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Commutative supersymmetric Yang-Mills is known to be renormalizableMer1,2, while finite for /Y
=4. However, in the noncommutative version of the model (NCSQHEBe UV-IR mechanism gives rise to
infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the
consistency of NCSQEDPby working systematically within the covariant superfield formulation. In the Landau
gauge, it has already been shown fd=1 that the gauge field two-point function is free of harmful UV-IR
infrared singularities, in the one-loop approximation. Here we show that this result holds without restrictions
on the number of allowed supersymmetries and for any arbitrary covariant gauge. We also investigate the
divergence structure of the gauge field three-point function in the one-loop approximation. It is first proved that
the cancellation of the leading UV-IR infrared divergences is a gauge invariant statement. Surprisingly, we
have also found that there exist subleading harmful UV-IR infrared singularities whose cancellation only takes
place in a particular covariant gauge. Thus we conclude that these last mentioned singularities are in the gauge
sector and, therefore, do not jeopardize the perturbative expansion and/or the renormalization of the theory.
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I. INTRODUCTION metric linear sigma model in the liml—oo [12].
As for nonsupersymmetric gauge theories, the UV-IR
During recent years noncommutatidC) field theories mechanism breaks down the perturbative apprdach13—
have been intensively studied. These theories emerged as th8]. Nevertheless, we can entertain the hope that noncommu-
low energy limit of the open superstring in the presence of anative supersymmetric gauge theories are free from noninte-
external magnetic fieldR field) [1] although nowadays they grable UV-IR infrared singularities and, furthermore,
are interesting in their own righfor a review sed¢2-4]). renormalizable. We are aware of the following results con-
The most striking property of noncommutative field theo-cerning noncommutative supersymmetric gauge field theo-
ries is undoubtly the UV-IR mechanism, through which theries:
ultraviolet divergencesUV) are partly converted into infra- (1) By working with the formalism of component fields
red (IR) ones[5-7]. These infrared divergenc¢8] may be [6,7] it has been shown that the dangerous UV-IR infrared
so severe that the perturbative expansion of the theory bealivergences cancel in the one-loop contributions to the gauge
comes meaningless. Hence, the key point about the consifield two- and three-point functions. The two-point function
tency of a noncommutative field theory is whether these diturns out to contain quadratic and logarithmic UV diver-
vergences cancel out. gences. Dimensional regularization takes care of the first
So far, only one four-dimensional noncommutative theoryones while the last ones must be renormalized. As for the
is known to be renormalizable, the Wess-Zumino modeharmful infrared divergences originating through the UV-IR
[9,10]. In this case supersymmetry plays an essential rolenechanism, they are only quadratic and cancel out within a
because it improves the ultraviolet behavior and, thereforesupersymmetric multiplet. The three-point function is lin-
the UV-IR mechanism only generates mild UV-IR infrared early UV divergent by power counting. However, this time,
divergences which do not spoil the renormalization programthe leading UV divergences vanish by symmetric integration,
In three space-time dimensions we are aware of at least twwhile the IR poles originating from them cancel out among
noncommutative renormalizable models: the supersymmetrithemselves.
O(N) nonlinear sigma modégll1] and theO(N) supersym- (2) By using the superfield formalism Bicldt al. [20]
calculated, in the Landau gauge and in the absence of matter
(N=1), the one-loop contributions to the two-point function
*Also at Department of Theoretical Physics, Tomsk State Pedaof the gauge superfield. Only quadratic and logarithmic UV
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field method to evaluate the one-loop contributions to the VeoVs ... oV
: ; © one-1oop _ v 1 o 1 [gVsg g
field strength two-point functions iV=1,2 supersymmetric =~ e*"'= ZO TgV)*r= ZO prl e s F 2.2

Yang-Mills theories, where only logarithmic divergences

were found. The three-point function was shown to vanish.

Egrd%;rggzggsdaetma?lr.lstrated that, up to one loop, there ar%md* denotes Moyal product of operators, i.e.,
This paper is dedicated to pursue further the study, within

the superfield formulation, of the consistency of NCSQED H1(X)* Po(X)

in an arbitrary covariant gauge. We analyze the divergence

structure induced by the UV-IR mechanism in the two and o —
three-point gauge field Green functions. _ a9

In Sec. Il we establish our definitions and conventions and P1(x)exp| 3 P 0 P $2(X)
present the gauge invariant action describing the dynamics of L
NCSQED, in N'=1 superspace. Next, the gauge fixing and S I_) “i[ﬁ 5 5 bi(x)]
the Faddeev-Popov terms are found. Finally, we add chiral o 12) nttom%uy e O™l

0

matter superfields and derive the Feynman rules of
NCSQED, with extended supersymmetry. X @Oz, . 0N[4, d,, . . . dy ¢2(X)].

We start, in Sec. lll, by reviewing the cancellation of the 2.3
leading UV-IR infrared divergences in the one-loop correc- '
tions to the two-point function of the gauge superfigd]. A ) ) ) )
straightforward generalization shows that these results alsdere,®*" is the antisymmetric real constant matrix charac-
hold for extended supersymmetry and/or when the theory i{rizing the noncommutativity of the underlying space-time.
formulated in an arbitrary covariant gauge. The expression

In Sec. IV we compute the one-loop corrections to the
three-point functions of the gauge superfield in an arbitrary

covariant gauge. This is done fdv=1,2,4. From power f d*X @ (X)* - - - * @p(X)

counting follows that the amplitude is at the most quadrati-

cally divergent. As far as the planar part is concerned, dimen- " 44k n
sional regularization takes care of the quadratic UV diver- =j ( ! )(277)45(2 ki)
gences, the linear ones vanish by symmetric integration, =1 (2m)* 1

while the logarithmic divergences are to be eliminated ,

through renormalization. As for the nonplanar part, the Xe_'; Ko (ke) - - - on(kn), (2.9
UV-IR mechanism will be seen not to give rise to quadratic

IR divergences but only to linear and logarithmic ones. In-

terestingly enough, the linear IR divergences arise from twavhere

different sources(a) integrals which, by power counting, are

quadratically UV divergent but whose Moyal phase factor k-/\k-=£k!‘k-”® 2.5
not only regularizes them but also lowers the degree of the v 2 e '
IR divergencefb) integrals which are linearly UV divergent

by power counting but regularized by the noncommutativity. o

The softening mechanism mentioned(@ also contributes waI play a relevant role for determining the Feynman rules
IR logarithmic divergences, which, nevertheless, do not jeopl" the theory. _

ardize the perturbative expansion. Under the groupJ(1) of gauge transformations

The conclusions are contained in Sec. V.
) 1
U=e9'=2 —(igh)*", 2.6
Il. THE ACTION AND FEYNMAN RULES FOR NCSQED , n=0 M
A. The action

In A’=1 superspace NCSQEDs described by the non-
polynomial action23,24]

with A (KZAT) a chiral (antichira) superfield,V trans-
forms as follows

_ gV —igA, A0V igX
S/:_izf d°z(e”9VxD"e%")xD?(e” 9V D e%"), e Trere @7
29

(2.9 thus leavingS invariant.
In future, we shall be needing the expansiorSafi pow-
whereg is the coupling constanl is a real vector gauge ers ofg, up to the ordeg®. To this end we first recall the
superfield, identity [25]
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2 3
e 5% D, e9=gD,V~ 3 [V.D V], + 3;[V.[V.D,V], ],

g4
— 27[V.IV.IV.D VL L.

5
+ %[V,[V,[V,[V,Dav]* Lededet

(2.9

Then, after by part integrations and by exploring the proper-

ties of the Moyal producf26] one obtains

S\/:SS/O)—’_gg/l)—’_ gz (2)+ 93 (3)+ e, (29)
where
]_ _
s<v°>:§f d®zvD*D?D,V, (2.10
1 _
Ss/l)ZEJ' dBZDzDaV*[VvDaV]* 1 (21])
1 R
1
+ gDzD“V*[V,[V,DaV]*]*], (2.12

S@)= 1 d8z [ED D*V*[V,[V,[V,D V], ]«]
2 :

+[V,[V,D“V]*]**SZ[V,DQV]*]. (2.13
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SV=iL (gap[— (A+A)+ (cothL (g )[ A — AT],
(2.1

where
La[B]=[A,B], . (2.18
After recalling the Laurent expansion of cotharoundx

=0, one arrives at

OV=iL (g — (A +A)]+ iL (gr)v L(_g:/LZ)V[/T_ A]

1 _
+§L(g,2)V[A—A]+~--}

_ i _
=i(A=A)— ?g[V,AJrA]*
ig? —
+ E[V,[V,A—A]*]* + (2.19
Therefore, by going back with E¢2.19 into Eq.(2.16) one
finds for the ghost action the following expression

Sgh=SP+gSH+ g%+ - - (2.20
where
s<°>——J d8z(c+c)(c'—c'), (2.21
SiH = Jdgz(c+c)[v c’'+c'],, (2.22
s(gzh>=——j d8z(c+c)[V,[V,c'—¢c'], ], -
(2.23

As usual, gauge fixing is implemented by adding to the

actionS, the covariant term
a 8 2 12
ng:_i d°zV{D*,D}V, (2.19
wherea is a real number labeling the gauge. Clearly,

SO+ sgfzéf dézV(O+(1—a){D?,D?)V, (2.19

as seen from Eqg2.10 and(2.14).

For the covariant gauge, the Faddeev-Popov determi-

nant reads

A‘l[V]=j DeDe! DeDe’ e /@ +e@V@)| |+ o
(2.19

Herec,c=c',c’,c’=c’" are the ghost fields whiléV de-

notes the change i provoked by an infinitesimal gauge

transformation. One readily obtains from E@.7) that

In addition to the real vector superfield we introduce now
a chiral matter superfield in the adjoint representation.
This enables us to construct a theory in which e 2
supersymmetry is realized. The generalization\fe-4 is
straightforward and will be done afterwards. The correspond-
ing action describing the free matter superfield as well as its
interaction with the gauge superfield reads

S,.= f d8zd* e~ 9Vx P g9V, (2.24

whose invariance under supergauge transformations follows
from Eq. (2.7) together with

DD = 19 Pre oA,

(2.29

The first four terms of the expansion &f, as a power
series ofg,

) 1), 221 433y ..
Sn=S9+gsM+g?sP+ g3+ .. .,

are found to be

DD’ =9 Pxeldh,

(2.26
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FIG. 1. Free propagators. The arrow indicates the flux of ghost
charge.

sg?):J A8z, (2.27)
sﬁn”:—J d8zd*[V,®], (2.28
sﬁ?%J dBz0*[V,[V, D], ], , (2.29
S(n?): - %J' dSZ(E* [V,[V,[V,q)]*]*]* .

(2.30

B. Feynman rules

From the quadratic part of the actioBy)+ S+ S{y)
+S§T?) one obtains, through standard manipulations, the free
propagators

. .
Az—2)= 5 1+(1—a>5{D2,D§}}68(z1—z2>,

(2.31a3
Moo (21~ 2) = — SDIB3 (2, 7), (2310
Ao (zy—2p)= 'ﬁﬁiogag(zl—zz), (2.319
Aoia(z1—2,)= — =D?D25%(2,- 2,), (2319

O
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I {iovy oo (Kt ks ka) =ig2V (kg ko ks ko),
(2.339
(9
I 520v)yovyvvv(K1:K2 K3 Ka, Ks)
__ %
__3_6V5 (kq,Kz,K3,Kq,Ks), (2.343
(0)
F'viovyovy vy (Ke:Kz Ka,Ka ks)
29°. 2)
(0) _
FVV(DV)(DZV)(DV)(kl!kZ K3z, Kq,Ks)
i9° )
= Evs (kq,kz,K3,Ks,Ks), (2.349
F%Lc(kl’k21k3):g]}3( ky,Kz,K3), (2.353
I Qlks ko ks) =gVa(ky ko ko), (2.35D
T, (Ky Kz, ks) = — gV5(Ky Kz, Ks), (2.350
F%’)zljkl*k%k@: —gVs(ky ko ,Kka), (2.350
) 9% 1)
FCIVVC(klvk21k31k4): - ?V“ (kl,kz,k3,k4),
(2.363

iq2
19
T(c%v#kl,kz,ks,kd:7V511)(k1,k2,k3,k4), (2.36b

(0)
Fc'VVc

N2
ig
(kl,kz,k3,k4)=?vﬁll)(kl,kz,ks,k4), (2.360

in 2
corresponding to the gauge, ghosts and matter superfields, 1©) _ |k :_gv(l) Ky Ky Ka.Ky),
respectively. They are depicted in Fig. 1. crvvdKioka Ks.Ka) 6 /4 (ky,kz ks ka)
On the other hand, the interacting part of the total action (2.360
together with Eq(2.4) enable us to find the elementary ver-
; (0) ; . = .
g(k:)?/isol;s nlgt;?igr;[heory. They are displayed in Fig. 2. In an FEE\),¢(k1,k2,k3)=2gV3(k1,kz,kg), (2.373
(0) _ '
Foovouvtiale ks =gVl ke k), (232 Lo o (ki ka K ke) =ig2V{P (ky ko ks ky), (2,37
(© 19° ) 3
T oeowovvvtKe ke ks ka) = = 35V (ki ko ks Ka), 9 (ky .k ks k k)=—g_ (D(ky,ky,Ks,kg,Ks)
(2333 DOVVVD 1,02:03,04,15 9 5 1:R2,R3,”R4,R5).
(2.379
T (Ky,Ko K, ka) =192V P (K Ky, Ka,Ky)
v(DV)(DV)(DDV) K1:K2,K3,Kg) =197V 4Ky, K2, K3, Kyg),

(2.33b

Here,
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Va(K1,Kkz,Ka) = sin(ky/\ky), (2.389
VI (kg Kz, kg, kg) = cog ko/\kg)cOg kg /\Ky)
—cogky/\ky—ks/N\ky),
(2.38p
Vi (ky ko k3, kg) = E[Sm( k1/\Kz)sin(ks/\Ky)
—sin(ky/\kg)sin(ka/\K3) ],
(2.380

VE(Ky ko ks Ka ks)
=[2 cogks/\ks)cogks/\ks+k3/\Ks)
+cog — Ka/\Ky+ K4/ \Ks+ kg/\Kg) ]sin(k;/\K»)
+ 3[coq — kyo/\kg+ Ko/ \ks+ ks/\kg)sin(ky/\ky)
+cog — Ko/\Ky+ K4/ \Ks+ Ko/\Kg) Sin(ky/A\Kg)
+c0g — Kyo/\Ky— Ka/\Ky4+ Ko/ \Kg)sin(kyAKg) ],

(2.389
VE(Kq Kz ks Kq,Ks)
=2 sin(p;/\pz)sin(p,/\pz)cog p1/\py)
+sin(p/\p2)[sin(pa/\ps—p1/\p3)], (2.38¢9

VE(ky kz,K3,Kq,ks)
= 2i sin(p1/\p2)cog pP2/\P4)cOL P3/\Ps)
+exp(—ip1/\pz)cog ps/\pa+ Ps/\ps+ Pa/\pPs)
+exp(—ip1/\ps)cog ps/\pa+ Pa/\ps+ P2/ \Ps)
—exp(—ip1/\p3)cog po/\ps+ P2/ \ps— Pa/\Ps)

—exp(—ip1/\ps)cog P/ \ps+ P2/ \pPa— P3/\Pa),
(2.38f
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UV-IR mechanism[5,8], in this last connectiord[ G] also
gives the highest possible degree of the IR divergences.

Ill. ONE LOOP CONTRIBUTIONS TO THE VECTOR
GAUGE SUPERFIELD TWO-POINT FUNCTION T'(})

The cancellation of the harmful UV-IR infrared diver-
gences inl'{}) was already proved if20] for N=1 and by
working in the Landau gauge. Here, the proof is generalized
by showing that the just mentioned cancellation takes place
for an arbitrary covariant gauge and extended supersymme-
try.

Let us first concentrate on the graphs involving eith&t a
tadpole or aV loop (see Fig. 3. Since there are no external
chiral lines,d[G]=2. Now, only those graphs with aD
factors in the internal lines may exhibit quadratic UV diver-

gences. Diagrams with a factBrand/or aD on the external
lines can at the most be linearly divergent. Any other com-
bination of D’s on the external lines corresponds to contri-
butions which are logarithmically divergent or finite. These
follows from the D-algebra along23]. However, one is to
take into account also the noncommutativity, which gives
origin to a trigonometric factor that modifies the Feynman
integrands. The combination of these two ingredients rules
out, for the diagrams under analysis, the UV and UV-IR
infrared linearly divergent terms. Hence, in this case, only
quadratic divergences may jeopardize the consistency of the
theory. They are contained in graplas, (b) and(c) in Fig. 3.

From the Feynman rules derived in Sec. Il, we found that
the contributiori“5,1\};361 arising from theV tadpole diagram is
given by

g?r d%
Radp)=— T | o' 0ud'evP-kp—pk)

512 —2~a
XF(DlDlDzoﬁlz)V(p,el)V(_p,92)- (3.1

Here, a factor 2 coming from the permutation of the external
legs has already been taken into account. Moreover, we note

the momenta are taken positive when entering the vertex ariftat the term proportional to (a) in the right-hand side of
momentum conservation holds in all vertices. Eq. (2.313 does not contribute.

We close this section by pointing out that the superficial From Eq.(2.38b one finds that
degree of divergence of a generic Feynman gr@j given

by (23] VIV (=k,p,—p,k) =2 sirf(k/\p). (3.2
d[g]=2—-E., (2.39
After D-algebra manipulations, one ends up with
whereE_ is the number of external chiral lines. As known, in
a noncommutative quantum field theory, a generic Feynman 2
graphg will decompose into planar and nonplanar parts. The rgll\);3a(p): §92A, (3.3

superficial degree of UV divergence of the planar part is
measured byl[ G]. The nonplanar part is free of UV diver-
gences but afflicted by IR singularities generated through thevhere
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2 2 _ 1
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2 1 2 1 2 _ 1
D D®D D D°? D DD
D D
3 A 5 3 4 5 3 )l 5
©) © ©
r‘(UZDV)( DV VWV 1_‘(152V)( DV )( DV )V RBDV)(BV)( DV)V
3 3 3 3
~ ~ y N y ~ -
\\ Py \\c \\ c \\ c’
v\ r\ v\ F\
~
IANAAAANANS 2 Ay 2 AN 2 AN 2
_’/ _’/ 1/ 1/
Tc ©) s = ) s’c © 7°c ©
1’/ l_::Vz: 1’/ ¢ 1_‘lc’Vc 1’, ¢ Ve 1’/ 1_‘EVE
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\\ ¢’ \\ c’ \\ ¢
AN AL A\
~ ~ SN
’ 7’ P
’ s, ,
¥ 4
2 ¢ 7T ,’7:
7 2 17 2 17
1—~(0) 1—~(0) ©
¢ VVe cVVve ¢ VVe
3 4 3
[0 [
2
[ )
1 © L (V) 2
FcDV:D FEVWD
FIG. 2. Elementary vertices.
d*k , sird(k/\p) Whlle th(.a.nonplanar one only develops quadratic IR infrared
= Zd%e > V(p,0)V(—p,0). (3.4  singularities.
(2m) k The amplitudes associated with diagrathy and (c) of

The planar part of only contains quadratic UV divergences, Fig. 3 are, respectively,
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c 7 \ \
/ \ \
Y \4
-\ / /
C ~\ Vs V4
- -
(d)
/7 N - 7/ \ -
c/ \C c/ \C
AAnAnAAnAA PNANANAN AAAANAA PONNAANAN
) /c c\ /C
\_(/ \.<’
(f) (9)

(i)

(h)
FIG. 3. Diagrams contributing t6{% .
(1) 1o d%k 4 [ 1
1ﬂvv;e,b(P):ZXEQ (277)4d 010" 60,V5(k—p,p, —K)V5(k,—p,—k+p)| — m
X D{D3D581,D,5D 7D 1,81V(P, 01)V(— P, 65), 3.5
) 1,0 d% o _ 1
1“vv;3c(p):2><§9 wd 0:d%60,V3(k—p,p,—K)V3(—k+p,—p,k)| — m
X D:CLyDgalZBEDZBB%Dla&lZV(p! 01)V(—p,0), (3.6

where the 1/2 comes from the second order of the perturbative expansion. After standard rearrangements one gets

r{) (p):ng ok d“ev(k—pp—k)V(k—p—k+p)_—;
e (2mt 0 T TR | K(k+p)?]
X[ —2V(p, ) (k2+K,.D*DY)V(—p,8)]+LDT, 3.7
d*k [ 1
(1) —n2 4 _ _ _ _ - -
IRadp) =07 Gy OB kPP
X[ —2k2V(p,)V(—p,0)]. (3.9

Here,LDT is short for all terms which are at the most logarithmically divergent. Furthermore, frontREB%a
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V3(k_ p,p,_k)V;;(k,_ p!_k+ p)
=—V3(k—p,p,— k) V3(—k+p,—p,k) = —sirf(k/\p).
(3.9 X Va(k,p,—p—K)Va(p+k,—p,—k)V(p,0y)

vv )3i(P)=(— l)><2>< 6,d*0,

As a result, the terms proportional k8, in the second brack-
ets in the right-hand sides of Eq8.7) and(3.8), drop out in
the suml'{y), 54(p) + T{).3(p). On the other hand, the term
proportional tok,,, in Eq. (3.7) survives. From power count- (3.19
ing follows that such term might give rise t@angerous
linear divergences. To see whether this really happens, wé

start by expanding Va(k,p,—p—K)Va(p+k,—p,—k)=—sirP(k/\p).
(3.1

XV(—p,0,)

i(D2D?3)———— H( 2p2)—== l
(k p)
where the—1 arises from the ghost loop and

1
- 3.1 It turns out thatt" X, ..=T1) . . Therefore,
K2(k+ )2 (3.10 vV:3f= 1 VV:3g

FRai(P) +T{sg(p)=—2¢°A+LDT.  (3.17
aroundp=0. It is then obvious that the would be linearly

divergent integral We stress, once again, that the would be linear divergences in
Egs.(3.13 and(3.17 are wiped out by symmetric integra-
tion.
4
J d’k 1 Z sirA(k/\p), (3.11) From Eqgs(3.3), (3.12, (3.14), and(3.17 follows that the
(2m* Kaa k* quadratic UV and the UV-IR infrared divergences do not

show up forN=1, in any arbitrary covariant gauge.
vanishes by symmetric integration. As stated above, the even Ve shall nextinvestigate trf consequences of adding one
parity of the trigonometric factor in Eq3.4) eliminates the ~Matter superfield to get th&/=2 theory. The amplitudes

linear UV divergences and also the linear UV-IR infrared @SSociated with the graplis) and (i) in Fig. 3 are

divergences. To summarize: 4

d*k
Fs/l&;sh(p)=2(i92)f (2m)

(1) (1) d*0V,(k,p,—p,—k)
[v-3p(P) +T'y.3{p)=LDT. (3.12

We turn next into computing the ghost contributions to
FS}\}. A direct consequence of tHe algebra is that graphs
containing any of the verticeﬁ‘(%c, ro._ ro or

V(—p,0)V(p,d) (3.18

Sy
H 212
x| i(D2D )—k2

o c’'Vc! c’'vvce? and
F(,i/v; depicted in Fig. 2, only contributeDT. We shall
therefore concentrate on the diagrams which might provide L 4K
quadratic and/or linear divergent contributions K. FW;si(p):(—Zg)zf > £d%6:1d%0,V5(—p—k,p,k)
These are the graphid) and(e) of Fig. 3. (2m)
The calculation of the tadpole contributiohgraphs(d)
and (e) in Fig. 3] T'(})..4(p) is straightforward and yields X Vs(—k,—p,p+k)|i(D?D?)—— " )
; (k+
L9 d ViP(k,p,—p,—k) s
I{N.adp)= f (2 d*6 2 X I(D2|32)k—122 V(p,0)V(=p,6). (3.19
XV(p,0)V(—p,0). (3.13 By taking into account Eq€3.2) and(3.16) one obtains
The same expression arises Tffy.5{(p). Then, after using T{0.3n(p) = —4g?%A, (3.20
Eq. (3.2), one obtains
and
4 (1) — A2
T\N:ad P)+ T{N2d P) = 5 9°A. (3.14 I'{V.5(p) =4g°A+LDT. (3.29

Therefore, up to LDTI{}.5,+'(}.5=0 implying in the

The evaluation of the ghost loop contributidmgaphs(f)  absence of quadratic UV and UV-IR infrared divergences in
and(g) in Fig. 3] is a little bit more involved. By applying the matter sector and, therefore, in the ful\
the Feynman rules we obtain =2 NCSQED. The validity of this conclusion foA'=4 is
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b, 5D
W
w ’S K
b,
P D

FIG. 5. Tadpole contribution t&'{}),.

A straightforward computation yields

i P1, P2y Psy
IM( 1 i) ) = _®MV + + ,
w DL oip 0 272 \PrPr PPz PsPs

FIG. 4. An example of higher order correction to the three-point (4.2)
W function including the one-loop three-poixtfunction. '

o where
clear. Furthermore the UV logarithmic divergences are also

absent inN=4 in agreement with21,22.

pep=p*(0?),,p". 4.3
IV. ONE LOOP CONTRIBUTIONS TO THE VECTOR
GAUGE SUPERFIELD THREE-POINT FUNCTION From observation follows thdt“(p;,p,,p3) exhibits a lin-
Iy ear infrared divergence. However, a nonplanar Feynman dia-

We present in this section the computation of the one—loo;?ram whose corresponding amplitude is proportional to
corrections to the V gauge field three-point function in the

covariant superfield formalism. The divergence structure of sin(p2/\p2)1*(P1,P2,P3), (4.4

the superfield formulation is, as we shall see, substantially

different of that encountered by Matusisal.[6] in the com-  will be finite if only one of the momenta goes to zero and
ponent formulation. As for the background field three-pointyanishing if one lets all momenta to zero simultaneously. On

function Computed |r[21,22] our results play an essential the other hand, an amp"tude proportiona| to
role when considering insertions in higher order corrections

such as the one indicated in Fig. 4.

The one-loop diagrams contributing to the three-point cosp1/\P2)1#(P1.P2.P3). 4.9
gauge field functiod*ﬁ,l\}v contain, generally speaking, a pla- ) _ )
nar and a nonplanar part. The planar parts will exhibit, at théVill certainly have a linear divergence pt—0. Needless to
most, quadratic UV divergences, in agreement with EqSay: the conversion of quadratic UV divergences into linear
(2.39. These divergences will be eliminated by dimensionalUV-IR infrared divergences is also possible through this soft-
regularization. The linear UV divergences are always wipecening mechanism of divergences.
out by symmetric integration. Renormalization takes care of We turn back into our main line of development and look
the logarithmic UV divergences. As for the nonplanar partsfor the diagrams which can make IR harmful contributions to
the situation will be seen to be more involved. Due to thel'{}),,. To this end, one is to take into consideration fhe
peculiar structure of the Moyal trigonometric factors, qua-algebra, the parity of the Feynman integrands, and the soft-
dratic UV divergences do not translate into quadratic UV-IRening mechanism described above.

infrared singularities, but rather into linear and logarithmic |5 this way we have found that the potentially harmful

ones. Hereafter, we shall refer to this effect as to the SOﬁe”@ne-loop diagrams contributing va are those depicted in

ing mechanism of divergences. There are, of course, linegkios 5 ' 7.8 9, 10, and 11. To systematize our presentation
infrared divergences arising from the would be linear Uvas well as to facilitate the verification of our calculations, we

divergences through the UV-IR mechanism. Finally, the hall write all the th int litudadd) follows:
logarithmic UV-IR infrared singularities are harmless angShal write all the three-point amplitu vy as follows:

shall be left out of consideration.

Before facing the problem of selecting the diagrams of 1 d*k
interest, we found appropriate to exemplify how the soften- I'{\v= o ><['E:|><[U:|><J 246 | X[Fr]X[P]XDy
ing mechanism of divergences works. To this end, let us first ' )
consider the integral +permutations. (4.6)
1( d* _ ,
1*(p1,P2,P3)=— Zf 4[sm(Zk/\pl)+sm(2k/\p2) Here, 1h! comes from the order of the perturbative expan-
(2m sion, t is the topological factorp is the numerical factor
w associated with the verticedg is the fermionic measuré,;
+sin(2k/\p3)]—. (4.1) is the trigonometric factor provided by the noncommutativ-
k* ity, P is the product of9-independent factors in the propaga-
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o . . 0
FIG. 6. Contributions td"{}), involving the vertexFEE)ZDv)(DV)VV.

tors, Dy is the 6-dependent part of the integrand, and one iswhereAP means that one is to sum over all permutations of
to sum over the appropriate permutations of the external maghe external momenta. By power counting £4.9 is qua-

menta.

For the tadpole graph in Fig. 5 one has thatt=1, v
=—g°%36,

FT;5=V§,1)(k,—k,pl,p2,p3)
=3 cog p1/\(p3—K) + pa/\K]sin(k/\p,)
+3 cog p2/\(p3— k) + pa/AK]sin(k/\py)
+3 cogpo/\(p1— k) +pi/AK]sin(k/Aps),  (4.7)

as can be seen from E(R.38d, P=—i/k?, and

Dy= 612 D§D$D2a

1 _
1—<1—a>E{D2,Di}

512

XV(p1,01)V(p2,01)V(p3,01)
= 6,{D?D{D,, 81,V (p1,01)V(p2, 6:1)V(P3, 61).
(4.8

As in the case of the two-point function the term in the
propagator proportional to (1a) drops out. By putting all

these together one ends up with

03 4
ig d*k Frs
T{Nvs(P1.P2.P3) =~ g (277)4d40Fv(p1,0)

XV(p,,0)V(p3,0)+AP, 4.9

dratically UV divergent but, on the other hand, K4.7) tell

us that the planar part vanishes, implying in the absence of
UV divergences. Hence, what we have to investigate are the
consequences of the UV-IR mechanism fully contained in the
nonplanar part. A direct calculation shows that

FS/l\av;s( P1.P2,P3)

i ['n( A )[ 1 1 }
=———jsi -
8 P1/2Pa P3°Ps  Pi1°P1
+ sin(p,/\ ){ ! ! }
Si -
P2/2Pa P3°Ps  P2°P2
+sin(p,/\ ){ ! B+AP
si —_— .
P2/P1 Pi°P1 P2°P2
(4.10
For arriving at Eq.(4.10 we have used
d*k sin(2kA
f n p)zo, (4.119
(2m)* k?
f d'k cog2k/\p) 1
(2m* K 47%pop’
(4.11b

and
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(a) (b) (d)

(m) (n) (0) (P)

. . 1 . . (O)
FIG. 7. Contributions td"{%)y involving the vertex"y b\, Gy dov)

(—i)?

" Py o

5593J d*oV(p;,0)V(p2,0)V(p3,0).  (4.12

Itis easy to verify that momentum conservation enforces For the trigonometric factors an straightforward calculation

ields
Fs,l\}\,;5(p1,p2,p3) =0, (4.13 y
Frea=—2 Cogpl/\pz)F$dd+2 sinp1/\p2)FTea

implying in the absence of UV-IR infrared divergences as 4.15

well. One can convince oneself that the trigonometric factor
corresponding to the tadpoles involving the vertices
F(@ dF@ _ Fi where

(D2V)(DV)(DV)V an (DDV)(DV)(DV)V (see Fig. 2are propor-
tional to sinf,/\p,) and, therefore, the would be linear 1
UV-IR infrared divergence is softened and becomes harm- ngdz_ Z[sin(2|</\p1)+sin(2k/\p2)+sin(2k/\p3)],
less.

The diagrams in Fig. 6 have in common the four-point (4.163
vertex FE%ZDV)(DV)W. We focus first on diagranta). We 1
have tham=2, t=4, v=—ig%12, and 81— — 2 [cog2k/\py) — cog2k/\py) .
(4.16b

As for the # dependent factors, we obtain

Dy.6a= —2[(k—p3)?V(p3, )
+ (K= P3) 4x( D DV(ps, 02))+ - - -]
X 61V(P1,01)V(P2,01), (4.17

(@) (b)

FIG. 8. Contributions to I'{}), involving the vertex

[C)
FV(DV)(DZV)(DV) '
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FIG. 9. Contributions td"{}),, involving the trilinear vertex only.

where we omitted all terms leading to contributions whichwhereCP means sum over cyclic permutations of the exter-
are at the most logarithmically divergent. Observe that thenal momenta. By collecting terms of equal powerkinwe
term proportional to (+a) in the V propagator does not write

contribute again.

Power counting says that the diagréanis UV quadrati- T(Vv.ea= v+ 754 +LDT, (4.19
cally divergent although, as before, the corresponding trigo-
nometric factor does not contain a planar part. The amplitudéhere
is, then, UV finite and we concentrate on studying the out- 5
comes of the UV-IR mechanism. After expanding E414) [2]_ ( g 2 i DA qoFevent
aroundp;=0, the expression for the amplitude associated Yea = | g SiN(p1/\p2) (2)% T:63) 2
with the graph(a) can be cast

ig d*k 1 o Ka ig3
Fvvv 6a_ f (2m) d6F ;64 (k2)2 +2p3 (k2)3 e yil= _(6)2 cogp;/\

4

XV(p1,0)V(p2,0)V(ps3,0)+CP, (4.20

odd
2m T ey

Ko

X[(k—p3)®V(ps,0)

+ (k= P3) 4u(DD*V(ps3, ) _
and the superscript makes reference to the powdr of
+---IV(p1,0)V(p,,0)+CP, (4.18 A word of caution is here in order. Two terms of the form

X (D*DV(p3, 0))V(p1,0)V(p,,0)+CP, (4.21)
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k+p,+p,
P P
c,’ NG
y\/\wps y\/\M/\
=\
p2 C \\<f \(’
€—
k (@)
P4
cqc c'éE
k+p1 /’ RN VAN
A A
| [
c C
- \</ ! y\\<¢,—
¢ c
k+p|+pz
(d)

61
7 A / - \

A« N A ~
-, 1 c c i 1_
¢ c\\ 4, -~ /Ic °

< Y o€
(e) )]

FIG. 10. Ghost contributions tB{%),,.

K
péCiny“pz)f K poaa Ku B, (422

2m* T (k)2

occur in the right hand side of E4.21). Expressions of this

type arise as a result of expanding the fa&¢see Eq(4.6)]

PHYSICAL REVIEW D69, 025008 (2004

By carrying out the momentum integrals in Edqg.20
and (4.21) and afterD-algebra rearrangements, one obtains,
respectively,

1
P1° p1

B+CP
(4.24

[2] . 1
76a_ 12 SIerl p2) pzopz

and

i
Yoo :4(6) cog p1/\P2)1#(P1,P2,P3)NL(P1,P2,P3)-
(4.25

Here,

N/,L(pl ' p21p3)Ega(O’,u.)ul-1f da(DaV(pl ' B)SQV( P3. 0)

XV(ps,0)+AP), (4.2
while |* was already defined in E¢4.1).
After recalling momentum conservation one concludes

that

Yea=0.

(4.27
Thus we are left with a harmful linear UV-IR infrared diver-
gence inl'{(}y.q, given at Eq.(4.25.

The diagramgb), (c), and(d) in Fig. 6 have in common
that the terms proportional to (1a) drop out, as in the case
of diagram(a). SinceF+.gp=—F .65, graph(b) also has no
planar part. As for graph&) and (d) they have a logarith-

around zero external momenta. In the present case they cappically divergent planar part which demands UV renormal-
cel out between themselves, giving no contribution to lineaization. For all of them, the nonplanar contributiof! is
UV-IR infrared divergences. However, we would like to re- absent. We found that

mark that individually they also vanish, since after perform-
ing the sum over the permutations of the external momenta 69

one finds
(P2t P2t ps)"COS{pl/\pz)f Fodd Ky B
2m* T (k¥)?
(4.23
which is set to zero by momentum conservation.
P, k:p;pz
P
p? Tk ps
Ps P, st
k
(@) (b)

cog p1/\p2)1#(P1.P2,P3)N . (P1,P2,P3).
(4.28

i
[1]1_ql _
126 %) (6

On the other hand, the grapks, (f) and(g) turn out to
be proportional to (+a). While (e) has no planar partf)
and (g) exhibit a logarithmic UV divergence. Againy?!
=0. We end up with

FIG. 11. Matter contributions
to T}, .

P, k+p,+p; Ps

(©
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69 ig® sin(py/\p,) in Eq. (4.33 lowers the degree of this divergence
> H=a-a ?> cog p1/\p2) 1 *(P1,P2,P3) at least to linear. The softening mechanism, mentioned at the
1=6e beginning of this section, is again at work. For each graph,

XN, (P1,P2,P3)- (4.29 one can verify that the UV-IR linear infrared divergences
arising through this mechanism are of the form
Therefore,
1

69 i sin(p/\pa)| —————+——|,  (4.39

jZGaFS/l\BV;j:@_a) 5 cog p1/\p2)1*(p1,P2,P3) PatPy P2z PstPs

and therefore cancel after symmetrizing in the external mo-
XN, (p1,P2,p3) +LDT, (430  menta.

RS On the other hand, for all the graphs, there are linear
where the linear UV-IR infrared divergence, arising from theinfrared divergences which are the UV-IR counterparts of the
diagrams in Fig. 6, is explicitly given. would be linear UV divergences. These divergences cancel

We move next into computing the diagrams in Fig. 7.when summing up over all graphs in Fig. 9.
Unlike those in Fig. 6 they involve the four-point vertex  For the ghost graph@) and(b) in Fig. 10 the trigonomet-
Fi/o()DV)(SV)(EDV) [see Eq(2.33h]. An analysis quite similar 'ic factors are found to read
to that already presented enables one to conclude that th _ _ odd . even
planar part has, at the most, a logarithmic UV divergence. A" 7102 Frii05= =2 cogp1/Ap2) P+ 2 si(py/Ap2) Friea
linear UV-IR infrared divergence is present in each graph =Frga (4.3
but, nevertheless, cancels. That is '

= whereas for the others diagrams in Fig. 10 one has

2, T{{y;=LDT. (4.31) Fr.10 = — €08 P1/\P2) F3%%= sin(p,/\p,) F&'8™

j=7a
. . . . ) = FT;9' (437)
The diagrams in Fig. 8 involve the last four point vertex

Fslo()DV)(BZV)(DV) quoted in Eq.(2.339. In the planar sector '!'he D algebra _sign_alizes ggain the presence of quz_;\dratic,
the situation is as in the case of the diagrams in Fig. 7, onlyinear and logarithmic UV divergences in graplesto (f) in
logarithmic UV divergences show up. In the nonplanar sectoFig. 10, since their trigonometric factor possesses a nonvan-
the linear UV-IR infrared divergences do not cancel and thdshing planar part. As it already happens in connection with
final form for the corresponding amplitude is the graphs in Fig. 9, the linear UV-IR infrared divergences
arising from the softening mechanism vanish for each graph.

o 1) i The remaining linear divergences do not cancel and we ob-
j:ESa I'yvvj=—6a 3 cog p1/\p2) 1 “(P1,P2,P3) tain
10f .
XN ,P2,p3) +LDT. (4.32 '
u(P1:P2.Ps j;l:Oafﬁ/l&v;,-:%(g) cog p1/\p)1“(p1,P2,P3)

We turn next into evaluating the graphs in Fig. 9. All of
them have in common, up to an overall sign, the trigonomet- XN,(p1,P2,p3)+LDT. (4.39
ric factor
To summarize, in NCSQEPand forN'=1, the one-loop
FT;gzcos(pl/\pz)F$dd+ sin(p1/\p2)F¥s", (4.33  corrections to the three-point gauge superfield function are

afflicted by linear UV-IR infrared singularities. By collecting

whereF%dd was defined in Eq(4.163 and the calculations presented in this section, Edsl3, (4.30,
(4.3)), (4.32, and(4.38, we conclude that the amplitude can

even_ _ 1[1—cos(2k/\p1)+cos(2k/\p2) be cast in the following form
? 4

cog p1/\p2) 1 “(P1,P2.P3)

i
6
Hence, the planar part does not vanish. FromDhalgebra XN,(p1,p2,p3) +LDT. (4.39
follows that quadratic UV divergences only arise in graphs
(a) to (d) and are taken care by dimensional regularizationAs can be seen, for the gauge-4/7 the three-poinV func-
For all graphs in Fig. 9, linear UV divergences are killed bytion is free of linear UV-IR infrared divergences. To phrase it
symmetric integration, while the logarithmic ones are ab-differently, these divergences are localized in the gauge sec-
sorbed through renormalization. tor and are a gauge artifact.

In principle there is nothing that could prevent the appear- This result is not altered by the addition of one chiral
ance of quadratic UV-IR infrared divergences, from graphsmatter superfieldsee Fig. 11 In fact, the contribution of the

(a) to (d), in view ofF%S”#O. Nevertheless, the presence of tadpole grapha) is proportional to that of th& tadpole in

— cog 2k ps)]. (4.34 r{Yy=(4-7a)
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Eq. (4.13. Furthermore, the amplitudes corresponding to thenishing result for the linear UV-IR infrared divergences
graphs(b) and(c) are proportional, respectively, to those of which are, nevertheless, a gauge artifact. The situation re-
the graphga) and(c) of Fig. 10. The linear UV-IR infrared sembles that encountered in QEhere the infrared diver-
divergences resulting from the quadratic UV divergences, viggences disappear from the full two-point fermion Green
the softening mechanism, cancel out for each graph. As fofunction in a particular covariant gaugérennie’s gauge
the remaining linear UV-IR infrared divergences, in dia-[27]).

grams(b) and (c), the numerical coefficients are such as to The present work also plays a relevant role within the
secure their cancellation. The generalization of these resultsackground field formalism. Indeed, the computation of

to N'=4 is straightforward. higher loop corrections to the results encountere2in22
will necessarily demand the insertion of the three-paint
V. CONCLUSIONS function calculated in the superfield covariant formalis®ae

) _ ) ) Fig. 4). Our conclusion that the linear UV-IR infrared singu-
This work was dedicated to establish the consistency Ofarities are placed in the gauge sector implies that higher
NCSQED within the covariant superfield formalism. As a orger loop corrections to the background field strength func-

first step, we generalized the analysis of the two-point gauggion will not be afflicted by harmful UV-IR infrared singu-
field function presented if20] by extending their results t0 |arities.

an arbitrary covariant gauge and for any matter content.
Our main contribution consists of a detailed study of the
divergence structure of the one-loop three-point function of
the gauge superfield. The superfield formulation in an arbi- This work was partially supported by Fundacde Am-
trary covariant gauge represents a significative improvemenaro aPesquisa do Estado dedSRaulo(FAPESR and Con-
with respect to the component field calculation presented iselho Nacional de Desenvolvimento Cidisb e Tecnolgico
[6,7] for the same problem. At the very least, here supersym¢(CNPg. H.O.G. and V.O.R. also acknowledge support from
metry is kept operational at all stages of the calculation. UnPRONEX under contract CNPq 66.2002/1998-99. A.Yu.P.
like in the component formulation, we have found a nonva-has been supported by FAPESP, project No. 00/12671-7.
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