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Nonperturbative approach for a time-dependent quantum mechanical system
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We present a variational method which uses a quartic exponential function as a trial wave function to
describe time-dependent quantum mechanical systems. We introduce a new physical variabley which is
appropriate to describe the shape of a wave packet, and calculate the effective action as a function of both the

dispersionA^q̂2& and y. The effective potential successfully describes the transition of the system from the
false vacuum to the true vacuum. The present method well describes the time evolution of the wave function
of the system for a short period for the quantum roll problem and describes the long-time evolution up to 75%
accuracy. These are shown in comparison with direct numerical computations of the wave function. We briefly
discuss the largeN behavior of the present approximation.
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The phase transition is one of the most important phys
phenomena in nature and has a wide range of application
condensed matter physics, particle physics, and cosmol
Most studies on this subject have been done in the fra
work of a quasistatic transition or using the Gaussian an
developed by Jackiw and Kerman@1#. There have been man
attempts@2–4# to go beyond the Gaussian approximation
is our purpose in this paper to go beyond the Gaussian
proximation in two respects. First, we need a fully no
perturbative method to link the initial Gaussian packet~GP,
false vacuum! to the symmetry broken degenerate vacu
state ~true vacuum!. Second, we try to find the relevan
physical parameters which describe the symmetry brea
effectively.

In this paper, we consider a quantum mechanical mo
for time-dependent dynamics described by the potential

V~ q̂,t !5
l

24
@ q̂22k2~ t !#2, ~1!

where k2(t) increases from a negative value to a posit
numberk2 asymptotically. The initial GP centered atq50
cannot remain as Gaussian during the time evolution,
evolves to a packet centered around two minima of the
tential ask2(t) approachesk2. For k2→`, the new ground
states are the linear sum or difference of two uncorrela
GPs centered at each minimum. In this case, the two gro
states are degenerate.

The dispersion̂ q̂2& of a wave packet may describe th
size of a GP or the distance between two packets of a do
Gaussian packet~DGP!. To discern the shapes~for example,
GP or DGP! of wave packets of the same dispersion
introduce a dimensionless quantityy, which we call the
‘‘shape factor,’’ in addition to the dispersion (q2):

q2~ t ![^q̂2&, y~ t ![
^q̂4&

^q̂2&2
. ~2!
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A similar expectation value toy was calculated in Ref.@5# in
relation to the new inflationary scenario. To illustrate the ro
of the y variable, consider a wave function that is a sum
two GPs of the same size. Ify51, the density of each GP i
a delta function or the two GPs are infinitely far away so th
no correlation exists between them, which provides the low
bound ofy(>1). If the two GPs completely overlap, it cor
responds toy53, a single Gaussian packet. In between th
two states, 1,y,3, the two GPs are mixed and interfe
with each other. Fory.3, there are no separable packe
and the wave functions are better localized than the GP@6#.

The effective action in the variational method@1# is given
by

G5E dt^c,tu i ] t2Ĥuc,t&, ~3!

where Ĥ5 p̂2/2m1V(q̂,t) and we use\51. In this paper
we use the trial wave function

^Quc,t&5N21expF2
1

2 S 1

2m2
1 iP D Q41S x

m
1 ip DQ2G ,

~4!

which has both the DGP (x→`) and the GP (x→2`) lim-
its, where we assumem>0. In the static case, the doub
Gaussian approximation was used in Ref.@7#, where a sum
of two Gaussian functions is used as a trial wave functi
However, it is difficult to generalize the double Gaussi
method to the case for time-dependent systems. The nor
ization factorN can be determined by the following integra

N25E
2`

`

dQexpS 2
Q4

2m2
1

2xQ2

m D 5Am f ~x!, ~5!

where f (x) is given by@8#

f ~x!5uxu1/2ex2 p

A2
@ I 21/4~x2!1sgn~x!I 1/4~x2!#. ~6!
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The dispersion and the ‘‘shape factor’’ for this wave functi
are

q2~ t !5
m f 8

2 f
, y~ t !5

112x f8/ f

f 82/~2 f 2!
. ~7!

y(x) is a nonincreasing function ofx from 3 to 1, which
makes the inverse functionx(y) be defined uniquely. We us
y as a basic variable instead ofx, because its range i
bounded below byy51 for any kind of wave packet@6# and
it has definite physical meaning. The expectation values
other polynomials ofq̂2 can be written in terms of thes
parameters.

With this trial wave function the effective action is give
by

G5E dtH yq4Ṗ

2
2q2ṗ22yFy2

y23

Y11G q6P2

m
2

2q2p2

m

1
4yq4Pp

m
2U~q,y!J , ~8!

whereY(y)52x f8/ f 5y f82/(2 f 2)21 and the effective po-
tential is

U~q,y!5
VF~y!

8mq2
1^V&, ~9!

with the free potentialVF given by

VF~y!511
~32y!~Y11!

y
. ~10!

This free potential, coming from the expectation value^ p̂2&,
represents the effect of quantum mechanical uncertainty.
expectation value of the symmetric potentialV(q̂,t)5V0(t)
1(1/2)k(t)q̂21@l(t)/4!#q̂41@c(t)/6!#q̂61••• with respect
to uc,t& is

^V&5V0~ t !1
k~ t !

2
q21

l~ t !

4!
yq41

c~ t !

6!
yFy2

y23

Y11Gq6

1•••. ~11!

From the action~8!, we notice thatP andp are the momen-
tum conjugates to2yq4/2 andq2, respectively.

Let us solve theP andp equations first:

1

8

d

dt
ln~yq4!52F12

y23

y~11Y!Gyq2P

m
1

p

m
,

2
1

4

d

dt
lnq25

yq2P

m
2

p

m
. ~12!

RemovingP and p by Eq. ~12! is just the Legendre trans
formation. Introducing the new variableh by dh/dy[D
5(1/4)A(11Y/y(32y)), we get a quite simple effective
action in terms ofh andq,
02500
of
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S5E dtH mq2

2
ḣ21

m

2
q̇22U@q,y~h!#J . ~13!

The dynamical equations of motion forq andh are given by

m
d

dt
@q2ḣ#1

1

D FVF8 ~y!

8mq2
1]y^V&G50, ~14!

mq̈2
VF

4mq3
1]q^V&5mqḣ2.

The free potential,VF(y)/8mq2 has an absolute minimum
at (y53, q5`) and is positive definite. An interesting poin
here is thaty53, the GP, actually corresponds tox52`.
On the other hand, in the effective potential~10!, y53 is a
regular point, which can be extended to larger values. T
property of the effective potential implies that the trial wa
function ~4! is insufficient to give a full description ofy
dependence and we need a more general trial wave func
for a complete quantum mechanical description which
cludes the rangey.3. The generalization of the trial func
tion to z^Quc̄,t& z25N̄22(11uzuQ2)21z^Quc,t& z2 may allow
a full description of they dependence, but is difficult to
integrate. Instead, we use a patch for the regiony.3,

^Quc,t&5N21expH 2S 1

4G
1 iP DQ21~2x1 ip !uQuJ ,

y.3, ~15!

where we assumex>0 and G>0. The wave function is
singular at the originQ50 due to theuQu term in the expo-
nent. Hence we regard the absolute value as a smalla limit
of AQ21a2. With this trial wave function, we have the sam
effective action as Eq.~13! with D5 ]ya/2aAa21
(y.3), and

VF5F112z2
2

f
Az

pG S 11
2

f
Az

p D for y.3, ~16!

where z52x2G, f (z)5ez(12erfAz), and a5@112z
22Az/(Ap f ) /2z@1/(Apz f)21#2. The ‘‘shape factor’’y(z)
monotonically increases from 3 to 6 as a function ofz,

y~z!5
3112z14z222~512z!Az/~Ap f !

@112z22Az/~Ap f !#2
. ~17!

As an example, let us consider the time evolution of
initial wave packet given by Eq.~4! with (y5y0 ,q5q0) in
the harmonic potentials(t)q̂2/2. The dynamics ofy can be
evaluated exactly from the elliptic integral

E
h0

h dh

Ac22VF@y~h!#
56

1

2mE
0

t

dt8
1

q2~ t8!
, ~18!

where c254m2@ḣ(0)q2(0)#21VF@y(0)# is an integration
constant. The equation of motion forq becomes
3-2
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q̈~ t !52s~ t !q~ t !1
2c22VF~y!

8m2q3~ t !
. ~19!

If the system is potential-free@s(t)50#, h(t) asymptoti-
cally approaches a fixed valueh f and q(t) asymptotically
increases with a constant velocity determined by the ene
conservation law. The allowed range, for constants(t)5s,
of q andy is also determined by the energy conservation la

VF~y!

8mq2
1

1

2
sq2<Etot5U~q0 ,y0!. ~20!

Let us now consider the effective potential for the clas
cal potential~1!. The effective potential~9! naturally deter-
mines the true ground state with the condition

]qU~q,y!505]yU~q,y!. ~21!

To see the behavior of the effective potential more clea
we variationally determiney, and then write down the effec
tive potential inq:

Ve f f~q![U„q,yv~q!…5
VF„yv~q!…

8mq2
1

l

24
@q4yv~q!

22k2~ t !q21k4~ t !#, ~22!

where yv means that we determiney by minimizing the
effective potential with the condition (l/24)q452VF8 (yv)/
mq2. In the static case thisyv value corresponds to the min
mum position of the potential for a givenq, which takes
yv(0)53 andyv(`)51. We present figures~Fig. 1! of the
effective potential~22! for two typical sets of parameters.

In these figures,Ve f f5U, VG,q , andVG,q2 represent the
effective potential~22!, the Gaussian approximated effectiv

FIG. 1. The effective potential as a function ofq for the param-
etersl50.1, k57, m51 ~a!, andl5123,k51, m51 ~b!.
02500
y

:

-

,

potential for ^q̂&, and the Gaussian approximated effecti
potential for^q̂2&, respectively. Here,VG,q can be calculated
from Eqs.~2.9! and~4.6! of Ref. @3# with a slight notational
change (q5^Q̂&) andVG,q2 from Eq. ~2.9! of Ref. @3# with

^Q̂&50 and G→q2. The effective potentialVe f f is very
close toVG,q2 for q,k/3, and it becomes close toVG,q for
q.2k/3. This clearly shows that the initial GP is divide
into a DGP, with each packet of the DGP moving as if it is
free GP for largek. The value ofyv@;11(3/lmq6)2/5 for
yv;1] is effectively 1 for the most of range ofq if k is
sufficiently large@@(lm)21/6#, since the characteristic siz
of q is O(k).

Let us explicitly describe the dynamics of an initial G
with q5q0 (!k) for the time-dependent potential~1!. Be-
cause of the transition@ask(t) increases# y eventually goes
to 1 for most of the dynamics. The potential energy diffe
encenV5Ve f f(q0 ,y51)2Ve f f(q0 ,y53).0 and the pres-
ence of kinetic energy iny preventq from reachingq0. The
time dependence ofk(t) decreases the total energy so thaq
oscillates near the true vacuum. We present, in Fig. 2
solution of the differential equation~14! and its exact nu-
merical solution for the case ofk(t) linearly increasing to a
finite value for about a half period ofq. In this example, we
do not need the patching process by the wave function~15!
since states withy.3 do not appear. To see the long-tim
behavior of the system, we present one more figure~Fig. 3!.
The main characteristic feature of the long-time behavio
the oscillation of the amplitude of short-time oscillation. Th
error of the oscillation period in Fig. 3 is about 25%. Th
error comes from the nonexactness of the variational w
function compared to the exact time evolution of the wa
function.

As another example, let us consider the quenched tra
tion potential withk(t.0)5k andk(t,0)50. The discus-

FIG. 2. Solution~left! of Eq. ~14! and exact numerical time
evolution by wave -function simulation~right! of q(t) andy(t). In
this figure, we setl50.0123,m51, q051.6, andy(0)53. k(t)
5t/3 during 0<t<15 and remains constant afterward.
FIG. 3. Solution~left! of Eq.
~14! and exact numerical time
evolution by wave-function simu-
lation ~right! of q(t) and y(t). In
this figure, we setl50.0123,m
51, q051.6, and y(0)52.906.
k(t)5t/3 during 0<t<30 and re-
mains constant afterward.
3-3
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sion above for the time-dependentk(t) transition also applies
to the present example. We present a numerical solutio
the differential equation~14! and its exact time evolution in
Fig. 4. The state with largey(.3) appears periodically. This
means that we need the patching process~15! for the time
evolution of this system. Comparing the two results in Fig
one may notice the merits and the weakness of the pre
approach for the quenched transition. The present appro
explains the periodic appearance of the large ‘‘shape fac
and well presents the period of its occurrence, but the de
of the evolution are not exact. This discrepancy is related
the ‘‘patched’’ trial wave function~4! and ~15! at y53. We
have chosen this artificial patching method because of
simplicity. A better approach may be to include the excit
states of Eq.~4! without introducing the patching~15!. One
of the excited stateŝQuc2 ,t&5(y21)21/2(Q2/q2(t)21)
3^Quc,t& is an orthonormal wave function tôQuc,t&. Be-
cause of the symmetry of the potential~1!, the odd function
of q cannot contribute to the evolution. One may try t
variational method by using the following trial wave fun
tion:

^Quc̄,t&5N̄21@^Quc,t&1z^Quc2 ,t&#, ~23!

wherez is a complex valued function of time and the no
malization factor isN̄2511uzu2. This wave function natu-
rally includes the regions withy.3 due to the contribution
of the excited state. In this sense, the appearance of a
‘‘shape factor’’ (.3) is the signal for the contribution o

FIG. 4. Solution~left! of Eq. ~14! and exact numerical time
evolution ~right! of q(t) andy(t) by wave-function simulation. In
this figure, we setl50.0123,k55, m51, q051.6, andy(0)53.
l
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excited states in the time evolution of the systems. Gener
the accuracy of the approximation~4! increases as the poten
tial varies slowly. We applied the present method to the c
of scalarf4 field theory in Ref.@9#, and it would be inter-
esting to apply more realistic quantum mechanical syste
in a second order phase transition.

Another point we need to speculate is the largeN limit. It
was shown that the largeN wave function satisfies@10#

i
]F~z,t!

]t
5F2

1

2N2

]2

]z2
1u~z,N!GF~z,t!, ~24!

where t5Nt, r 2[(k51
N xk

25Nz2, and u(z,N)5(N21)(N
23)/8N2z21(g/8)(z22z0

2)2. The present approximation fo
a symmetric state is given by

G5E dt^c,tu i ]t2
1

2N2
P22u~z,N!uc,t&. ~25!

This is the same as Eq.~3! with the change of parameter
t,Q,m,V(Q,t)→t,z,N2,u(z,N). With the use of the trial
wave function ~4! in Eq. ~25! the expectation value o
(1/2N2)P2 is given by

2yFy2
y23

Y11Gq6P2

N2
1

2q2p2

N2
2

4yq4Pp

N2
1

VF~y!

8N2
,

~26!

where the first three terms in Eq.~26! areO(1), and in the
largeN limit the quantum mechanical effects on the potent
VF /(y)8N2 effectively vanish asO(1/N2). In the absence of
this quantum mechanical term, the equation of motion in
largeN limit for the present quartic exponential approxim
tion with y51 is the same as that of the Gaussian appro
mation centered atzÞ0. Since the Gaussian approximatio
was proven to be the same as the largeN approximation@11#,
the present approximation is equivalent to the largeN ap-
proximation forN→`.
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