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Nonperturbative approach for a time-dependent quantum mechanical system
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We present a variational method which uses a quartic exponential function as a trial wave function to
describe time-dependent quantum mechanical systems. We introduce a new physical yavidiidé is
appropriate to describe the shape of a wave packet, and calculate the effective action as a function of both the
dispersion\/@ andy. The effective potential successfully describes the transition of the system from the
false vacuum to the true vacuum. The present method well describes the time evolution of the wave function
of the system for a short period for the quantum roll problem and describes the long-time evolution up to 75%
accuracy. These are shown in comparison with direct numerical computations of the wave function. We briefly
discuss the larg8l behavior of the present approximation.
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The phase transition is one of the most important physicah similar expectation value tg was calculated in Ref5] in
phenomena in nature and has a wide range of applications telation to the new inflationary scenario. To illustrate the role
condensed matter physics, particle physics, and cosmologgf the y variable, consider a wave function that is a sum of
Most studies on this subject have been done in the frameawo GPs of the same size.y= 1, the density of each GP is
work of a quasistatic transition or using the Gaussian ansata delta function or the two GPs are infinitely far away so that
developed by Jackiw and Kermh]. There have been many no correlation exists between them, which provides the lower
attemptg 2—4] to go beyond the Gaussian approximation. Itbound ofy(=1). If the two GPs completely overlap, it cor-
is our purpose in this paper to go beyond the Gaussian apesponds ty =3, a single Gaussian packet. In between these
proximation in two respects. First, we need a fully non-two states, Xy<3, the two GPs are mixed and interfere
perturbative method to link the initial Gaussian packeP,  with each other. Foy>3, there are no separable packets,
false vacuumto the symmetry broken degenerate vacuumand the wave functions are better localized than thd &P
state (true vacuum Second, we try to find the relevant  The effective action in the variational methgd is given
physical parameters which describe the symmetry breakingy
effectively.

In this paper, we consider a quantum mechanical model .
for time-dependent dynamics described by the potential FZJ di(y,tlia—H|y,b), 3

V(q,t)= %[az—kz(t)]z, (1)  whereH=p%2m+V(q,t) and we usei=1. In this paper

we use the trial wave function

where k2(2t) increases from a negative value to a positive 11

number k< asymptotically. The initial GP centered qt=0 -1 e 4 2

cannot remain as Gaussian during the time evolution, but (QlyH)=N ex;{ 2(2M2+|H>Q - Q 1

evolves to a packet centered around two minima of the po- (4

tential ask?(t) approaches?. For k>—o, the new ground

states are the linear sum or difference of two uncorrelategyhich has both the DGPx(—=) and the GPX— — =) lim-

GPs centered at each minimum. In this case, the two groungs where we assumg=0. In the static case, the double

states are degenerate. Gaussian approximation was used in H&f, where a sum
The dispersion(g?) of a wave packet may describe the of two Gaussian functions is used as a trial wave function.

size of a GP or the distance between two packets of a doubldowever, it is difficult to generalize the double Gaussian

Gaussian packéDGP). To discern the shapéfor example, method to the case for time-dependent systems. The normal-

GP or DGB of wave packets of the same dispersion weization factorN can be determined by the following integral:

introduce a dimensionless quantity which we call the

X .
—+ip
)2

“shape factor,” in addition to the dispersiom?): o 4 ox0?
Ne= | dQexp( S22 i, ©)
: (@) - 2
9A(H)=(a?), y()==55. 2
(a%) wheref(x) is given by[8]
*Email address: hckim@phya.yonsei.ac.kr f(x)=|x 1/2ex21 | (X2 +sarx) - .(x3) 1. 6
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The dispersion and the “shape factor” for this wave function

are

pf’ 1+2xff

qz(t):?, Y(t)—m- (7)

y(x) is a nonincreasing function of from 3 to 1, which

makes the inverse functiot(y) be defined uniquely. We use
y as a basic variable instead af because its range is

bounded below by =1 for any kind of wave packd®6] and

it has definite physical meaning. The expectation values of
other polynomials of&2 can be written in terms of these

parameters.
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2
s- | dt[?m%z—um,y(m]. a3

The dynamical equations of motion fqrand » are given by

d . 1| VE(y)
— 2]+ —| ——~ =

. Ve o,
mq—4—+aq(v>—mq77 .

mq’

The free potential/£(y)/8ma? has an absolute minimum

With this trial wave function the effective action is given &t (y=3, =) and is positive definite. An interesting point

by
B yg'ln . y—3]q®l?  2q%p?
F‘jdt{ 2 p—2y[y—Y+1 mm
4yq*lip
Uy, ®)

whereY(y)=2xf'/f=yf'?/(2f?)—1 and the effective po-
tential is

VE(y)
U(a.y)= 8;:2

V), 9

with the free potentiaVg given by

(3-y)(Y+1)

Ve(y)=1+ (10

This free potential, coming from the expectation anf)é),

here is thaty=3, the GP, actually corresponds xe= —o°.

On the other hand, in the effective potentiaD), y=3 is a
regular point, which can be extended to larger values. This
property of the effective potential implies that the trial wave
function (4) is insufficient to give a full description of
dependence and we need a more general trial wave function
for a complete quantum mechanical description which in-
cludes the rangg>3. The generalization of the trial func-
tion to [(Q[yt)P=N"2(1+2/Q%) *(Q|y,t)* may allow

a full description of they dependence, but is difficult to
integrate. Instead, we use a patch for the regior3,

- 1 :
(Qlty=N 1eXD{— E+IH)Q2+(—X+ID)|Q| ,

y>3, (15

where we assum&=0 and G=0. The wave function is
singular at the origiQ=0 due to thgQ| term in the expo-
nent. Hence we regard the absolute value as a smiatit

of VQ?+a?. With this trial wave function, we have the same

represents the effect of quantum mechanical uncertainty. Theffective action as Eg.(13) with D= dyal2a\a—1

expectation value of the symmetric potenNE(I(i,t)=Vo(t)
+ (12)k(t) G2+ [N (1) /41]g*+[c(t)/6!1g%+ - - - with respect
to |¢,t) is

k(t) ()

(V)=Vo(t) + Tq2+ qu4+

y—3
Y+1

6

c(t)
I

+oeee (11)

q

From the actior(8), we notice thafll andp are the momen-
tum conjugates te- yq*/2 andq?, respectively.
Let us solve thdI andp equations first:

1d y=3 |yq’ll p
— MHN— _|1_— -
Sdt'“(VQ) [1 y(1+Y)| m m’
1d yo?Il p
—_——— 2: ——
4dtlnq . (12

Removingll andp by Eg. (12) is just the Legendre trans-
formation. Introducing the new variablg by d»/dy=D

=(1/4){J(1+Y/y(3—y)), we get a quite simple effective

action in terms ofp andq,

(y>3), and

2 |z 2 |z
1+22——\ﬁ 1+—\ﬁ for y>3, (16
f Vo f Vo

where z=2x°G, f(z)=e*(1—erf\z), and a=[1+2z
—2\zI(J=t) 122[ 1/(\J7zf) — 1]. The “shape factor’y(z)
monotonically increases from 3 to 6 as a functiorzof

VF:

: 3+122+472—2(5+22)\z/ ({7 f)
Z f—
¥ [1+2z—2\z/(=f)]?

As an example, let us consider the time evolution of an
initial wave packet given by Eq4) with (y=yq,q0=qp) in
the harmonic potentiad(t)g%/2. The dynamics of can be
evaluated exactly from the elliptic integral

9 —+iftdt’—1 (19)
0 NC2=Vely(m)] ~ 2MJo g¥(t)’

where c2=4m?[ 5(0)q?(0)]2+ Ve[y(0)] is an integration
constant. The equation of motion fqrbecomes

(17
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FIG. 2. Solution(left) of Eq. (14) and exact numerical time

evolution by wave -function simulatiofright) of q(t) andy(t). In

FIG. 1. The effective potential as a function@for the param-  this figure, we set =0.0123,m=1, qo=1.6, andy(0)=3. k(t)
etersh=0.1, k=7, m=1 (a), andA=123,k=1, m=1 (b). =1/3 during O<t=<15 and remains constant afterward.

2¢?=Ve(y) potential for(fq), and the Gaussian approximated effective

. (19 "
8m2g3(t) potential for(q?), respectively. Herey 4 can be calculated
. . ) from Egs.(2.9 and(4.6) of Ref.[3] with a slight notational
If the system is pot_entlal-fre@s(t)=0], 7(t) asym_ptotl- change q=<©>) andV 2 from Eq. (2.9) of Ref. [3] with
cally approaches a fixed valug; and q(t) asymptotically N 2 h’ frocti NV
increases with a constant velocity determined by the energ )=0 andG—q". The e e_ctlve potentialeys Is very
lose toVg q2 for g<<k/3, and it becomes close ¥y 4 for

conservation law. The allowed range, for constsft) =s, : o =
of q andy is also determined by the energy conservation Iawiq>2k/3' This clearly shows that the initial GP is divided

into a DGP, with each packet of the DGP moving as if it is a

q(t)=—s(t)q(t)+

Ve(y) 1 free GP for largek. The value ofy,[ ~1+(3/Amd®)?® for

—+ Esq2$ Eior=U(dp,Yo)- (200  y,~1] is effectively 1 for the most of range df if k is

8ma? sufficiently large[>(Am) 6], since the characteristic size
of qis O(k).

Let us now consider the effective potential for the classi-
cal potential(1). The effective potentia(9) naturally deter-
mines the true ground state with the condition

Let us explicitly describe the dynamics of an initial GP
with g=q, (<«) for the time-dependent potentiél). Be-
cause of the transitiofask(t) increasepy eventually goes

dqu(a,y)=0=4,U(q,y). (21)  to 1 for most of the dynamics. The potential energy differ-
enceAV=V¢(qo,y=1)—Ve:1(qo,y=3)>0 and the pres-
To see the behavior of the effective potential more clearlyence of kinetic energy ig preventg from reachinggg. The
we variationally determing, and then write down the effec- time dependence df(t) decreases the total energy so that
tive potential ing: oscillates near the true vacuum. We present, in Fig. 2, a
solution of the differential equatiofil4) and its exact nu-

Ve(y,(q)) merical solution for the case &f(t) linearly increasing to a

Ver(@)=U(a.y,(9))= 8maf + 2—4[q4yv(q) finite value for about a half period a@f In this example, we
do not need the patching process by the wave fundti&n
—2k2(1)g%+ k*(t)], (22)  since states witly>3 do not appear. To see the long-time

behavior of the system, we present one more figgig. 3.
where y, means that we determing by minimizing the = The main characteristic feature of the long-time behavior is
effective potential with the condition\(24)q*=—V[(y,)/  the oscillation of the amplitude of short-time oscillation. The
ma?. In the static case thig, value corresponds to the mini- error of the oscillation period in Fig. 3 is about 25%. This
mum position of the potential for a giveq, which takes error comes from the nonexactness of the variational wave
y,(0)=3 andy,(»)=1. We present figureg-ig. 1) of the  function compared to the exact time evolution of the wave
effective potential22) for two typical sets of parameters.  function.

In these figuresYq=U, Vg 4, andVg 42 represent the As another example, let us consider the quenched transi-
effective potential22), the Gaussian approximated effective tion potential withk(t>0)= x andk(t<0)=0. The discus-

iR T FIG. 3. Solution(left) of Eq.
. . (14 and exact numerical time

evolution by wave-function simu-
s s lation (right) of q(t) andy(t). In

this figure, we set\=0.0123,m

=1,00=1.6, and y(0)=2.906.

z I k(t)=t/3 during 0<t<30 and re-
f mains constant afterward.
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excited states in the time evolution of the systems. Generally,
the accuracy of the approximatidf) increases as the poten-
tial varies slowly. We applied the present method to the case
of scalar¢* field theory in Ref[9], and it would be inter-
Y - esting to apply more realistic quantum mechanical systems
0 20 40 60 0 20 40 &0 in a second order phase transition.

£ £ Another point we need to speculate is the lakgkmit. It
was shown that the largd wave function satisfiegL0]

N W s O

N W 0o

FIG. 4. Solution(left) of Eq. (14) and exact numerical time
evolution (right) of g(t) andy(t) by wave-function simulation. In 0d(z,7)
this figure, we seh=0.0123,x=5, m=1, qy=1.6, andy(0)=3. IT

(72

——— —+u(zN

2N? gz (21
sion above for the time-dependé(t) transition also applies \ynere r=Nt rZEEE—l)(E:NZZ and u(z,N)=(N—1)(N
to the present example. We present a numerical solution of 3)/8N222+(g/8)(22_—22)2 The present approximation for
the differential equatioril4) and its exact time evolution in a symmetric state is givoen.by
Fig. 4. The state with large(>3) appears periodically. This
means that we need the patching procd$s for the time 1
evolution of this system. Comparing the two results in Fig. 4, I'= f dr(¢,7lid,— —ZHZ—U(Z,N)|1,Z/, 7). (29
one may notice the merits and the weakness of the present 2N

approach for the quenched transition. The present approacllc}1iS is the same as E@3) with the change of parameters
explains the periodic appearance of the large “shape factorl[ Q,m,V(Q,t)—7,z,N2,u(z,N). With the use of the trial

and well presents the period of its occurrence, but the detaikﬁ/ave function (4) in Eq. (25) the expectation value of
of the evolution are not exact. This discrepancy is related tc(l/ZNz)Hz is given by '

the “patched” trial wave function4) and(15) aty=3. We
have chosen this artificial patching method because of its y—3]g°M12 2g%p?2 4yq’llp Ve(y)
simplicity. A better approach may be to include the excited Zy[y— Yril e T r 7
states of Eq(4) without introducing the patchin¢l5). One N N N 8N
of the excited state€Q|ys,t)=(y—1) Y3 Q2/q¥(t)—1) (26)
X(Qly,t) is an orthonormal wave function (®|¢,t). Be-  where the first three terms in E(26) areO(1), and in the
cause of the symmetry of the potentia), the odd function  |argeN limit the quantum mechanical effects on the potential
of g cannot contribute to the evolution. One may try theVF/(y)gNZ effectively vanish a©(1/N?). In the absence of
variational method by using the following trial wave func- this quantum mechanical term, the equation of motion in the
tion: large N limit for the present quartic exponential approxima-
- tion with y=1 is the same as that of the Gaussian approxi-
(Qlr,ty=N"'(Ql ¢, t) +Z(Ql w2, 1)], (23)  mation centered at#0. Since the Gaussian approximation
. ) ) was proven to be the same as the laxggpproximatior 11],
wherez is a compki( valued function of time and the nor- the present approximation is equivalent to the lakyap-
malization factor isN?=1+]z|2. This wave function natu- proximation forN—o.
rally includes the regions witlg>3 due to the contribution This work was supported in part by the Korea Research
of the excited state. In this sense, the appearance of a larg@undation under Project No. KRF-2001-005-D2003-
“shape factor” (>3) is the signal for the contribution of C.K. and J.H.Y.

D(z,7), (29
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