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One-loop corrections to the metastable vacuum decay
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We evaluate the one-loop prefactor in the false vacuum decay rate in a theory of a self-interacting scalar field
in 311 dimensions. We use a numerical method, established some time ago, which is based on a well-known
theorem on functional determinants. The proper handling of zero modes and of renormalization is discussed.
The numerical results show in particular that the quantum corrections strongly increase when one approaches
the thin-wall case. In the thin-wall limit the numerical results are found to join into those obtained by a gradient
expansion.
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I. INTRODUCTION

First-order phase transitions play an important role
various phenomena from solid state physics to cosmolo
The basic theoretical concepts of these transitions have
developed long ago@1–6#. The phase transition proceeds v
formation of stable phase~or true vacuum! bubbles within a
metastable~or false vacuum! environment, and via the sub
sequent growth of these bubbles. Two mechanisms of
first order phase transitions are known: quantum tunne
and thermal activation. In both cases the decay rate o
metastable state is given by the formula

g5Ae2B. ~1.1!

For tunneling in a (311)-dimensional theory the quantityB
in the exponent is given by theclassical4D Euclidean action
evaluated on a bounce, a finite action Euclidean solution
classical equations of motion which asymptotically a
proaches the false vacuum. For thermal activation at non
temperatureT the exponent is given byB5E/T, whereE is
the energy of a critical bubble~sphaleron!, which is a static
solution ‘‘sitting’’ on a top of a barrier separating two vacu
The bounce as well as the sphaleron are unstable solu
with exactly one unstable mode. Bubbles smaller than c
cal collapse, and the ones bigger than critical expand
lead to the transition to a new phase. These static solut
and Euclidean solutions are related, namely the sphalero
d11 dimensions can be viewed as a bounce ind dimensions.

The leading order estimate for the transition rate is eas
obtain; it just requires solving—in general numerically—
ordinary, though nonlinear differential equation. Analytic e
timates can be obtained in the so-called thin-wall approxim
tion.

The pre-exponential factorA in Eq. ~1.1! is calculated
taking into account quadratic fluctuations about the class
solution and is given as a ratio of the functional determ
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nants. In general it is a very difficult task to calculate an
lytically the determinants if the background solution itself
not known in a closed form. It took two decades until t
first ~numerical! computations of the quantum corrections
leading order semiclassical transition rates appeared@7–12#.
Of course nowadays the CPU time requirements for s
computations are, even for more involved systems, of
order of seconds. On the other hand the requirements
precise renormalization, which compares exactly to the
of perturbative quantum field theory, and of the inclusion a
careful treatment of high partial waves, have of course
mained the same. The method used here has been deve
and tested for various systems and has become a stan
procedure. It is well suited for computations of coupl
channel problems as well@13#.

While the special technique used here applies only to
computation of functional determinants, the general
proach can be used as well for computing zero point ener
@14–16# via Euclidean Green functions. Of course function
determinants can be computed likewise using Euclid
Green functions@12,17#. Various other techniques for com
puting the exact quantum corrections were developed in
past decade. In Refs.@11,18# the heat kernel is compute
using a discretization of spectra, in Ref.@19# Minkowskian
instead of Euclidean Green functions are used, and in R
@20# the zero point energy is computed via thez function.

The effective action may be computed approximatively
using gradient expansions. There is an ample literature
this subject. We just quote Refs.@21–24# for expansions us-
ing advanced heat kernel techniques, and Ref.@25# for ex-
pansions based on Feynman graphs.

The leading quantum corrections, being essentially a
loop effect, can be viewed as a ‘‘summary’’ of the partic
creation during the phase transition@26#. The question abou
the quantum corrections is a very important one; there
cases where particle creation is so strong that it drastic
modifies the original classical tunneling solution@27–29#.

The aim of the present paper is to calculate the pre-fa
A for tunneling transitions in the quantum field theory of
self-interacting scalar field in 311 dimensions.
©2004 The American Physical Society09-1
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The rest of this paper is organized as follows: In the n
section we will describe our strategy for calculation of o
loop effective action. In Sec. III we formulate our mode
specify the form of the potential, write the equation of m
tion for the bounce and present our numerical results for
classical actionS@w#. In Sec. IV we describe the calculatio
of the fluctuation determinant, Eq.~2.3!. There we also dis-
cuss regularization and renormalization. Our numerical
sults are presented and discussed in Sec. V. We end
some general remarks and conclusions in Sec. VI. Form
describing the thin-wall approximation and gradient exp
sion are collected in the Appendixes A and B respectivel

II. GENERAL STRATEGY

We will consider phase transitions in the quantum fie
theory of a self-interacting scalar fieldw in 311 dimensions.
The Euclidean action is given by

S@w#5E d4xS 1

2
~]mw!21U~w! D , ~2.1!

where the field potentialU(w) is assumed to have two non
degenerate minimaw5w2 andw5w1.0 ~compare Fig. 1!.
U(w) will be given explicitly in the next section. For conve
nience we have fixed the value ofw in the unstablevacuum
asw250.

Any state built on the local minimumw2 is metastable. It
can tunnel locally towards thew1 phase. The tunneling rat
per unit volume per unit time,g5G/VT, is supposed to be
dominated by the classical actionScl of a field configuration,
the bounce wb(x), which looks like a bubble of the
w1-phase within thew2 phase. In particular it can be show
@30# that the bounce configurationwb(x) which minimizes
the action is spherically symmetric in four-dimensional E
clidean space. In the tree level approximation the decay
is determined essentially by the tunneling coefficient,g
}exp$2Scl@wb(x)#% @39#.

The tree level tunneling rate receives corrections in hig
orders of the semiclassical approximation. In quantum fi
theory the fluctuations around the bounce contribute in

FIG. 1. PotentialU(F) in dimensionless form Eq.~3.4!. The
curves are labeled with the value ofa.
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next-to-leading order approximation a pre-exponential fac
to the decay rate. The rate per volume and time is known
take the form@5#

g5S Scl@w#

2p D 2

uDu21/2exp$2Scl@w#2Sct@w#% ~2.2!

to one-loop accuracy. The coefficientD here is defined as

D@w#[
det8„2~]/]t!22D1U9~w!…

det„2~]/]t!22D1U9~0!…
5

det8~M!

det~M (0)!
.

~2.3!

The prime in the determinant implies omitting of the fo
translation zero modes. With the second equation we h
introduced the fluctuation operator in the background of
bounce

M52~]/]t!22D1U9~w! ~2.4!

and its counterpartM (0) in the unstable vacuum.
The counterterm actionSct is necessary in order to absor

the divergences of the one-loop effective action

S1-loop
e f f @w#5

1

2
lnuD@w#u. ~2.5!

In order to evaluate the one loop effective action we d
compose fluctuations around the bouncewb into O(4)
spherical harmonics, calculate the ratio of determinantsJl of
partial wave fluctuation operators and obtain lnD as
( ldl ln Jl , wheredl is theO(4) degeneracydl5( l 11)2 ~see
e.g. @31#!. In calculating lnD we exclude the divergent per
turbative contributions of first and second order in the ext
nal field of the bouncewb . The regularized values of thes
contributions are then added analytically. All divergences
ln D appear in the standard tadpole and fish diagrams.
will not specify Sct explicitly, we will equivalently omit the
divergent parts of lnD@w# using theMS convention.

III. THE TREE-LEVEL ACTION

In this section we specify our model, discuss the boun
solution and properties of corresponding classical action.
parametrize thew4 potential with two minima as

U~w!5
1

2
m2w22hw31

1

8
lw4, ~3.1!

and choose the same dimensionless variables as in R
@10,32#: xm5Xm/m for m50,1,2,3, andw5(m2/2h)F. The
classical action then takes the form

Scl~w!5bS̃cl~w!, ~3.2!

where the rescaled classical actionS̃cl(w) is

S̃cl~w!5E d4XS 1

2
~¹F!21U~F! D , ~3.3!
9-2
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with

U~F!5
1

2
F22

1

2
F31

a

8
F4, ~3.4!

and with the two dimensionless parameters@40#

b5
m2

4h2
, a5lb. ~3.5!

The parametera varies from 0 to 1 and controls th
strength of self–interaction and the shape of the poten
For a50 the second minimum disappears, whereas in
limit a→1 the two minima become degenerate~see Fig. 1!.
The parameterb controls the size of the loop corrections.
order semiclassical approximation to be validb should not
be too small~see Sec. V for details!.

The bounce is a nontrivial,O(4)-symmetrical stationary
point of Scl , Eq. ~3.3!, obeying the Euler-Lagrange equatio

d2F

dR2
1

3

R

dF

dR
2F1

3

2
F22

a

2
F350, ~3.6!

and boundary conditions

dF

dRU
R50

50, FR→`5F2 . ~3.7!

Here R5„(X0)21uXW u2
…

1/2. Equation ~3.6! can be easily
solved numerically, e.g., by the shooting method, as long
the value ofa is not too close to unity. We display som
profiles F(R) in Fig. 2 for various values of the paramet
a.

The classical actionS̃cl(w) as a function ofa is plotted in
Fig. 3~a!. For smalla the classical actionS goes to a con-
stant andS̃cl(a50)590.857. In the limita→1 the thin-
wall case is realized~see Appendix A! and the classical ac
tion diverges as (12a)23. The ratio of the classical actio
computed numerically to the analytic thin-wall expression

FIG. 2. Bounce profiles for differenta.
02500
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S̃cl
tw5

p2

3~12a!3
~3.8!

is displayed in Fig. 3~b!. This ratio tends to unity fora
→1, as it should. Note that the radius of the bounce
creases rapidly in this limit and numerical calculations b
come delicate. So, in the present article we restrict ourse
to the intervalaP@0,0.95#.

IV. CALCULATION OF THE FLUCTUATION
DETERMINANT

In this section we discuss a method of computing the ra
of functional determinants~2.3! which is based on earlie
papers@7,9,10#.

The explicit form of the operator in the nominator~2.3! is

M52D41m21V~r !. ~4.1!

HereD4 is the 4-dimensional Laplace operator, and we ha
introduced the potentialV as

V~r !5U9~w!2m2526hw~r !1
3

2
lw2~r !

5m2F23F~R!1
3

2
aF2~R!G[m2V~R!. ~4.2!

FIG. 3. ~a! Classical actionS̃cl versusa. ~b! The ratioS̃cl /S̃cl
tw

for a.0.5.
9-3
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The ‘‘free’’ operatorM (0), corresponding to the metastab
phase wherew50 and wherem25U9(w50) takes the same
form as Eq.~4.1!, but with V(r )50.

Due to theO(4) spherical symmetry of the bounce th
operatorsM and M (0) can be separated with respect
O(4) angular momentum. We introduce the partial wave
erators

M l~n!52
d2

dr2
2

3

r

d

dr
1

l ~ l 12!

r 2
1n21m21V~r !,

~4.3!

with an additional variablen that will be used later on. In
terms of these operators we can write

D@w#[)
l ,n

8 F v ln
2

v ln(0)
2 G5)

l 50

` F det8 M l~0!

detM l
(0)~0!

G dl

, ~4.4!

wheredl is the degeneracy of theO(4) angular momentum
dl5( l 11)2. The prime denotes that forl 51 we have to
remove the four translational zero modes.

The ratio of determinants of the radial operators

Jl~n!5
detM l~n!

detM l
(n)~0!

5)
n

F v ln
2 1n2

v ln(0)
2 1n2G ~4.5!

can be computed using the theorem on functional dete
nants as described in the next section. Note thatv ln

2 always
denotes the eigenvalues ofM l(0), or more generally the ei-
genvalues ofM, the analogous definition holds forv ln(0)

2 .

A. Determinants of the radial operators

In order to find Jl(n) ~4.5! we make use of a known
theorem@6,33# whose statement is

detM l~n!

detM l
(0)~n!

5 lim
r→`

c l~n,r !

c l
(0)~n,r !

. ~4.6!

Herec l(n,r ) andc l
(0)(n,r ) are solutions to equations

M l~n!cn,l50, M l
(0)~n!cn,l

(0)50, ~4.7!

and have the same regular behavior atr 50. More exactly,
the boundary conditions atr 50 must be chosen in such
way that the right-hand side of Eq.~4.6! tends to 1 atn
→`.

It is convenient to factorize the radial mode functions in
the solutionc l

(0)(n,r ) for V(r )50 and a factor 11hl(n,r )
which takes into account the modification introduced by
potential. If V(r ) is of finite range the functionsc l

(0)(n,r )
and c l(n,r ) have the same behavior nearr 50 and asr
→`. Nearr 50 they behave asr l and asr→` they behave
as exp(2kr) wherek5An21m2. Furthermore the require
ment of an analogous behavior nearr 50 introduces the ini-
tial conditionsh(0)5h8(0)50. The functionh(r ) then sim-
ply starts from zero atr 50 and goes smoothly to a finit
02500
-

i-

e

constant valuehl(n,`) asr→`. The solutionsc l
(0)(n,r ) are

given in terms of modified Bessel functions as

c l
(0)~n,r !5

I l 11~kr !

r
, ~4.8!

and we have

c l~n,r !5@11hl~n,r !#
I l 11~kr !

r
. ~4.9!

Then, by the theorem~4.6!, the ratio of determinants~4.5!
can be expressed as

Jl~n!511hl~n,`!. ~4.10!

In terms of theh function the first equation~4.7! reads

H d2

dr2
1F2k

I l 118 ~kr !

I l 11~kr !
1

1

r G d

drJ hl~n,r !5V~r !@11hl~n,r !#,

~4.11!

whereI l 118 (kr )[dIl 11(kr )/d(kr ).
In the following it will be convenient to consider the pe

turbation expansion

hl~n,r !5 (
k51

`

hl
(k)~n,r ! ~4.12!

in powers of the potentialV(r ). This entails an analogou
expansion for the ratiosJl(n) in the sense thatJl

(k)(n)
5hl

(k)(n,`). Thek-order contributionhl
(k) obeys an equation

H d2

dr2
1F2k

I l 118 ~kr !

I l 11~kr !
1

1

r G d

drJ hl
(k)~n,r !5V~r !hl

(k21)~n,r !,

~4.13!

where we definedhl
(0)[1. Since Eq.~4.13! is a linear dif-

ferential equation it holds also for linear combinations
hl

(k) . It is convenient to introduce the notationhl
(k)

5(q5k
` hl

(q) . In this notationhl5hl
(1). A Green function that

gives the solution to Eq.~4.13! in the form

hl
(k)~r !52E

0

`

dr̃ r̃Gl~r , r̃ !V~ r̃ !hl
(k21)~ r̃ ! ~4.14!

with the correct boundary condition atr 50 reads

Gl~r , r̃ !5
I l 11~k r̃ !

I l 11~kr !
@ I l 11~kr ,!Kl 11~kr .!

2I l 11~kr !Kl 11~k r̃ !#, ~4.15!

wherer ,5min$r,r̃ %, r .5max$r,r̃ %.
The first term on the right-hand side of Eq.~4.15! does

not contribute tohl
(k)(`). The Green function~4.15! gives

rise to connected graphs as well as to disconnected ones
9-4
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latter are canceled in ln„11hl(`)… whose expansion in
k-order connected graphsJl con

(k) (n) reads

ln Jl~n!5 ln„11hl~n,`!…5 (
k51

`
~21!k11

k
Jl con

(k) ~n!.

~4.16!

This formula is analogous to the expansion of the full fun
tional determinant in terms of Feynman diagrams

ln D5 (
k51

`
~21!k11

k
A(k), ~4.17!

whereA(k) is the one-loop Feynman graph of orderk in the
external potentialV(r ).

Indeed, it is obvious from Eq.~4.14! that hl
(k) and, there-

fore, Jl con
(k) are of the orderVk. Since the expansion of lnD

in powers ofV is unique, we conclude that

A(k)5(
l 50

`

~ l 11!2Jl con
(k) . ~4.18!

B. Calculation ofD „3…

Making use of a uniform asymptotic expansion of t
modified Bessel functions in Eq.~4.15! one can check tha
Jl con

(k) ;1/l 2k21 as l→`. This results in the expected qua
dratic and logarithmic ultraviolet divergences in lnD due to
the contribution ofJl con

(1) andJl con
(2) . Our strategy is to com-

puteanalyticallythe first two terms in the sum Eq.~4.17! and
to addnumericallycomputed lnD (3), which is the sum with-
out first and second order diagramsA(1) and A(2). It reads
explicitly

ln D (3)5(
l 50

`

~ l 11!2
„ln Jl~n!…(3), ~4.19!

where

„ln Jl~n!…(3)5 ln„11hl~`!…2hl
(1)~`!

2Fhl
(2)~`!2

1

2
„hl

(1)~`!…2G . ~4.20!

Here the terms in square brackets correspond to the fish
gramJl con

(2) . Since all contributions to lnD (3) are ultraviolet
finite, we need no regularization in computing them. T
divergent contributions of the first and second order inV will
be considered in Sec. IV C.

In order to avoid a numerical subtraction that might
delicate we re-write the term~4.20! to be summed up on th
right-hand side~4.19! in the form

„ln Jl~n!…(3)5F ln„11hl~`!…2hl~`!1
1

2
hl~`!2G1hl

(3)~`!

2
1

2
hl

(2)~`!„hl~`!1hl
(1)~`!…. ~4.21!
02500
-
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Each of the three terms on the right-hand side~RHS! is now
manifestly of orderV3. The subtraction done in the squa
bracket is exact enough when the logarithm is calcula
with double precision. We have determinedhl(r ) as solu-
tions of Eq.~4.11! andhl

(1)(r ), hl
(2)(r ) andhl

(3)(r ) as those
of Eq. ~4.13! using the Runge-Kutta-Nystro¨m integration
method@34#. Of course we cannot integrate the different
equations untilr 5`. In fact we have integrated it up to th
maximal value for which we know the profilef(r ), and
thereforeV(r ). This value is such, that the classical field h
well reached its vacuum expectation value, and theref
V(r ) has become zero. This is the condition under which
can impose the asymptotic boundary condition for the cl
sical profile. For such values the functionshl

(k)(r ) have al-
ready become constant; indeed forV(r )50 they have the
exact forma1bKl 11(kr )/I l 11(kr ) and the second part de
creases exponentially forr @1/k. In praxi we used values o
R up to Rmax5mrmax.20230.

Up to now we have neglected the existence of the ne
tive modev0

2,0 for l 50 and four zero modesv1
250 with

l 51. The former results in a negative value ofJ0(n)51
1h0(n,`) at n50. According to Eq.~2.2! one has to re-
placev0

2 by uv0
2u. This implies taking the absolute value o

J0(0) in Eq. ~4.19!; indeedJ0(0) is found to be negative.
The translational zero modes manifest themselves by

vanishing ofv10
2 50, the lowest radial excitation in thel

51 channel with degeneracy (l 11)254, and thereby by the
vanishing ofJ1(n) at n50; see Eq.~4.5!. This represents a
good check for both the classical solution and the integra
of the partial waves. The factorn2 has to be removed accord
ing to the definition of det8. So in thel 51 contribution we
have to replaceJ1(0) by

lim
n→0

J1~n!

n2
5

dJ1~n!

dn2
5

d

d~n2!
h1~n,`!U

n50

. ~4.22!

Notice that replacement Eq.~4.22! introduces a dimension
into the functional determinant. Thereby the units used fon
become the units of the transition rate. Here we have u
the scalem throughout; see Eqs.~5.1! and ~5.2!.

Our next step is performing summation overl in Eq.
~4.19!. For small bounces (a&0.8) we have found good
agreement with the expected behavior, namely

„ln Jl~n!…(3)}
1

~ l 11!5
. ~4.23!

So, the summation has been done by cutting the sum at s
value l max and adding the rest sum froml max11 to ` of
terms fitted with

ln Jl
(3)'

a

~ l 11!5
1

b

~ l 11!6
1

c

~ l 11!7
. ~4.24!

The summation was stopped when increasing the value
l max by unity did not change the result within some give
accuracyd. The required accuracy was decreased for hig
9-5
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a. The problem is that the convergence becomes wors
we get closer toa51. This is related to the fact that th
asymptotic behavior~4.23! sets in only whenl @mreff ,
where r eff is the characteristic size of the bounce. It is
order 1/m at small values ofa and can be estimated a
1/(12a)m near the thin-wall limit,a→1. As the maximal
value of the angular momentum we have used isl 525, our
computations cease to be reliable beyonda.0.95. The
value ofd was about 1025 for small bounces, and of order o
1023 for a.0.85. As we will see below, for larger values o
a the effective action is well approximated by the leadi
terms of a gradient expansion.

C. Perturbative contribution and renormalization

We have described in the previous subsection the com
tation of the finite part lnD (3) which is the sum of all one-
loop diagrams of the third order and higher,

ln D (3)5 (
k53

`
~21!k11

k
A(k). ~4.25!

We now have to discuss the leading divergent contributi
A(1) and A(2). These are computed as ordinary Feynm
graphs. Using dimensional regularization we have

A(1)5E d42ek

~2p!42e

Ṽ~0!

k21m2
~4.26!

where we have introduced the Fourier transform of the
tential

Ṽ~k!5E d4xV~x!e2 ikx. ~4.27!

We obtain

A(1)52
m2

16p2 F2

e
2gE1 ln 4p1 ln

m2

m2
11G E d4xV~x!,

~4.28!

wherem is the usual dimensional regularization parame
We choose it to be equal tom. Then using theMS scheme we
just retain the last contribution in the bracket~see e.g.@35#,
p. 377!. Thus, the finite part ofA(1) is

Af in
(1)52

1

8E0

`

R3dRV~R!. ~4.29!

The second order terms takes the form

A(2)5E d42eq

~2p!42e
uṼ~q!u2

3E d42ek

~2p!42e

1

~k21m2!@~k1q!21m2#
.

~4.30!
02500
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We obtain

A(2)5
1

16p2 F2

e
2gE1 ln 4p1 ln

m2

m2G E d4x„V~x!…2

1
1

128p4E q3dquṼ~q!u2

3F22
Aq214m2

q
ln

Aq214m21q

Aq214m22q
G . ~4.31!

Again theMS scheme corresponds to omitting the first te
on the right-hand side and for the finite part ofA(2) we find

Af in
(2)5

1

128p4E0

`

Q3dQuṼ~Q!u2

3F22AQ214 ln
AQ2141Q

AQ2142Q
G , ~4.32!

with Q5q/m being the dimensionless momenta. For the n
merical evaluation ofA(2) we have to compute the Fourie
transform of the external potential which is known nume
cally, the remaining computation is straightforward.

V. NUMERICAL RESULTS

To summarize, we represented the false vacuum de
rate per unit time and per unit volume as

g5m4S Scl@w#

2p D 2

e2Scl[w] 2S1-loop
e f f [w] , ~5.1!

where

S1-loop
e f f @w#5

1

2
lnum8D@w#u5S1-loop,p

e f f 1S1-loop,n.p.
e f f ,

~5.2!

with perturbative

S1-loop,p
e f f 5

1

2 S Af in
(1)2

1

2
Af in

(2)D ~5.3!

and nonperturbative

S1-loop,n.p.
e f f 5

1

2
(
k53

`
~21!k11

k
A(k)5

1

2
lnuD (3)u ~5.4!

contributions.
It is useful to introduce the quantityG,

G~a,b!5S1-loop
e f f @w#/Scl@wb#, ~5.5!

which indicates how big the quantum corrections are. Si
the classical action, Eq.~3.2!, depends linearly on the param
eterb we haveG(a,b)5G(a,1)/b.

The numerical calculation shows thatG(a,1) varies from
0.0367 to 0.0448 as we varya from 0 to 0.95, with a shallow
9-6
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minimum Gmin'0.033 ata about 0.6~see Fig. 4!. Figure 4
suggests thatG(1,1)'0.05, which means that for suffi
ciently big values ofb, namelyb.0.1, the quantum correc
tions to the classical action are small~less then 50%! for all
values ofa.

The corrections to thetransition rateare given directly by
a factor exp(2S1-loop

e f f ), so even if the classical transition ra
is sizable, as it happens for smallb, the quantum correction
suppress the decay of the false vacuum by factors
(23.3) ata50 and exp(2291) ata5.9.

Note that the main contribution to the effective action f
all a is coming from theAf in

(1) ~cf. Tables I and II!. For small
a the perturbative contribution is almost 100% of the to
one-loop effective action~see Fig. 5!.

In the limit a→1 the leading terms of the gradient expa
sion~Appendix B! give the dominant contribution to the one
loop effective action. Already fora50.8 the sum of leading
gradient terms

Sgrad,012
e f f 5Sgrad,0

e f f 1Sgrad,2
e f f ~5.6!

approximates the one-loop effective actionS1-loop
e f f within

20%. So the gradient expansion reproduces well the beha
of the one-loop effective action whena→1; see Fig. 5. As
the numerical procedure described in the main part of
paper becomes precarious fora*0.9 this expansion comple
ments the computation of the transition rate in this regio

As it is well known there is exactly one negative mode
the spectrum of fluctuations about the bounce. Its energ
plotted vsa in Fig. 6.

In the present paper we used dimensional regulariza
and we have chosen the parameterm2, which can be under-
stood as parametrizing a sequence of possible renorma
tion conditions, to be equal tom2. Choosingm2 differently
would result in the following corrections toAf in

(1) andAf in
(2)

Af in
(1)→S 11 ln

m2

m2D Af in
(1) ,

Af in
(2)→Af in

(2)1a(2)ln
m2

m2
, ~5.7!

FIG. 4. The ratioG(a,b)5S1-loop
e f f /Scl for b51.
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wherea(2) is the following integral

a(2)5
1

8E0

`

R3dR„V~R!…2, ~5.8!

evaluated at the bounce solution. Numerical values
Af in

(1) ,Af in
(2) anda(2) for different values ofa are collected in

Table II. With the present choice ofm2 the perturbative terms
represent the most important contributions to the effect
action~see above!, this means at the same time that a mo
fication of the regularization and renormalization procedu
can result in large changes in the one-loop effective actio

VI. DISCUSSION AND CONCLUSION

In the present paper we applied a previously develo
technique for evaluations of functional determinants and c
culated quantum corrections to the tunneling transitions i
model of a self-interacting scalar field in 311 dimensions.

In the present toy model the decay rate is vanishin
small. The sign of quantum corrections is such that it d
creases the false vacuum decay rate. The corrections ca
thought as originating from particle creation during the pha

TABLE I. Numerical results for classical action and one loo
effective action.

a S1-loop,p
e f f S1-loop,n.p.

e f f S1-loop
e f f

S̃cl

0.00 3.2533100 8.21631022 3.3353100 9.0863101

0.02 3.3373100 8.49831022 3.4223100 9.3553101

0.05 3.4783100 8.42231022 3.5623100 9.7873101

0.10 3.7523100 6.73731022 3.8193100 1.0593102

0.15 4.0893100 2.65431022 4.1153100 1.1533102

0.20 4.5043100 24.50131022 4.4593100 1.2633102

0.25 5.0213100 21.56431021 4.8653100 1.3943102

0.30 5.6723100 23.20131021 5.3513100 1.5523102

0.35 6.4993100 25.53931021 5.9463100 1.7443102

0.40 7.5713100 28.83631021 6.6873100 1.9833102

0.45 8.9843100 21.3483100 7.6373100 2.2863102

0.50 1.0893101 22.0063100 8.8893100 2.6813102

0.55 1.3563101 22.9583100 1.0603101 3.2113102

0.60 1.7413101 24.3713100 1.3033101 3.9513102

0.65 2.3263101 26.5603100 1.6703101 5.0333102

0.70 3.2773101 21.0153101 2.2613101 6.7203102

0.75 4.9663101 21.6593101 3.3063101 9.5893102

0.80 8.3823101 22.9693101 5.4133101 1.5123103

0.83 1.2403102 24.5123101 7.8873101 2.1363103

0.85 1.6863102 26.2333101 1.0623102 2.8093103

0.87 2.4093102 29.0383101 1.5063102 3.8743103

0.88 2.9503102 21.1143102 1.8363102 4.6553103

0.89 3.6843102 21.4013102 2.2833102 5.6993103

0.90 4.7113102 21.8033102 2.9073102 7.1403103

0.91 6.1993102 22.3903102 3.8093102 9.1983103

0.92 8.4553102 23.2843102 5.1713102 1.2273104

0.93 1.2073103 24.7243102 7.3473102 1.7113104

0.94 1.8293103 27.2093102 1.1093103 2.5313104

0.95 3.0083103 21.1883103 1.8203103 4.0613104
9-7



nel-
lity.
lly

ven

that
ng
xi-

del

cu-
r

nd a
h-
r-

ions

ling

f
-
of

k-
it-
re
ly
es.

d.
be-

n-

or
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TABLE II. Numerical results for the first and second order co
tribution coefficients.

a Af in
(1) Af in

(2) a(2)

0.00 5.1783100 22.6543100 1.0363101

0.02 5.3793100 22.5913100 1.0553101

0.05 5.7063100 22.4993100 1.0853101

0.10 6.3253100 22.3583100 1.1443101

0.15 7.0603100 22.2353100 1.2153101

0.20 7.9423100 22.1333100 1.3003101

0.25 9.0133100 22.0593100 1.4053101

0.30 1.0333101 22.0203100 1.5363101

0.35 1.1993101 22.0243100 1.7023101

0.40 1.4103101 22.0853100 1.9163101

0.45 1.6863101 22.2193100 2.1993101

0.50 2.0563101 22.4533100 2.5853101

0.55 2.5703101 22.8253100 3.1273101

0.60 3.3113101 23.3993100 3.9213101

0.65 4.4383101 24.2863100 5.1473101

0.70 6.2693101 25.7013100 7.1753101

0.75 9.5263101 28.1093100 1.0853102

0.80 1.6133102 21.2693101 1.8483102

0.83 2.3913102 21.7783101 2.7613102

0.85 3.2563102 22.3213101 3.7903102

0.87 4.6603102 23.1703101 5.4793102

0.88 5.7113102 23.7883101 6.7533102

0.89 7.1373102 24.6093101 8.4933102

0.90 9.1343102 25.7353101 1.0943103

0.91 1.2033103 27.3333101 1.4533103

0.92 1.6433103 29.6993101 1.9993103

0.93 2.3473103 21.3413102 2.8833103

0.94 3.5613103 21.9633102 4.4173103

0.95 5.8613103 23.1183102 7.3593103

FIG. 5. Our results for the effective actionS1-loop
e f f ~squares! to-

gether with the perturbative partS1-loop,p
e f f ~dotted line! and the lead-

ing parts of the gradient expansionSgrad,012
e f f ~dashed line,a

50.45–0.95). All quantities shown are multiplied by the fact
(12a)3.
02500
transition. The created particles take energy from the tun
ing field and therefore decrease the tunneling probabi
Analytical estimations show that particle creation is typica
weak in the thin-wall approximation@26#. In the present pa-
per it was found that the quantum corrections are e
smaller away from the thin-wall case~compare Fig. 4!,
which assumes that particle creation forb.0.1 is weak for
all values of the coupling constanta. On the other hand for
b,0.1 the quantum corrections dominate, which means
in this regime one should look for a bounce solution taki
into account the full effective action in the one-loop appro
mation @27–29#.

Corrections to the false vacuum decay in a similar mo
in the ~311!-dimensional theory inthe thin wall approxima-
tion with the heat kernel expansion technique were cal
lated in @36#, but it is not straightforward to compare ou
results since we use a different renormalization scheme a
different parametrization of the potential. Powerful tec
niques for analytic calculations of the prefactor using diffe
ent approximations were developed in@24,37,38#, but we
cannot compare our results directly, since these calculat
are within 3D theory.

The technique described here can be applied to tunne
transitions in more realistic theories in 4 dimensions.

ACKNOWLEDGMENTS

G.L. is thankful to the Theory Group of the University o
Dortmund for their kind hospitality during his visit to Dort
mund, where this work started and to the theory groups
the Max-Planck-Institute for Physics and Max-Planc
Institute for Gravitational Physics for a stimulating and fru
ful atmosphere during his visits to Munich and Golm, whe
part of the work was done. The work of G.L. was part
supported by a Grant of the Georgian Academy of Scienc

APPENDIX A: THE THIN-WALL APPROXIMATION

In the limit a→1 the so called thin-wall case is realize
This is the case when the difference in energy density
tween the two vacua

e5U~F2!2U~F1!, ~A1!

FIG. 6. The negative mode energy as a function ofa.
9-8
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is small compared to the height of the barrier. In this case
potential Eq.~3.4! can be represented as

U~F!5U0~F!1O~e!, ~A2!

where in our case the symmetric partU0 is given by

U0~F!5
1

8
F2~22F!2, ~A3!

and where

e52~12a!. ~A4!

In the thin-wall approximation the radiusR̄ of the bounce
and the Euclidean actionScl are given analytically@4,6# as

R̄5
3S1

e
, S̃cl

tw5
27p2S1

4

2e3
, ~A5!

where

S152E
2`

`

dRU0~Fk!, ~A6!

is the action of the one-dimensional kink solution cor
sponding to degenerate potentialU0 with the equal minima.
For our choice of the potential, Eq.~A3!, the kink solutions
is

Fk5
2

11e(R2R̄)
. ~A7!

One finds thatS152/3, and correspondingly

R̄5
1

12a
, S̃cl

tw5
p2

3~12a!3
. ~A8!

APPENDIX B: THE LEADING TERMS
OF THE GRADIENT EXPANSION

We want to derive an approximation to the effective a
tion of a scalar field on the background of a bounce soluti
The strategy is to expand first the effective action with
spect to external vertices, and to expand in a second ste
resulting Feynman amplitudes with respect to the exte
momenta. This approach is fairly standard, and has b
used, e.g., in Ref.@25#. We note that we will retain all power
in the external vertices; such a summation was found to y
a very good approximation for the sphaleron determin
@11,12#; see Fig. 1 in the second entry of Ref.@12#. We have
to compute the trace log or log det of a generalized Euc
ean Klein-Gordon operatorD41U9(f) where D4 is the
four-dimensional Laplace operator. Formally

@ ln D#5 lnF2D41U9~f!

2D41U9~0!
G . ~B1!

We introduce a potentialV(x) via
02500
e
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U9„f~x!…5m21V~x!, U9~0!5m2. ~B2!

For the bounce the potential only depends onr 5uxu but we
will not use this now. The logarithm can be expanded w
respect to the potentialV(x). We write

@ ln D#5 lnF2D41m21V~x!

2D41m2 G
5 ln@~2D41m2!21

„D41m21V~x!…#
~B3!

5 ln@11~2D41m2!21V~x!#

5 (
N51

`
~21!N11

N
@~2D41m2!21V~x!#N,

and the effective action is given by

Seff5 (
N51

`
~21!N11

2N
tr@~2D41m2!21V~x!#N. ~B4!

We introduce the Fourier transform

Ṽ~q!5E e2 iq•xV~x!d4x. ~B5!

The individual terms in the expansion of the effective acti
have the form of Feynman diagrams with external sour
V(qj ) with j 51 . . .k. The momentum that has flown into th
line l is

Ql5(
j 51

l

qj , ~B6!

of course the total momentum must be zero, i.e.,QN50.
With these notations we can write theNth term in the effec-
tive action, omitting the factor (21)N11/2N as

AN5E d4p

~2p!4)j 51

N F E d4qj

~2p!4
Ṽ~qj !G)

l 51

N F 1

~p1Ql !
21m2G

3~2p!4d~QN!. ~B7!

The four-momentum delta function arises from taking t
trace. We obtain a gradient expansion by expanding the
nominators (p1Ql)

21m2 with respect to the momentaQl .
The leading term is of course

AN,05E d4p

~2p!4 F 1

p21m2GN

)
j 51

N F E d4qj

~2p!4
Ṽ~qj !G

3~2p!4d~QN!

5E d4p

~2p!4 F 1

p21m2GNE d4x@V~x!#N. ~B8!
9-9
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The zero-gradient contribution to the effective action is o
tained by resuming this series; one finds

Sgrad,0
eff 5

1

2E d4xE d4p

~2p!4
lnH p21U9~f!

p21U9~0!
J [

1

2E d4xK(4).

~B9!

Of course this integral has to be regularized, e.g., via dim
sional regularization. The divergences arise from the te
with N51 andN52, which are standard divergent one-loo
integrals.

We find

K (D)5
2pD/2

GS D

2 D E
dppD21

~2p!D
lnF p21U9~f!

p21U9~0!
G

5
2

GS D

2 D ~4p!D/2
H 1

D
pDln F p21U9~f!

p21U9~0!
GU

p50

`

2
2

DE dppD11F 1

p21U9~f!
2

1

p21U9~0!
G J .

The first term in the parenthesis vanishes for 0,D,2 and is
defined to vanish in general by analytic continuation. T
second term can be rewritten as

22

DGS D

2 D ~4p!D/2

$@U9~f!#D/22@U9~0!#D/2%E
0

`

dx
xD11

x211

5
22

DGS D

2 D ~4p!D/2

G~D/211!G~2D/2!

2G~1!

3$@U9~f!#D/22@U9~0!#D/2%

52
G~2D/2!

~4p!D/2
$@U9~f!#D/22@U9~0!#D/2%.

Now we setD542e and use

GS 2
D

2 D5
1

~221e/2!~211e/2!
GS e

2D
5

1

2 H 2

e
2gE1

3

2J
to obtain

K (42e)5
21

32p2 F2

e
2gE1 ln 4p1

3

2G H „m21V~r !…2

3F12
e

2
ln

m21V~r !

m2 G2m4F12
e

2
ln

m2

m2G J .
02500
-
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Using MS subtraction we get

K (4)5
21

32p2 H 3

2
@2m2V~r !1V2~r !#

2„m21V~r !…2ln
m21V~r !

m2
1m4ln

m2

m2J .

~B10!

Integrating over 4D Euclidean space we finally obtain

Sgrad,0
e f f 5

1

32E0

`

R3dRF „11V~R!…2ln
11V~R!

m̃2

2
3

2
„2V~R!1V2~R!…1 ln m̃2G , ~B11!

with m̃5m/m.
Let us now consider the one- and two-gradient contrib

tions. We expand the denominators up to second order in
gradients, i.e., in the momentaQj . We obtain

PN[)
l 51

N F 1

~p1Ql !
21m2G

5
1

~p21m2!N
2

1

~p21m2!N11 (
j 51

N

2p•Qj

2
1

~p21m2!N11 (
j 51

N

Qj
2

1
1

~p21m2!N12 (
j 51

N21

(
k5 j 11

N

4~p•Qj !~p•Qk!

1
1

~p21m2!N12 (
j 51

N

4~p•Qj !
21O~Q3!. ~B12!

Under O(4)-symmetric integration 4pmpn.p2dmn , andpm
.0. So the one-gradient term vanishes and the comp
two-gradient contribution becomes

PN,25
1

~p21m2!N12 F2~p21m2!(
j

Qj
2

14pmpn(
k. j

Qj mQkn14pmpn(
j

Qj mQj nG
.

1

~p21m2!N12 Fp2(
k. j

Qj•Qk2m2(
j

Qj
2G .

~B13!

We now have to rewrite this in terms of the momentaqj that
represent the gradients on the functionsV(qj ). After having
used the fact thatP2 appears under the integral overd4p we
will now use the fact that it appears under the product
9-10
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integrals*d4qjV(qj ) which implies permutation symmetr
in the indicesj. So if we expand the productsQj•Qk andQj

2

we will encounter just two kinds of terms: productsql•qm

with lÞm and squaresql
2 , which may be replaced by

q1•q2 and byq1
2, respectively. We have to do some comb

natorics in order to find

(
j

Qj
2.

~N21!N~N11!

3
q1•q21

N~N11!

2
q1

2

~B14!

(
k. j

Qj•Qk.
~N21!N~N11!~3N22!

24
q1•q2

1
~N21!N~N11!

6
q1

2 . ~B15!

Now we may use momentum conservation to rewrite

q1
252q1•~q21•••1qN!.2~N21!q1•q2 ~B16!

so that

(
j

Qj
2.2

~N21!N~N11!

6
q1•q2 ~B17!

(
k. j

Qj•Qk.2
~N22!~N21!N~N11!

24
q1•q2

~B18!

and

PN,2.
1

~p21m2!N12

~N21!N~N11!

24
q1•q2

3@2~N22!p214m2#. ~B19!

The momentum integrals are

E d4p

~2p!4

p2

~p21m2!N12
5

1

16p2
m222N

2

~N21!N~N11!

~B20!

E d4p

~2p!4

m2

~p21m2!N12
5

1

16p2
m222N

1

N~N11!

~B21!

and, therefore,

E d4p

~2p!4
PN,25q1•q2

1

16p2
m222N

N

12
. ~B22!

The momenta are converted into gradients; so we finally
tain as the expansion terms of the two-gradient part of
effective action
02500
-
e

AN,252
1

16p2E d4xFV~x!

m2 GN22
N

12m2
„¹V~x!…2.

~B23!

The termA1,2 is zero. The sum over all terms yields

Sgrad,2
eff 5

1

32p2E d4x
1

m21V~x!

1

12
„¹V~x!…2, ~B24!

or finally in dimensionless variables

Sgrad,2
eff 5

1

192E0

`

R3dR
1

11V~R!
„V8~R!…2. ~B25!

An alternative derivation starts with a technical step th
frees us from the denominator 1/N. We take the derivative of
the effective action with respect tom2, a step that we can
revert later on. We then obtain, using the cyclic property
the trace,

G[
dSeff

dm2

5 (
N50

`
~21!N

2
tr$@~2D41m2!21V~x!#N~2D41m2!21%

5
1

2 (
N50

`

BN . ~B26!

We note that we have included theN50 term, which can be
removed later on if necessary. So we have arrived at the t
of the exact Green function in the external field. The ter
BN have the form

BN5~21!NE d4p

~2p!4)j 51

N F E d4qj

~2p!4G 1

p21m2

3Ṽ~q1!
1

~p1Q1!21m2
Ṽ~q2!

1

~p1Q2!21m2
Ṽ~q3! . . .

3Ṽ~qN!
1

~p1QN!21m2
~2p!4d~QN!. ~B27!

Assume we have expanded the fraction 1/@(p1Qk)
21m2#

to first order in 2p•Qk1Qk
2 , yielding a factor

1

p21m2
@22p•Qk2Qk

2#
1

p21m2
~B28!

at thekth place in the product of propagators and vertices
other words we have obtained an insertion of22p•Qk

2Qk
2 . Consider the part of the product to the right of th

insertion. We rewrite it as
9-11
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)
j 5k11

N F E d4qj

~2p!4G @22p•Qk2Qk
2#

1

p21m2

3 )
j 5k11

N F E d4xjV~xj !
e2 iq j •xj

p21m2G
3~2p!4d~Qk1qk111•••1qN!. ~B29!

We furthermore rewrite the delta function as

~2p!4d~Qk1qk111•••1qN!

5E d4xei (Qk1qk111•••1qN)•x. ~B30!

Inserting this in Eq.~B29! we can carry out the integration
over theqj and thexj to obtain

E d4xeiQk•x@22p•Qk2Qk
2#

1

p21m2 )
j 5k11

N FV~x!
1

p21m2G .

~B31!

Now theQk,m in 2p•Qk1Qk
2 can be written as2 i ]/]xm5

2 i ]m on the exponential. Integrating by parts they can
written as i ]m acting on the product to their right. So th
whole string to the right of the insertion can be written a

E d4xeiQk•x@22ip•]1]2#
1

p21m2 )
j 5k11

N FV~x!
1

p21m2G .

~B32!

We now consider the sum overN; we split N5k1 l and
(21)N5(21)k(21)l . The sum overl is independent ofk
and runs from 0 tò and, putting in the factor (21)l we
obtain

E d4xeiQk•x@22ip•]1]2#
1

p21m2

3(
l 50

`

)
j 51

l F2V~x!
1

p21m2G
5E d4xeiQk•x@22ip•]1]2#

1

p21m21V~x!
. ~B33!

Note that the sum starts withl 50, which corresponds to th
casek5N; in this case the product overj reduces to 1. Now
we do the analogous operations on the part to the left of
insertion, using in the exponentQk5q11•••1qk ; we now
can carry out the summation over k and we finally find
the case that we have taken into account thefirst order ex-
pansionof one of the denominators (p1Qk)

21m2

E d4x
1

p21m21V~x!
@22ip•]1]2#

1

p21m21V~x!
.

~B34!
02500
e

e

r

Obviously part2 i2p•] vanishes upon symmetric integra
tion overp. It can also be written as a boundary term for t
x integration. If we want to obtain the second order gradi
term we have to take into account theQk

2 term of the first
order expansion, i.e.

E d4x
1

p21m21V~x!
]2

1

p21m21V~x!
, ~B35!

the terms22ip•] arising if two denominators are expande
to first order, yielding

E d4x
1

p21m21V~x!
~22ip•]!

1

p21m21V~x!

3~22ip•]!
1

p21m21V~x!
. ~B36!

Here is included the term arising from expandingonepropa-
gator tosecond order. Indeed this yields

1

p21m2
@22p•Qk2Qk

2#
1

p21m2
@22p•Qk2Qk

2#
1

p21m2
,

~B37!

a term that is needed for obtaining the complete propag
1/„p21m21V(x)… between the two insertions. We now hav
the two-gradient term

G (2)5
1

2E d4p

~2p!4E d4xH 1

p21m21V~x!
]2

1

p21m21V~x!

1
1

p21m21V~x!
~22ip•]!

1

p21m21V~x!

3~22ip•]!
1

p21m21V~x!
J . ~B38!

The first term can be written, after one integration by pa
as

1

2E d4p

~2p!4E d4x
21

„p21m21V~x!…4
@]V~x!#2. ~B39!

In the second term we remark that the derivatives in the fi
insertion act on the complete part to the right of it. Therefo
an integration by parts lets it act onto the part to the left of
Using symmetric integration overp the second part yields

1

2E d4p

~2p!4E d4x
p2

„p21m21V~x!…5
@]V~x!#2. ~B40!

Now we integrate with respect tom2 to obtain the two-
gradient contribution to the one-loop effective action
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Sgrad,2
eff 5

1

2E d4p

~2p!4E d4xF1

3

1

„p21m21V~x!…3

2
1

4

p2

„p21m21V~x!…3
G @]V~x!#2

5
1

32p2E d4x
1

m21V~x!

1

12
@]V~x!#2, ~B41!

which coincides with the previous result Eq.~B24!.
l.

D

K

ra

D

02500
The terms of the gradient expansion can be evaluated
straightforward way. We note, however, that the termm2

1V(x) vanishes, depending on the value ofa, at one or two
points, and that therefore the expressions are ill-definea
priori. This is a reflection of the fact that the effective actio
has an imaginary part, due to the negative mode. An exp
sion of the effective action has to reflect this feature. With
m22 i e prescription this becomes apparent. When comput
these terms we have used the principal value prescription
Sgrad,2

eff and taken the absolute value in the logarithm appe
ing in Sgrad,0

e f f .
n.

ys.

s.

.
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