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Spinning pulsating string solitons in AdS,X S°
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We point out the existence of some simple string solitons ing&dS, which at the same time are spinning
in AdSs and pulsating in § or vice versa. This introduces an additional arbitrary constant into the scaling
relations between energy and spinfocharge. The arbitrary constant is not an angular momentum, but can be
related to the amplitude of the pulsation. We discuss the solutions in detail and consider the scaling relations.
Pulsating multispin or multR-charge solutions can also be constructed.
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I. INTRODUCTION suggest some further investigations in these directions.

Recent progress in understanding the conjectured duality 5
[1-3] between superstring theory on A@SSS and N=4 II. SPINNING IN AdS 5 BUT PULSATING IN S
SU(N) super Yang-Mills theory in Minkowski space is based  \ye take the AdSx S° line element in the form
on scaling relations between energy and angular momentum
for straight spinning stringg4-16]. Circular pulsating
strings have also been analyzed in some dé#ail0]. Even
more recently, multispin and mulR-charge solutions were
constructed17-19 and classified20,21].

dr?
ds?=—(1+H?r?)dt?>+ ——— +r2(dB%+sir*Bd ¢?
1+H??

The geometry of anti—de Sitter space profoundly alters +co2Bdp2) + H2(d 62+ sintod ¢
the properties of strings, as compared to Minkowski space. , ) )
For instance, for a straight spinning string in anti—de Sitter +coS O(dys + sifydys+ cosy dys3)) 2.9

space[22], the energy scales with the angular momentum,

mhlle In '\l/“nKOWSk' ipacesl'.t s;I:aI;s:s ;N'th th? sqluare :oott. OfwhereH*l is the scale of AdSand the radius of 5 The
e angular momentum. Similarly, for a circular pulsating ., o« coupling in this notation is\ = (H%a") 2.

string in anti—de Sitter spa¢@3], the energy scales with the The string which is straight and spinning in Ad®ut
square of the amplitude, while in Minkowski space it scales . L : :
with the amplitude(the amplitude is of course not a coordi- circular and pulsating in'S is obtained by the ansatz
nate invariant, but the maximal circumferenceg is

Comparison with Yang-Mills computation&ee for in- t=t(7), r=r(o), B=7l2, p=wt, 0=0(7), y=0
stancg 24—28§) is based on detailed analysis of the sublead- (2.2
ing terms in the scaling relations. It is therefore of impotance

to search for general families of strings for which it is still \yith the remaining coordinates being arbitrary constants.
possible to obtain analytical results. In the present paper, we Thet equation is solved by=c,7, and then the and @
explicitly construct new families of string solitons in AdS  gquations become

X S°. Our strings are straight and spinning in one direction

but circular and pulsating in another, and with a nontrivial

. . . . 2,12
coupling between the two. Pulsating multispin solutions are ,  H'"r . 2 2 2 2o
also constructed. In each case, we obtain the explicit solu- r 1+ H2r2 H7Co(1+HTI)r+w(1+HT%r=0
tions in terms of elliptic functions, analyze the scaling rela- 2.3

tions in various limits, and compare with previously known

results. We note in passing that our solutions fall outside the )

classification 0f29,30. 0+ sinfcosh=0 (2.9
The paper is organized as follows: In Sec. Il, we set our

notation and conventions, and derive and analyze the solu-h.I th trivial f | traint |

tions which are spinning in AdSut pulsating in & Section while the nontrivial cohformal gauge constraint 1S

[l is devoted to the “opposite” situation, i.e., pulsating in

AdS; but spinning in 8. In Sec. IV, we take the simplest H2r’2

multispin solution[17] and generalize it to be pulsating in

S°. Finally in Sec. V, we present our conclusions and we

+ 02— H2cH(1+H?r?) + H?r2w? +sif 6=0.

2.9

1+H??

*Electronic address: patricio@fysik.sdu.dk Notice that Eq(2.5) involvest ando derivatives. However,
"Electronic address: all@fysik.sdu.dk everything is consistently solved by

0556-2821/2004/62)/0260016)/$22.50 69 026001-1 ©2004 The American Physical Society



A. KHAN AND A. L. LARSEN PHYSICAL REVIEW D 69, 026001 (2004

_ Cocosyg ~2\1+8B? , mA*(1+B?)
DT HELIRY A )
4K
2
H2c2coSay 1+B
Xcnl Jo?—H2cisirtago| ———————
( 0 0 wZ—HzcgsirFao B? 1 2
x|E 51— 5K 5 (2.13
(2.6) 1+B?/ 1+B? \1+B
H cosinagsn( T|H2c§sin2a0), Heosinag<1 !\lOV\{ V\§<Cfnvflonsuier the short strings in RdSrrespond-
sing(r)= ) e _ ing to . We ge
sn(Hcosinao 7| L(H?cgsirag)), Hcgsinag>1
2.7) Ewi B2+ A? (2.14
' Ha'

where ag is an integration constant. In the first case of Eq.

(2.7 the string oscillates around one of the poles, while in S~
the second case it oscillates between the two poles. In the 2H?a’
limiting case,Hcgsinag=1, it oscillates between a pole and

the equator. To ensure thafo) is periodic, we have the such that

B2\1+A? (2.15

condition
'E? A + 25 (2.16
o =~ . .
H2c3cogay H%a'  J1+A?

) (2.9

2wl —H2cisiPay=4K| ——————
0 0 w2—HZCSSin2aO

For A=~0, corresponding to small oscillations near one of the

poles of S, we get
whereK is a complete elliptic integral.

The solution(2.6), (2.7) is parametrized byd, w, a), of a'E?~2S (2.1
which one is fixed by Eq(2.8). It is convenient to trade the
two remaining parameters for as in Minkowski space. Foh~1, corresponding to oscilla-
tions between a pole and the equator 8f ®e get
A=Hcgsing, (2.9
S
E/H~ -+ = (2.18
Hcocosxg H?a' 2
B= ————. (2.10
Vo —HCy while for A>1, corresponding to high frequency oscillations

between the poles of°Swe get
A is the amplitude of sif&(7), while B is the extension of

Hr (o). Actually, A can only be interpreted as the amplitude A S
as long asHcgsinag=<1, but since the solution foé(r) is E/H~ H2a' + E (2.19
defined for anyHcgsina, we also define the amplitude for
any Hegsinag. Now Egs.(2.8—(2.10 lead to and the energy is now completely dominated by the contri-
bution from the oscillations.
A1+ B2 For B>1, corresponding to long strings in AglSwve get
tanay= 5 (2.1
2BK 1 A
1+|32) E~ (BZ+ —lo B) 1+ (2.20
mHa' 29 4lo’B
It is straightforward to compute the conserved energy and 52
spin (the R charge is zerp In the present parametrization, S~ 2 (BZ— EIogB 1+ A
they are mH?%a’ 2 4log’B
(2.21
_2V1tB? [, mAEEY) [ B such that
mHa' ,[ B? 1+B2
4K >
1+B E/H—S~ V4log?B+ m2A2 (2.22
(2.12 mH?%a’
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whereB=B(S,A) is the solution of H2r2 H2c2

c
402 —— L+ H22+ 2si9=0. (3.5
2B?2 m2A2 1+H“r 1+H4r
S~ —— : (2.23
mHa 4log’B Again, the constraint mixes and o derivatives, but the so-

. . . lution is easily obtained as
If the logarithm dominates ovek in Eq. (2.23, we have y

2 1 1
, mH%a'S r(r)= —=(J(1+H?%cisirag)?+4H%c5cosa
B~ —— (2.24) (7) H\/E(\/( 0 0) 0 0
such that — (1+H2cGsirPag)) Zen([ (1+H2cEsiag)?
1 ~H2a'S A2 +4H%cicogaq]Y47|m) (3.6)
E/H-S~ Iog( . :
2 1 2 mHa'S . 2.2
TH a 2, oql = Hcgsina H2c3sirfa
2Ha lOQ( 2 ) Sin0(0)=—0 OSF( vo| ——— = 5 0) (3.7
v v
(2.295
where the elliptic parameter of thheexpression is
This formula is valid for arbitraryA, provided thatA
<log(H?«'9), in particular, it holds foA~0 andA~1. If A 1 1+ H2c3sirfag
dominates over the logarithm in E2.23, we have instead m= 5 — _ . (3.9
g ®23 2 2\(1+H?%c5sirPag)?+4H%cicoS ay
B> HZ%a'S _ , _ .
oB~ A (2.26 Equation(3.2) can now be integrated in terms of an elliptic
9 integral of the third kind, but we shall not need the explicit
such that expression. The solutionid.7) is valid for Hcgsingy=<w.
There is another solution fdficysinay>v but it is believed
1 , A to be unstabl¢4] so we shall not consider it here. To ensure
E/H—-S~ + lo (2.27 eriodicity of (o), we have the condition
Hea'  27°AH2a’ ° Hla'S P y ofot)
. , H2c3sirag
which holds forA>log(Ha'S). 2mp=4K| —— % (3.9
It is interesting that Eqs(2.25 and (2.27) are formally V2

guite similar to the results obtained by Rug3g if we re-

place the amplitudeA with the shiftedR chargeH2«’J  As in the previous section, it is convenient to trade the two
+2/7. But the physics is of course completely different remaining parameter®ayc, and a,) for two new ones

here.

1
A= —2(\/(1+ H2c3sirPag)?+ 4H2c5coSay

lI. SPINNING IN S ® BUT PULSATING IN AdS 2
We now consider a string which is spinning it 8ut —(1+Hzc§sin2a0))1’2 (3.10
circular and pulsating in AdS It is obtained by the ansatz
t=t(7), r=r(7), =72, p=0c, 6=60(0), y=vT B:M (3.11
(3.1 v
with the remaining coordinates being arbitrary constants. such thatA is the amplitude oHr(7) while B is the exten-
Thet equation can be integrated to sion of sing(o). As noted in the Introduction, the amplitude is
coordinate dependent. A coordinate invariant measure of the
= Co (3.2 oscillations is given by the maximal circumference. This is
1+H2r2 ' precisely ourA, up to a factor of Zr.
A straightforward computation gives the energy aRd
and then the and 6 equations become charge in this parametrizatidithe spin is zerp
H2r2r  HZ%Cr ), 1 \/ |, . 4B2 o\ aB?
r 1+H2r2+ 1+H2r2+(1+H ryr=0 (3.3 E N Afl AT+ 1+ - K4(B?) | + - K4(B?)
(3.12
0"+ v?sinfcosh=0
(3.9 2
: - . J= (K(B?) —E(B?)). (3.13
while the nontrivial conformal gauge constraint is mH%a’
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First consider short strings ir°Sorresponding td<1

1
E~ ——A%(A%+1+B?)+B? (3.14
Ha'
82
~ 3.1
2H?%a’ 313

such that

1
E~ F\/AZ(AZ-% 1+2H%a'J)+2H%'J. (3.1

a
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For A=0 we get

a'E?~2J (3.17
which is like in Minkowski space. FoA>1 we get
A2
E/H~ How +2H2a’ +J (3.18

such that the energy is completely dominated by the pulsa-

tion, E~AZ2,
Now consider long strings in°3“long” meaning extend-
ing almost down to the equadocorresponding t@B~1

E ! \/A2 A2+1+1I o 16 +1| , 16 (3.19
~— —log" —— |+ —lo .
Ha' w2 g 1-B?] =2 9 1-B2
2 1I 16 1 (3.20
wH2a | 200 g2
such that
1 1 1
E~—\/A2 A2+ 1+ —(7H?a’ 3+ 2)? | + —(wH?%a'J+2)2. (3.21)
Ha' G G

For A=0 we get

+ el (3.22
mH2a’ 2 .

E/H—J~

For A>1 we must distinguish between different casesA If
>H?a’'J we get

A2 1 2 1172
E/H~ o+ 5P (3.23
o
If A<H?a’J we get
A3
E/H~AJ+ o (3.24

The scaling relations obtained here are, to our knowledge,

ity the simplest 2 spin solution in AdSand couple it with
pulsation in 8. The ansatz is

t=cqr, r=rg=const,f=o0, ¢=wr,

ZSZwT, 0=0(7), y=0 4.1

with the remaining coordinates being constants. This is a

circular string in Adg spinning in two different directions. It
is also a circle in § but pulsating there.
Ther and # equations become

w?=1+H?2c] 4.2

6+ sinfcosH=0 (4.3
while the nontrivial conformal gauge constraint is

6%+ sirf9—H2c3(1+H2r2)+ H?r3(1+ »?)=0. (4.4

completely new. They generalize the ones of Gubser, Kle- . ]
banov and Polyakoy4] and supplement the ones of Russo The ¢ equation and constraint are solved by

[7].

IV. PULSATING MULTISPIN SOLUTIONS

Multi spin and multiR-charge solutions were recently ob- where

tained by Tseytlin and Frolo{17—19. Such solutions can
easily be combined with pulsation. Here we take for simplic-

_ Asn(7|A?), A<1
SINO(T=\ s A 1AZ), A>1 .5
A=H+/c5—2r2 (4.6)
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with the same interpretation as in Sec. Il. The endfggnd
the 2 spinsS;=S,=S are easily computed

c (1+H22)\2HZ 2+ A2

(4.7)
Ha'
ro
S=—\2r2HZ+ A%+ 1. (4.9
2a’
For short stringgsayHr,<1) we get
S i VA +1| 1 HrG (4.9
~ —— A+ + .
2a’ A’+1
such that
H2p2 2H%a'S 4H%’?S? .10
ro=~ - .
O JAZF1  (A2+1)2
which inserted intcE gives
E(SA) 1 - 2H?%a’'S 4H%'%s?
’ a’ VAZ+1  (A%+1)2
\/4H2a’S BH'a®S 0 e
VAZHL  (A%+1)2
For A=0 we get
2\S
E~—(1+H?%a’'S) (4.12
Ja!

which to leading order is just the Minkowski result E2
=2(2S). ForA=1 we get

1
E~——(1+2%H?a’S)

Ha

(4.13

and forA>1

1
E~F(A+2H2a’8), (4.14

o
For long stringgsayHry>1) we get

HZOZ/

~ H?r3
2H2a' 2H 5+ A%
(4.19

E/H—-2S~

Now we have to distinguish between different cases.

Hro>A we get from Eq(4.8)

A%+1
4H%r3

3
Hrg

V2!

S~

(4.1

such that

If
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A%+1
Hro~(J2H?a'S)YP- —————  (4.17)
o~ (\2HEa'9 12(\2H2a’ )13
which when inserted into Eq4.15 gives
EH 25 3(V2H%a'9)R 4A2-1
23/2H2a' 27/2H2ar(\/§H2a/S)l/3'
(4.18

This result is valid forH2a’S>{1, A%}, and therefore holds
in particular forA=0 andA=1. Notice also that the pulsa-
tion only gives a contribution to the nonleading terms, in this
limit. On the other hand, iHr,<A we get from Eq.(4.8

S Ar% 1 r(Z)HZ (4.19
~—| 1+ .
2a’ A?
such that
, , 2H?Sa’  4S%a’?H*

and insertion into Eq(4.15 gives

E/H—-2S~ +— (4.21

H%a'  A?

which holds for kH?2a'S<AS3. Thus, in this limit, the pul-
sation completely changes the scaling relation.

All our results reduce foA=0 to those obtained ifilL7],
but otherwise they are quite different. It is straightforward
also to generalize the mulR-charge solutions of17] to
include pulsation in Ad§ but we shall not go into the de-
tails here.

We end this section with some comments about stability.
Contrary to circular pulsating strings, circular spinning
strings tend to be unstable. In particular for very large angu-
lar momentum. In the case of the 2-spin solution in AdS
corresponding to the solution considered here in the IAnit
=0, it was shown explicitly[17] that it is stable forS
<3.97J\, with A>1 in the semiclassical approximation.
Thus it is stable for large angular momentum, as long as it is
not “very large.”

Simply by continuity, our pulsating spinning 2-spin solu-
tions will also be stable for smak (say A<1, at least
What happens for largd, i.e., whether the coupling to pul-
sation more generally leads to stabilization or the contrary, is
an open problem. A generic stability analysis is most easily
performed using the world-sheet covariant approach devel-
oped in[31,32. Unfortunately, it turns out to be extremely
complicated for the solutions considered in this section, be-
cause of the nontrivial time dependei{tr). As a result, we
get timedependent coefficients in the 8 coupled equations for
the physical perturbations, which should be compared with
the case considered [d7] where the coefficients were con-
stant in the 3 equations for the physical perturbations. At the
moment, we have no solution to this problem.
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V. CONCLUDING REMARKS due to the coupling between spin and pulsation. The Yang-
Mills operators for spinning strings were given [i4], and

_In conclusion, we have found severgl new relatively g for pulsating strings were suggested i, but it is
simple families of string solitons in AGX S’. They gener- ot clear how to combine them.

alize some_of the_previously knpwn_solitons in_ t_he sense that apother direction which could be interesting to pursue, is
they combine spin and pulsation in a nontrivial way. Fortg consider linearized perturbations around these solutions.
each family, we analyzed in detail the scaling relations becjassically, this could reveal how the pulsation affects the
tween energy and angular momentum. The scaling relationstability properties of spinning strings, a question which
reduce in a certain limitA=0) to previously known rela- could be important especially for the multispin solutions of
tions, but are otherwise quite different. [17]. At the quantum level, the perturbations could give a
It would be interesting to find the Yang-Mills operators contribution to the scaling relations, similarly to the results
corresponding to the spinning pulsating strings constructedbtained in[5,6].
here. It seems, however, to be a highly nontrivial problem These problems are currently under investigation.
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