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This is the fourth paper in a series devoted to a systematic study of the problem of a mathematically correct
formulation of the rules needed to manage an effective field theory. Here we consider the problem of con-
structing the full set of essential parameters in the case of the most general effective scattering theory contain-
ing no massless particles with spih>1/2. We perform a detailed classification of combinations of the
Hamiltonian coupling constants and select those which appear in the expressions for renorSiaiezei
elements at a given loop order.
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[. INTRODUCTION several fundamental concepts that were earlier discussed in
the literature. To make the reading easier it would be useful
At first glance, the concept of an effective field theory if the reader recalls first the contents of the following issues.
(first formulated in[1]) looks too general to be of practical ~ The concept of quasiparticles in nonrelativistic scattering
use in computing the characteristics of hadron scattering praProblem: seg9].
cesses. In all the known cases of its app”catﬂsee, e.g., The general scheme of COﬂStI’UCting the intrinsically quan-
[1-3]), the authors, in fact, mostly rely on the philosophy tum relativistic scattering theory, canonical formalism, essen-
rather than on a certain computational scheme accounting féiel and redundant parameters, the notion of asymptotic
specific features of effective theories. The point is that such &afety: se¢4] and Chaps. 2—7 in the monografit0].
scheme has not yet been developed, and many questions still The notion of generalized renormalizability, the effective
require answers. At the same time, the importance of théheory concept: sefd,3], and Chap. 12.3 i10].
subject is beyond question because, if constructed, such a The problem of canonical quantization of theories with
scheme could provide us with a tool allowing us to managdoo many field derivatives: sdé1,12.
the conventionally nonrenormalizable theorisse[4]). Unstable particles and unitarity: sEE3|.
In our previous publication§{5—8]) it was shown that, The general philosophy and methods of constructing rea-
under certain conditions, it is possible to derive quite reasonsonable perturbation serigfg:4].
able results already from the analysis of the lowest order Besides, it is implied that the reader is familiar with the
amplitudes computed with the help of the most general efmethod of Cauchy forms allowing to present the polynomi-
fective Hamiltonian constructed from local fields describing@lly bounded meromorphic function in the form of uniformly
free particles with arbitrary spins and masses. In those paonverging series of pole contributions. The case of one vari-
pers, however, many important issues concerning the detaifPle is described in, e.d15,16. The generalization for sev-
of our approach have not been explained. In particular, th€ral variables is discussed [6,8]. The main line of our
solution to the problem of parametrization of scattering am-2approach is brieflyperhaps, too brieflydiscussed ir8].
plitudes was declared without proof. In this paper we discuss
this is;ue .in detail. We introduce the nofcio.n of minimal pa- Il PRELIMINARIES
rametrization and show that the set of minimal parameters is
quite sufficient for fixing the analytic form of an arbitrary  First of all we need to specify the precise meaning of the
complex graph. Moreover, it happens to be possible to singléerm effective theorylt is often understood as just a theory
out those combinations of minimal parameters which arelescribing physics below some scale(see, e.g.[3]). In
needed to fix the form of the amplitude of a given process afact, this definition tacitly implies that the corresponding per-
arbitrary high loop order. The latter combinations are calledurbation series loses its meaning at enegy A where a
the resultant parameters. At last, we briefly discuss the prolkind of new physics comes into play. We would like to stress
lem of ordering of infinite sums of graphs describing the treethat we consider here just an opposite case. It is assumed that
level amplitudes of binary processghis can be generalized the discussed below general effective theory does not contain
for more involved casgsand outline a way to construct the any kind of a latent inner cutoff. Owing to this, we use the
essential parameters—the only ones which require formulaterm effective theory in its original meaning defined[I4.
ing the renormalization prescriptions. Namely, we call a theory as effective if the corresponding
This paper should not be considered self-contained. Thquantum Hamiltonian (in the interaction picture) takes a
reason is that it happened to be necessary to tie togethéwrm of the formal infinite series containing all the local
terms consistent with a given symmetry requirements
In this paper we are interested in consideration of the
*Email address: alexand@fi.uib.no general features of effective theories. Because of this reason
"Email address: vwwv@av2467.spb.edu we do not imply the presence of any other symmetry but
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Lorentz invariance. The problem of accounting for the re-paper we will have to say more about this scenario. For the
quirements of dynamicalnonlineaj symmetries is briefly present we just shut our eyes to the existence of the problem
discussed below. of interpretation and consider in this paper the most general
It is necessary to stress here that the given above defineffective Hamiltonians constructed from the infinite set of
tion is only meaningful if the quantum interaction Hamil- fields corresponding to free particles with arbitrary spins and
tonian can be constructed by hands without any referring tanasses.
the corresponding classical Lagrangian. This means that the Another problem connected with Weinberg’s scheme is
canonical quantization scherieased on the Lagrangipn that of nonlinearly realizeddynamical symmetries' It is
cannot be considered as the basis for constructing the quaaxtremely difficult(if ever possiblg to formulate the condi-
tum effective theory because the most general form of clastions providing a guarantee of the desired dynamical symme-
sical Lagrangian must contain the terms with arbitrary hightry properties of amplitudes resulting from the effective
powers(and ordersof the time derivatives; in such a situa- quantum Hamiltonian written in the interaction picture.
tion the canonical quantization looks impracticable. Becaus&urely, this difficulty is explained by the fact that neither free
of this reason we rely upon the alternative—intrinsically nor interaction Hamiltonian by itself commutes with the dy-
guantum—scheme of constructing an effective theory. In thimamical symmetry generators. The solutian least, partial
scheme, developed by Weinberg in the series of pd&ls  to this problem can be obtained from the result{ Bf In
the structure of the Fock space of asymptotic states is postahat paper it is shown that, leaning upon the canonical quan-
lated, and field operators are constructed in accordance wittization scheme and using the minimal invariant Lagrangian
symmetry properties of those states. The Hamiltonian is als@hat containing the minimal number of field derivatives re-
postulated as the interaction picture operator only dependinguired by symmetry it is possible to calculate the lowest
on those fields and their derivatives. TBanatrix elements order terms in series expansi¢im small momentaof the
are computed with the help of Dyson’s formula amplitude describing a process with Goldstone bosons. This
means that the dynamical symmetry requirements can be
i ) formulated—at least, in lowest orders—directly in terms of
Sfi:<f|TWeXp[ _'j Hintdx} ), (1) amplitudes; one has no necessity in formulating them on the
Hamiltonian levef In turn, this means that, in order to ac-
where the symbolT,, stands for Wick's T-produczt.The count for the dynamical symmetry requirements in the
noncovariant terms in the Hamiltonian and in propagatorér":lmewOrk of effective theory,.one needs to compute ampli-
(see [10] and the Refs. quoted therginshould be tudes of the processes involving qudstone bosons anq then
neglected—in the case of effective theory this does not inSoMPare the regults with 'those obtamgd from the canonically
troduce any uncertainty because, by construction, the Hami uantlzed invariant classical Lagrangian of the Iov_vest order.
tonian containgll the terms consistent with Lorentz symme- h|s_ve_ry approach has begn used3hand]6] to derive the
try. This means that the total effect of noncovariant termd estrictions imposed by Chiral S¥ SU, symmetry on the
might, at most, result in a renormalization of some couplingStrUCt.ure of meson resonance spectrur'n..The'answer to the
constants. question on how to write down the restrictions imposed by a
Thus we see that Weinberg’s scheme happens well suite rtain k'n_d of dyf‘am'ca' symmetry on the higher orde_r am-
for constructing the effective field theory Hamiltonian. How- P [tude_s still remains unclear. In this paper we do not discuss
ever, there is one problem revealing itself when this schemg]IS point. .
is used to describe the hadron dynamics. The point is that in On'e hote is in order. In vyhat f(.)IIOWS We assume Fhat the
this scheme the Hamiltonian contains those and only thos‘éffect've _theory ur_1der con_s|derat|on (_10_es_not contam_mass-
field operators which correspond to the states of stable paP—ess part.|c|es of higher spid>>1/2. This is just a technical .
ticles. Weinberg’s scheme is adapted to describe the scatte@SSumption, but at the moment we do not know how to avoid
ing processes with true stable particles solely in terms of thd"
corresponding creation and annihilation operators; the pos-

sibility to d_escribe the physics of resonances in the frgme— IIl. CLASSIFICATION OF THE PARAMETERS
work of this scheme looks questionabkortunately, this
problem is quite solvable. The results obtained1B] show The effective Hamiltonian contains all the types of local

that, in the case when the Hamiltonian contains the fields oferms consistent with Lorentz symmetry. For example, along
unstable particled the formal constructiorfl) remains ap- Wwith the simple interaction tern®, it contains also the
plicable. In this case it defines tt&@matrix as the unitary terms of the form ¢2¢9#¢¢9ﬂ¢, ¢>2¢9W¢¢9W¢,
operator on the space of stable particle states. The fields @¥d,¢d,$d*" ¢, ¢°, and so on. This means that many
unstable particles do not create true asymptotic states; thdyamiltonian coupling constants contribute to the same kine-
can be treated as the fields describing resonances. In our nexatical structure in the amplitude of a given procéssy, to

the term~s? in the tree-level amplitude of the process 2

See also Chaps. 2-5 of the monograpé.

2It is explicitly covariant—see, e.g[12]. “In the case of lineafalgebrai¢ symmetry there is no problem at
3Those with masses large enough to make it possible for the decal.
into lighter particles. 5An example is provided by famous Low’s theorems in QED.
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FIG. 1. Examples of 1- and
, , , , , 2-loop order vertices.

—2). Hence, to perform the renormalization program, onepling constants needed to fix the kinematical structure of all
needs first to solve the problem of classification of couplingghe renormalizedN-loop Green functions of a given effective

in order to avoid attracting unnecességgpendentcounter-  theory we call as just thaith level parameters. We separate
term vertices. Another reason, explaining why the solution tahem into two groups. The first group only contains those
this problem of couplingsnight be extremely useful, is the combinations of the parameters which do not appear in the
following. As known (see, e.9.[10,18), the most difficult  expressions for renormalize8matrix elements. We call
problem connected vyith renormalization of effectiyt_a theorieshese combinations as thedundant parameters of the Nth
(which are renormalizable by the very construcian the  |eye| Al the other independent combinations we collect in

necessity to formulate an infinite number of renormalization,o second group and call them as theultant parameters
prescriptions needed to fix the finite parts of counterterms

This looks i ticabl il find larity eff of the Nth level The termessentialis reserved for those
IS l00KS 1mpracticablé until oné 1inds a regularity elec- ., \hinaiions of resultant parameters which appear in the
tively reducing the number of independent prescriptions. |

seems quite natural to look for the mathematical expression ell-definedconverging series presenting the amplitudes of

of such a regularity in terms dhdependenparameters ap- a g_ll_\;]en I_oo'p|> ordler 'T}Fetr.ta'” km?matlfal ?orr:ﬁms. i
pearing in a theory. e similar classification applies also for the parameters

In as much as we are only interested in describing thé@PP€aring in the expression fppintlike vertex of the Nth

scattering processést looks reasonable to work in terms of '00P order that, containing self-closed lines—bubbles or/and
the parameters appearingdmatrix elements. Those param- tadpoles—whlc_h, in turn, may have complex mul_tlloop inner
eters are the functions of Hamiltonian coupling constantsStructure(see Fig. 1, the total number of loops beirld. The
Clearly, the Green functions of a theory depend on the sam@resence of an arbitrary number of such bubltegand tad-
parameters as ti&matrix elements do; but, in addition, they Poles does not change analytic structure of the veftatx,
may depend on the orthogonal combinations only contributonly may change the numerical coefficients in the corre-
ing off the mass shell. Hence it makes sense to classify theponding polynomialsseries.

parameters asssentiakndredundantones(see Chap. 7.7 of ~ Sometimes, it is convenient to classify in the same way
Ref. [10]). We follow the general line of this classification the parameters appearing in the Hamiltonian. In this case we
but we find it necessary to make more precise definitions ofis€ the term Hamiltonian level parameteegfective, mini-
the terms. mal, nonminimal.

First, we work with the quantum Hamiltonian in the in-  Clearly, the full set of the parameters needed to describe
teraction picture. In contrast, the definitions[i0] refer to  the amplitude of a given procesat a given order of loop
the Lagrangian coupling constants. As we have alread@xpansionis exhausted by the power series expansion coef-
noted, in the case of effective theory the simple connectiofiicients around an arbitrary nonsingular point in the space of
between the canonical Lagrangian and quantum Hamiltoniagorresponding kinematical variables. The problem is that the
approaches is lost and there is no real possibility to expredslll collection of such sets necessarily contains dependent
the Hamiltonian parameters in terms of the Lagrangian onefarameters because general principlesusality, crossing,
Second, in contrast witlil0], we classify the parameters etc) impose certain limitations on its structure. This is the
appearing in the expressions fomatrix elements of a gi\/en reason Why we work with pointlike vertices of different |00p
loop order, not only those in the Hamiltonian. The reason fororders and classify the coefficients appearing in correspond-
elaborating the more detailed classification of the effectivdng analytical expressions.
theory parameters is that the form of dependence of matrix For the fO||OWing it is also useful to introduce the notion
elements on the Hamiltonian coupling constants depends ¢ theeffective vertextet us consider a formal sum of all the
the loop order in question. Hence it looks quite natural toHamiltonian monomials constructed from a given setnof
elaborate a classification of parameters appearing in amplfields and differing from one another by the total number
tudes of effective theory at a given order of loop expansionand/or positions of differential operatorg, (for example,

As shown below, it happens possible to point out the set oft’d, ¢3¢, $?d,,, " ¢, ¢d, d, " ¢, . ..). Each one
independeﬁt parameters(combinations of coupling con- of these monomials corresponds to an individual vertex
stant$ quite sufficient to describe all th&matrix elements ~ (polynomial in kinematical variablgsn the system of Feyn-
of a given order. man rules. It happens convenient to consider the infinite sum
Because of all these reasons we use the following definiof all such vertices. It takes a form of infinite formal series in
tions. The independent combinations of Hamiltonian coufowers of variables. We call this series as the effective vertex
of the Hamiltonian order. The Hamiltonian can be rewritten
in the form of an infinite sum of effective vertices, the single
®In other words, we are interested in constructing éfective  items differing from one another by the number or/and by
scattering theory
’As long as coupling constants in the effective Hamiltonian are
considered independent. 8t is just a polynomial or power series in kinematical variables.
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guantum numbers of field operators. Hence, the full sum ofreparametrizationof the initial Dyson series. Below we de-
Feynman graphgof a given loop orderdescribing the am- scribe a special kind of parametrization which serves this
plitude of a given process can be always presented as a syparpose.
of graphs written in terms of effective vertices of the Hamil-  We imply tacitly that there exists a regularization consis-
tonian order. In what follows we imply tacitly that this is tent with all the desired symmetries. This suggestion looks
done. The problem of convergence of formal infinite sumsharmless if the Euclidean version of a theory is considered.
will be discussed in Sec. VI. However, if one works in Minkowski spac@s we dg, it

The notion of the effective vertex dfith loop order is seems much less trivial. Nevertheless, we believe that it is
introduced in much the same way—this point is consideredrue.
in more detail in Sec. IV. The coefficients appearing in cor- This classification happens especially convenient when
responding series we call as thih level effective param- one is only interested in computing the renormalized
eters Smatrix elements in the effective theory framework. As far

By construction, the effective theory Hamiltonian con- as we know, the special role of essential parameters has been
tains an infinite number of coupling constants, only a part ofirst stressed if4].
them (or, better, their combinatiopgontributing toS-matrix The logical line of subsequent consideration is the follow-
elements. We do not need to compute all the Green functionsig. We start from the basic effective Hamiltonian written in
of a theory because we are only interested in the amplitudeterms of the physical masses and physical couptthgsus
of various scattering processes. This means that for our pucounterterms Next, we note that some combinations@f
pose it is quite sufficient to consider theories only renormal<{their forms depend on the loop order in questioartainly
izable in the sector of essential parameters. The divergencesntribute to measurable quantities and thus could be consid-
in Green functions unrelated ®matrix elementdwill never  ered, at least, as building blocks for essential parameters.
bother us. Then we prove that it is always possible to rewrite the ex-

Thus we need to select the set of essential parametergression for arbitrary graph of a given loop order in such a
This cannot be done through just a classification of couplingvay that the renormalize&matrix only depends on those
constants appearing in the Hamiltonian. The reason is thalatter combinations called below asinimal parameters
except for a few trivial cases, both essential and redundarfturther, we show that the full sum of graphs of the same loop
parameters are very complicated functions of the Hamil-order can be rewritten in a form quite similar to that con-
tonian coupling constants; . Suppose for a moment that all structed on the previous step for an individual graph with a
such functions are constructed and classified as essentitixed set of internal lines. The parameters appearing on this

(Ej, i=1,2,...) andredundant R;, i=1,2,...) param- stage are called theesultant parametersAt last, we direct
eters. This would provide us with an infinite system of alge-the way allowing to construct all the essential parameters as
braic equations of the form certain infinite sums of the resultant ones. This result shows
that, when dealing with effective scattering theory, it is al-
Ei=Ei(G1,...), R=Ri(Gy,...) (i,j=12,..)). ways possible(at least, in principle to make use of the

2 scheme of renormalized perturbation theory only appropriate
in the sector of essential parameters.
Resolving this system with respect @& , one obtains

G=G(Eq, ... Ry ...) (i=12,..). 3) IV. MINIMAL PARAMETERS

The immediate task we are going to solve is to prove the
Hence, when dealing witB-matrix elements, one can assign following statementThe full set of the essential parameters
to R, whatever values are convenient for computations. Irof effective theory is constructed solely from those combina-
particular, there is no necessity in formulating the renormaltions of the Hamiltonian coupling constants (including
ization prescriptions fixing the finite parts of redundant coun-masses) which are needed to fix the independent on-shell
terterms. In turn, this is especially useful if we are interesteq(inematic structures appearing in the expressions for effec-
in finding a regularity allowing to put in order the infinite tive vertices (of different orders) multiplied by the relevant
system of normalization prescriptions needed to computgvave functionsin fact, this statement is almost trivial but its
amplitudes of various scattering processes in the frameworfrecise meaning deserves comments. This section is devoted

of effective theory. _ ~ to the preliminary consideration needed for better under-
Thus we see that it would be extremely useful if we find astanding of the proof given in Sec. V.
way to write down the explicit form of the relatiorig). We The proof consists of two steps. First, we show that all

do not know how to solve this problem in general. Instead,
one can try to find gerturbativesolution providing the re-

quired relations at every fixed order of loop expansion. To 19yhen speaking about the mass of unstable particle, it is more
realize this idea, one needs to perform certain reconstructioghpropriate to use the term renormalized. In fact, this implies using
the renormalized perturbation theory with the conventional OMS
(on-mass-shellnormalization conditiongsee, e.g.[18-22). The
%An excellent example of such divergences is provided by thequotation marks are used to stress that only certain combinations of
Standard Electroweak Model in the unitary gauge. the Hamiltonian parameters present measurable quantities.
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invariant scalar structurg$orm factorg, describing a given the corresponding scalar form factdfermal power series in
vertex in arbitraryS-matrix graph, can be reduced to a sim- invariant kinematical variables

pler form (called minimal. Second, we show that it is al- It is pertinent to remind that the expressi@h is equally
ways possible to reduce the full set of tensor structure@pplicable in the case if we consider the pointlike vertex of
needed to fix the form of this vertex to a subset only contheLth order. In accordance with the definition given in Sec.
taining a part of thentalso called minimal The correspond- !, the corresponding coefficients of formal power series for
ing procedure—called below as the graph reduction—Fa are called as theth level parameters. -
eliminates certain part of the parameters which we call as Further, choose a set of independent scalar varidties
nonminimal. When applied to a given graph, it results in the'0tal number is 4—10) as follows:

sum of two items. The first one is just the initial graph writ- [0y oo i1« Van-10)- (5)
ten in terms of new—minimal—verticesf different orders
completely described by the relevant minimal parameterstiere
The second item does not contribute to the renormalized m=p2—m?
1 Mi 17

Smatrix under the condition that the normalization point is

taken on mass shell. and v, stand for the restarbitrarily chooset) independent
We would like to note that the reduction procedure is onlylinear combinations of scalar products

needed to prove the completeness of the full set of minimal

parameters. We do not imply its using in practical calcula-

tions, which can be started already in terms of minimal pa-

n

er_Zl si(pi-py),  (r=1,....51-10) (6

rameters. ' . N
It is a point here to stress the difference between twonith numerical coefficientsy;.
terms often used throughout the paper. The temsshell It is always possible to rewrit€, as follows:

graphmeans that the graph in questi@ay, pointlike vertex

is computed at all external momenta on the mass shell. The
term S-matrix graph(or, the sameamplitude graph means =Fas(m, .m0/ 1y o T VL, - V30 10)

that the on-shell graph is dotted by the relevant wave func-

tions. The difference between the corresponding expressions tamiPal. ).

manifests itself in the case when particles with spi0 are  Thys the vertex under consideration takes a form of a sum of
considered. two items:

Now we need to explain the precise meaning of the term
minimal (minimal vertex, minimal propagatprThe reason
why we use one more special term in addition to those de-
fined abovdessential, redundayis explained by the follow- .
ing circumstance. The difference between the essential anbhe scalar functions,) appearing in the first term are called
redundant parameters manifests itself when one considers thainimal with respect to theth line. They do not change their
structure of the amplitude of a given scattering process. Thiform when this line is put on its mass shell. The second—
amplitude results from contributions of many different "ONMinimal—term vanishes in this case. o
Smatrix graphs of a given loop order. Thus the essential Ve call the propagator as minimal if its numerator is just
parameters of a given level happen constructed from th spin sum written in a covariant form and considered as a

Hamiltonian coupling constants describing the vertices wit urgcgogt%fr ??f;;gﬂfggqﬂin;‘yr?ﬁﬁlﬁ% J h?]onrfnorréntgnﬁg]ls
different numbers of field operators. This language is noi pag : Nl y P X

Fa(’ﬂ'l, e T Ve, e :V3n—10)

V.o (pr, )= TAFD+mP]. (D)

) . ) 2 n what follows we imply using the minimal propagators.
;wtable for discussing the pfOb"?mS of renprmghzaﬂon. _Tha his does not reduce t?]g gene%ality of our anglygisgbecause
is why we need the more detailed classification of various,

combinations of the Hamiltonian coupling constants appear- onpole terms result in precisely the same effect as that
o : piing PPeAtaused by nonminimal parameters. This will become more
ing in the process of calculation of a given graph.

clear after reading the next section. Besides, as shosl|in

i sc(:aznig?\:j ?gr T_fgergtr;\tlze ingfzi)g\}i'th(pnl ’Iihé.s,e:rgrr(tir:\e ﬁl{e and [6], in practical calculations in the framework of the
P . ying Cauchy form techniques one only needs to know the residues
momenta pq,p,, .. .,p,) only restricted by the conserva-

. . ! . ) . of propagators.
tion law. As explained in the preceding section, this vertex Next, let us consider the tensor structuﬂ'é_%_)l oceurring

corresponds to an infinite sum of monomials in the Hamil-.n (4). They may contain the factors/(matrices, tenso
tonian. Each monomial is constructed from fields and theif : y may ¥ ' Suv

derivatives, the total number of field operators bemd@he

explicit expression for this vertex reads
P P The problem of appropriate choice of those variables will be

M+N discussed in more detail in a separate publication.
V. (py,....pp= z T(_é)_ Fa, (4) 12|'F is this ppint whe_re our sugggstion on the absence of massle§s
a=1 particles of higher spin becomes important. Note also, that the defi-

@ ) nition of the minimal propagator given above is not quite exact,
whereT'® stand for whatever independent tensor structureshough sufficient for current consideration; we will discuss it in

neededtheir total number is denoted &+ N) andF ,—for subsequent papers.
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ande,g,s, momentump) resulting in constants when the respect to one of the linggensor structure¥ Inside a graph
line in question is put on the mass shell and dotted by theuch terms work as pole killers. This very property provides
corresponding wave function. We call such factors as nona basis for the statement formulated in the beginning of this
minimal (with respect to a given line For example, if the section.

line under consideration corresponds to a vector particle The instructive example where the difference between
(with momentunp;), every tensor structure containipg is  minimal and nonminimal element&ertices and propaga-

classified as nonminimal. tors manifests itself explicitly(and happens importants
The full set of independent tensor structufé® can be  provided by the conventionally used propagator and interac-
separated into two groups as follows: tion Hamiltonian of the spin-3/2 Rarita—Schwinger field
, : , . (see, e.g.[23] and[24] and references therginThis field
Mi i) . (1 Ni, . ) .
T@ =1, ™MD R RN (g corresponds, in particular, to the well established resonance
i A(1232) playing an important role in low energy pion-
Here, the first group nucleon processes. Because of this reason this field is often
70D (k=1, . .. M, 1=i=n) ) used in various Lagranglan_models. The proble_m appears
when different authors use different forms of the interaction
does not contain any nonminimékith respect taith line) €M and((_)r)_propagatg%r, this difference sometimes leading
structures, while the second one to contradlctlve. result_ > The mqst popular forms of those
elements used in the literature differ from one another by the
RED  (k=1,... N;; 1<i=n) (100  terms resulting in a pole killer. This difference produces an

additional (smooth contribution to the amplitude which, in
consists of all such structures. The structures from the firsturn, changes the results of data fitting. This is just an artifact
group are called minimalvith respect to the given lineThe  of Rarita—Schwinger formalisif. Surely, the pole term is
meaning of this separation is explained by the fact that, whefhe same in both cases, the residue being just a spin sum. The

dotted by the relevant propagator or wave function, the nonso.called off-shell couplings turn out to be redundésee
minimal structures result in the same terms as the minimgla3) and[26)).

ones or/and in terms proportional g . In other words, the

effect of nonminimal tensor structures is quite similar to that

of nonminimal parameters appearing in scalar form factors.
By way of illustration, let us consider the case of non-

minimal structure containing the factpr, corresponding to T h ¢ lated in the beginni fth
a vector particlgwith 4-momentunp). If the line in ques- 0 prove the statement formulated In the beginning of the

tion is external, this structure does not contribut&imatrix ~ Preceding section, it is sufficient to show tret arbitrary
due to the transversality of the vector particle wave functionS-Matrix graph can be rewritten in the form only constructed

vector particle propagator. The resulting expression does nathich do not contribute to the renormalized S-matrix

V. THE PROOF OF THE STATEMENT

contain a pole: The proof is straightforward. Consider an arbitrary com-
plex graph’ (amputated Green functiprronstructed in ac-
—g#,+php, /M2 1 cordance with Feynman rules derived from the effective
“ > > =— Py theory Hamiltonian'® Further, consider the inner lirgcon-
p*=M M necting the vertices V{* ' (py,....pPn,q) and

. o - Vo' (Ky, ... Km,Q) (see Fig. 2 We do not make any sug-
This means that inside a graph the nonminimal StrUCtur%estions about the other lines: a part of them may be taken

pla%f)tee1 r?ﬁlilto;gr?:ﬁirfi%e;i structures never survive as inde xternal while the rest may be taken internal.
! First, let us consider the case when this line is the only

pendent ltems in the expressions fqr scattering amp_lltudes.one connecting the vertices in question and the propagator
The vertex is called as minimal if it is minimal with re- : -
o . . contains nonminimal terms
spect to all its lines and the corresponding expression does
not contain any nonminimal tensor structures. The algebraic__

form of Lorentz invariant expression for minimal vertex does . . . .
P YThis is also true with respect to the vertices containing self-

nOttﬁhange Its r?pre_az’)an.CS IVhen the momenta are ConSIdercqgsed lines(bubbles or tadpol@sAs explained in Sec. Ill, we
on the mass sheir; = (i= e n). . classify such vertices as pointlike.
The explicit form of the minimal vertex differs from that —1s-"iha references and discussion see £26], and [ 26]
P . . 2 2 i) ) .
of nonminimal one by the items proportional tp{-m;) 18This would not occur if Weinberg’s formalisfi 7] for the spin-

or/and by those proportional to nonminim@t least, with 3 field were used.
Y"Regularization is tacitly implied.
8t is important that we consider a graph constructed from a fixed
13The numberav; andN; depend on spin of the line in question; set of effective vertices of the Hamiltonian order; no summation
the total numbeM; + N; of tensor structures only depends on the over the different types of inner lines as well as over different types
vertex type. of the effective vertices is implied on this stage.
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P k1
. 7 . = M . . FIG. 2. Line reduction procedure.

Pn km

properly symmetrized with respect to the lines under consid-

1 eration. Clearly, this difficulty would never appear if—in
P (g)= I () +(q?—m>) & (q) | | e Y PP
g2 place of single graph—we consider the symmetric sum of all
nonminimal terms its topological copies. Below we imply that this is the case.

o _ o This means that the effect of nonminimal terms results in a
Here ¢ "(q) is some nonsingular tensor abtl "(q) is just  symmetric sum of corresponding quasivertices. We call this
a spin sum written in a covariant form and understood as a;m thesecondary vertex of order zefor, the same, tree
function of fourindependeneomponents of momentum. Be- qqer secondary vertexRecall, that we are dealing with an
sides, let us write down the vertices in the fof explicitly  efective theory, hence all possible vertices are already in-

showing the presence of nonminimal terms in scalar formy,qeq Thus our proceduttater on we call it the reduction

factors: of a given ling only leads to a renormalization of the param-
eters fixing the form of the Hamiltonian order effective ver-
Vis(.o @)= T® [FL%+ (g2—m?)PLY tex with (n+m) lines.
a The case when there are two lineg @ndqg,) connecting
the vertices under consideration can be analyzed precisely in

(in what follows we omit tensor indices L S
It is easy to understand that nonminimal terms just Kkill thethe same way as above. The result is illustrated in Figog

denominator of the propagator and thus result in a new quas_lmspllc.lty,hherevl a;'d Vzdare. takefnbto r?? fOUI’-Ver:.‘IC)?S
sivertex with @+m) lines (pg, ...pn.Ke, ... ko). In 0, in this case the reduction of both lines results in a sum

other words, one can represefmewrite) the graph in the ©f two kinds of graphssee Fig. 3

following way [below &(- - -) denotes the momentum con- (1) The same graph as the initial one but with two crossed
servation delta function needed for each veftex (minimal) lines in place of two original ones.

(2) Three graphs with pointlike vertices dotted by the factors

stemming from crossed or uncrossed self-closed lines
f dq o() 80 )ViPVy and from the effect of pole killerS. Purely for the sake
of uniformity, one can further rewrite the graph with
:j dg 5(...)5(...)< > T(“)Fi> uncrossed bubble as a sum of two items: the same graph
a as the initial one but with the crossed bubble in place of

I uncrossed one plus the reminder caused by the effect of
(9) (E T””Fﬁ) relevant pole killers. We would like to stress that each

g*—m*\ % one of these pointlike graphs should be considered as the
1-loop order graph whether or not the bubble is drawn
licitly (see the last of graphs shown in Fig. 3
+...5( — ki)fd 5( — ) , explicitly (Se . _
E b E i E bi—4 Proceeding in the same way one can realize that, in the
new vertex case when there atdines connecting/, andV,, the reduc-

tion procedure creates the same two vertices Wwitfinimal
where ellipses before the integral stand for the rest part of thines in place of the original ones. Besides, it creates a set of
graph. Besides, the minimal elements\6f and V, trans-  vertices with more(also minima) external lines and<|
form the lineq into a new onéminimal, labeled by a crogs  bubbles(visible or/and invisibl¢ some of which, in turn,
Thus, the initial graph gets transformed into two new onesmay present a complex loop structure. It is important that
The first graph has the same structure as the initial one exhese new vertices possess the pointlike kinematical struc-
cept that the forms of the verticeg, and V, have been ture.
changed—the terms proportionaldd— m? disappeared and In order to preserve the loop counting rules, we use spe-
the minimal propagator appeared in place of the nonminimatial terms for the sum of secondary quasivertices resulting
one. The second graph has quite a different structure: thigom the reduction of one dflines connecting two vertices
new pointlike quasivertex withn+m) lines has appeared in under consideration. This sum can be considered as a single
place of two original ones; and V,. This quasivertex secondary vertex of thg—1)th order. In general, the point-
does not follow from the Feynman rules based on the effeclike vertex with several bubblegadpole$, having in total
tive Hamiltonian. Nevertheless, it has precisely the same
analytic structure as that of “true” vertex with the same
number of lines. The only difference is that the crossing sym- *®when the self-closed line corresponds to a particle with Spin
metry properties may be broken if the initial graph was not+0 these factors may result in additional reparametrization.
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— + + + FIG. 3. Example of reduction
1 qz a1 q2 1 q2 of two adjacent lines.

L-loops, is called the secondary vertex of thidn order. For order L+ 1), theLth order nonminimal graphs cannot be
example, the sum of three pointlike graphs depicted in Fig. 3ieglected. Instead, they must be taken into account when
is defined as a single secondary vertex of the first order. constructing the next order graphs which, in turn, should be
When continued for all internal lines of a given graph, thefurther subjected to the reduction procedure. The important
reduction procedure results in a sum of graphs constructegoint is that, after this is done, the parameters appearing in
from minimal propagators and pointlike vertiogeth differ- nonminimal graphs of thé.th loop order will happen ab-
ent number of bubblesn which all the lines are minimal sorbed into the structure of minimal parameters describing
except those happened to be external in the initial graph. Buhe vertices of the orderL(+ 1), this being also true with
each one of these latter lines may be internal in the case if espect toLth order nonminimal counterterms. From this
given vertex appears also in the inner part of the graph. Tmote it follows the important conclusioto obtain finite re-
avoid inconsistency, let us present the vertices connecteslults for S-matrix elements in the framework of effective
with external lines in the forni7): theory, one has no need in formulating the normalization
conditions fixing the finite parts of nonminimal counterterms
B @ red) Now, the first step.is done. We_ have shown, that it is
V. (p1, ---,pn)—§ T R +miPal. always possible to pick out certain group of parameters
which do not produce the kinematically independent contri-

. . . . .. _butions to renormalized amplitudes at a given order of loop
This results in a sum of graphs which can be divided into xpansion. So, from this point we can consider the scalar

tW? Igrqups. ThefﬂrsF groulp consists of all graph; Cc;nstrqcte orm factorsF, being minimal with respect to each line.
(S)?gigépe:]etrgzgsrq':'gzjitggtpi%aetfrs ;n hrfr:glrlnmtievzgtlz(z; his, in turn, means that they only depend on kinematical
group contains atlleast one vértex gf%heptMConnected ariables(6), the dependence om may be dropped. .

: . . We would like to stress once more that the above analysis
with one of the extgrnal "”e_ﬁs?y"th) and dotted by the is only true in the framework of OMS renormalization
factor m; corresponding to this line. scheme: the renormalization point must be taken on mass

Gr(;;\phs tfromtthbe tsefort‘g gromakﬂlz_tt uds ca}!lt:whem nonmml-d shell. It is this condition which allowed us to consider both
mal) do not contribute to the amplitude of the process un €kxternal and internal lines on the same footing. In turn, this

consideration. Nev_ertheless, they cannot be S|mply N€eans that for unstable particles the Hamiltonian mass pa-
glected. The point is that those graphs might result in non

L o ) . . rameters may happen only indirectl nnected with pol
trivial contributions of two different kinds. First, they con- ee ay happen only indirectly connecte pole

tribute to the amplitudegof the same loop order as that in F;ls]l)tlons of the corresponding full propagatse{20] and

question corresponding to the processes involving more par-

ticles. S 4. th tribute 1o th I f Thus, in order to calculate the amplitude of a given scat-
ucles. second, they can contribute to the values o renormak—ering process up to a given order of loop expansion, one
ization constants.

o . . . only needs to formulate the normalization prescriptions for
The contribution of nonminimal graphévith a given y b b

. . the remaining group of parameters. However, as yet this can-
.”“mb.er of external 'Ilne)sto the amp"“.*des .Of the PrOCESSES 1ynt pe done in terms of measurable guantities because this
involving more particles can be rewritten in terms of mini-

| ; celv in th b | hIatter group still contains the redundant combinations. To re-
mal parameters precisely in the same way as above. In Whgh o 1o \ve need to consider the influence of nonminimal
follows we tacitly imply that this is done with respect to all

i . i tensor structures.

Smatrix graphs of the loop ordér under consideration. Let us rewrite each of the vertica ,V, as follows:

As to the influence of nonminimal graphs on the values of 2 '
renormalization constants, it happens irrelevant if we are M
only interested in the correspondi@matrix elements of a v _ 2
given order and, in addition, rely on the conventional OMS (P2 Pn) =4
renormalization schem@ee, e.g[20] and[21]). In this case
one can simply forget about this group of graphs because t
only quantities depending on their parameters are the wa
function renormalization constaRtawhich, in turn, are just
redundant parameters having no influence on renormalize‘ﬁ{
Smatrix elements of the order in question. In the opposit >
case, when one needs to calculate the amplitudes of the lo

N
TOFR+ 2 ROFL (1
a=

hJFhe first sum in(11) contains all the independent minimal
VEith respect to each of the lingsensor structured®@ |

hile the second one contains all the other independent
ructures(nonminimal, at least, with respect to one of the
es). This means that every coefficient of the polynomials
eries

t
20This relates to the case of self-energy graphs. Fa(vi, ... V3n-10)
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presents a measurable quantitfhis is so just because each tude of a given process can be rewritten solely in terms of
one of those coefficients results in the individual kinematicaiminimal parameters of theth and lower levels. Hence, all
structure in the amplitude. the essential parameters of the¢h level are constructed
Hence we conclude that all the combinations of couplingsolely from those minimal parameters. Note, that no distinc-
constants appearin@s expansion coefficients the invari-  tion between the basic and counterterm vertices has been
ant form factorsF, should be classified as building blocks made in the course of our analysis.
for the essential parameters. In particular, this means that, when calculating the ampli-
Now, let us consider the parameters from the secondude of pion—nucleon scattering in a framework of effective
group, namely, those appearing in the form factorstheory, one can use the nonchiral interaction Hamiltonian

Fa(v1, ... van—10 describing the contributions of nonmini- NysN: this does not necessarily lead to a contradiction

mal tensor structureR® . Below it is shown that the effect with chiral invariance.

produced by this group is reduced to just a renormalization We will say that the amplitude graphof a given(true)

of the minimal parameterghose appearing in “minimal” loop orderL is presented in theninimal (or, unitary) param-

form factorsFL(vy, . .. ,v3n_10]. etrization if it is rewritten in terms of minimal propagators
For simplicity, we only consider here the case of struc-and minimal vertices of different ordefssL. The graph

tures of the bosonic type. The generalization for fermions isonstructed solely from minimal elements we call as the

straightforward. To describe the fields with sgi# 0 we use ~ minimal graph

the conventional Rarita—Schwinger formali$@v] and rely As follows from the above analysis, the reduction proce-

upon the method of contracted projecting operatorglure transforms a giveb-loop graph, constructed in accor-

(see, e.9.[17,28,29). The corresponding wave functions dance with conventional Feynman rules, into a sum of mini-

€u,...,(1,0) (hereq stands for momentum arjdor polar-  mal graphs of different topological structure plus the sum of

ization) possess symmetry, tracelessness and transversal@/@Phs with at least one nonminimal external line. When
rawing the minimal graphs, it is convenient to supply every

properties. . R L
First, consider the case when one of the lines of the verte¥e"ex Vi with the special index; showing its order. The

(say,V,) is external and corresponds to a particle with Spinvalu.el =0 should be assigned to all the |n|t|_aI Hamiltonian

J#0 and momentunp. We are only interested in nonmini- vertices as well as to the secondary vertices of the tree

24 . .
mal tensor structures, hence the relevant expression necessigi€!- Under this condition, the true loop ordérof the

ily contains the terms of the form minimal graph withL i, loops andp verticesV,, ... ,V, of
ordersl,, ... |, equals
Puy - Puy QuypPug -+ Py i
The corresponding amplitude graph equals zero. L=Lmint ;1 li-

Now, consider the case when this line is internal. Keeping
in mind that the numerator of the propagator is just a spin
sum (written in covariant form and considered as a functionThe corresponding counterterm vertéxshould be supplied
of four independent components of momenjuinis easy to  with the indexl,=L. The important point is thags far as
understand that nonminimal tensor structures result in polywe consider all the Hamiltonian couplings as independent
nomial contributions. This follows from the fact that in this constants, the minimal parameters describing vertices of dif-
case the residue equals zero due to the properties of spfarent orders are also independerithis statement can be
sums. The symmetry, tracelessness and transveféalityp-  easily proved by induction.
erties(only valid on the mass shglplay precisely the same The special convenience of dealing with minimal param-
role as pole killers discussed above. Thus we conclude thatrization becomes clear from the following note. In the
the only effect produced by nonminimal tensor structures isases of customary finite-component renormalizable theories
reduced to a renormalization of the coefficients in invariant(as well as their infinite-component vector copieae needs
form factorsF.. This may result in reappearing of the vari- to formulate as many normalization prescriptions as there are
ables; but now we know how to manage this problem: it is coupling constantsincluding massesin the basic Hamil-
sufficient to repeat the reduction procedure once more. tonian. This is so because of two reasons. First, in those
Thus it is shown that, at every fixed orderof loop ex- cases we are interested in complete renormalizability of a

pansion, the contribution of an arbitrary graph to the amplitheory; this means that we have to fix the finite parts of all
the counterterms including those needed to renormalize the

off-shell Green functions. Second, in conventional renormal-

2igtrictly speaking, this is not quite true. It would be better to sayizable theories every coupling constant presents an essential
that those coefficients contribute to measurable quantities. The point
is that it is impossible to measure the contribution of the individual
vertex—only a sum of all the relevant graphs of a given order 2%Recall that the proper symmetrization with respect to all the
presents the measurable quantity. We will come back to this pointines of identical particles is tacitly implied.
below. 24t should be kept in mind that there is no difference between the
22p|us y-transversality in the case of fermion fields. Hamiltonian and tree levels in the case of triple vertices.
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parametef> The situation looks much more complicated in *

effective theories. In this case there are certain combinations ~ V{ (v, ... )= > V@D K

of the Hamiltonian parameters which do not contribute to =0

renormalizedS-matrix and, hence, cannot be related to any

observable. In fact, these—redundant—combinations are not t=(3n—-10) (13

needed at all if we are only interested in describing scattering

processes. The reason why the minimal parametrization haf? powers of kinematical variablgs).

pens most suitable in the case of effective scattering theory, Clearly, the general form ahinimal counterterm vertices

is that it provides us with theinfinite) set of constants of the loop orderl under consideration looks precisely like

needed to construct the full set of the essential parametetbat of (12) and(13). The corresponding coefficients can be

directly connected with observable quantities. The structureonsidered as the pieces of those appearing in the expression

of this connection is discussed in more detail in Sec. VII.(13) for the highest ordet=L minimal effective vertex—

However, before discussing this structure we need to introthere is no necessity in writing them down as special items.

duce the notion of resultant parameters. In turn, this means that, until we fix the set of normalization
prescriptions for minimal vertices, all the -coefficients
Vvieh) , in (13) should be taken as free parameters. We call

VI. RESULTANT PARAMETERS themthe Lth level resultant parametefsvhich are minimal
ale the very construction The only limitations for their val-
ues follow from the requirement of finiteness of thih loop
prder amplitudes and the formal restrictions imposed by
crossing and Bosé~ermi symmetry(until we fix the renor-

In the preceding section we have considered an individu
amplitude graphmore precisely, a symmetric surnwith a
given number of external lines and certain fixed set of inne
vertices. However, this grapfsum only presents a part of o AR
the Lth order contribution to the amplitude describing themallzatlon prescriptions

process under consideration. To obtain the net result, one The important feature of the set of resultant parameters
needs to make four steps more " T with [=0,1, ... L is that this set idull andclosed It is full

because no other parameters are needed to compute all the
(1) First, itis necessary to carry out the reduction of all theSmatrix elements of thé&th order. It is closed in the sense
graphs(of the orderL) with the same set of external that taking account of graphs with>L loops leaves the
lines but with different structure of the set of vertices lower level (<L) parameters unchanged.
(different numbers of legsno summation over the kinds According to the results of Sec. V, there is no need in
of internal lines(virtual particle$ being implied on this formulating normalization prescriptions adjusting finite parts
step. of the coefficients at nonminimal counterterm vertices. This

(2) Second, it is necessary to sum over all possible kinds ofeans that, except the infinite parts needed to remove diver-
inner lines in every graph considered above. gences in subgraphs of the next loop order, those coefficients

(3) Third, it is necessary to sum up all the expressions ob€an be chosen in a way most suitable for subsequent calcu-

tained on the previous steps. lations. In turn, this means that the full set of normalization
gLonditions, needed to fix the physical content of effective
scattering theory, is not larger than the set of corresponding
fesultant parameters.

Starting from this point we consider all the infinite renor-
dpalizations done. Let us now briefly discuss the problems of
gonvergence. In fact, there are two problems closely con-
nected with one another. The first one is the problem of
convergence of numerical series constructed from the mini-
mal parameters. Every coefficient in the foil) for the
resultant vertex presents an infinite sum of the parameters
describing individual secondary vertices. Since no one of
those latter parameters presents a measurable quantity, we do

(4) Fourth, it is necessary to take account of contribution
due to counterterm vertices of theh loop order.

The same should be done with respect to all the amplitud
graphs with different numbefand typesof external lines. It
is easy to understand that this program results in a set
graphs constructed solely from minimal propagators an
minimal effective vertices of various loop orddrs L with
different numbers and types of legs. Every sutth ©rde)
vertexV'_ ~(p1, - - . ,pn) with certain set oh legs takes the
following typical form:

M not think that the problem of convergence of their infinite
v D)= TOVO(p b 1), sums should be takgn too seriously.
Py Pn) agl SVal(n Van-10) Another problem is that of convergence of formal power

(12 series presenting the resultant effective vertices. Let us first
discuss the case of tree-level resultant vertices with4
lines (recall that, irrespectively to a level, the resultant triple

whereM is the number of relevant minimal tensor structuresvertices are just constantsEach one of the corresponding
T® andV{) stands for the infinite formal series resultant parametersee Fig. 4 presents a sum of two items.
The first item is just the relevant minimal parameter appear-
ing in the effective 4-vertex of the Hamiltonian level. The
Z5Recall, that the gauge fixing parameter in gauge theories appeagecond item stems from the reduction of graphs with reso-
in the framework of Lagrangian formalism. nance exchanges m, t-, andu-channels. It presents an in-
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> X, 2 =X, 0y e, 3

vertices vertices, vertices, vertices,
resonances resonances resonances Ru

FIG. 4. Formal sum of graphs describing the tree-level amplitude of the proee&stizfore reduction of the resonance linBs, R;,
andR, stand for all possible resonances in thet-, andu-channels, respectively. The effective triple vertices contain both minimal and
nonminimal(with respect to inner lineparameters.

finite sum of products of the Hamiltonian triple coupling s=1(20—t+w) u=1(20—t—w) (16)
constants, at least one of which being nonminimal with re- 2 b z b
spect to inner line. All the minimal triple couplings of the
Hamiltonian level are contained in the triple vertices describ-
ing the pole parts of resonance contributions. (17)

The resultant effective 4-vertex does not present an ind&ynere 2r=(m, + m,+ms+m,) andm,(i=1, . . . ,4) are the
pendent element of Feynman rules: every time when it apayiernal particle masses.
pears as a part of a larger graph, one also has to take accountthe tree-level amplitude of the process under consider-
of contributions due to the resonance exchange graphgion is a sum of four items each of which, in turn, presents
shown in Fig. 4. This note allows one to conclude that ity infinite sum of contributions stemming either from the

makes no sense to discuss the convergence of infinite seriggeactive 4-vertex or from graphs with resonance exchanges
(13) for the resultant 4-vertex: only the full sum of tree-level see Fig. 4. In particular, the first term is an infinite sum of

graphs under cons_ideration must possess the desired CONVREms each of which originates from the corresponding
gency property. This means that in the full sum of graf@fs  pamijtonian monomial constructed from four field operators
a given loop order presenting an amplitude under consider-o/anq their derivatives. It takes a form @brmal) infinite
ation, we expect mutual cancellations among various Unpoyer series in two independent kinematical variables. All
wanted contributions which might occur in every individual the coefficients appearing in this series are constructed from

item. _ _ _ _ the corresponding minimal parameters of the Hamiltonian
Clearly, this argumentation equally applies to arbitrary ef-jq,/g|.

fective resultant vertex with>4 lines as well as to the case  ag tg the triple vertices appearing in graphs with reso-

of higher loop order vertices. Thus it may happen that th&,ance exchanges, they contain both minimal and nonminimal
resultant parameters describing the vertices with d|ﬁeren(With respect to inner lingsparameters of the Hamiltonian
numbers of legs are not completely independent. Indeed, 3§ye|. The nonminimal parameters do not contribute to the
argued in[8] (thg detailed analysis will be pub_llshed else- pole parts of graphs: as shown in Sec. IV, they only contrib-
where, the requirements of convergence, crossing SYmmetrye o smooth(analytio part. In contrast, all the minimal
and polynomial boundedness lead to highly nontrivial rela-narameters contribute to the values of residues at correspond-
tions connecting the resultant parameters of the vertices di fhg poles. This means that, after the reduction of inner lines,

t=3(20—u+v,), s=3(20—u—v,),

fering from one another by the number of legs. the amplitude can be presented in one of three equivalent
forms only differing from one another by the choice of vari-
VII. THE ESSENTIAL PARAMETERS ables

In this section we just give an idea on how to construct * o NS (v) N()(s)
the essential parameters from the resultant ones. The detailell (s,vs)= >, APsvd+> ———+> ————
analysis would require too much space; it will be published =0 R s=Mi R vs—(6=9)
elsewhere. A preliminary discussion can be found8h NG

) . . (s)

By way of illustration, let us consider the tree-level am- 2 v = (18)
plitude describing a scattering process 2. For the follow- Ry VsT(0u—s)
ing, it is convenient to consider in parallel three different
pairs of independent kinematical variables NO(t) NO (1)

M(t,v)= 2 Aty I+ +
(L i,,—Z‘o e ;svﬁ(ﬁs—t) R t—M3
[X,v4] (X=s,t,u).

N(t)(t)
Heres,t,u stand for the conventional Mandelstam variables, +2 _u—_ (19
Ry Vt (0u t)
and
_ _ _ - o N (u)
ve=(u—t), r=(s—u), v, =(t—-s). (14) M(u,p)= > AUy I+ ————
iT=o R, Vu—(0s—U)
From (14) it follows that
(19 N{(u) NG (vy)
. . + +(0_u)+2 (20
u=3(2o0—s+vy), t=3R20—s—v), (15 Ri PuT (0t Ry u—Mg
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Here Ds=B;NB,, D=B,NBg, D,=BsNBy,

0,=(20—M3,) (X=st,u); (21
the corresponding forms must identically coincide in pairs.
the relationg15)—(17) have been used to rewrite denomina- This requirement leads to additional limitatihistrongly
tors in terms of relevant pairs of variables. restricting the allowed values of resultant parameters. Those
No one of the formal seriegl8)—(20) makes sense until |imitations take a form of an infinite system of algebraic
we fix the order of summation and point out the areas wherequations connecting different parameters among themselves
we would like to assign meaning to those series. As argued iand, hence, reducing the numberindependenparameters
[6] (see als@8]), it is natural to consider every series written needed to fix a particular effective scattering theory. The full
in terms of the paifx, v,] in the corresponding thin three- set of independent combinations of resultant parameters can
dimensional bandlayen be considered as the set of true essential parameters which

require formulating the renormalization prescriptions.
By,: {xeR, 1,eC; xe(—¢€,€)} (x=s,t,u).

By conditi.o.n, the thickness & of the. Iaye;er should be VIIl. CONCLUSION

taken sufficiently small such that<min{Mg,}. This means _ _

that those items which contain fixehdependent ofv,) The main result 'of the above gnaly5|s can b_e formulated
poles inx do not result in singular contributions iB,. as follows.To describe the scattering processes in the frame-

Hence, inBX the expression for the amp”tude can be rewrit_Work of an effective field theory one has no need in leIng the

ten as formal sum of contributions due to slidifttepending ~ detailed structure of particle interactions off the mass shell.
on x) poles inv, plus the term which is formally regular in All the information needed to fix the numerical values of

both variables. For example, By, we have S-matrix elements at a given loop order L is contained in the
values of the resultant parameters of Lth and lower levels.
This result coincides with that obtained by Weinberg, Scad-

* ()
MU= > M®uip it NS—(U) ron, and Wright in series of papef8] on nonrelativistic
BT = SR - el (A V) scattering theory.
N@(u) The central idea of our work is that the numberimde-
t endentnormalization prescriptions needed to fix the physi-
)y . (uwJeBy. 22 P ihlle by

R vut(6i—u) cal content of an effective scattering theory is much less than
the total number of resultant parameters. As explained in
nSec. VII, certain natural consistency requirements lead to an
Infinite number of constraints strongly restricting the allowed

physical values of those parameters. This point will be dis-

cussed in detail in the next paper.

The corresponding formal expressions for the amplitude i
B, and B; can be rewritten precisely in the same way. We
would like to stress that every coefficient {@2) is con-
structed from the tree level resultant parameters.

The special convenience of the fol(@2) is explained by
the following reason. At every fixed € B, this form can be
treated as a uniformly converging series presenting a mero-
morphic function of one complex variableg, and one real We are grateful to K. Semenov-Tian-Shanski, A. Vasiliev,
parameteru. The possibility of such interpretation is pro- M. Wazovski, V. Cheianov, H. Nielsen and J. Schechter for
vided by the general theore(due to Mittag—Leffler known  stimulating discussions. The work was supported in part by
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consider in parallel three different forms of the ty(®2) (in
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