

whereb=Aa. The integration constartcan be fixed from ¢?
the boundary condition&l2), (29
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To have the four-dimensional spin-2 graviton localized on Therefore, the covariant derivatives have the form
the brane requires that the integral oveand # (which cor-

_di . 1 R
responds to the four-dimensional Planck sgalenverge D, ¥=|a,+ Ew;h’r%) v, D,¥=04,V,
2 o a7 P 15
mp=27M o dr pE DyW=|dpt 5@ VYo v, (35

o a wherevy, ,v,, vy are gamma matrices.
:27P2M4j0 ¢2¢’dr:2792M4J1 ¢?d¢ We are looking for solutions of the formW(x*)
=y(x")B(r), where ¢ satisfies the massless four-
o4 s dimensional Dirac equationy”d,y=0. Then the six-
=3P M%(a’—1). (300 dimensional massless Dirac equation

. F“DM\If+F’Dr\If+F"D0\If=O, (36)
Now we want to check that zero modes of matter fields

are also localized on the brane with the nonexponential, inghere FA:hg,yB are the six-dimensional curved space
creasing warp factof21).

. , S . amma matrices, reduces to
For spin-0 fields in six dimensions we assume that theg

fields are independent of the extra coordinates so that the ¢ 1 1
action can be cast in the form <9r+23+ > War(\/rqb’) B(r)=0. (37
1 , , S , ,
Sp=— —f d®x V= CggPBa P 9D The solution of this equation with the integration constant,
2 taken as 1 is
a — 42 1\ —1/4
——m? [ "9 [ ax= o, @00, (@1 B(r) =~ 2(re') (39
1

Using the solution from Eq21) one finds thaB(r)—o as
The integral over the extra coordinates in Eg81) is the r—c. This happens sinaep’ —0 asr —«. This appears to
same as for the spin-2 case above. Thus the integral is fini@ply that the total spinor wave function/ (x*), does not
and the spin-0 field is localized on the brane. have good asymptotic behavior. However, the effective wave

The action for aU(1) vector gauge field in the case of function is W (x*)(—°g)Y*=<B(r)Vp2¢*d' —p(p'Ir)¥
constant extra componenté, const) reduces to the four- which goes to zero as—. The action of the spin-1/2 field
dimensional Maxwell action multiplied by an integral over takes the form
the extra coordinates

1 sw=f d®x\/—bgWil D, ¥

SA:__f d®x\/—°gg*BgMNF AuFen

4 @ —

:2Wp2f drr’l’2¢’1(¢’)1’2J' d4X [_ 77‘!“ ,yuoqvw_
0

a a
———52| 4 J'd4xj/_ wypeBE B 32
5P L ¢ ' PF aF g (32 (39)
This integral is also finite, and the gauge field is localized orlJsing the explicit form of the solutiof21), one finds that
the brane. the integral over in Eq. (39) is of the form
_In the case of spinor fields we introduce the sechsbein - o b
hM, whereM,N, . .. denotes local Lorentz indices. The spin f dr A /‘iz im r-c ) (40)
connection is defined as r¢? Jab \rP+cP
=1 = = - 1 - — — This integral converges if one evaluates it frome to r
MN _ N N M M . . .
Wy _EhNM(aM hn—dnbim) — EhNN(ﬁth —dnhm) =, Thus the massless Dirac fermions are also localized on
the brane.
i~ on, B R When we consider the interaction of scalars or fermions
- §h h=(dphqr—dohpr)Ni - (33 with the electromagnetic field we must make the usual re-
placements
The nonvanishing components of the spin connection for the . .
background metridnsatzare d—di—iA;, VeV (41)
SN Y - ; in the above formula for localization. Hexé are coordinates
o'=5" 0= \/:(9 (\ré'). (34) of transverse two-space am are constant extra compo-
M 1 ' (4 ,or . .
P ¢ nents of the electromagnetic field.
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To summarize, in this paper it is shown that for a realistictransverse space is infinite, the integral over the extra coor-
form of the brane stress-energy, there exists a non-singulatinates is convergent, and the fields are localized on the
static solution of six-dimensional Einstein equations. Thisbrane.
solution provides gravitational trapping of the four-
dimensional gravity and matter fields on the brane without
extra 5-like sources. In contrast to the Randall-Sundrum ACKNOWLEDGMENTS
case, the factor responsible for this trapping is an increasing
gravitational potential. Despite this and the fact that the This work is supported by a COBASE grant.

[1] L. Randall and R. Sundrum, Phys. Rev. L&8, 3370(1999; [5] I. Oda, Phys. Rev. 2, 126009(2000.

83, 4690(1999. [6] M. Gogberashvili and P. Midodashvili, Phys. Lett.5R&5, 447
[2] B. Bajc and G. Gabadadze, Phys. Lett4B4, 282 (2000. (2002); Europhys. Lett61, 308 (2003.
[3] A. Pomarol, Phys. Lett. BI86, 153 (2000. [7] R. Gregory, Phys. Rev. Letg4, 2564 (2000.
[4] M. Gogberashvili, Int. J. Mod. Phys. @1, 1639 (2002; 11, [8] T. Gherghetta and M. Shaposhnikov, Phys. Rev. [8§t.240
1635(2002. (2000.

026004-5



