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Universality of spontaneous chiral symmetry breaking in gauge theories

Holger Gies*
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

Christof Wetterich†

Institut für theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany
~Received 30 September 2002; published 13 January 2004!

We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of
coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar
become unobservable. This is connected to a ‘‘bound-state fixed point’’ of the renormalization flow for which
all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar
potential with minima at a nonzero field. On the other hand, for a scalar mass termm2 below a critical value
mc

2 , the universality class is characterized by perturbative spontaneous chiral symmetry breaking which ren-
ders the quarks massive. Our renormalization group analysis shows how this universality class is continuously
connected with the QCD universality class.
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de
s
a-
n
ib

rre
do
b

al
h
tio
ha

ifi-
d

sle
t
lle
ss

e

on
o

h

-

en

arge
y
les

he

ely

ak-
lue

of
ss
In

ne-
son

the
m-
r
ali-
l

ce
ou-

ow
or-
ion

nd
I. INTRODUCTION

The universality of QCD means that predictions are in
pendent of the details of the microscopic interactions. Thi
crucial for predictivity, since the precise form of the fund
mental interactions at very short distance scales is
known. In a large parameter space characterizing poss
fundamental interactions, the QCD universality class co
sponds, however, only to a certain domain. For other
mains in parameter space, the color symmetry may
‘‘spontaneously broken’’ by the Higgs mechanism, or
quarks may acquire a large mass due to spontaneous c
symmetry breaking. We are interested here in the transi
from one domain to another and in the question of w
happens at the boundary of the ‘‘QCD domain.’’

Looking at QCD from a microscopic scale—say a un
cation scale 1015 GeV—its universality class is characterize
by eight massless gluons and a certain number of mas
fermions. Perturbatively, the masses are protected by
gauge symmetry and chiral symmetries. At a much sma
scale, around 1 GeV, nonperturbative effects induce ma
for all physical particles. In particular, the fermions becom
massive owing to chiral symmetry breaking (xSB). This
may be described by a nonzero expectation values;^c̄c&
of a ‘‘composite’’ scalar field. In order to keep the discussi
simple, we concentrate here on the case of one quark flav
generalizations to several flavors are straightforward.

Let us now consider a class of microscopic theories wit
complex fundamental ‘‘chiral scalar field’’f which has the
same transformation properties asc̄c and a classical poten
tial

V5m2f* f1
1

2
lf~f* f!2. ~1!
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The symmetries also allow for a Yukawa coupling betwe
f and the quarks. For nonzero^f&, the chiral symmetry is
broken and the quarks become massive. In the case of l
enough positivem2 ~in units of some unification scale, sa
1015 GeV), the scalar field is super-heavy and decoup
from the low-energy theory. This range ofm2 obviously cor-
responds to the universality class of QCD. All effects of t
scalar field are suppressed byp2/m2, with p a characteristic
momentum. For QCD predictions, they can be complet
ignored.

On the other hand, for large enough negativem2, we ex-
pect the perturbative picture of spontaneous symmetry bre
ing to hold. The scalar field gets a vacuum expectation va
~VEV!

^f&5s5umR
2/lf,Ru1/2, ~2!

with mR and lf,R related tom and lf by renormalization
corrections. Boths and the quark masses are of the order
the unification scale in this domain. The universality cla
now corresponds to gluodynamics without light quarks.
the chiral limit of a vanishing current quark mass, sponta
ousxSB also generates a very light pseudo-Goldstone bo
in addition to the gluonic degrees of freedom.

Varying the microscopic scalar mass termm2 from large
negative to large positive values should lead us from
universality class with perturbative spontaneous chiral sy
metry breaking~PxSB) to the universality class of one-flavo
QCD. One of the aims of this note is to understand the qu
tative features of this transition in the vicinity of a critica
value mc

2 . This is clearly a nonperturbative problem, sin
on the QCD side of the transition the effective gauge c
pling grows large.

Our investigation is based on a nonperturbative fl
equation which is obtained by a truncation of the exact ren
malization group equation for the effective average act
@1#. A crucial ingredient is the ‘‘bosonization’’ of effective
multi-fermion interactions at every scale@2#. This provides
for a description of fundamental scalar fields and bou
©2004 The American Physical Society01-1
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states in a unified framework. A theoretical method with t
feature is actually required for our problem, since the sca
quark-antiquark bound states in the QCD description~e.g.,
the pseudo-Goldstone eta meson and the sigma meson! are
expected to become associated with the fundamental s
in the PxSB description. In this framework, we see also ho
one relevant parameter and two marginal parameters in
PxSB universality class, namely, the ones correspondin
the mass and quartic self-interaction of the scalar field
the Yukawa coupling, become irrelevant for the QCD univ
sality class.

This remarkable change of the number of relevant par
eters at the transition between the two universality classe
connected with the appearance of a bound-state fixed p
for the flow of the scalar mass and self-interaction in
range of microscopic parameters corresponding to QC
This bound-state fixed point is infrared attractive for all co
plings except for the gauge coupling. Under the influence
this fixed point, all memory of the details of the microscop
interactions in the scalar sector is lost. This is exactly wha
required for the QCD universality class which has the ga
coupling as the only marginal parameter~for a massless
quark!. In order to see the appearance of the bound state,
crucial to reincorporate the effective multi-fermion intera
tions generated by the flow into the effective bosonic int
actions. This avoids an unwanted redundancy of the desc
tion. It also solves an old problem in the investigation
gauged Nambu–Jona-Lasinio models@3#; namely, how the
presence of apparent relevant parameters in a too naive t
ment of these models can be reconciled with QCD, where
such relevant parameters are present. In our approach
flow towards the bound-state fixed point solves this gen
problem.

As a result of our investigation, we find a qualitative
convincing picture of the transition between the two univ
sality classes investigated. We have kept the trunca
simple in order to illustrate the change in the number
relevant and marginal parameters in a simple way. The p
to be paid is a limited accuracy in the quantitative desc
tion for parameter regions where the effective gauge c
pling grows large. In our setting, this concerns primarily t
quantitative details of the flow of the instanton-mediated
teractions and the running of the strong gauge coupling.
emphasize that the qualitative picture does not require a
tailed understanding of strong interactions in the momen
range where the gauge coupling is large. All decisive featu
are determined by the flow in a momentum range subs
tially larger than 1 GeV. In the same spirit, we also ha
neglected other effective bosonic degrees of freedom wh
may correspond to additional bound states. We keep only
composite scalars and the gluons. When we proceed with
analysis to the strongly coupled gauge sector, we do no
tempt to compute the gluodynamics, but simply model
strong interactions with an increasing gauge coupling; for
latter, we use various examples discussed in Appendix B.
do not claim that our truncation of the gauge sector is su
cient in order to establish chiral symmetry breaking in QC
A much more elaborate analysis would be needed for
purpose. We rather take the spontaneous symmetry brea
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in the QCD universality class as a fact~established by othe
methods and observation!. We only require that a reasonab
truncation should describe chiral symmetry breaking. B
yond this, the details of the truncation in the gauge sector
not relevant for our discussion of universality classes. D
spite these shortcomings, we expect that our quantitative
sults describe the right order of magnitude of one-flav
QCD. An impression of the size of uncertainties can
gained from Table I in Appendix B.

In order to illustrate our points, we compute the sca
condensate, i.e., the renormalized minimum of the effec
potential,sR5AZfuf0u2, for a broad range of initial scala
mass valuesm̄L

2 . We note thatsR is directly connected with
the decay constant of the eta meson and sets the scale fo
quark mass generated byxSB. We first neglect the anoma
lous UA(1) violating contributions from instanton effect
which only affect the physics at scales around 1 GeV.~They
will be considered in Sec. V.! We parametrize the micro
scopic interactions by the initial values of the renormaliz
tion flow at a GUT-like scaleL51015 GeV. As can be read
from Fig. 1, a critical massm̄c

2 exists. For initial scalar

masses below this critical mass,m̄L
2 ,m̄c

2 , the naive expec-
tation is fulfilled, and we find scalar condensates of the or
of the cutoff, sR;1013. . . 1015 GeV. It is remarkable that
the value of the critical mass is negative and typically of t
order of the cutoff or only a few orders of magnitude belo
the cutoff; for example, we findm̄c

2.20.35L2 for the initial

valuesh̄251 andl̄f5100 atL51015 @Fig. 1 ~left panel!#.
For a perturbatively accessible set of initial parametersh̄2

50.1 andl̄f51 atL51015, we findm̄c
2.20.0043L2 @Fig.

1 ~right panel!#. In the latter case, we find a linear depe
dence of the condensate on the mass parameter,sR

2

;2(m̄L
2 2m̄c

2), as expected from perturbation theory@cf.
Eq. ~2!#.

However, for initial scalar masses above this critical ma
m̄L

2 .m̄c
2 , the scalar condensate is 16 orders of magnitu

smaller@not visible in the linear plot in Fig. 1~right panel!#.
In this case, symmetry breaking is triggered by the ferm
and gauge sectors and not by the scalar sector, i.e.,sR is
roughly of the order ofLQCD. Therefore, even if we start th
flow deep in the broken regime withm̄L

2 ,0 but above the
critical mass, the scalar fluctuations drive the system fi
into the symmetric regime where it will be attracted by t
same IR fixed point as a QCD-like system. It should
stressed that no fine tuning of the initial parameters
needed, neither to put the system into the domain of att
tion of the QCD universality class nor to separate the ult
violet ~UV! scale from the scale of chiral symmetry brea
ing.

Only for m̄L
2 ,m̄c

2 is the effective coupling between th
scalars and the fermions strong enough to induce PxSB with
a magnitude determined by the initial parameters of the s
lar sector. In this case, we would have to fine-tune the ini
condition form̄L

2 to lie extremely close tom̄c
2 , if we wanted

to separate the UV scale from the scale of chiral symme
breaking. This is the famous naturalness problem which
1-2
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FIG. 1. Renormalized scalar vacuum expectation valuesR
2 versus the initial condition for the scalar mass at the UV cutoff,m̄L

2 . Left

panel: logarithmic plot for the parametersZf51, h̄251, l̄f5100 atL51015 GeV resulting inm̄c
2.20.35L2. Right panel: linear plot for

h̄250.1, l̄f51; for m̄L
2 ,m̄c

2.20.0043L2, the linear dependencesR
2;2(m̄L

2 2m̄c
2), as expected from perturbation theory, is confirme
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generic for models involving a fundamental scalar.
course, theories without fundamental scalars such as QC
not have this problem, although effective scalar degree
freedom such as bound states can occur at low energies
one of our main observations that the mechanism of h
‘‘QCD-like’’ theories circumvent the naturalness proble
can also be applied to models with a fundamental scalar

The details of our study are organized as follows: in S
II, we introduce the class of models containing one-flav
QCD and derive the flow equations for a qualitatively re
able truncation including ‘‘bosonization at all scales.’’ Se
tion III is devoted to a discussion of the bound-state fix
point which governs the flow of the QCD domain for we
gauge coupling. In Sec. IV, we analyze the universal featu
of the QCD domain numerically and give estimates of inf
red ~IR! observables in the nonperturbative strong-coupl
regime. Instanton-mediated interactions are included in S
V, where we also describe the fate of the pseudo-Goldst
boson.

II. FLOW EQUATIONS

QCD with one massless Dirac fermion flavor coupled
an SU(Nc) gauge field is characterized by the classical~or
bare! action

SQCD5E d4xc̄ iD” @A#c1
1

4
Fmn

a Fmn
a , ~3!

where Dm
i j @A#5]md i j 2 iḡTa

i j Am
a , and Ta denotes the~Her-

mitian! generators of the gauge group in the fundamen
representation. In this work, we embed one-flavor QCD i
larger class of chirally invariant theories including a colo
singlet scalar field. For this, we consider the action

G5E H Zcc̄ iD” c1
l̄s

2
@~ c̄c!22~ c̄g5c!2#1Zf]mf* ]mf

1U~f!1h̄@~ c̄RcL!f2~ c̄LcR!f* #

1
ZF

4
Fmn

a Fmn
a 1

1

2j
~D̄mam

a !2J , ~4!
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which represents a simple truncation of the space of ac
functionals and serves as the basis of our approximatio
Here we have used the shorthand (c̄c)5c̄ ic i for the color
indices. We included a background gauge fixing term w
parameterj, and Am5Ām1am , Ām being the background
and am the fluctuation field,D̄m[Dm@Ā#. Furthermore, we
do not display the ghost sector for simplicity. Equation~4!
reduces to one-flavor QCD if we set the four-fermion and
Yukawa interaction equal to zero,l̄s5h̄50, let the scalar
field be auxiliary,Zf50, and setZF515Zc ~the scalar po-
tential is of no importance then!. Furthermore, there is a
redundancy in Eq.~4!: we can compensate for a shift inl̄s

by readjusting the Yukawa coupling and the scalar poten
corresponding to a Hubbard-Stratonovich transformat
~partial bosonization!. But apart from this redundancy, whic
will be removed later on by ‘‘rebosonization,’’ different ini
tial values for the various parameters in Eq.~4! generally
correspond to different quantum theories. Some of th
theories will belong to the same universality class sharing
same low-energy properties, which makes them indis
guishable from a low-energy physicist’s point of view.

We analyze this class of theories in a Wilsonian sp
upon integrating out quantum fluctuations momentum sh
by momentum shell. For this we employ the formalism bas
on the exact renormalization group flow equation for t
effective average action@1,4#,

] tGk5
1

2
STr@] tRk~Gk

(2)1Rk!
21#, ~5!

whereGk
(2) denotes the second functional derivative of t

effective average actionGk that governs the dynamics of th
system at a momentum scalek. The logarithmic scale param
eter t is given by t5 ln k/L, ] t5k(d/dk), whereL denotes
the ultraviolet scale at which we define the bare actionGL .
The cutoff functionRk is to some extent arbitrary and obey
a few restrictions@4# which ensure that the flow is well de
fined and interpolates between the bare action in the UV
the full quantum effective actionGk→0 in the infrared.

We solve the flow equation~5! by using Eq.~4! as a
truncation of the space of all possible action functionals.
a consequence, we promote all couplings and wave func
1-3
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renormalizations occurring in Eq.~4! to k-dependent quanti
ties. Although the truncation~4! represents only a small sub
class of possible operators generated by quantum fluc
tions, it is able to capture many physical features of QC
like systems.

Let us elucidate the single components in detail: for
scalar potential, we use the simple truncation

U~f!5m̄2r1
1

2
l̄fr22

1

2
n̄z, r5f* f, z5f1f* .

~6!

Already ther-dependent first two terms of the potential a
capable of describing spontaneousxSB of the system which
we are aiming at. Indeed, the order parameters denotes the
minimum of the scale-dependent effective potentialUk for
k→0. The term;z5f1f* breaks the UA(1) symmetry of
simultaneous axial phase rotations of scalars and fermion
accounts for the effects of the axial anomaly. However,
presence of the axial anomaly is not relevant for universa
of spontaneousxSB, although it has, of course, a stron
quantitative impact on resulting low-energy parameters s
as condensates and constituent quark masses. Therefor
postpone the discussion of this quantitative influence to S
V and setn̄50 in the following for the sake of clarity.

In the gauge sector, we do not attempt to calculate the
nonperturbative flow ofZF , or alternatively the gauge cou
pling g, here, but study various possibilities for these flo
and take over nonperturbative results from the literature.
most important features of the universality classes invo
only the perturbative running ofg.1

We will define the quantum theories by fixing the initi
conditions for the renormalization flow at the UV scaleL. In
the gauge and fermion sectors, we choose

ZFuk5L51, Zcuk5L51, l̄suk5L50. ~7!

The first two conditions normalize the gauge and ferm
fields and imply thatḡ denotes the bare gauge coupling. T
last condition states that four-fermion interactions eith
have been partially bosonized into the scalar sector or
completely absent at the UV cutoff scaleL.

The choice of the scalar couplings at the UV cutoff w
finally determine whether we are in or beyond the QCD d
main. In order to describe standard QCD in our picture
natural choice is given by

m̄2uk5L51O~L2!, l̄fuk5L50, ~Zf ,h̄!uk5L→0,
~8!

implying that the scalar fields are nondynamic, nonintera
ing and heavy atL and decouple from the fermion secto

1The running ofg is universal in two-loop order. In the framewor
of the exact renormalization group, this has been computed in
@8#. As discussed in the introduction, the one-loop running is ac
ally sufficient to generate the main qualitative features needed
our argument.
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They could be integrated out without any effect on the f
mion sector and therefore are completely auxiliary. Howev
we will demonstrate below that the infrared physics inclu
ing xSB is to a large extent independent of the initial valu
in the scalar sector; in other words, the QCD universa
class is actually much bigger than the restrictive choice
initial conditions of Eq.~8!.2

For a concise presentation of the renormalization gro
~RG! flow equations of the single couplings, it is convenie
to introduce the dimensionless, renormalized andk-
dependent quantities,

e5
m̄2

Zfk2
, lf5

l̄f

Zf
2

, h5
h̄

Zf
1/2Zc

, ~9!

in the symmetric regime of the system. In thexSB regime,
the mass term becomes negative, and we replace this
pling by the minimum of the potentialr0 and its correspond-
ing dimensionless variablek defined by

05
]

]r
Uk~r5r0!, k5

Zfr0

k2
. ~10!

Similarly, we definel̄f as the secondr-derivative of the
potential at the minimum in thexSB regime. The running of
the wave function renormalizations is studied using the
sociated anomalous dimensions,

hf52] t ln Zf , hc52] t ln Zc , hF52] t ln ZF ,
~11!

wherehF represents the major piece of information from t
gauge sector in our truncation. Here, the use of
background-field method for this gauge sector has two
vantages: first, it represents a bookkeeping device to se
consistent gauge-invariant approximations within a cert
order of truncation. Second, the physical idea of the ba
ground field is that it accommodates the true ground stat
the system around which the quantum fluctuations are i
grated out. In this spirit, we deduce the running gauge c
pling from the RG behavior of the background field. Owin
to background gauge invariance, the product of gauge c
pling and background gauge field is renormalization-gro
invariant @5#, so that the beta function for the renormalize
running gauge couplingg is related tohF by

bg2[] tg
25hFg

2, g25
ḡ2

ZF
. ~12!

Actually, the effective action depends on both the ba
ground and the fluctuating gauge field, and then-point func-
tions can only be extracted from the functional depending
both fields@6#. Nevertheless, once all fluctuations are in
grated out, the fluctuating field can be set to zero and

f.
-

or

2Already at this point, it is clear thatlf,L could also be chosen
nonzero, which would only result in an unimportant change of
normalization of the functional integral.
1-4



th
d
s,
tin
ile
un
try

be
he
he

or
By
th
ac
un
l
rs
in
ac
g

es
o

pe
-
g
n

th
,
u
-

t
-

n
ld
b

ar

]

is

it,

t the
ld.
-
an

usly

UNIVERSALITY OF SPONTANEOUS CHIRAL SYMMETRY . . . PHYSICAL REVIEW D 69, 025001 ~2004!
resulting effective action is gauge invariant. In general,
dependence of the effective action on both fields is nee
for the RG flow. With the help of background-field identitie
the dependences of the effective action on the fluctua
gauge field and the background field are related. A deta
record of the flow equations and results in the backgro
field formalism, including the role of the gauge symme
and Slavnov-Taylor identities, can be found in Refs.@6,7#.

In the present work, we neglect possible differences
tween the RG flow for gauge couplings defined from t
background-field effective action and from vertices of t
fluctuating field@8,9#. This is perfectly justified in the limit
of small gauge coupling which is of primary importance f
this work. Here the lowest-order running is universal.
contrast, in the region of large coupling, our truncation of
gauge sector would anyway not be reliable if taken at f
value, so that we abstain from resolving the gauge field r
ning andhF in this regime. In this region, we simply mode
the running of the gauge coupling in order to obtain a fi
glance at thexSB regime. Thereby, we assume that the
fluence of higher gluonic operators can be effectively
counted for by the increase of the gauge coupling. Althou
this certainly represents an oversimplification, let us str
that the details of the flow in the gauge sector are only
secondary importance for the issue addressed in this pa

Inserting the truncation~4! into the exact RG flow equa
tion for the effective average action, we find the followin
results. The scalar and fermion anomalous dimensions ca
written as

hf54v4klf
2 m2,2

4 ~0, 2klf ;hf!

14Ncv4h2@m4
(F),4~kh2;hc!1kh2m2

(F),4~kh2;hc!#,

~13!

hc52C2~Nc!v4g2@~32j!m1,2
(FB),4~kh2, 0;hc ,hF!

23~12j!m̃1,1
(FB),4~kh2, 0;hc ,hF!#

1v4h2@m1,2
(FB),4~kh2,e12klf ;hc ,hf!

1m1,2
(FB),4~kh2,e;hc ,hf!#, ~14!

where v451/(32p2) and C2(Nc)5(Nc
221)/(2Nc). This

representation is valid in the symmetric as well as in
xSB regime. In the former,k has to be set equal to zero
wherease50 has to be chosen in the latter. The vario
quantities denoted bym are threshold functions which con
trol the decoupling of massive modes for decreasingk; they
also contain all dependencies on the precise choice of
cutoff functionRk . Their definitions and explicit representa
tions can be found in Appendix A or in Ref.@4#.

Equation ~13! agrees with Refs.@4,11#. We also find
agreement for the second line of Eq.~14!, whereas the first
line arises from the gauge-field sector~which has not been
dealt with in Refs.@4,11#!. As a further check, we note that i
the perturbative small-coupling limit, where the thresho
functionsm occurring above universally reduce to 1, we o
tain
02500
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Nc

8p2
h2, hcU

pert.

5j
C2~Nc!

8p2
g21

1

16p2
h2,

~15!

which agrees with the literature@12#.
In the symmetric regime, the flow of the purely scal

sector can be summarized by

] te52~22hf!e28v4lfl 1
4~e;hf!18Ncv4h2l 1

(F),4~0;hc!,

~16!

tlf52hflf120v4lf
2 l 2

4~e;hf!28Ncv4h4l 2
(F),4~0;hc!,

~17!

whereas in thexSB regime, we find

] tk52~21hf!k12v4l 1
4~0;hf!16v4l 1

4~2klf ;hf!

28Ncv4

h2

lf
l 1
(F),4~kh2;hc!, ~18!

] tlf52hflf12v4lf
2 l 2

4~0;hf!118v4lf
2 l 2

4~2klf ;hf!

28Ncv4h4l 2
(F),4~kh2;hc!, ~19!

in complete agreement with the results of Ref.@11#. Again,
the quantities denoted byl are threshold functions@4,13#.
Now we turn to the flow of the Yukawa coupling, which
driven by all sectors of the system:

] th
25~2hc1hf!h224v4h4@ l 1,1

(FB),4~kh2,e;hc ,hf!

2 l 1,1
(FB),4~kh2,e12klf ;hc ,hf!#

28~31j!C2~Nc!v4g2h2l 1,1
(FB),4~kh2,0;hc ,hF!, ~20!

where we have to setk50 (e50) in the symmetric (xSB)
regime. As a check, we take a look at the perturbative lim

] th
2upert.5

Nc11

8p2
h42

3C2~Nc!

4p2
g2h2, ~21!

where we rediscover known results and also observe tha
gauge-parameterj dependence has dropped out as it shou

A crucial ingredient is the flow of the fermion self
interaction, which—in a dimensionful representation—c
be written as

] tl̄s5
Zc

2

k2
@bl̄s

g4

g41bl̄s

h4

h4#,

bl̄s

g4

ª26
~Nc12!~Nc21!

Nc
2

C2~Nc!v4 l̃ 1,2
(FB),4~kh2, 0;hc ,hF!,

bl̄s

h4

ªS 2

Nc
11D v4 l̃ 1,1,1

(FBB),4~kh2,e,e12klf ;hc ,hf!.

~22!

Here we neglected terms;k which arise only in the broken
regime but are suppressed therein owing to simultaneo
1-5
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occurring threshold functions~these terms are similar to th
last term in square brackets in Eq.~13!, which has hardly any
effect on the results either!. In Eq. ~22! as well as in all
equations above, we neglected terms of orderl̄s on the
right-hand side, becausel̄s50 will finally be guaranteed on
all scales as discussed below. Furthermore, we have ch
the same Fierz transformations in the Dirac algebra as in
@2# and decomposed the possible color structures of the f
fermion interaction into a color singlet (S–P)S and color
Nc

221-plets (S–P)N
c
221 ,(V)N

c
221. In the present work, we

focus on the (S–P)S term; in principle, the (V)N
c
221 term

could be absorbed into ak-dependent transformation of th
non-Abelian gauge field in the same way as suggeste
Ref. @2# for the Abelian case.3

As mentioned above, there is a certain redundancy in
parametrization of the effective actionGk owing to possible
different choices of partial bosonization of the four-fermi
interaction. From a different viewpoint, this redundancy c
responds to the possible mixing of fields or composite ope
tors with identical quantum numbers. We remove this red
dancy in the present truncation with the aid of the followi
k-dependent transformation of the scalar field~‘‘fermion-
boson translation’’!:

] tfk~q!52~ c̄LcR!~q!] tak~q!1fk~q!] tbk~q!,

] tfk* ~q!5~ c̄RcL!~2q!] tak~q!1fk* ~q!] tbk~q!,
~23!

with a priori arbitrary functionsak(q) andbk(q). Upon this
transformation, the flow equations given above receive a
tional contributions;ak(q),bk(q) according to

] tGk5] tGk ufk ,f
k*
1E dGk

dfk
] tfk1E dGk

dfk*
] tfk* . ~24!

As described in more detail in Ref.@2#, these functions can
be uniquely determined by demanding for~i! ] tl̄s(q2) to
vanish for allk andq2, where the momentum dependence
l̄s has been studied in thes channel for simplicity,l̄s(q2)
[l̄s(s5q2), ~ii ! the Yukawa couplingh̄ to be momentum
independent, and~iii ! ] tZf(q25k2)52hfZf in order to
render the approximation of a momentum-independentZf
self-consistent. Condition~i! together with the initial condi-
tion ~7! guarantees that no four-fermion interaction of th
type is generated under the flow; this interaction is bosoni
into the scalar sector at all scalesk. Condition~ii ! guarantees

3By neglecting some of the four-fermion interactions, our quan
tative result will depend slightly on the choice of the Fierz deco
position. Using a ‘‘fermion-boson translation’’ to be described in t
following, this dependence can be removed in a larger truncation
was recently shown in Ref.@10#. However, we checked explicitly
that quantitative results in another natural Fierz decomposition
volving (S–P)S,(V)S and (V)N

c
221 differ from the present ones

only on the 1% level.
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the fermion mass generated byxSB is also momentum in-
dependent, so that the couplings in thexSB regime have a
direct physical interpretation.

The field transformation~23! affects also the scalar cou
plings, and we obtain, in the symmetric regime,

] te5] teufk
12

e~11e!

h2
~11~11e!Qs!~bl̄s

g4

g41bl̄s

h4

h4!,

] th
25] th

2ufk
12~112e1Qs~11e!2!~bl̄s

g4

g41bl̄s

h4

h4!,

~25!

where the corresponding first terms on the right-hand si
denote the flow equations for fixed fields as given above
Eqs.~16! and ~20!. In thexSB regime, we find similarly

] tk5] tkufk
12

k~12klf!

h2
~11~12klf!Qs!

3~bl̄s

g4

g41bl̄s

h4

h4!,

] th
25] th

2ufk
12~122klf1Qs~12klf!2!

3~bl̄s

g4

g41bl̄s

h4

h4!. ~26!

Defining Dl̄sªl̄s(k2)2l̄s(0), the quantity Qs

[] tDl̄s /] tl̄s(0) measures the suppression ofl̄s(s) for
large external momenta. Without an explicit computation,
may conclude that this suppression impliesQs,0, in agree-
ment with unitarity; furthermore, if the flow is in the
xSB regime, the fermions become massive, and n
pointlike four-fermion interactions in thes channel will be
suppressed by the inverse fermion mass squared.4 Therefore,
we modelQs by the ansatz

Qs5Qs
0m1,2

(FB),4~kh2, 0,hc ,hF!, Qs
05const,0, ~27!

where we have introduced a threshold function with the
propriate decoupling properties for massive fermions. T
qualitative results are independent of the precise choice
Qs , and it is reassuring to observe a quantitative indep
dence of the IR observables on the precise value forQs

0 ~e.g.,
Qs

0.20.1).
The field transformations~23! also modify the equation

for lf via the terms;] tbk . In the pointlike limit (q2

50), the modified running is given by

-
-

as

- 4This can be inferred from the heavy-fermion limit of the tw
gluon/scalar-exchange box diagram where the internal ferm
propagators become pointlike,;1/mf .
1-6
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] tlf5] tlfufk

14
lf

h2
~11e!@11~11e!Qs#~bl̄s

g4

g41bl̄s

h4

h4!.

~28!

It will turn out that the modification of the flow oflf is also
quantitatively irrelevant, whereas the modifications d
played in Eqs.~25! and ~26! are of crucial importance.

III. BOUND-STATE FIXED POINT

The universal features of spontaneousxSB in the QCD
domain that will be quantitatively analyzed in the next se
tion can be traced back to the occurrence of a fixed point
the scalar couplings. This fixed point is infrared attractive
long as the gauge coupling remains weak and can be as
ated with a bound state@2#.

The fixed-point structure can conveniently be analyz
with the help of the coupling

ẽ5
e

h2
5

Zc
2m̄2

k2h̄2
. ~29!

Since we are interested in the domain of weak gauge c
pling, for simplicity we can neglect the anomalous dime
sions in the following. In this approximation and choosi
the gauge parameterj50 ~background Landau gauge!, the
flow of ẽ yields

] tẽ58Ncv4l 1
(F),428v4l 1

4~e!
lf

h2

2~2224C2~Nc!v4l 1,1
(FB),4g2!ẽ22~bl̄s

g4

g41bl̄s

h4

h4!ẽ2.

~30!

~Here, all arguments of the threshold functions which are
displayed are assumed to be equal to zero; therefore, thr
old functions without any argument are simply numbe
which depend on the details of the regularization.! If the
scalar field is auxiliary at the UV scale as in the QCD co
text, its wave function renormalization is very small initiall
Zf!1, so that the dimensionless renormalized mass is v
large, e@1. In this case, scalar fluctuations are suppres
and the threshold functions depending one vanish; the right-
hand side of Eq.~30! describes a parabola in the variableẽ,
and we find two positive fixed points, 0, ẽ1* , ẽ2* , whereẽ1*

is UV attractive but IR unstable, andẽ2* is an IR stable fixed

point ~see Fig. 2, solid line!. It can be shown thatẽ1* corre-
sponds to the inverse of the critical coupling of the N
model, so that our flow describes a model with strong fo
fermion interaction if we choose UV initial conditions wit
ẽL, ẽ1* to the left of the first fixed point~see, e.g., Ref.@14#
for a detailed analysis of the phase structure in the Abe
case!. For this choice, the system is not in the QCD dom
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but approaches chiral symmetry breaking (ẽ,0) in a pertur-
batively accessible way~PxSB).

In this section, we concentrate on those initial valu
which release the system to the right of the first fixed po
ẽL. ẽ1* , i.e., which are weakly coupled in the NJL languag
This will be the range of the QCD universality class. As t
system evolves, it flows towards the second fixed pointẽ2* ,
which then governs the evolution over many scales. He
the system ‘‘loses its memory’’ of the initial conditions; i
particular, it is of no relevance whether we start withẽ1*

, ẽL, ẽ2* or ẽL. ẽ2* . The evolution towards and in the IR i

universally governed by this fixed pointẽ2* , which can be
shown to be associated with a fermion-antifermion bou
state; e.g., in QED, the properties of the scalar field at
fixed point correspond to those of positronium@2#.

Before we elucidate the fixed-point properties further,
us briefly mention that its existence can be generalized to
case of a scalar field describing a fundamental particle in
UV ~a Yukawa model with gauged fermions rather th
QCD!. In this case, we haveZf51 ande.O(1) at the UV
scale. Now the second term in Eq.~30! can become impor-
tant, in particular for a largef4 couplinglf and/or smallh2.
When discussing the right-hand side of Eq.~30! for fixed g,
h, lf , one should keep in mind that these couplings m
change withk. For largelf /h2, the ẽ parabola is lowered
and the first fixed point can move to negative values,ẽ1*
,0 ~see Fig. 2, dashed line!. In this case, we can release th
system even in the broken regime at the UV scale,ẽ,e,0,
but it still evolves towards the bound-state fixed pointẽ2* . In
comparison with Fig. 1, this corresponds to initial valu
m̄c

2,m̄L
2 ,0. Physically, such a scenario describes a sys

involving fundamental scalars, fermions and gauge fie
where the scalar sector is initially weakly coupled to t
fermions. If we start in the broken regime, scalar fluctuatio
will drive the system towards the symmetric regime befo
the fermion-gauge-field interactions induce sizable bou
state effects which can exert an influence on the scalar se
In this scenario, the first fixed pointẽ1* ,0 is a measure of

FIG. 2. Flow of ẽ according to Eq.~30! ~schematic plot!: the
solid line corresponds to a QCD scenario at weak gauge coup
the arrows indicate the direction of the flow towards the infrar
The dashed line corresponds to a system with fundamental sc
Zfuk5L51, e&1, and strong scalar self-interaction. The dott
lines exhibit the destabilization of the bound-state fixed point by
increasing gauge coupling.
1-7
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the strength of the initial effective coupling between scal
and fermions. For strong effective coupling,ẽL, ẽ1* , an ini-

tial negative scalar mass of the order of the cutoff,m̄2uk5L

.2O(L2) will induce a vacuum expectation value and
fermion mass of the same order, in agreement with na
expectations. But at weak effective coupling, e.g.,h2

;O(1), lf.100 andẽ1* , ẽL,0, the system can still star

with an initial negative scalar massm̄2uk5L.2O(L2), but
finally run into the bound-state fixed point. As an importa
result, the vacuum expectation value and the fermion m
after symmetry breaking can easily be orders of magnit
smaller than the UV scale, as exhibited in Fig. 1 in Sec. I.
conclude that all systems withẽL. ẽ1* belong to the QCD
universality class.

Let us now turn to the properties of the system at
bound-state fixed point. The crucial observation is that
only ẽ but also all dimensionless scalar couplings appro
fixed points. In the general case, the fixed-point values
pend in a complicated form on all parameters of the syst
However, in the limite@1 ~QCD-like!, we can find analytic
expressions that satisfy the fixed-point conditio
] t(e,h2,lf)50 to leading order:

e* .
2

uQsu
,

~h* !2.
2ubl̄s

g4

ug4

uQsu

5
12

uQsu
C2~Nc!~Nc12!~Nc21!

Nc
2 v4l 1,2

(FB),4g4, ~31!

lf* .
Nc~h* !4

6C2~Nc!g
2

.

From the first equation, we read off that the approximat
e@1 is equivalent to assuminguQsu!1, which is roughly
fulfilled in our numerical study with our choice ofQs

0

520.1.
The remarkable properties of the IR fixed point beco

apparent when considering the renormalized scalar m
m25ek2. Since e→e* , the scalar mass simply decreas
with the scalek, so that it is onlynatural to obtain small
massesm2!m̄L

2 for small scale ratiosk!L. In other words,
even if we start with a scalar mass of the order of the cut
m̄2uk5L;L2, no fine tuning will be necessary to obta
small mass values at low-energy scales, as long as the
ning is controlled by the bound-state fixed point.

In order to approach thexSB regime, the bound-stat
fixed point has to be destabilized; otherwise, the system
remain in the symmetric regime as is the case in QED
QCD, this destabilization arises from the increase of
gauge coupling towards the infrared@15#. From the third and
last term of Eq.~30!, it is obvious that an increasing gaug
coupling lifts the] tẽ parabola~see Fig. 2, dotted lines!. For
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some valuegD
2 of the gauge coupling, the two fixed-points

ẽ will be degenerate, so that there is no fixed point at all
all g2.gD

2 . The beta function] tẽ is then strictly positive,
which drives the system towards thexSB regime.

In the limit e@1, the critical gauge coupling of fixed
point degeneracygD

2 can be computed analytically, and w
find

gD
2 .

16

3
p2

Nc

Nc21 SA11
1

Nc11
21D .

4

3
p2

1

C2~Nc!
,

~32!

where we have used linear cutoff functions@16# for which
l 1,2
(FB),453/2. For instance, for SU~3! we get aD5gD

2 /4p
.p/4, which is in the nonperturbative domain, as expecte5

As soon asg2 exceedsgD
2 , the running of the scalar cou

plings is no longer protected by the bound-state fixed po
Here all couplings are expected to run fast, being stron
influenced by the details of the increase of the gauge c
pling. Of course, owing to strong coupling, many highe
order operators can acquire large anomalous dimensions
contribute to the dynamics of the symmetry-breaking tran
tion. Our truncation should be understood as the minim
lowest-order approximation in this regime, but gives alrea
a remarkably consistent~but not necessarily complete! pic-
ture. Once chiral symmetry is broken, the fermions decou
and the fermionic and~most of the! scalar flow essentially
stops.

The scenario discussed here finally explains why the
values of the scalar and fermionic couplings inherit their
der of magnitude from the QCD scaleLQCD as they should,
whereas particularly the details of the scalar sector at the
scale are of no relevance, owing to the fixed-point struct
inducing QCD universality.

IV. NUMERICAL RESULTS

In the following, we concentrate on the set of theories t
belong to the QCD universality class. In order to illustra
how universality arises from the presence of the bound-s
fixed point, we initiate our flows at a GUT-like scale ofL
51015 GeV, where the gauge coupling is weak and increa
only logarithmically towards the infrared. Therefore, th
bound-state fixed point exists over a wide range of scales
discussed before, hardly any dependence on the specific
tial values for the scalar potential and the Yukawa coupl
remains because of the fixed point, as we will demonstr
quantitatively in the following.

For illustrative purposes, we concentrate here on QC
like scenarios where the scalar is auxiliary at the UV sca
and explore this parameter space using the natural ch

5Strictly speaking, the value ofgD
2 is not a physical quantity and

depends on the choice of the cutoff function, i.e., the regulariza
scheme. This is only natural, since the running of the coupling it
also depends on the regularization. The scheme dependence,
ever, cancels out in physical quantities.
1-8
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FIG. 3. Flow of e, h and lf in the symmetric regime according to Eqs.~16!, ~17!, ~20!, and ~25!. The solid lines correspond to th
reference set~33!, whereas the dotted and dashed lines represent the flows for strongly differing initial values as indicated. The inse
with respect to the choice of initial conditions is clearly visible. On the horizontal axis, the exponentt10 is used for the scalek
510t10 GeV.
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given by Eq.~8! as a reference; to be precise, we use
reference set

m̄2uk5L5L2, l̄fuk5L50, Zfuk5L51028,

h̄2uk5L510212, ⇔euL5108, lfuL50, huL51022,
~33!

in our numerical studies. In all computations, we use lin
cutoff functions proposed in Ref.@16# for which the thresh-
old functions can be determined analytically~see Appendix
A!. We plot the flows of the renormalized dimensionless c
plings e, h andlf in Fig. 3 for the symmetric regime. Th
reference set~33! is depicted as solid lines, whereas t
dashed and dotted lines correspond to initial values wh
deviate from the reference set~33! by many orders of mag
nitude for the corresponding couplings.

As long as we start in the range of attraction of the bou
state fixed point, we can obviously vary the initial values
the scalar couplings over many orders of magnitude with
any appreciable effect. The system quickly approaches
bound-state fixed point, where the initial values of the co
plings become unimportant. In particular, the scalar ma
which is allowed to be of the order of the cutoff or eve
much larger atk5L, runs to small values;k while the
system is governed by the bound-state fixed point. No
tuning is necessary for this.6 Let us stress once more th
these features of universality are not restricted to the re
ence set~33! and the variations thereof. They can also
found in Yukawa models with a fundamental sca
(Zfuk5L51) and even if we start in the broken regime at t
UV scale~see Fig. 1!.

At the bound-state fixed point, the couplings are mod
lated only by the logarithmically slow increase of the gau
coupling. Incidentally, the modulation ofẽ5e/h2 is com-
pletely carried byh, wherease stays fixed. This agrees wit
our analytical fixed-point values found in Eq.~31!. A rapid

6As a fairly weak condition, we only have to ensure that the init
scalar couplings are such that no strong four-fermion interactio
implicitly induced by the initial values; in this case, the syste

starts to the left of the first fixed pointẽ1* and rather resembles
non-Abelian gauged NJL model with PxSB.
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change for the couplings in Fig. 3 is visible afterg2 exceeds
gD

2 and the bound-state fixed point has disappearedt10

&1).
The behavior of the system changes rapidly after

gauge coupling has grown large. Forg2.gD
2 , the bound-

state fixed point vanishes and all couplings start to run f
The system necessarily runs into thexSB regime where the
scalars develop a vacuum expectation value and the ferm
acquire a mass

mf
25 lim

k→0
k2kh2[~hsR!2, ~34!

wheresR5 limk→0AZfr0 denotes the renormalized expect
tion value of the scalar field.

This leads to a decoupling of the fermions, and, con
quently, fermion-boson translation is ‘‘switched off.’’ Als
the flow of the Yukawa coupling stops, the scalar and f
mion anomalous dimensions approach zero, andk runs ac-
cording to its trivial mass scaling,k;1/k2, so thatmf ap-
proaches a constant value.

Whereas the qualitative picture is rather independen
the details of the running gauge coupling, quantitative res
are highly sensitive to the flow of the gauge sector. This
because a finite amount of ‘‘RG time’’ passes from the d
appearance of the bound-state fixed point to the transi
into thexSB regime. In between, the running of the gau
coupling exerts a strong influence on all other couplin
which are no longer protected by any fixed point. A pure
perturbative running of the gauge coupling turns out to
insufficient for the present purpose, since the~unphysical!
Landau pole destabilizes the system in the infrared.

For definiteness, let us consider a running coupling g
erned by the beta function

] tg
25bg25hFg

2522S b0

g4

16p2
1b1

g6

~16p2!2D
3F 12expS 1

a*
2

1

g2

4p
D G s

,

b05
11

3
Nc2

2

3
Nf , b15

34

3
Nc

22
10

3
NcNf22C2~Nc!Nf

~35!

l
is
1-9
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FIG. 4. Flow of the scalar massm, the scalar VEVsR , and the constituent quark massmf close to and in thexSB regime, using the
reference set~33!. For the particular choice for the running of the gauge coupling according to Eq.~35! with a* 52.5, the transition occurs
at kx SB.423 MeV.
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for our numerical studies. In the UV, this beta function e
hibits an accurate two-loop perturbative behavior, wher
the coupling runs to a fixed pointas[g2/(4p)→a* in the
IR for k→0. In the first place, the infrared fixed point
convenient for numerical purposes, since it does not lea
artificial IR instabilities. Moreover, an infrared fixed poin
for a mass-scale-dependent running coupling is compa
with the expected mass gap in Yang-Mills theory. Below t
mass gap, all gauge field fluctuations decouple from the fl
and can no longer drive the flow of the coupling. Differe
beta functions with and without infrared fixed points a
studied in Appendix B. It turns out that, though the infrar
properties such as the constituent quark mass depend q
titatively on the choice of the beta function as expected,
universal features discussed in the following remain
touched. This underlines our observation that the deta
understanding of the flow for the region of strong gau
coupling is not essential for the overall picture.

In combination with Eq.~35!, the system of flow equa
tions is now closed and provides us with an answer for
~truncated! quantum effective action, once we specify all p
rameters and initial values. We have investigated SUNc
53) gauge theory with initial valueg(L) chosen such tha
as acquires its physical value at theZ-boson mass,as(MZ)
.0.117. We work in the background Landau gauge,j50,
which is known to be a fixed point of the renormalizatio
flow in the gauge sector@17,18#. If we had an exact flow
02500
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equation at our disposal this choice would fix the syst
completely.

In our truncation, however, we have the parameterQs
0 , in

addition to the Yang-Mills beta function, which characteriz
our ignorance of the exact flow. The quantityQs

0 measuring
the momentum suppression of the four-fermion interact
will be set toQs

0520.1, in agreement with our conside
ations given above. It turns out that the infrared properties
the system are only weakly dependent on this parameter
on j ~see below!, which substantiates our truncation. Fu
thermore, we choosea* to be of order 1, but not too close t
gD

2 /(4p) in order to avoid pathologies:a* 52.5.
For this concrete scenario, the transition to t

xSB regime occurs atkx SB.423 MeV. The renormalized
scalar mass slightly abovekx SB and the VEV of the scalar
field belowkx SB are depicted in Fig. 4~left panel!. Accord-
ing to Eq. ~34!, we find a constituent quark mass ofmf
.371 MeV as shown in Fig. 4~right panel!. Of course, these
numbers depend strongly on the details of the Yang-M
beta function for strong couplingas;1; various other ex-
amples are discussed in Appendix B. Finally, the running
lf , h2 and the scalar and fermionic wave function renorm
izations is collected in Fig. 5.

Focusing on low-energy QCD-like aspects of our tru
cated system, it is also remarkable that~apart form the scalar
couplings! the choice ofQs

0 has little effect on infrared prop
-

e

-
-
’

FIG. 5. Flow of lf , h2, and
the wave function renormaliza
tionsZf andZc over the complete
range of scales for the referenc
set ~33!. The rapid change of all
couplings neart105 log10kxSB/L
.20.5 is visible. Whereash2,
Zf, andZc approach fixed points
in the deep infrared owing to de
coupling, lf decreases logarith
mically owing to a massless ‘‘eta’
in absence of the axial anomaly.
1-10
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erties of the system: varyingQs
0 between20.5 . . .0.001

changeskx SB or mf only at the level of less than 10%. This
reassuring and in contrast to the strongQs

0 dependence of the
bound-state fixed-point values ofe* andh* . The variations
of the infrared properties are similarly small for changes
the gauge parameter in the intervalj50 . . . 2.

To summarize, a large class of QCD-like theories inclu
ing a scalar degree of freedom belong to the QCD univer
ity class owing to an attractive infrared fixed point prese
for weak gauge coupling. Even before the gauge coup
becomes strong, all theories in this universality class are
distinguishable at low energies. They exhibit an identical
proach toxSB which is triggered and quantitatively dete
mined by the increase of the gauge coupling.

V. INSTANTON-MEDIATED INTERACTIONS, AXIAL
ANOMALY AND THE FATE OF THE ETA BOSON

Up to now, we have considered only that part of t
model which has a global UA(1) symmetry corresponding t
simultaneous axial phase rotations of the scalars and fe
ons. In QCD, this symmetry is anomalously broken by
presence of gauge-field configurations of nontrivial topolo
For instance, instantons induce fermion interactions wh
break this symmetry. In an instanton—anti-instanton ba
ground, theNf51 interaction is masslike and can be e
pressed as@19#

LI1A5E
0

f̄ c(k,mf)d%

%5
d0

Nc~% !CE~Nc!~2p2%3!

3S a~1/r!

a~m̄!
D 24/b0

~ c̄RcL2c̄LcR!,

d0
Nc~% !ª

4.6e21.68Nc

p2~Nc21!! ~Nc22!!
S 2p

as~1/% ! D
2Nc

e22p/as(1/%),

~36!

where CE(Nc) is a color factor that arises from averagin
over all possible embeddings ofSU(2) into SU(Nc), e.g.,
CE(2)51, CE(3)52/3, andm̄51 GeV is the renormaliza
tion scale for the fermion fields. Note that we introduced
IR cutoff function f̄ c(k,mf) in the upper bound of the instan
ton radius% integration. This function should cut off th
contribution from all modes with momenta either belowk or
the generated fermion massmf , and thereby implements th
renormalization group formulation of this interaction in
simple manner. The% integration is UV finite for%→0
owing to asymptotic freedom, and the infrared (%→`) is
controlled by the cutofff̄ c and by the increase of the cou
pling.

In the following, we intend to include this interaction as
is, being an example for a UA(1) violating term. Contrary to
standard instanton based models@20#, we do not employ fur-
ther information about, e.g., average instanton sizes
separations or other assumptions about the vacuum sta
the gauge field. For this, we note that Eq.~36! already cor-
02500
-
l-
t
g

n-
-

i-
e
.
h
-

n

d
of

responds to an integrated flow,LI1A5m̄I1A(c̄RcL2c̄LcR),
where the flow of the induced massm̄I1A is given by7

] tm̄I1A52p2ZcFd0
Nc~% !CE~Nc!

3S a~1/r!

a~m̄!
D 24/b0G

%5 f̄ c(k,mf)

] t f̄ c~k,mf!, ~37!

with the initial conditionm̄I1A(k5L→`)→0. For consis-
tency, we also included here the fermion wave functi
renormalizationZc , which was not taken into account in Eq
~36! as derived in@19#. Sincef̄ c has mass dimension21, an
appropriate choice is given by

f̄ c~k,mf!5
1

k
f c~kh2!, with f c~0!51,

f c~kh2!ukh2→`→ 1

Akh2
, ~38!

such thatf̄ c(0, mf)51/mf . For our numerical solutions, we
will use f c(x)5(11x)21/2 for simplicity. With these defini-
tions, we can rewrite Eq.~37! as

] tm̄I1A522p2Zc

k

f c
d0

Nc~ f c /k!CE~Nc!S a~k/ f c!

a~m̄!
D 24/b0

3S 11
~2 f c8!

f c
] t~kh2! D , ~39!

where f c5 f c(kh2), and the prime denotes a derivative.
Now we could repeat the calculation of the flow equatio

of Sec. II including this fermion mass term in the propagat
In this way, however, we would induce a number of UA(1)
noninvariant fermion-fermion and fermion-scalar couplin
which complicate the calculation unnecessarily. Instead,
propose a generalization of the field transformation~23!
which serves to translate the instanton-induced interac
into the scalar sector:

] tfk~q!52~ c̄LcR!~q!] tak~q!1fk~q!] tbk~q!1] tgk

1~fk* fk!fk] tdk ,

] tfk* ~q!5~ c̄RcL!~2q!] tak~q!1fk* ~q!] tbk~q!1] tgk

1~fk* fk!fk* ] tdk, ~40!

with additional a priori arbitrary functionsgk and dk ,
whereasak and bk are those of Sec. II. The term;] tgk
corresponds to a UA(1) violating shift of the scalar field

7A more rigorous treatment of anomalous UA(1) breaking within
the flow equation formalism has been suggested in Ref.@21#.
1-11
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which can compensate for the instanton-induced ferm
mass. The flow ofm̄I1A is now given by

] tm̄I1A5] tm̄I1Aufk
1h̄] tgk2

1

2
n̄] tak , ~41!

where the second and third terms arise from the transfor
tion of the Yukawa interaction and the last term in Eq.~6!,
respectively. Now we can determinegk such that] tm̄I1A
50 holds on all scales. In this way, the instanton interact
does not affectm̄I1A ~which vanishes on all scales!, but is
translated into the scalar sector and contributes to the
ning of n̄. In the point-like limit (q250), we find

] tn̄522m̄2] tgk1 n̄] tbk . ~42!

Introducing the dimensionless renormalized quantity

n5
n̄

Zf
1/2k3

, ⇒ nR5k3n, ~43!

wherenR denotes the renormalized~dimensionful! value, we
finally arrive at

] tn52S 32
hf

2 D n24p2
e

h
d0

Nc~ f c /k!CE~Nc!

3S a~k/ f c!

a~m̄!
D 24/b0 1

f c
S 11

~2 f c8!

f c
] t~kh2! D

1
n

h2
@11~11e!2Qs#~bl̄s

g4

g41bl̄s

h4

h4!, ~44!

which describes the running of the axial anomaly in the
stanton approximation.

The shift ;] tgk induces another UA(1) violating term
(f* f)(f* 1f) via the transformation of thelf(f* f)2

term. This can be cancelled by an appropriate choice of
last transformation functiondk in Eq. ~40!, which has to
satisfy

l̄f] tgk2
1

2
n̄] tdk50. ~45!

Finally, the terms;dk in Eq. ~40! influence the running of
lf via the transformation of the scalar mass term. The mo
fied flow equation forlf reads

] tlf5] tlfufk
14

lf

h2
~112e1~11e!2Qs!~bl̄s

g4

g41bl̄s

h4

h4!

116p2
elf

nh
d0

Nc~ f c /k!CE~Nc!S a~k/ f c!

a~m̄!
D 24/b0

3
1

f c
S 11

~2 f c8!

f c
] t~kh2! D . ~46!
02500
n

a-

n

n-
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e
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These equations are valid in the symmetric regime with si
lar equations for thexSB regime displayed in Appendix C

Strictly speaking, the system is never in the symme
regime, since chiral symmetry is always broken implicitly b
a nonzeron term which induces a nonzero VEVs0 for the
scalar field. For instance, rotating the VEV into the real co
ponent,f5s05f* , s05Ar0, the location of the minimum
obeys

05U8~r0!5m̄21l̄fr02
n̄

2Ar0

⇒ 05e1klf2
1

2

n

Ak
.

~47!

Obviously,k50 is not allowed ifnÞ0, owing to the linear
term in f in Eq. ~6!. The running of the minimum can b
inferred from

05] tU8~r0!ur5U9~r0!] tr01] tU8~r0!ur0

⇒] tr052
1

l̄f1
n̄

4
r0

23/2

] tU8~r0!U
r0

. ~48!

Since the instanton-induced terms are exponentially smal
the major part of the flow, the minimum of the potential
actually very close to zero, and the equations for the sy
metric regime of Sec. II can be used up to tiny correctio
The solution of the flow equations is numerically difficu
with an exponentially smallk in the broken regime. There
fore, we decide to solve the flow equations for large enou
k in the symmetric-regime formulation. In this regime,n
evolves according to Eq.~44! with only a subdominant cou
pling to the other flow equations via Eq.~46!. Then we
switch to the broken-regime description at that scale wh
the instanton-induced fermion massmf is of the order of a
few MeV; this procedure induces an error only at the p
mille level and turns out to be insensitive to the details of
switching scale.

We have analyzed the flow equations including t
instanton-mediated interaction numerically and used the
erence set of initial conditions as defined in Sec. IV@see Eq.
~33!# for a direct comparison. As expected, most propert
of the system are unaffected by the instantons, while
system is governed by the bound-state fixed point. Here
instanton-induced effects are exponentially suppressed, s
the coupling is small. In particular, the running of the sca
masse and the Yukawa coupling are identical to the on
displayed in Fig. 3, and the universality properties discus
in Sec. IV remain unaffected.

The renormalized axial anomalynR is plotted in Fig. 6
~left panel!. It remains exponentially small for a large part
the flow and becomes of order (GeV)3 and larger only in the
strong-gauge-coupling regime. Here, however, it contribu
strongly to the VEV of the scalar field and consequently
the constituent quark mass which leads to the decouplin
the fermions.

We observe a rather smooth onset of fermion-mass g
eration. Furthermore, the constituent quark mass is stron
1-12
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FIG. 6. Left panel: axial anomalynR in the vicinity of the scale of fermion decoupling. Right panel: instanton-induced fermion m
Both plots refer to the reference set~33! and the particular choice for the running of the gauge coupling according to Eq.~35! with a*
52.5. A comparison with Fig. 4 shows that the fermion mass is dominated by instanton effects.
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enhanced by the instanton interactions. For the reference
we find mf51765 MeV in the infrared limitk→0. Again,
this number depends strongly on the precise choice of
running gauge coupling in the infrared, and a number
other possibilities including instanton effects is listed in A
pendix B.

Let us finally discuss the fate of the ‘‘would-be’’ Gold
stone boson, which we may call the eta boson in the styl
real QCD. Neglecting the axial anomaly, this boson ari
from spontaneous breakdown of the global UA(1) as a true
massless Goldstone boson; its effects on the scalar s
even afterxSB are visible in the logarithmic running of th
scalarf4 couplinglf as can be seen in Fig. 5. The UA(1)
anomaly, however, generates a mass of the eta boson. I
present formulation, the UA(1) anomaly occurs as then̄ term
in the scalar potential~6!. Its contribution to the renormal
ized eta mass can be computed as

mh
25

nR

2sR
. ~49!

Within the above-given framework of instanton-mediated
teraction, we find for the eta boson mass in the QCD univ
sality class a value ofmh.4440 MeV. Of course, this value
also strongly depends on the choice of the running of
gauge coupling and should be used only for comparison w
other masses computed for the same running gauge coup
In particular, we find roughly the ratiomh /mf.3. This sce-
nario giving rise to a heavy mass of a would-be Goldsto
boson is familiar from three-flavor QCD.

By contrast, the fate of the eta boson is more spectac
if we go beyond the border of the QCD domain to that
PxSB, corresponding to a choice ofm̄L

2 ,m̄c
2 in Fig. 1 or

ẽL, ẽ1* in Fig. 2. Here, the VEV of the scalar field is gene
cally of the order of the cutoffL51015 GeV. At the same
time, the fermions rapidly become massive and decou
from the flow only a little belowL. As a consequence, in
stanton contributions or other long-distance topologi
properties have little effect on the fermion sector and thus
axial anomaly exerts hardly any influence on the scalars
a result, the contributions to the eta mass are stron
suppressed–powerlike in the denominator and exponent
in the numerator. For instance, for the set of initial para
02500
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eters corresponding to Fig. 1~right panel! with m̄L
2 slightly

below m̄c
2 , we find an extremely small eta mass,mh.2

310230 eV. For smallerm̄L
2 , the eta mass decreases ev

further, and larger eta masses require a tremendous
tuning of m̄L

2 close tom̄c
2 .

In this scenario beyond the QCD universality class,
have thus found a mechanism to generate extremely s
masses without any fine tuning. From another perspect
this mechanism exploits the fundamentally different R
properties of scalars and chiral gauge theories. For syst
in the universality class of PxSB, thexSB scale of the sca
lar sector is generically of the order of the UV scale, where
the nonperturbative scale of the gauge sector can be m
smaller. Now the mass of the would-be Goldstone boso
generated by the nonperturbative sector of the gauge th
which is exponentially suppressed at the UV scale. This
terplay finally leads to the generation of the extremely sm
mass.

VI. CONCLUSIONS

In this work, we studied a class of theories involving on
flavor massless QCD and a chiral color-singlet scalar fie
Our model is parametrized by the gauge coupling and a n
ber of scalar couplings. In this framework, we identified t
QCD universality class of theories which share the sa
physics at low energies, namely spontaneous breaking of
ral symmetry triggered by the strongly interacting gauge s
tor at the QCD scale. As a remarkable result, the QCD u
versality class contains theories with fundamental sca
where the microscopic scalar potential has its minimum
nonzero field@m̄L

2 .m̄c
2;2O(L2)#. For these the theories

the scalar fluctuations drive the system first into the symm
ric regime with a large positive scalar mass, and the rem
ing flow is governed by the QCD sector. We checked exp
itly that this is in accord with perturbative expectations f
weak couplings~cf. Fig. 1, right panel!.

The mechanism that establishes QCD universality is
occurrence of an infrared attractive bound-state fixed poin
the scalar couplings which persists over a wide range
scales as long as the gauge coupling is weak. At this fi
point, the scalar field exhibits quark-antiquark bound-st
behavior and the RG running of the scalar couplings is g
1-13



la
n

t t
ta
th
d

p
f
b
e

gh

o
et
n

sa
it

nfl
ra
u

ow
o
a
is
o

a
s

ing
ing
J
na
o

to
ti

rt
n

CD
n
a
r
o
r,
ex
h
th
ld

ax
t
e

b
u
a

is

is
ree-
ge
ory

opa-
avy
da-
er-
ut

: in
rtur-
ere
un-

n
ures
ca-
, it
ur
nly
ur
e,

sts.
ible
i-

ay
um-
ce
-
sup-
y no
n-

rms
CD
ss
m-
the
ace
if-

in
iled

wn
tor

ure
ex-

an-

r-
are

H. GIES AND C. WETTERICH PHYSICAL REVIEW D69, 025001 ~2004!
erned by the RG behavior of QCD. All memory of the sca
initial conditions is lost by the system. As a remarkable co
sequence, the scalar mass is not a relevant operator a
fixed point. For increasing gauge coupling, the bound-s
fixed point is destabilized and the system runs towards
xSB regime. Here the role of the scalar field changes an
can characterize~quark! condensates and~mesonic! excita-
tions on top of the condensate. At strong coupling, the sim
overall picture ofxSB arising from our truncation can, o
course, be modified quantitatively as well as qualitatively
the influence of higher-order operators. In particular, mix
nonminimal fermion-gluon and scalar-gluon operators mi
add new features toxSB by providing a coupling to the
nontrivial gluonic vacuum structure.

Beyond the QCD universality class, we find the class
theories exhibiting perturbative spontaneous chiral symm
breaking~PxSB). In this class, the system is mainly drive
by the scalar sector, and IR properties such as conden
and generated fermion masses depend strongly on the in
scalar parameters. The gauge sector exerts hardly any i
ence on the fermions in this class unless the scalar pa
eters are fine tuned to a high precision. In the deep IR, p
gluodynamics without dynamical quarks remains. The fl
of the scalar couplings is never in the attractive domain
the bound-state fixed point, but is governed by
fundamental-particle fixed point. Small deviations from th
fixed point have an infrared unstable component which c
responds to the RG relevant scalar-mass operator.

In both universality classes, we found interesting implic
tions. Our setup of the QCD universality class admits a re
lution of an old puzzle: whereas QCD has no fine-tun
problem and is completely determined by fixing the coupl
at a certain scale, low-energy QCD models based on N
type fermion self-interactions depend strongly on additio
parameters such as an intrinsic UV cutoff. In the context
partial bosonization, this cutoff dependence corresponds
strong dependence of IR observables on the bosoniza
scale~or the value of the scalar mass at this scale!. In our
approach with scale-dependent field transformations, pa
bosonization occurs at all scales, and no artificial depende
on unphysical scales is introduced. In our truncation, Q
flows continuously from a high scale with quarks and gluo
as the relevant degrees of freedom to intermediate sc
with quarks, gluons and quark bound states and furthe
low scales with constituent quarks, condensates and mes

In the PxSB universality class with one fermion flavo
we identified a natural mechanism for the generation of
tremely small scalar masses without fine tuning. The mec
nism exploits the fact that the spontaneous breaking of
UA(1) symmetry would lead to an exactly massless Go
stone boson in the absence of gauge interactions. The
anomaly in the gauge sector then endows a small mass to
boson. Owing to the highly different RG behavior of th
scalar and the gauge sector, the scale of PxSB differs generi-
cally from the scale of nonperturbative gauge effects
many orders of magnitude. This leads to an exponential s
pression of the influence of the axial anomaly and thus to
exponentially small but nonzero scalar mass.

For theories with a fundamental scalar, the question ar
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as to whether our technique of fermion-boson translation
capable of describing all possible mesonic degrees of f
dom. Let us first look at two extreme situations. For a lar
negative renormalized scalar mass term, perturbation the
applies: there is a fundamental scalar, and separately pr
gating meson states may not exist, similar to a very he
top quark. For a positive renormalized mass term, the fun
mental scalar decouples from the low-energy sector in p
turbation theory. The low-energy sector then is QCD witho
scalars, as in our picture. The transition is less obvious
the region where the fundamental scalar mass would pe
batively be of the order of the strong interaction scale, th
is a strong mixing between operators corresponding to f
damental and composite scalars.

In principle, in a situation with mixing the propagator i
the scalar sector may have one or several pole-like struct
that can be associated with particle excitations. Our trun
tion cannot fully resolve this issue, since, by construction
follows the flow of only one pole in the propagator. O
investigation shows the consistency of a picture with o
one pole. If the true physical situation had two poles o
truncation would follow the flow of the lowest mass. We se
however, no indication that a second pole actually exi
Nevertheless, it seems worthwhile to discuss the poss
implications of a second scalar ‘‘pole’’ for the issue of un
versality classes. First of all, form̄L

2 larger than but not in the

immediate vicinity ofm̄c
2 , a ‘‘second pole’’ could correspond

only to an additional heavy scalar particle. This would dec
at a high rate into the QCD mesons, since no quantum n
bers forbid such a decay.~One expects at most a resonan
rather than a true pole.! Furthermore, effects from the ex
change of such a heavy scalar resonance would be
pressed by inverse powers of the mass and therefore pla
role for the low-energy theory. This is what one usually u
derstands by ‘‘QCD universality class’’~a notion that is not
thought to resolve the detailed short-distance physics!.

This issue becomes more interesting whenm̄L
2 is fine-

tuned to the immediated vicinity ofm̄c
2 . In this case, we

approach theboundaryof the QCD universality class. We
emphasize that this boundary is not uniquely defined in te
of the symmetries and particles characteristic for the Q
universality class. Considering the QCD universality cla
from the viewpoint of a larger space of models or para
eters, the spectrum of excitations that are relevant at
boundary can depend on the direction in parameter sp
from which the QCD universality class is approached. D
ferent directions may yields a different ‘‘number of poles’’
the boundary region. For this reason, a future more deta
investigation of this issue would be quite interesting.

We stress that all of our main conclusions can be dra
from a mere perturbative knowledge of the gauge sec
which is well under control. In a broader sense, the p
QCD sector in our work can be regarded as a particular
ample for possible other~nonperturbatively! renormalizable
theories leading to fermionic self-interactions in scalar ch
nels.

Let us finally discuss our findings from a different pe
spective, concentrating on the scalar sector. Scalar fields
1-14
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known to lead to profound problems in quantum field theo
for two reasons: triviality and~un-!naturalness. Triviality
tells us that an interacting scalar theory requires a UV cu
which cannot be removed without switching off the intera
tion. Therefore, whenever we see a scalar quantum fiel
some low scale, we know that there must be new physic
a higher scale. The problem of naturalness tells us that
difficult to achieve a large separation of scales for mod
with interacting scalar fields without fine tuning.

Our formulation has the potential to solve both problem
A first example can be given within the QCD universal
class. Although from a QCD perspective, the scalar fi
could be regarded as purely auxiliary, nothing prevents
from considering it as fundamental, since the concepts
compositeness and fundamentality are interchangeable
the viewpoint of our flow equation with field transforma
tions. We showed in detail that ‘‘standard’’ QCD at low e
ergies is indistinguishable from QCD with a fundamen
scalar, as long as the latter system is in the QCD universa
class. In this way, we can circumvent triviality by starting
the UV from a scalar field theory without self-interaction a
Yukawa coupling for which the continuum limit can be tak
trivially. The scalar interactions are induced by quantu
fluctuations. In this construction, the system is always in
QCD universality class, and therefore inherits the numbe
relevant and marginal operators form QCD. In particular,
scalar mass term is not a relevant operator, so that no n
ralness or fine-tuning problems arise in and from the sc
sector. Alternatively, we could also follow the bound-sta
fixed point tok→`, where it presumably becomes an exa
fixed point even beyond our truncation.~The b function for
the running gauge coupling vanishes, owing to asympt
freedom in this limit.!

Perhaps more interesting is a second possibility in
PxSB class. Let us consider fork→` a scalar model with
Zf→0 andlf→0 andm̄2 and h̄ chosen such thatẽ corre-
sponds to the fixed pointẽ1* . This model has an alternativ
interpretation as a model with four-fermion interactions~and
no scalar field!. Both the gauge coupling and the critical fo
fermion coupling

l̄s* 5
1

2ẽ1* k2
~50!

vanish fork→`. If this fixed point persists beyond our trun
cation, it defines a nonperturbatively renormalizable the
@22#. For lowerk a nonzerolf is generated by the flow an
we end up with a theory that effectively looks like a mod
with an interacting fundamental scalar field. This scalar fi
can give mass to the quarks by PxSB independently of the
strong interactions, in analogy to the Higgs scalar. The tr
ality problem could be solved in this case—but not the na
ralness problem, since we expect a relevant parameter c
sponding to the scalar mass term.

This discussion sheds new light on the continuous tra
tion between the PxSB and QCD universality classes. In th
language of statistical physics, it can be considered as a
of crossover between the ‘‘fundamental fixed point’’ẽ1* and
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the ‘‘bound-state fixed point’’ẽ2* . As a particularity, the
gauge coupling is a marginal parameter for both fixed poin
The scale where it becomes strong sets the lowest pos
scale for the effective fermion masses.

Quite generally, the existence of a bound-state-like fix
point leads to a mechanism with a naturally small sca
mass. In a sense, this is a realization of earlier ideas o
large anomalous mass dimension for the scalar field or ‘‘s
organized criticality’’@23#. It would be interesting to know if
a similar mechanism could contribute to an understanding
electroweak symmetry breaking which occurs at a charac
istic scale hundreds of times bigger as compared to QCD
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APPENDIX A: THRESHOLD FUNCTIONS

The regularization scheme dependence induced by
cutoff functionRk is carried by the threshold functionsl and
m. Let us represent the cutoff functions in the scalar, ferm
and gauge sector by

Rk
f~q2!5Zfq2r ~y!, Rk

c~q!52Zcq/r F~y!,

~Rk
A~q!!mn5ZFq

2r ~y!Fgmn2S 12
1

j Dqmqn

q2 G , ~A1!

wherey5q2/k2, and r and r F denote dimensionless cuto
shape functions. Furthermore, it is useful to introduce
inverse average propagatorsP(x)5x@11r (x/k2)# and
PF(x)5x@11r F(x/k2)#2, wherex5q2.

Most of the threshold functions given above are defined
Appendix A of Ref. @4#. The ones which cannot be foun
therein are marked with a tilde. These can be defined
follows:

m̃1,1
(FB),d~wF ,wB ;hc ;hf!

52
1

2
k42dE

0

`

dxxd/221]̃ tF 11r F~x/k2!

PF~x!1k2wF

1

P~x!1k2wB
G ,

~A2!

l̃ 1,2
(FB),d~wF ,wB ;hc ,hB!

52
1

2
k62dE

0

`

dxxd/221]̃ t

3F PF~x!

~PF~x!1k2wF!2

1

~P~x!1k2wB!2G , ~A3!
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l̃ 1,1,1
(FBB),d~wF ,wB 1 ,wB 2 ;hc ,hB!

52
1

2
k62dE

0

`

dxxd/221]̃ t

3F PF~x!

~PF~x!1k2wF!2

1

P~x!1k2wB 1

1

P~x!1k2wB 2
G ,

~A4!

wherehB denotes one of the anomalous dimensions of
bosonic propagators under consideration,hf or hF in our
case. The derivative]̃ t acts on thek dependence of the cutof
function only ~for an explicit representation of]̃ t ; see Ref.
@4#!. Some relations among the threshold functions are gi
by

l̃ 1,1,1
(FBB),d~wF ,wB ,wB ;hc ,hB![ l̃ 1,2

(FB),d~wF ,wB ;hc ,hB!,

l̃ 1,2
(FB),d~wF50, wB ;hc ,hB!5 l 1,2

(FB),d~wF50, wB ;hc ,hB!.
~A5!

For our numerical computations, we use the linear cu
functions proposed in Ref.@16# (y5q2/k2),

r ~y!5S 1

y
21D u~12y!, r F~y!5S 1

Ay
21D u~12y!,

~A6!

for which all integrals listed above can be performed anal
cally, yielding in the present context:

m̃1,1
(FB),d~wF, 0;hc ,hF!

5
2

d21

1

11wF

F 1

2 S 11
d

2
hcD2

hF

d11
1

S 12
d

2
hcD

11wF

G ,

l̃ 1,2
(FB),d~wF, 0;hc ,hF!5

2

d

1

~11wF!2 F S 12
2hF

d12
1

hc

d11D
1

2

11wF
S 12

hc

d11D G , ~A7!

l̃ 1,1,1
(FBB),d~wF ,w1 ,w2 ;hc ,hf!

5
2

d

1

~11wF!2~11w1!~11w2!
F S 1

11w1
1

1

11w2
D

3S 12
hf

d12D1S 2

11wF
21D S 12

hc

d11D G .
The representations of all other threshold functions for
linear cutoff can be looked up in Ref.@13#.
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APPENDIX B: NONPERTURBATIVE RUNNING
OF THE GAUGE COUPLING

The infrared quantities serving as ‘‘physical observable
in the present work, such as the constituent quark mass o
eta boson mass, depend on the way we model the effec
gauge coupling in the nonperturbative domain in our trun
tion. In order to gain more insight into this dependence,
study different gauge couplingb functions proposed in the
literature in this appendix. Here we focus on theories with
the QCD universality class which are sensitive to the infra
physics of the gauge sector.

In Sec. IV, we used ab function with accurate two-loop
behavior and an IR fixed point ata* 52.5. We denote thisb
function defined in Eq.~35! serving as a reference asbRef in
the following. Suchb functions with a fixed point of the
gauge coupling in the infrared have a long tradition in t
literature and have frequently been discussed from a p
nomenological viewpoint@24#. Furthermore, some theoret
cal evidence for the existence of such a fixed point has b
collected in certain nonperturbative approximation schem
However, due to the lack of a unique nonperturbative defi
tion of the gauge coupling and due to an inherent regular
tion scheme dependence of theb function, a comparison of
different theoretical approaches and a connection to phen
enology is difficult to make. Here we take a pragmatic po
of view and use the various running couplings as effect
ones which are implicitly defined by their use in o
approach.

Recently, an actual nonperturbative computation of
running coupling has been set up in the framework of tru
cated Schwinger-Dyson equations in Landau gauge@25#, re-
vealing an infrared fixed point; these results also rece
some support from lattice calculations@26#. For our pur-
poses, we use the representation given in Ref.@27# for the
running coupling,

gSDE
2 ~x!5

4pa* ,SDE

ln~e1a1xa21c1xc2!
where a* ,SDE52.972,

~B1!

and a155.292 GeV22a2, a252.324, c150.034 GeV22c2,
andc253.169. This coupling is also normalized to the sta
dard value at theZ mass, and we identifyx5k2/(GeV)2.
The b function is given bybSDE5] tgSDE

2 .
As a second example, we use the running coupling aris

from a scheme called ‘‘analytic perturbation theory’’@28#
that has been devised for enforcing analyticity properties
the coupling in the timelike and spacelike~Euclidean! re-
gion. For our numerical routine, we use the approximate~but
two-loop accurate! representation

gAPT
2 ~x!5

~4p!2

b0
S 1

l 2~x!
1

1

12exp@ l 2~x!# D , ~B2!

l 2~x!5 ln x1
b1

b0
2

ln Aln2x14p2, ~B3!
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where we identifyx5k2/(1349 MeV)2, so that this coupling
is also normalized at theZ mass. In the infraredk→0, the
coupling tends to the fixed pointa* ,APT54p/b0.1.22 for
Nc53 andNf51.

As a third example, we use a calculation of the runn
coupling based on a truncated flow equation that also
vealed an infrared fixed pointa* ,FE @29#. The corresponding
bFE function was obtained as an extensive multiple integ
which we will not display here. Since this result holds f
pure gauge theory, we incorporate one quark flavor in
‘‘quenched’’ approximation by adding the fermionic part
the two-loopb function to the pure gauge result. This lea
to an infrared fixed-point value ofa* ,FE.3.4360.01, where
the theoretical error arises from an incompletely resolv
color structure in Ref.@29#. We would like to point out that
the definition of the running coupling used in Ref.@29#
agrees with the one of the present work.

As a simple example for a running coupling which do
not tend to an infrared fixed point, we employ a class ofb
functions that correspond to anomalous dimensions of
gauge fieldhF which become constant fork→0. This is
realized by the choice

bh
*
522S b0

g4

16p2
1b1

g6

~16p2!2D
3F12expS 2

~16p2!2

2b1g4
~2h* !D G , ~B4!

so that in facthF5bh
*

/g2→h* for k→0. For negative

h* , the running coupling increases;(1/k) uh
*

u for k→0. As
explicit examples, we chooseh* 520.1 andh* 520.5 for
the numerical analysis.

The results of the numerical integration of the flow equ
tions are collected in Table I. For the variousb functions
denoted in the first column, we listed the transition sc
kx SB into the xSB regime and the generated fermion ma
mf in the next two columns. These results refer to calcu
tions without axial anomaly and instanton-mediated inter
tions, similarly to Sec. IV. In the last two columns the fe
mion mass with instanton contribution and the mass of
eta boson are given.

Obviously, the quantitieskx SB and mf in the calculation
without axial anomaly are roughly correlated. Furthermo
bAPT and bh

*
520.1 lead to small values forkx SB and mf ,

since both approach larger values of the coupling only v
slowly. The fermion and eta boson masses including the a
anomaly are not strictly correlated with the former quantiti
The running of the gauge coupling enters these quant
over a wider range of scales, since sizable instanton co
butions can already arise while the bound-state fixed poin
still present.

Nevertheless, our main observation is that the ove
qualitative picture of the approach toxSB, even in the non-
perturbative domain, is rather independent of the details
02500
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the gauge sector in our truncation. On the one hand, a st
gauge couplingg2.gD

2 is all that is needed to triggerxSB;
on the other hand, fermion decoupling cuts off any stro
influence of the running coupling in the deep infrared. Qua
titative results, of course, depend strongly on the flow of
coupling between the scale at whichg25gD

2 and the scale of
fermion decoupling. This mainly concerns the overall sca
whereas mass ratios likemh /mf turn out to be more robust

APPENDIX C: FLOW EQUATIONS WITH AXIAL
ANOMALY IN THE BROKEN REGIME

Here we collect the flow equations for the various co
plings in the broken regime, including the contributions ar
ing from the axial anomaly. Let us begin with the scalar a
fermion anomalous dimensions:

hf54v4klf
2 m2,2

4 S n

2Ak
,

n

2Ak
12klf ;hfD

14Ncv4h2@m4
(F),4~kh2;hc!1kh2m2

(F),4~kh2;hc!#,

~C1!

hc52C2~Nc!v4g2@~32j!m1,2
(FB),4~kh2, 0;hc ,hF!

23~12j!m̃1,1
(FB),4~kh2, 0;hc ,hF!#

1v4h2Fm1,2
(FB),4S kh2,

n

2Ak
12klf ;hc ,hfD

1m1,2
(FB),4S kh2,

n

2Ak
;hc ,hfD G . ~C2!

Including the appropriately adjusted fermion-boson trans
tion as outlined in Sec. V, the flow equations for the min
mum of the scalar potential and the scalar self-interact
read

TABLE I. Characteristic massesmf andmh for various nonper-
turbativeb functions for the strong gauge coupling. The main u
certainty concerns the overall scale, whereas the ratiomh /mf is
relatively robust. We also show the scale of transition toxSB and

the fermion massm̃f in the absence of instanton effects.

b function mf /MeV mh /MeV mh /mf kx SB/MeV m̃f /MeV

bRef 1765 4438 2.5 423 371
bSDE 1777 4226 2.4 457 427
bAPT 563 1990 3.5 4 3
bFE 90362 211761 2.3 24362 24163
bh

*
520.1 513 1793 3.5 11 8

bh
*

520.5 1946 4534 2.3 394 395
1-17
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] tk52~21hf!k12v4

lf

lf1
n

4k3/2

F l 1
4S n

2Ak
;hfD

13l 1
4S n

2Ak
12klf ;hfD G28Ncv4h4l 1

(F),4~kh2;hc!

1

2S klf2
n

2Ak
D

S lf1
n

4k3/2D h2

S 12klf1
n

2Ak
D

3F11S 12klf1
n

2Ak
D QsG ~bl̄s

g4

g41bl̄s

h4

h4!, ~C3!

] tlf52hflf12v4lf
2 F l 2

4S n

2Ak
;hfD

19l 2
4S n

2Ak
12klf ;hfD G28Ncv4h4l 2

(F),4~kh2;hc!

1
4lf

h2 F122klf1
n

Ak
1S 12klf1

n

2Ak
D 2

QsG
3~bl̄s

g4

g41bl̄s

h4

h4!

1
16p2lf

nh S n

2Ak
2klfD d0

Nc~ f c /k!CE~Nc!

3S a~k/ f c!

a~m̄!
D 24/b0 1

f c
S 11

~2 f c8!

f c
] t~kh2! D . ~C4!

The Yukawa coupling flows in the broken regime accord
to
s.

02500
] th
25~2hc1hf!h224v4h4F l 1,1

(FB),4S kh2,
n

2Ak
;hc ,hfD

2 l 1,1
(FB),4S kh2,

n

2Ak
12klf ;hc ,hfD G

28~31j!C2~Nc!v4g2h2l 1,1
(FB),4~kh2,0;hc ,hF!,

12F122klf2
n

Ak
1S 12klf1

n

2Ak
D 2

QsG
3~bl̄s

g4

g41bl̄s

h4

h4!, ~C5!

and the flow of the axial anomaly is given by

] tn52S 32
nf

2 D14p2

klf2
n

2Ak

h
d0

Nc~ f c /k!CE~Nc!

3S a~k/ f c!

a~m̄!
D 24/b0 1

f c
S 11

~2 f c8!

f c
] t~kh2! D

1
n

h2 F11S 12klf1
n

2Ak
D 2

QsG ~bl̄s

g4

g41bl̄s

h4

h4!.

~C6!

In these equations, the quantitybl̄s

h4

is also modified,

bl̄s

h4

ª

2

Nc
v4 l̃ 1,1,1

(FBB),4S kh2,
n

2Ak
,

n

2Ak
12klf ;hc ,hfD ,

~C7!

whereasbl̄
g4

remains the same.
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