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Resultant parameters of effective theory
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This is the fourth paper in a series devoted to a systematic study of the problem of a mathematically correct
formulation of the rules needed to manage an effective field theory. Here we consider the problem of con-
structing the full set of essential parameters in the case of the most general effective scattering theory contain-
ing no massless particles with spinJ.1/2. We perform a detailed classification of combinations of the
Hamiltonian coupling constants and select those which appear in the expressions for renormalizedS-matrix
elements at a given loop order.
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I. INTRODUCTION

At first glance, the concept of an effective field theo
~first formulated in@1#! looks too general to be of practica
use in computing the characteristics of hadron scattering
cesses. In all the known cases of its application~see, e.g.,
@1–3#!, the authors, in fact, mostly rely on the philosop
rather than on a certain computational scheme accounting
specific features of effective theories. The point is that suc
scheme has not yet been developed, and many question
require answers. At the same time, the importance of
subject is beyond question because, if constructed, su
scheme could provide us with a tool allowing us to mana
the conventionally nonrenormalizable theories~see@4#!.

In our previous publications~@5–8#! it was shown that,
under certain conditions, it is possible to derive quite reas
able results already from the analysis of the lowest or
amplitudes computed with the help of the most general
fective Hamiltonian constructed from local fields describi
free particles with arbitrary spins and masses. In those
pers, however, many important issues concerning the de
of our approach have not been explained. In particular,
solution to the problem of parametrization of scattering a
plitudes was declared without proof. In this paper we disc
this issue in detail. We introduce the notion of minimal p
rametrization and show that the set of minimal parameter
quite sufficient for fixing the analytic form of an arbitrar
complex graph. Moreover, it happens to be possible to sin
out those combinations of minimal parameters which
needed to fix the form of the amplitude of a given proces
arbitrary high loop order. The latter combinations are cal
the resultant parameters. At last, we briefly discuss the p
lem of ordering of infinite sums of graphs describing the t
level amplitudes of binary processes~this can be generalize
for more involved cases! and outline a way to construct th
essential parameters—the only ones which require formu
ing the renormalization prescriptions.

This paper should not be considered self-contained.
reason is that it happened to be necessary to tie toge
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several fundamental concepts that were earlier discusse
the literature. To make the reading easier it would be use
if the reader recalls first the contents of the following issu

The concept of quasiparticles in nonrelativistic scatter
problem: see@9#.

The general scheme of constructing the intrinsically qu
tum relativistic scattering theory, canonical formalism, ess
tial and redundant parameters, the notion of asympt
safety: see@4# and Chaps. 2–7 in the monograph@10#.

The notion of generalized renormalizability, the effecti
theory concept: see@1,3#, and Chap. 12.3 in@10#.

The problem of canonical quantization of theories w
too many field derivatives: see@11,12#.

Unstable particles and unitarity: see@13#.
The general philosophy and methods of constructing r

sonable perturbation series:@14#.
Besides, it is implied that the reader is familiar with th

method of Cauchy forms allowing to present the polynom
ally bounded meromorphic function in the form of uniform
converging series of pole contributions. The case of one v
able is described in, e.g.,@15,16#. The generalization for sev
eral variables is discussed in@6,8#. The main line of our
approach is briefly~perhaps, too briefly! discussed in@8#.

II. PRELIMINARIES

First of all we need to specify the precise meaning of
term effective theory. It is often understood as just a theo
describing physics below some scaleL ~see, e.g.,@3#!. In
fact, this definition tacitly implies that the corresponding p
turbation series loses its meaning at energyE;L where a
kind of new physics comes into play. We would like to stre
that we consider here just an opposite case. It is assumed
the discussed below general effective theory does not con
any kind of a latent inner cutoff. Owing to this, we use t
term effective theory in its original meaning defined in@1#.
Namely, we call a theory as effective if the correspondin
quantum Hamiltonian (in the interaction picture) takes
form of the formal infinite series containing all the loc
terms consistent with a given symmetry requirements.

In this paper we are interested in consideration of
general features of effective theories. Because of this rea
we do not imply the presence of any other symmetry
©2004 The American Physical Society02-1
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Lorentz invariance. The problem of accounting for the
quirements of dynamical~nonlinear! symmetries is briefly
discussed below.

It is necessary to stress here that the given above de
tion is only meaningful if the quantum interaction Ham
tonian can be constructed by hands without any referring
the corresponding classical Lagrangian. This means tha
canonical quantization scheme~based on the Lagrangian!
cannot be considered as the basis for constructing the q
tum effective theory because the most general form of c
sical Lagrangian must contain the terms with arbitrary h
powers~and orders! of the time derivatives; in such a situa
tion the canonical quantization looks impracticable. Beca
of this reason we rely upon the alternative—intrinsica
quantum—scheme of constructing an effective theory. In
scheme, developed by Weinberg in the series of papers@17#,1

the structure of the Fock space of asymptotic states is po
lated, and field operators are constructed in accordance
symmetry properties of those states. The Hamiltonian is a
postulated as the interaction picture operator only depen
on those fields and their derivatives. TheS-matrix elements
are computed with the help of Dyson’s formula

Sf i5^ f uTW expH 2 i E H int dxJ u i &, ~1!

where the symbolTW stands for Wick’s T-product.2 The

noncovariant terms in the Hamiltonian and in propagat
~see @10# and the Refs. quoted therein! should be
neglected—in the case of effective theory this does not
troduce any uncertainty because, by construction, the Ha
tonian containsall the terms consistent with Lorentz symm
try. This means that the total effect of noncovariant ter
might, at most, result in a renormalization of some coupl
constants.

Thus we see that Weinberg’s scheme happens well su
for constructing the effective field theory Hamiltonian. How
ever, there is one problem revealing itself when this sche
is used to describe the hadron dynamics. The point is tha
this scheme the Hamiltonian contains those and only th
field operators which correspond to the states of stable
ticles.Weinberg’s scheme is adapted to describe the sca
ing processes with true stable particles solely in terms of
corresponding creation and annihilation operators; the po
sibility to describe the physics of resonances in the fram
work of this scheme looks questionable.Fortunately, this
problem is quite solvable. The results obtained in@13# show
that, in the case when the Hamiltonian contains the field
unstable particles,3 the formal construction~1! remains ap-
plicable. In this case it defines theS-matrix as the unitary
operator on the space of stable particle states. The field
unstable particles do not create true asymptotic states;
can be treated as the fields describing resonances. In our

1See also Chaps. 2–5 of the monograph@10#.
2It is explicitly covariant—see, e.g.,@12#.
3Those with masses large enough to make it possible for the d

into lighter particles.
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paper we will have to say more about this scenario. For
present we just shut our eyes to the existence of the prob
of interpretation and consider in this paper the most gen
effective Hamiltonians constructed from the infinite set
fields corresponding to free particles with arbitrary spins a
masses.

Another problem connected with Weinberg’s scheme
that of nonlinearly realized~dynamical! symmetries.4 It is
extremely difficult~if ever possible! to formulate the condi-
tions providing a guarantee of the desired dynamical sym
try properties of amplitudes resulting from the effecti
quantum Hamiltonian written in the interaction pictur
Surely, this difficulty is explained by the fact that neither fr
nor interaction Hamiltonian by itself commutes with the d
namical symmetry generators. The solution~at least, partial!
to this problem can be obtained from the results of@1#. In
that paper it is shown that, leaning upon the canonical qu
tization scheme and using the minimal invariant Lagrang
~that containing the minimal number of field derivatives r
quired by symmetry!, it is possible to calculate the lowes
order terms in series expansion~in small momenta! of the
amplitude describing a process with Goldstone bosons. T
means that the dynamical symmetry requirements can
formulated—at least, in lowest orders—directly in terms
amplitudes; one has no necessity in formulating them on
Hamiltonian level.5 In turn, this means that, in order to ac
count for the dynamical symmetry requirements in t
framework of effective theory, one needs to compute am
tudes of the processes involving Goldstone bosons and
compare the results with those obtained from the canonic
quantized invariant classical Lagrangian of the lowest ord
This very approach has been used in@5# and@6# to derive the
restrictions imposed by Chiral SU23SU2 symmetry on the
structure of meson resonance spectrum. The answer to
question on how to write down the restrictions imposed b
certain kind of dynamical symmetry on the higher order a
plitudes still remains unclear. In this paper we do not disc
this point.

One note is in order. In what follows we assume that
effective theory under consideration does not contain ma
less particles of higher spinJ.1/2. This is just a technica
assumption, but at the moment we do not know how to av
it.

III. CLASSIFICATION OF THE PARAMETERS

The effective Hamiltonian contains all the types of loc
terms consistent with Lorentz symmetry. For example, alo
with the simple interaction termf4, it contains also the
terms of the form f2]mf]mf, f2]mnf]mnf,
f]mf]nf]mnf, f5, and so on. This means that man
Hamiltonian coupling constants contribute to the same ki
matical structure in the amplitude of a given process~say, to
the term;s2 in the tree-level amplitude of the process

ay

4In the case of linear~algebraic! symmetry there is no problem a
all.

5An example is provided by famous Low’s theorems in QED.
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FIG. 1. Examples of 1- and
2-loop order vertices.
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→2). Hence, to perform the renormalization program, o
needs first to solve the problem of classification of couplin
in order to avoid attracting unnecessary~dependent! counter-
term vertices. Another reason, explaining why the solution
this problem of couplingsmight be extremely useful, is th
following. As known ~see, e.g.,@10,18#!, the most difficult
problem connected with renormalization of effective theor
~which are renormalizable by the very construction! is the
necessity to formulate an infinite number of renormalizat
prescriptions needed to fix the finite parts of counterter
This looks impracticable until one finds a regularity effe
tively reducing the number of independent prescriptions
seems quite natural to look for the mathematical expres
of such a regularity in terms ofindependentparameters ap
pearing in a theory.

In as much as we are only interested in describing
scattering processes,6 it looks reasonable to work in terms o
the parameters appearing inS-matrix elements. Those param
eters are the functions of Hamiltonian coupling constan
Clearly, the Green functions of a theory depend on the sa
parameters as theS-matrix elements do; but, in addition, the
may depend on the orthogonal combinations only contrib
ing off the mass shell. Hence it makes sense to classify
parameters asessentialandredundantones~see Chap. 7.7 o
Ref. @10#!. We follow the general line of this classificatio
but we find it necessary to make more precise definitions
the terms.

First, we work with the quantum Hamiltonian in the in
teraction picture. In contrast, the definitions in@10# refer to
the Lagrangian coupling constants. As we have alre
noted, in the case of effective theory the simple connec
between the canonical Lagrangian and quantum Hamilton
approaches is lost and there is no real possibility to exp
the Hamiltonian parameters in terms of the Lagrangian on
Second, in contrast with@10#, we classify the parameter
appearing in the expressions forS-matrix elements of a given
loop order, not only those in the Hamiltonian. The reason
elaborating the more detailed classification of the effect
theory parameters is that the form of dependence of ma
elements on the Hamiltonian coupling constants depend
the loop order in question. Hence it looks quite natural
elaborate a classification of parameters appearing in am
tudes of effective theory at a given order of loop expansi
As shown below, it happens possible to point out the se
independent7 parameters~combinations of coupling con
stants! quite sufficient to describe all theS-matrix elements
of a given order.

Because of all these reasons we use the following de
tions. The independent combinations of Hamiltonian co

6In other words, we are interested in constructing theeffective
scattering theory.

7As long as coupling constants in the effective Hamiltonian
considered independent.
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pling constants needed to fix the kinematical structure of
the renormalizedN-loop Green functions of a given effectiv
theory we call as just theNth level parameters. We separa
them into two groups. The first group only contains tho
combinations of the parameters which do not appear in
expressions for renormalizedS-matrix elements. We cal
these combinations as theredundant parameters of the Nt
level. All the other independent combinations we collect
the second group and call them as theresultant parameters
of the Nth level. The termessentialis reserved for those
combinations of resultant parameters which appear in
well-defined~converging! series presenting the amplitudes
a given loop order in certain kinematical domains.

The similar classification applies also for the paramet
appearing in the expression forpointlike vertex of the Nth
loop order: that, containing self-closed lines—bubbles or/a
tadpoles—which, in turn, may have complex multiloop inn
structure~see Fig. 1!, the total number of loops beingN. The
presence of an arbitrary number of such bubbles~or/and tad-
poles! does not change analytic structure of the vertex,8 it
only may change the numerical coefficients in the cor
sponding polynomials~series!.

Sometimes, it is convenient to classify in the same w
the parameters appearing in the Hamiltonian. In this case
use the term Hamiltonian level parameters~effective, mini-
mal, nonminimal!.

Clearly, the full set of the parameters needed to desc
the amplitude of a given process~at a given order of loop
expansion! is exhausted by the power series expansion co
ficients around an arbitrary nonsingular point in the space
corresponding kinematical variables. The problem is that
full collection of such sets necessarily contains depend
parameters because general principles~causality, crossing,
etc.! impose certain limitations on its structure. This is t
reason why we work with pointlike vertices of different loo
orders and classify the coefficients appearing in correspo
ing analytical expressions.

For the following it is also useful to introduce the notio
of theeffective vertex. Let us consider a formal sum of all th
Hamiltonian monomials constructed from a given set on
fields and differing from one another by the total numb
and/or positions of differential operators]m ~for example,
f2]mf]mf,f2]mnf]mnf,f]mf]nf]mnf, . . . ). Each one
of these monomials corresponds to an individual ver
~polynomial in kinematical variables! in the system of Feyn-
man rules. It happens convenient to consider the infinite s
of all such vertices. It takes a form of infinite formal series
powers of variables. We call this series as the effective ve
of the Hamiltonian order. The Hamiltonian can be rewritt
in the form of an infinite sum of effective vertices, the sing
items differing from one another by the number or/and

e
8It is just a polynomial or power series in kinematical variable
2-3
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A. VERESHAGIN AND V. VERESHAGIN PHYSICAL REVIEW D69, 025002 ~2004!
quantum numbers of field operators. Hence, the full sum
Feynman graphs~of a given loop order! describing the am-
plitude of a given process can be always presented as a
of graphs written in terms of effective vertices of the Ham
tonian order. In what follows we imply tacitly that this i
done. The problem of convergence of formal infinite su
will be discussed in Sec. VI.

The notion of the effective vertex ofNth loop order is
introduced in much the same way—this point is conside
in more detail in Sec. IV. The coefficients appearing in c
responding series we call as theNth level effective param-
eters.

By construction, the effective theory Hamiltonian co
tains an infinite number of coupling constants, only a par
them~or, better, their combinations! contributing toS-matrix
elements. We do not need to compute all the Green funct
of a theory because we are only interested in the amplitu
of various scattering processes. This means that for our
pose it is quite sufficient to consider theories only renorm
izable in the sector of essential parameters. The diverge
in Green functions unrelated toS-matrix elements9 will never
bother us.

Thus we need to select the set of essential parame
This cannot be done through just a classification of coup
constants appearing in the Hamiltonian. The reason is t
except for a few trivial cases, both essential and redund
parameters are very complicated functions of the Ham
tonian coupling constantsGi . Suppose for a moment that a
such functions are constructed and classified as esse
(Ei , i 51,2, . . . ) andredundant (Ri , i 51,2, . . . ) param-
eters. This would provide us with an infinite system of alg
braic equations of the form

Ei5Ei~G1 , . . . !, Rj5Rj~G1 , . . . ! ~ i , j 51,2, . . .!.

~2!

Resolving this system with respect toGi , one obtains

Gi5Gi~E1 , . . . ,R1 , . . . ! ~ i 51,2, . . .!. ~3!

Hence, when dealing withS-matrix elements, one can assig
to Ri whatever values are convenient for computations.
particular, there is no necessity in formulating the renorm
ization prescriptions fixing the finite parts of redundant cou
terterms. In turn, this is especially useful if we are interes
in finding a regularity allowing to put in order the infinit
system of normalization prescriptions needed to comp
amplitudes of various scattering processes in the framew
of effective theory.

Thus we see that it would be extremely useful if we find
way to write down the explicit form of the relations~2!. We
do not know how to solve this problem in general. Inste
one can try to find aperturbativesolution providing the re-
quired relations at every fixed order of loop expansion.
realize this idea, one needs to perform certain reconstruc

9An excellent example of such divergences is provided by
Standard Electroweak Model in the unitary gauge.
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~reparametrization! of the initial Dyson series. Below we de
scribe a special kind of parametrization which serves t
purpose.

We imply tacitly that there exists a regularization cons
tent with all the desired symmetries. This suggestion loo
harmless if the Euclidean version of a theory is consider
However, if one works in Minkowski space~as we do!, it
seems much less trivial. Nevertheless, we believe that
true.

This classification happens especially convenient wh
one is only interested in computing the renormaliz
S-matrix elements in the effective theory framework. As f
as we know, the special role of essential parameters has
first stressed in@4#.

The logical line of subsequent consideration is the follo
ing. We start from the basic effective Hamiltonian written
terms of the physical masses and physical couplings10 ~plus
counterterms!. Next, we note that some combinations ofGi
~their forms depend on the loop order in question! certainly
contribute to measurable quantities and thus could be con
ered, at least, as building blocks for essential paramet
Then we prove that it is always possible to rewrite the e
pression for arbitrary graph of a given loop order in such
way that the renormalizedS-matrix only depends on thos
latter combinations called below asminimal parameters.
Further, we show that the full sum of graphs of the same lo
order can be rewritten in a form quite similar to that co
structed on the previous step for an individual graph with
fixed set of internal lines. The parameters appearing on
stage are called theresultant parameters. At last, we direct
the way allowing to construct all the essential parameters
certain infinite sums of the resultant ones. This result sho
that, when dealing with effective scattering theory, it is
ways possible~at least, in principle! to make use of the
scheme of renormalized perturbation theory only appropr
in the sector of essential parameters.

IV. MINIMAL PARAMETERS

The immediate task we are going to solve is to prove
following statement.The full set of the essential paramete
of effective theory is constructed solely from those comb
tions of the Hamiltonian coupling constants (includin
masses) which are needed to fix the independent on-s
kinematic structures appearing in the expressions for eff
tive vertices (of different orders) multiplied by the releva
wave functions. In fact, this statement is almost trivial but it
precise meaning deserves comments. This section is dev
to the preliminary consideration needed for better und
standing of the proof given in Sec. V.

The proof consists of two steps. First, we show that

e

10When speaking about the mass of unstable particle, it is m
appropriate to use the term renormalized. In fact, this implies us
the renormalized perturbation theory with the conventional OM
~on-mass-shell! normalization conditions~see, e.g.,@18–22#!. The
quotation marks are used to stress that only certain combination
the Hamiltonian parameters present measurable quantities.
2-4
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RESULTANT PARAMETERS OF EFFECTIVE THEORY PHYSICAL REVIEW D69, 025002 ~2004!
invariant scalar structures~form factors!, describing a given
vertex in arbitraryS-matrix graph, can be reduced to a sim
pler form ~called minimal!. Second, we show that it is a
ways possible to reduce the full set of tensor structu
needed to fix the form of this vertex to a subset only co
taining a part of them~also called minimal!. The correspond-
ing procedure—called below as the graph reduction
eliminates certain part of the parameters which we call
nonminimal. When applied to a given graph, it results in
sum of two items. The first one is just the initial graph wr
ten in terms of new—minimal—vertices~of different orders!
completely described by the relevant minimal paramet
The second item does not contribute to the renormali
S-matrix under the condition that the normalization point
taken on mass shell.

We would like to note that the reduction procedure is o
needed to prove the completeness of the full set of mini
parameters. We do not imply its using in practical calcu
tions, which can be started already in terms of minimal
rameters.

It is a point here to stress the difference between t
terms often used throughout the paper. The termon-shell
graphmeans that the graph in question~say, pointlike vertex!
is computed at all external momenta on the mass shell.
term S-matrix graph~or, the same,amplitude graph! means
that the on-shell graph is dotted by the relevant wave fu
tions. The difference between the corresponding express
manifests itself in the case when particles with spinJÞ0 are
considered.

Now we need to explain the precise meaning of the te
minimal ~minimal vertex, minimal propagator!. The reason
why we use one more special term in addition to those
fined above~essential, redundant! is explained by the follow-
ing circumstance. The difference between the essential
redundant parameters manifests itself when one consider
structure of the amplitude of a given scattering process. T
amplitude results from contributions of many differe
S-matrix graphs of a given loop order. Thus the essen
parameters of a given level happen constructed from
Hamiltonian coupling constants describing the vertices w
different numbers of field operators. This language is
suitable for discussing the problems of renormalization. T
is why we need the more detailed classification of vario
combinations of the Hamiltonian coupling constants appe
ing in the process of calculation of a given graph.

Consider an effective vertexV . . . (p1 , . . . ,pn) ~the el-
lipses stand for Lorentz indices! with n lines carrying the
momenta (p1 ,p2 , . . . ,pn) only restricted by the conserva
tion law. As explained in the preceding section, this ver
corresponds to an infinite sum of monomials in the Ham
tonian. Each monomial is constructed from fields and th
derivatives, the total number of field operators beingn. The
explicit expression for this vertex reads

V . . . ~p1 , . . . ,pn!5 (
a51

M1N

T . . .
(a) Fa , ~4!

whereT . . .
(a) stand for whatever independent tensor structu

needed~their total number is denoted asM1N) andFa—for
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the corresponding scalar form factors~formal power series in
invariant kinematical variables!.

It is pertinent to remind that the expression~4! is equally
applicable in the case if we consider the pointlike vertex
theLth order. In accordance with the definition given in Se
III, the corresponding coefficients of formal power series
Fa are called as theLth level parameters.

Further, choose a set of independent scalar variables~their
total number is 4n210) as follows:

@p1 , . . . ,pn ;n1 , . . . ,n3n210#. ~5!

Here

p i[pi
22mi

2 ,

andn r stand for the rest~arbitrarily choosen11! independent
linear combinations of scalar products

n r[ (
i , j 51

n

si j
r ~pi•pj !, ~r 51, . . . ,3n210! ~6!

with numerical coefficientssi j
r .

It is always possible to rewriteFa as follows:

Fa~p1 , . . . ,pn ;n1 , . . . ,n3n210!

5Fa~p1 , . . . ,p i 21,0,p i 11 , . . . ,pn ;n1 , . . . ,n3n210!

1p i Pa~ . . . !.

Thus the vertex under consideration takes a form of a sum
two items:

V . . . ~p1 , . . . ,pn!5(
a

T . . .
(a) @Fa

( i )1p i Pa#. ~7!

The scalar functionsFa
( i ) appearing in the first term are calle

minimal with respect to thei th line. They do not change thei
form when this line is put on its mass shell. The second
nonminimal—term vanishes in this case.

We call the propagator as minimal if its numerator is ju
a spin sum written in a covariant form and considered a
function of four independent variablespm . The nonminimal
propagator differs from the minimal one by nonpole terms12

In what follows we imply using the minimal propagator
This does not reduce the generality of our analysis beca
nonpole terms result in precisely the same effect as
caused by nonminimal parameters. This will become m
clear after reading the next section. Besides, as shown in@5#
and @6#, in practical calculations in the framework of th
Cauchy form techniques one only needs to know the resid
of propagators.

Next, let us consider the tensor structuresT . . .
(a) occurring

in ~4!. They may contain the factors (g matrices, tensorsgmn

11The problem of appropriate choice of those variables will
discussed in more detail in a separate publication.

12It is this point where our suggestion on the absence of mass
particles of higher spin becomes important. Note also, that the d
nition of the minimal propagator given above is not quite exa
though sufficient for current consideration; we will discuss it
subsequent papers.
2-5
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and«abgd , momentumpi
m) resulting in constants when th

line in question is put on the mass shell and dotted by
corresponding wave function. We call such factors as n
minimal ~with respect to a given line!. For example, if the
line under consideration corresponds to a vector part
~with momentumpi), every tensor structure containingpi

m is
classified as nonminimal.

The full set of independent tensor structuresT . . .
(a) can be

separated into two groups as follows:13

T . . .
(a) 5$T . . .

(1,i ) , . . . ,T . . .
(Mi ,i ) ;R . . .

(1,i ) , . . . ,R . . .
(Ni ,i )

%. ~8!

Here, the first group

T . . .
(k,i ) ~k51, . . . ,Mi ; 1< i<n! ~9!

does not contain any nonminimal~with respect toi th line!
structures, while the second one

R . . .
(k,i ) ~k51, . . . ,Ni ; 1< i<n! ~10!

consists of all such structures. The structures from the
group are called minimal~with respect to the given line!. The
meaning of this separation is explained by the fact that, w
dotted by the relevant propagator or wave function, the n
minimal structures result in the same terms as the mini
ones or/and in terms proportional top i . In other words, the
effect of nonminimal tensor structures is quite similar to th
of nonminimal parameters appearing in scalar form facto

By way of illustration, let us consider the case of no
minimal structure containing the factorpm corresponding to
a vector particle~with 4-momentump). If the line in ques-
tion is external, this structure does not contribute toS-matrix
due to the transversality of the vector particle wave functi
In the case of internal line this factor is multiplied by th
vector particle propagator. The resulting expression does
contain a pole:

pm

2gm
n1pmpn /M2

p22M2
5

1

M2
pn .

This means that inside a graph the nonminimal struct
plays a role of pole killer.

Note, that nonminimal structures never survive as in
pendent items in the expressions for scattering amplitud

The vertex is called as minimal if it is minimal with re
spect to all its lines and the corresponding expression d
not contain any nonminimal tensor structures. The algeb
form of Lorentz invariant expression for minimal vertex do
not change its appearance when the momenta are consid
on the mass shellp i50 (i 51, . . . ,n).

The explicit form of the minimal vertex differs from tha
of nonminimal one by the items proportional to (pi

22mi
2)

or/and by those proportional to nonminimal~at least, with

13The numbersMi andNi depend on spin of the line in question
the total numberMi1Ni of tensor structures only depends on t
vertex type.
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respect to one of the lines! tensor structures.14 Inside a graph
such terms work as pole killers. This very property provid
a basis for the statement formulated in the beginning of
section.

The instructive example where the difference betwe
minimal and nonminimal elements~vertices and propaga
tors! manifests itself explicitly~and happens important! is
provided by the conventionally used propagator and inter
tion Hamiltonian of the spin-3/2 Rarita–Schwinger fie
~see, e.g.,@23# and @24# and references therein!. This field
corresponds, in particular, to the well established resona
D(1232) playing an important role in low energy pion
nucleon processes. Because of this reason this field is o
used in various Lagrangian models. The problem appe
when different authors use different forms of the interact
term and~or! propagator, this difference sometimes leadi
to contradictive results.15 The most popular forms of thos
elements used in the literature differ from one another by
terms resulting in a pole killer. This difference produces
additional~smooth! contribution to the amplitude which, in
turn, changes the results of data fitting. This is just an artif
of Rarita–Schwinger formalism.16 Surely, the pole term is
the same in both cases, the residue being just a spin sum
so-called off-shell couplings turn out to be redundant~see
@23# and @26#!.

V. THE PROOF OF THE STATEMENT

To prove the statement formulated in the beginning of
preceding section, it is sufficient to show thatan arbitrary
S-matrix graph can be rewritten in the form only construct
from the minimal vertices of different orders plus the ter
which do not contribute to the renormalized S-matrix.

The proof is straightforward. Consider an arbitrary co
plex graph17 ~amputated Green function! constructed in ac-
cordance with Feynman rules derived from the effect
theory Hamiltonian.18 Further, consider the inner lineq con-
necting the vertices V1

m . . . (p1 , . . . ,pn ,q) and
V2

n . . . (k1 , . . . ,km ,q) ~see Fig. 2!. We do not make any sug
gestions about the other lines: a part of them may be ta
external while the rest may be taken internal.

First, let us consider the case when this line is the o
one connecting the vertices in question and the propag
contains nonminimal terms

14This is also true with respect to the vertices containing s
closed lines~bubbles or tadpoles!. As explained in Sec. III, we
classify such vertices as pointlike.

15For the references and discussion see, e.g.,@25# and @26#.
16This would not occur if Weinberg’s formalism@17# for the spin-

J field were used.
17Regularization is tacitly implied.
18It is important that we consider a graph constructed from a fix

set of effective vertices of the Hamiltonian order; no summat
over the different types of inner lines as well as over different typ
of the effective vertices is implied on this stage.
2-6
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FIG. 2. Line reduction procedure.
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Heref ,,,
•••(q) is some nonsingular tensor andP ,,,

•••(q) is just
a spin sum written in a covariant form and understood a
function of fourindependentcomponents of momentum. Be
sides, let us write down the vertices in the form~7! explicitly
showing the presence of nonminimal terms in scalar fo
factors:

V1,2
•••~ . . . ,q!5(

a
T(a)•••@Fa

1,21~q22m2!Pa
1,2#

~in what follows we omit tensor indices!.
It is easy to understand that nonminimal terms just kill t

denominator of the propagator and thus result in a new q
sivertex with (n1m) lines (p1 , . . . ,pn ,k1 , . . . ,km). In
other words, one can represent~rewrite! the graph in the
following way @below d(•••) denotes the momentum con
servation delta function needed for each vertex#:

where ellipses before the integral stand for the rest part of
graph. Besides, the minimal elements ofV1 and V2 trans-
form the lineq into a new one~minimal, labeled by a cross!.
Thus, the initial graph gets transformed into two new on
The first graph has the same structure as the initial one
cept that the forms of the verticesV1 and V2 have been
changed—the terms proportional toq22m2 disappeared and
the minimal propagator appeared in place of the nonmini
one. The second graph has quite a different structure:
new pointlike quasivertex with (n1m) lines has appeared i
place of two original ones—V1 and V2. This quasivertex
does not follow from the Feynman rules based on the ef
tive Hamiltonian. Nevertheless, it has precisely the sa
analytic structure as that of ‘‘true’’ vertex with the sam
number of lines. The only difference is that the crossing sy
metry properties may be broken if the initial graph was n
02500
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he
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properly symmetrized with respect to the lines under cons
eration. Clearly, this difficulty would never appear if—i
place of single graph—we consider the symmetric sum of
its topological copies. Below we imply that this is the cas
This means that the effect of nonminimal terms results i
symmetric sum of corresponding quasivertices. We call t
sum thesecondary vertex of order zero~or, the same, tree
order secondary vertex!. Recall, that we are dealing with a
effective theory, hence all possible vertices are already
cluded. Thus our procedure~later on we call it the reduction
of a given line! only leads to a renormalization of the param
eters fixing the form of the Hamiltonian order effective ve
tex with (n1m) lines.

The case when there are two lines (q1 andq2) connecting
the vertices under consideration can be analyzed precise
the same way as above. The result is illustrated in Fig. 3~for
simplicity, hereV1 andV2 are taken to be four-vertices!.

So, in this case the reduction of both lines results in a s
of two kinds of graphs~see Fig. 3!.

~1! The same graph as the initial one but with two cross
~minimal! lines in place of two original ones.

~2! Three graphs with pointlike vertices dotted by the facto
stemming from crossed or uncrossed self-closed li
and from the effect of pole killers.19 Purely for the sake
of uniformity, one can further rewrite the graph wit
uncrossed bubble as a sum of two items: the same g
as the initial one but with the crossed bubble in place
uncrossed one plus the reminder caused by the effec
relevant pole killers. We would like to stress that ea
one of these pointlike graphs should be considered as
1-loop order graph whether or not the bubble is dra
explicitly ~see the last of graphs shown in Fig. 3!.

Proceeding in the same way one can realize that, in
case when there arel lines connectingV1 andV2, the reduc-
tion procedure creates the same two vertices withl minimal
lines in place of the original ones. Besides, it creates a se
vertices with more~also minimal! external lines andn, l
bubbles~visible or/and invisible! some of which, in turn,
may present a complex loop structure. It is important t
these new vertices possess the pointlike kinematical st
ture.

In order to preserve the loop counting rules, we use s
cial terms for the sum of secondary quasivertices resul
from the reduction of one ofl lines connecting two vertices
under consideration. This sum can be considered as a s
secondary vertex of the( l 21)th order. In general, the point-
like vertex with several bubbles~tadpoles!, having in total

19When the self-closed line corresponds to a particle with spiJ
Þ0 these factors may result in additional reparametrization.
2-7
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FIG. 3. Example of reduction
of two adjacent lines.
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L-loops, is called the secondary vertex of theLth order. For
example, the sum of three pointlike graphs depicted in Fig
is defined as a single secondary vertex of the first order.

When continued for all internal lines of a given graph, t
reduction procedure results in a sum of graphs constru
from minimal propagators and pointlike vertices~with differ-
ent number of bubbles! in which all the lines are minima
except those happened to be external in the initial graph.
each one of these latter lines may be internal in the case
given vertex appears also in the inner part of the graph.
avoid inconsistency, let us present the vertices conne
with external lines in the form~7!:

V . . . ~p1 , . . . ,pn!5(
a

T . . .
(a) @Fa

( i )1p i Pa#.

This results in a sum of graphs which can be divided i
two groups. The first group consists of all graphs construc
solely in terms of minimal propagators and minimal vertic
of different orders. In contrast, every graph from the seco
group contains at least one vertex of the typePa connected
with one of the external lines~say, i th! and dotted by the
factor p i corresponding to this line.

Graphs from the second group~let us call them nonmini-
mal! do not contribute to the amplitude of the process un
consideration. Nevertheless, they cannot be simply
glected. The point is that those graphs might result in n
trivial contributions of two different kinds. First, they con
tribute to the amplitudes~of the same loop order as that
question! corresponding to the processes involving more p
ticles. Second, they can contribute to the values of renorm
ization constants.

The contribution of nonminimal graphs~with a given
number of external lines! to the amplitudes of the process
involving more particles can be rewritten in terms of min
mal parameters precisely in the same way as above. In w
follows we tacitly imply that this is done with respect to a
S-matrix graphs of the loop orderL under consideration.

As to the influence of nonminimal graphs on the values
renormalization constants, it happens irrelevant if we
only interested in the correspondingS-matrix elements of a
given order and, in addition, rely on the conventional OM
renormalization scheme~see, e.g.,@20# and@21#!. In this case
one can simply forget about this group of graphs because
only quantities depending on their parameters are the w
function renormalization constants20 which, in turn, are just
redundant parameters having no influence on renormal
S-matrix elements of the order in question. In the oppos
case, when one needs to calculate the amplitudes of the

20This relates to the case of self-energy graphs.
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order (L11), the Lth order nonminimal graphs cannot b
neglected. Instead, they must be taken into account w
constructing the next order graphs which, in turn, should
further subjected to the reduction procedure. The import
point is that, after this is done, the parameters appearin
nonminimal graphs of theLth loop order will happen ab-
sorbed into the structure of minimal parameters describ
the vertices of the order (L11), this being also true with
respect toLth order nonminimal counterterms. From th
note it follows the important conclusion:to obtain finite re-
sults for S-matrix elements in the framework of effect
theory, one has no need in formulating the normalizati
conditions fixing the finite parts of nonminimal counterterm.

Now, the first step is done. We have shown, that it
always possible to pick out certain group of paramet
which do not produce the kinematically independent con
butions to renormalized amplitudes at a given order of lo
expansion. So, from this point we can consider the sc
form factors Fa being minimal with respect to each line
This, in turn, means that they only depend on kinemati
variables~6!, the dependence onp i may be dropped.

We would like to stress once more that the above anal
is only true in the framework of OMS renormalizatio
scheme: the renormalization point must be taken on m
shell. It is this condition which allowed us to consider bo
external and internal lines on the same footing. In turn, t
means that for unstable particles the Hamiltonian mass
rameters may happen only indirectly connected with p
positions of the corresponding full propagators~see@20# and
@21#!.

Thus, in order to calculate the amplitude of a given sc
tering process up to a given order of loop expansion, o
only needs to formulate the normalization prescriptions
the remaining group of parameters. However, as yet this c
not be done in terms of measurable quantities because
latter group still contains the redundant combinations. To
veal them we need to consider the influence of nonminim
tensor structures.

Let us rewrite each of the verticesV1 ,V2 as follows:

V . . . ~p1 , . . . ,pn!5 (
a51

M

T . . .
(a) Fa

t 1 (
a51

N

R . . .
(a) Fa

r . ~11!

The first sum in~11! contains all the independent minima
~with respect to each of the lines! tensor structuresT . . .

(a) ,
while the second one contains all the other independ
structures~nonminimal, at least, with respect to one of th
lines!. This means that every coefficient of the polynomia
~series!

Fa
t ~n1 , . . . ,n3n210!
2-8
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RESULTANT PARAMETERS OF EFFECTIVE THEORY PHYSICAL REVIEW D69, 025002 ~2004!
presents a measurable quantity.21 This is so just because eac
one of those coefficients results in the individual kinemati
structure in the amplitude.

Hence we conclude that all the combinations of coupl
constants appearing~as expansion coefficients! in the invari-
ant form factorsFa

t should be classified as building block
for the essential parameters.

Now, let us consider the parameters from the sec
group, namely, those appearing in the form fact
Fa

r (n1 , . . . ,n3n210) describing the contributions of nonmin
mal tensor structuresR . . .

(a) . Below it is shown that the effec
produced by this group is reduced to just a renormaliza
of the minimal parameters@those appearing in ‘‘minimal’’
form factorsFa

t (n1 , . . . ,n3n210)].
For simplicity, we only consider here the case of stru

tures of the bosonic type. The generalization for fermion
straightforward. To describe the fields with spinJÞ0 we use
the conventional Rarita–Schwinger formalism@27# and rely
upon the method of contracted projecting operat
~see, e.g.,@17,28,29#!. The corresponding wave function
em1 . . . mJ

( j ,q) ~hereq stands for momentum andj for polar-
ization! possess symmetry, tracelessness and transvers
properties.

First, consider the case when one of the lines of the ve
~say,V1) is external and corresponds to a particle with s
JÞ0 and momentump. We are only interested in nonmin
mal tensor structures, hence the relevant expression nece
ily contains the terms of the form

pm1
. . . pmJ

, gm1m2
pm3

, . . . ,pmJ
, . . . .

The corresponding amplitude graph equals zero.
Now, consider the case when this line is internal. Keep

in mind that the numerator of the propagator is just a s
sum ~written in covariant form and considered as a functi
of four independent components of momentum!, it is easy to
understand that nonminimal tensor structures result in p
nomial contributions. This follows from the fact that in th
case the residue equals zero due to the properties of
sums. The symmetry, tracelessness and transversality22 prop-
erties~only valid on the mass shell! play precisely the same
role as pole killers discussed above. Thus we conclude
the only effect produced by nonminimal tensor structure
reduced to a renormalization of the coefficients in invari
form factorsFa

t . This may result in reappearing of the var
ablesp i but now we know how to manage this problem: it
sufficient to repeat the reduction procedure once more.

Thus it is shown that, at every fixed orderL of loop ex-
pansion, the contribution of an arbitrary graph to the am

21Strictly speaking, this is not quite true. It would be better to s
that those coefficients contribute to measurable quantities. The p
is that it is impossible to measure the contribution of the individ
vertex—only a sum of all the relevant graphs of a given or
presents the measurable quantity. We will come back to this p
below.

22Plusg-transversality in the case of fermion fields.
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tude of a given process can be rewritten solely in terms
minimal parameters of theLth and lower levels. Hence, a
the essential parameters of theLth level are constructed
solely from those minimal parameters. Note, that no disti
tion between the basic and counterterm vertices has b
made in the course of our analysis.

In particular, this means that, when calculating the am
tude of pion–nucleon scattering in a framework of effecti
theory, one can use the nonchiral interaction Hamilton
N̄g5Np: this does not necessarily lead to a contradict
with chiral invariance.

We will say that the amplitude graph23 of a given~true!
loop orderL is presented in theminimal (or, unitary) param-
etrization, if it is rewritten in terms of minimal propagator
and minimal vertices of different ordersl<L. The graph
constructed solely from minimal elements we call as
minimal graph.

As follows from the above analysis, the reduction proc
dure transforms a givenL-loop graph, constructed in acco
dance with conventional Feynman rules, into a sum of m
mal graphs of different topological structure plus the sum
graphs with at least one nonminimal external line. Wh
drawing the minimal graphs, it is convenient to supply eve
vertex Vi with the special indexl i showing its order. The
value l 50 should be assigned to all the initial Hamiltonia
vertices as well as to the secondary vertices of the
level.24 Under this condition, the true loop orderL of the
minimal graph withLmin loops andp verticesV1 , . . . ,Vp of
ordersl 1 , . . . ,l p equals

L5Lmin1(
i 51

p

l i .

The corresponding counterterm vertexVc should be supplied
with the indexl c5L. The important point is that,as far as
we consider all the Hamiltonian couplings as independ
constants, the minimal parameters describing vertices of
ferent orders are also independent. This statement can be
easily proved by induction.

The special convenience of dealing with minimal para
etrization becomes clear from the following note. In t
cases of customary finite-component renormalizable theo
~as well as their infinite-component vector copies! one needs
to formulate as many normalization prescriptions as there
coupling constants~including masses! in the basic Hamil-
tonian. This is so because of two reasons. First, in th
cases we are interested in complete renormalizability o
theory; this means that we have to fix the finite parts of
the counterterms including those needed to renormalize
off-shell Green functions. Second, in conventional renorm
izable theories every coupling constant presents an essey

int
l
r
nt

23Recall that the proper symmetrization with respect to all
lines of identical particles is tacitly implied.

24It should be kept in mind that there is no difference between
Hamiltonian and tree levels in the case of triple vertices.
2-9
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A. VERESHAGIN AND V. VERESHAGIN PHYSICAL REVIEW D69, 025002 ~2004!
parameter.25 The situation looks much more complicated
effective theories. In this case there are certain combinat
of the Hamiltonian parameters which do not contribute
renormalizedS-matrix and, hence, cannot be related to a
observable. In fact, these—redundant—combinations are
needed at all if we are only interested in describing scatte
processes. The reason why the minimal parametrization
pens most suitable in the case of effective scattering the
is that it provides us with the~infinite! set of constants
needed to construct the full set of the essential parame
directly connected with observable quantities. The struct
of this connection is discussed in more detail in Sec. V
However, before discussing this structure we need to in
duce the notion of resultant parameters.

VI. RESULTANT PARAMETERS

In the preceding section we have considered an individ
amplitude graph~more precisely, a symmetric sum! with a
given number of external lines and certain fixed set of in
vertices. However, this graph~sum! only presents a part o
the Lth order contribution to the amplitude describing t
process under consideration. To obtain the net result,
needs to make four steps more.

~1! First, it is necessary to carry out the reduction of all t
graphs~of the orderL) with the same set of externa
lines but with different structure of the set of vertic
~different numbers of legs!, no summation over the kind
of internal lines~virtual particles! being implied on this
step.

~2! Second, it is necessary to sum over all possible kind
inner lines in every graph considered above.

~3! Third, it is necessary to sum up all the expressions
tained on the previous steps.

~4! Fourth, it is necessary to take account of contributio
due to counterterm vertices of theLth loop order.

The same should be done with respect to all the amplit
graphs with different numbers~and types! of external lines. It
is easy to understand that this program results in a se
graphs constructed solely from minimal propagators a
minimal effective vertices of various loop ordersl<L with
different numbers and types of legs. Every such (l th order!
vertexV . . .

l (p1 , . . . ,pn) with certain set ofn legs takes the
following typical form:

V . . .
( l ) ~p1 , . . . ,pn!5 (

a51

M

T . . .
(a) Va

( l )~n1 , . . . ,n3n210!,

~12!

whereM is the number of relevant minimal tensor structur
T . . .

(a) andVa
( l ) stands for the infinite formal series

25Recall, that the gauge fixing parameter in gauge theories app
in the framework of Lagrangian formalism.
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Va
( l )~n1 , . . . ,n t!5 (

k1 , . . . ,kt50

`

Vk1•••kt

(a,l ) n1
k1
•••n t

kt ,

t[~3n210! ~13!

in powers of kinematical variables~6!.
Clearly, the general form ofminimalcounterterm vertices

of the loop orderL under consideration looks precisely lik
that of ~12! and ~13!. The corresponding coefficients can b
considered as the pieces of those appearing in the expre
~13! for the highest orderl 5L minimal effective vertex—
there is no necessity in writing them down as special item
In turn, this means that, until we fix the set of normalizati
prescriptions for minimal vertices, all the coefficien
Vk1 . . . kt

(a,L) in ~13! should be taken as free parameters. We c

them the Lth level resultant parameters~which are minimal
by the very construction!. The only limitations for their val-
ues follow from the requirement of finiteness of theLth loop
order amplitudes and the formal restrictions imposed
crossing and Bose~Fermi! symmetry~until we fix the renor-
malization prescriptions!.

The important feature of the set of resultant parame
with l 50,1, . . . ,L is that this set isfull andclosed. It is full
because no other parameters are needed to compute a
S-matrix elements of theLth order. It is closed in the sens
that taking account of graphs withl .L loops leaves the
lower level (l<L) parameters unchanged.

According to the results of Sec. V, there is no need
formulating normalization prescriptions adjusting finite pa
of the coefficients at nonminimal counterterm vertices. T
means that, except the infinite parts needed to remove d
gences in subgraphs of the next loop order, those coeffici
can be chosen in a way most suitable for subsequent ca
lations. In turn, this means that the full set of normalizati
conditions, needed to fix the physical content of effect
scattering theory, is not larger than the set of correspond
resultant parameters.

Starting from this point we consider all the infinite reno
malizations done. Let us now briefly discuss the problems
convergence. In fact, there are two problems closely c
nected with one another. The first one is the problem
convergence of numerical series constructed from the m
mal parameters. Every coefficient in the form~13! for the
resultant vertex presents an infinite sum of the parame
describing individual secondary vertices. Since no one
those latter parameters presents a measurable quantity, w
not think that the problem of convergence of their infin
sums should be taken too seriously.

Another problem is that of convergence of formal pow
series presenting the resultant effective vertices. Let us
discuss the case of tree-level resultant vertices withn54
lines ~recall that, irrespectively to a level, the resultant trip
vertices are just constants!. Each one of the correspondin
resultant parameters~see Fig. 4! presents a sum of two items
The first item is just the relevant minimal parameter appe
ing in the effective 4-vertex of the Hamiltonian level. Th
second item stems from the reduction of graphs with re
nance exchanges ins-, t-, andu-channels. It presents an in

ars
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FIG. 4. Formal sum of graphs describing the tree-level amplitude of the process 2→2 before reduction of the resonance lines.Rs , Rt ,
andRu stand for all possible resonances in thes-, t-, andu-channels, respectively. The effective triple vertices contain both minimal
nonminimal~with respect to inner line! parameters.
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ri-
finite sum of products of the Hamiltonian triple couplin
constants, at least one of which being nonminimal with
spect to inner line. All the minimal triple couplings of th
Hamiltonian level are contained in the triple vertices desc
ing the pole parts of resonance contributions.

The resultant effective 4-vertex does not present an in
pendent element of Feynman rules: every time when it
pears as a part of a larger graph, one also has to take acc
of contributions due to the resonance exchange gra
shown in Fig. 4. This note allows one to conclude tha
makes no sense to discuss the convergence of infinite s
~13! for the resultant 4-vertex: only the full sum of tree-lev
graphs under consideration must possess the desired co
gency property. This means that in the full sum of graphs~of
a given loop order!, presenting an amplitude under consid
ation, we expect mutual cancellations among various
wanted contributions which might occur in every individu
item.

Clearly, this argumentation equally applies to arbitrary
fective resultant vertex withn.4 lines as well as to the cas
of higher loop order vertices. Thus it may happen that
resultant parameters describing the vertices with differ
numbers of legs are not completely independent. Indeed
argued in@8# ~the detailed analysis will be published els
where!, the requirements of convergence, crossing symm
and polynomial boundedness lead to highly nontrivial re
tions connecting the resultant parameters of the vertices
fering from one another by the number of legs.

VII. THE ESSENTIAL PARAMETERS

In this section we just give an idea on how to constr
the essential parameters from the resultant ones. The det
analysis would require too much space; it will be publish
elsewhere. A preliminary discussion can be found in@8#.

By way of illustration, let us consider the tree-level am
plitude describing a scattering process 2→2. For the follow-
ing, it is convenient to consider in parallel three differe
pairs of independent kinematical variables

@x,nx# ~x5s,t,u!.

Heres,t,u stand for the conventional Mandelstam variabl
and

ns[~u2t !, n t[~s2u!, nu[~ t2s!. ~14!

From ~14! it follows that

u5 1
2 ~2s2s1ns!, t5 1

2 ~2s2s2ns!, ~15!
02500
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s5 1
2 ~2s2t1n t!, u5 1

2 ~2s2t2n t!, ~16!

t5 1
2 ~2s2u1nu!, s5 1

2 ~2s2u2nu!,
~17!

where 2s[(m11m21m31m4) andmi( i 51, . . . ,4) are the
external particle masses.

The tree-level amplitude of the process under consid
ation is a sum of four items each of which, in turn, prese
an infinite sum of contributions stemming either from t
effective 4-vertex or from graphs with resonance exchan
~see Fig. 4!. In particular, the first term is an infinite sum o
items each of which originates from the correspond
Hamiltonian monomial constructed from four field operato
or/and their derivatives. It takes a form of~formal! infinite
power series in two independent kinematical variables.
the coefficients appearing in this series are constructed f
the corresponding minimal parameters of the Hamilton
level.

As to the triple vertices appearing in graphs with res
nance exchanges, they contain both minimal and nonmini
~with respect to inner lines! parameters of the Hamiltonia
level. The nonminimal parameters do not contribute to
pole parts of graphs: as shown in Sec. IV, they only contr
ute to smooth~analytic! part. In contrast, all the minima
parameters contribute to the values of residues at corresp
ing poles. This means that, after the reduction of inner lin
the amplitude can be presented in one of three equiva
forms only differing from one another by the choice of va
ables

M ~s,ns!5 (
i , j 50

`

Ai j
(s)sins

j1(
Rs

Ns
(s)~ns!

s2MR
2

1(
Rt

Nt
(s)~s!

ns2~u t2s!

1(
Ru

Nu
(s)~s!

ns1~uu2s!
, ~18!

M ~ t,n t!5 (
i , j 50

`

Ai j
(t)t in t

j1(
Rs

Ns
(t)~ t !

n t1~us2t !
1(

Rt

Nt
(t)~n t!

t2MR
2

1(
Ru

Nu
(t)~ t !

n t2~uu2t !
, ~19!

M ~u,nu!5 (
i , j 50

`

Ai j
(u)uinu

j1(
Rs

Ns
(u)~u!

nu2~us2u!

1(
Rt

Nt
(u)~u!

nu1~u t2u!
1(

Ru

Nu
(u)~nu!

u2MR
2

. ~20!
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Here

ux[~2s2MRx
2 ! ~x5s,t,u!; ~21!

the relations~15!–~17! have been used to rewrite denomin
tors in terms of relevant pairs of variables.

No one of the formal series~18!–~20! makes sense unti
we fix the order of summation and point out the areas wh
we would like to assign meaning to those series. As argue
@6# ~see also@8#!, it is natural to consider every series writte
in terms of the pair@x,nx# in the corresponding thin three
dimensional band~layer!

Bx : $xPR, nxPC; xP~2e,e!% ~x5s,t,u!.

By condition, the thickness 2e of the layerBx should be
taken sufficiently small such thate,min$MRx

2 %. This means
that those items which contain fixed~independent ofnx)
poles in x do not result in singular contributions inBx .
Hence, inBx the expression for the amplitude can be rew
ten as formal sum of contributions due to sliding~depending
on x) poles innx plus the term which is formally regular in
both variables. For example, inBu we have

M ~u,nu!5 (
i , j 50

`

Mi j
(u)uinu

j1(
Rs

Ns
(u)~u!

nu2~us2u!

1(
Rt

Nt
(u)~u!

nu1~u t2u!
, ~@u,nu#PBu!. ~22!

The corresponding formal expressions for the amplitude
Bs and Bt can be rewritten precisely in the same way. W
would like to stress that every coefficient in~22! is con-
structed from the tree level resultant parameters.

The special convenience of the form~22! is explained by
the following reason. At every fixeduPBu this form can be
treated as a uniformly converging series presenting a m
morphic function of one complex variablenu and one real
parameteru. The possibility of such interpretation is pro
vided by the general theorem~due to Mittag–Leffler! known
from complex analysis~see, e.g.,@15# and@16#!. To make use
of this theorem in its constructive form, one has to impo
certain limitations on the values of resultant parameters.
sides, in order to provide a guarantee that the amplitude
sesses desired properties of crossing symmetry, one nee
consider in parallel three different forms of the type~22! ~in
Bs , Bt , andBu). In the domains of mutual intersections
02500
re
in

-

n

o-

e
e-
s-

s to

Ds[BtùBu , Dt[BuùBs , Du[BsùBt ,

the corresponding forms must identically coincide in pai
This requirement leads to additional limitations26 strongly
restricting the allowed values of resultant parameters. Th
limitations take a form of an infinite system of algebra
equations connecting different parameters among themse
and, hence, reducing the number ofindependentparameters
needed to fix a particular effective scattering theory. The
set of independent combinations of resultant parameters
be considered as the set of true essential parameters w
require formulating the renormalization prescriptions.

VIII. CONCLUSION

The main result of the above analysis can be formula
as follows.To describe the scattering processes in the fram
work of an effective field theory one has no need in fixing
detailed structure of particle interactions off the mass sh
All the information needed to fix the numerical values
S-matrix elements at a given loop order L is contained in t
values of the resultant parameters of Lth and lower leve
This result coincides with that obtained by Weinberg, Sc
ron, and Wright in series of papers@9# on nonrelativistic
scattering theory.

The central idea of our work is that the number ofinde-
pendentnormalization prescriptions needed to fix the phy
cal content of an effective scattering theory is much less t
the total number of resultant parameters. As explained
Sec. VII, certain natural consistency requirements lead to
infinite number of constraints strongly restricting the allow
physical values of those parameters. This point will be d
cussed in detail in the next paper.
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