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We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of
coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar
become unobservable. This is connected to a “bound-state fixed point” of the renormalization flow for which
all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar
potential with minima at a nonzero field. On the other hand, for a scalar massriebmalow a critical value
mﬁ, the universality class is characterized by perturbative spontaneous chiral symmetry breaking which ren-
ders the quarks massive. Our renormalization group analysis shows how this universality class is continuously
connected with the QCD universality class.
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I. INTRODUCTION The symmetries also allow for a Yukawa coupling between
¢ and the quarks. For nonze{@), the chiral symmetry is
The universality of QCD means that predictions are inde-broken and the quarks become massive. In the case of large
pendent of the details of the microscopic interactions. This i®nough positiven? (in units of some unification scale, say
crucial for predictivity, since the precise form of the funda- 10*® GeV), the scalar field is super-heavy and decouples
mental interactions at very short distance scales is ndrom the low-energy theory. This range wf obviously cor-
known. In a large parameter space characterizing possiblesponds to the universality class of QCD. All effects of the
fundamental interactions, the QCD universality class correscalar field are suppressed p§/m?, with p a characteristic
sponds, however, only to a certain domain. For other domomentum. For QCD predictions, they can be completely
mains in parameter space, the color symmetry may benored.
“spontaneously broken” by the Higgs mechanism, or all  On the other hand, for large enough negative we ex-
quarks may acquire a large mass due to spontaneous chingéct the perturbative picture of spontaneous symmetry break-
symmetry breaking. We are interested here in the transitioing to hold. The scalar field gets a vacuum expectation value
from one domain to another and in the question of whatVEV)
happens at the boundary of the “QCD domain.”
Looking at QCD from a microscopic scale—say a unifi- (¢>=a=|m§/)\¢,Rl 12 (2
cation scale 18 GeV—its universality class is characterized
by eight massless gluons and a certain number of masslessth mg and A 4 r related tom and A , by renormalization
fermions. Perturbatively, the masses are protected by theorrections. Bothr and the quark masses are of the order of
gauge symmetry and chiral symmetries. At a much smallethe unification scale in this domain. The universality class
scale, around 1 GeV, nonperturbative effects induce masse®w corresponds to gluodynamics without light quarks. In
for all physical particles. In particular, the fermions becomethe chiral limit of a vanishing current quark mass, spontane-
massive owing to chiral symmetry breaking§B). This  ousySB also generates a very light pseudo-Goldstone boson
may be described by a nonzero expectation vatue i) in addition to the gluonic degrees of freedom.
of a “composite” scalar field. In order to keep the discussion ~ Varying the microscopic scalar mass temd from large
simple, we concentrate here on the case of one quark flavoraegative to large positive values should lead us from the
generalizations to several flavors are straightforward. universality class with perturbative spontaneous chiral sym-
Let us now consider a class of microscopic theories with anetry breakingPxSB) to the universality class of one-flavor
complex fundamental “chiral scalar field which has the =~ QCD. One of the aims of this note is to understand the quali-
same transformation propertiesﬁ& and a classical poten- tative fezature_s c_)f this transition in the V|_cm|ty of a cr|t|_cal
tial valuemg. This is clearly a nonperturbative problem, since
on the QCD side of the transition the effective gauge cou-
1 pling grows large.
2k - * 112 Our investigation is based on a nonperturbative flow
V=mi¢Tét 2)\¢(¢ 2K @) equation which is obtained by a truncation of the exact renor-
malization group equation for the effective average action
[1]. A crucial ingredient is the “bosonization” of effective
*Email: Holger.Gies@cern.ch multi-fermion interactions at every scdl]. This provides
TEmail: C.Wetterich@thphys.uni-heidelberg.de for a description of fundamental scalar fields and bound
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states in a unified framework. A theoretical method with thisin the QCD universality class as a fdeistablished by other
feature is actually required for our problem, since the scalamethods and observatipiWe only require that a reasonable
quark-antiquark bound states in the QCD descriptiery., truncation should describe chiral symmetry breaking. Be-
the pseudo-Goldstone eta meson and the sigma mesen yond this, the details of the truncation in the gauge sector are
expected to become associated with the fundamental scalaot relevant for our discussion of universality classes. De-
in the PySB description. In this framework, we see also howspite these shortcomings, we expect that our quantitative re-
one relevant parameter and two marginal parameters in th&ults describe the right order of magnitude of one-flavor
PxSB universality class, namely, the ones corresponding tQCD. An impression of the size of uncertainties can be
the mass and quartic self-interaction of the scalar field angained from Table | in Appendix B.
the Yukawa coupling, become irrelevant for the QCD univer- In order to illustrate our points, we compute the scalar
sality class. condensate, i.e., the renormalized minimum of the effective
This remarkable change of the number of relevant parampotential, og= \/Z¢|¢O|2, for a broad range of initial scalar
eters at the transition between the two universality classes i;ass valuesn? . We note thairy is directly connected with
connected with the appearance of a bound-state fixed poiffhe decay constant of the eta meson and sets the scale for the
for the flow_of the s_calar mass and self-lntera_\ctlon in thequark mass generated y8B. We first neglect the anoma-
range of microscopic parameters corresponding to QCDyys (1) violating contributions from instanton effects

This bound-state fixed point is infrared attractive for all cou-\hich only affect the physics at scales around 1 G@tey
plings except for the gauge coupling. Under the influence ofyi|| be considered in Sec. V.We parametrize the micro-

this fixed point, all memory of the details of the microscopic gcpic interactions by the initial values of the renormaliza-

interactions in the scalar sector is lost. This is exactly what i$;o flow at a GUT-like scale\ = 105 GeV. As can be read
required for the QCD universality class which has the gaug

coupling as the only marginal parametdor a massless from Fig.- 1, a C.rItIC6.1|. massnc_zems_tz. For |n|.t|al scalar
quark. In order to see the appearance of the bound state, it @#asses below this critical massy <mg, the naive expec-
crucial to reincorporate the effective multi-fermion interac- tation is fUlfl”ed, and we find scalar condensates of the order
tions generated by the flow into the effective bosonic inter-of the cutoff, og~10'. .. 10" GeV. It is remarkable that
actions. This avoids an unwanted redundancy of the descrighe value of the critical mass is negative and typically of the
tion. It also solves an old problem in the investigation oforder of the cutoff or only a few orders of magnitude below
gauged Nambu-Jona-Lasinio modg®; namely, how the the cutoff; for example, we finm§:—0.35\2 for the initial
presence of apparent relevant parameters in a too naive tregly|yesh2=1 andy¢: 100 atA =10 [Fig. 1 (left pane}].

ment of these models can be reconciled with QCD, where Nor a perturbatively accessible set of initial parameters

such relevant parameters are present. In our approach, the

— — — 5 1 2 2 H
flow towards the bound-state fixed point solves this generi¢_0-1 andh,=1 atA = 10", we findmg=—0.0043\? [Fig.

problem. 1 (right panel]. In the latter case, we find a linear depen-
As a result of our investigation, we find a qualitatively dence of the condensate on the mass parametgr,

convincing picture of the transition between the two univer-~—(mﬁ—m§), as expected from perturbation thedrgf.

sality classes investigated. We have kept the truncatioiq. (2)].

simple in order to illustrate the change in the number of However, for initial scalar masses above this critical mass,

relevant and marginal parameters in a simple way. The pricg2 >m?2, the scalar condensate is 16 orders of magnitude
t_o be paid is a limited accuracy in the quant_itative descripgma”er[not visible in the linear plot in Fig. Lright panel].
tion for parameter regions where the effective gauge coum, this case, symmetry breaking is triggered by the fermion
pling grows large. In our setting, this concerns primarily thegq gauge sectors and not by the scalar sector,deis

guantitative details of the flow of the instanton-mediated in'roughly of the order of\ ocp. Therefore, even if we start the

teractions and the runnir]g 9f th‘? strong gauge coup!ing. W‘ﬁow deep in the broken regime witm3 <0 but above the
emphasize that the qualitative picture does not require a de- A

tailed understanding of strong interactions in the momenturr?rItICaI mass, the scalar fluctuations drive the system first

range where the gauge coupling is large. All decisive featureg;?n;h?Rsx{Qgetrgr:f%;nz Vggge_ ”'tk;N'! ts’fe%ttr?ftseﬁom;tgi
are determined by the flow in a momentum range substan- P Y '

. o stressed that no fine tuning of the initial parameters is
tally larger than 1 GeV. In the same spirit, we also have eeded, neither to put the system into the domain of attrac-
neglected other effective bosonic degrees of freedom whic h p i yI he ul
may correspond to additional bound states. We keep only theoh of the QCD universality class nor to separate the uitra-
composite scalars and the gluons. When we proceed with oer'Olet (UV) scale from the scale of chiral symmetry break-
analysis to the strongly coupled gauge sector, we do not at” — . _ _
i i Only for m3<m? is the effective coupling between the
tempt to compute the gluodynamics, but simply model the Yy ASTe | pliing _
strong interactions with an increasing gauge coupling; for thécalars and the fermions strong enough to indye8B> with
latter, we use various examples discussed in Appendix B. W@ magnitude determined by the initial parameters of the sca-
do not claim that our truncation of the gauge sector is suffi/ar sector. In this case, we would have to fine-tune the initial
cient in order to establish chiral symmetry breaking in QCD.condition forﬁi to lie extremely close ton?, if we wanted
A much more elaborate analysis would be needed for thiso separate the UV scale from the scale of chiral symmetry
purpose. We rather take the spontaneous symmetry breakimgeaking. This is the famous naturalness problem which is
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FIG. 1. Renormalized scalar vacuum expectation va#ﬁe/ersus the initial condition for the scalar mass at the UV cutoff,. Left
panel: logarithmic plot for the parametetg=1, h?=1, X, =100 atA =10'° GeV resulting inm?=—0.35\2. Right panel: linear plot for
h?2=0.1, 7\(,)— 1; for mA<m =—0.0043\2, the linear dependenonR~ f(mA m2) as expected from perturbation theory, is confirmed.

generic for models involving a fundamental scalar. Ofwhich represents a simple truncation of the space of action
course, theories without fundamental scalars such as QCD danctionals and serves as the basis of our approximations.

not have this prOblem although effective scalar degrees q-f-|ere we have used the Shorthanﬁ(/‘) lﬂ' 'ﬂ| for the color
freedom such as bound states can occur at low energies. Itjigdices. We included a background gauge fixing term with

one of our main observations that the mechanism of hovbarameterg andA, A +a, A being the background
“QCD-like” theories circumvent the naturalness problem —
anda, the quctuatlon fleIdD —D «[A]. Furthermore, we

can also be applied to models with a fundamental scalar.
The details of our study are organized as follows: in Secd® not display the ghost sector for simplicity. Equatieh

II, we introduce the class of models containing one- ﬂavorreduces to one-flavor QCD if we set the four-fermion and the
QCD and derive the flow equations for a qualitatively reli- Yukawa interaction equal to zera,,=h=0, let the scalar
able truncation including “bosonization at all scales.” Sec-field be auxiliary,Z,=0, and seZg=1=Z, (the scalar po-
tion Il is devoted to a discussion of the bound-state fixedtential is of no importance thgnFurthermore, there is a
point which governs the flow of the QCD domain for weak redundancy in Eq(4): we can compensate for a shift \y,
gauge coupling. In Sec. IV, we analyze the universal featureby readjusting the Yukawa coupling and the scalar potential
of the QCD domain numerically and give estimates of infra-corresponding to a Hubbard-Stratonovich transformation
red (IR) observables in the nonperturbative strong-couplingpartial bosonization But apart from this redundancy, which
regime. Instanton-mediated interactions are included in Seavill be removed later on by “rebosonization,” different ini-
V, where we also describe the fate of the pseudo-Goldstongal values for the various parameters in Ed) generally
boson. correspond to different quantum theories. Some of these
theories will belong to the same universality class sharing the
same low-energy properties, which makes them indistin-
guishable from a low-energy physicist’s point of view.

QCD with one massless Dirac fermion flavor coupled to We analyze this class of theories in a Wilsonian spirit
an SUN,) gauge field is characterized by the classi@al  upon integrating out quantum fluctuations momentum shell
bar@ action by momentum shell. For this we employ the formalism based
on the exact renormalization group flow equation for the
effective average actiof,4],

Il. FLOW EQUATIONS

a4, 1 a ra
Soco- | dSDIAY FLFL. @

1 5 3
o= STRI(T?+ RO 1], 5
where DII[A]=4,8' — ingAi, and T, denotes theHer-
mitian) generators of the gauge group in the fundamental
representation. In this work, we embed one-flavor QCD in &
larger class of chirally invariant theories including a color-

singlet scalar field. For this, we consider the action

where'{?) denotes the second functional derivative of the
effectlve average actioh that governs the dynamics of the
system at a momentum sc&leThe logarithmic scale param-
etert is given byt=Ink/A, d,=k(d/dk), where A denotes
the ultraviolet scale at which we define the bare actign

The cutoff functionR, is to some extent arbitrary and obeys
a few restrictiong4] which ensure that the flow is well de-
fined and interpolates between the bare action in the UV and

r= f[zwwmw—[(wtﬂ)z (ys)?1+ 240, * 0,0

+U (o) +h (yrh) b= () ¢* ] the full quantum effective actioh, ., in the infrared.
We solve the flow equatiori5) by using Eq.(4) as a
Z_ apa 4, — truncation of the space of all possible action functionals. As
+—F% F% + (D ) , (4) : .
4 KBy DE a consequence, we promote all couplings and wave function
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renormalizations occurring in E@4) to k-dependent quanti- They could be integrated out without any effect on the fer-
ties. Although the truncatiot¥) represents only a small sub- mion sector and therefore are completely auxiliary. However,
class of possible operators generated by quantum fluctuave will demonstrate below that the infrared physics includ-
tions, it is able to capture many physical features of QCD-ng xSB is to a large extent independent of the initial values

like systems. in the scalar sector; in other words, the QCD universality
Let us elucidate the single components in detail: for theclass is actually much bigger than the restrictive choice of
scalar potential, we use the simple truncation initial conditions of Eq.(8).?
For a concise presentation of the renormalization group
— 1 1 (RG) flow equations of the single couplings, it is convenient
— 2 - 2_ = — %k — * / . i o
U(¢)=mp+ohyp™= vl p=¢*d, (=¢+e". to introduce the dimensionless, renormalized akd
(6)  dependent quantities,
Already thep-dependent first two terms of the potential are m? fd, h
capable of describing spontanegeSB of the system which €= 7 2 )‘¢:Z_z* h= Z127 ©
¢ ¢ b Y

we are aiming at. Indeed, the order parametatenotes the

minimum of the scale-deeendent effective potentigl for  ; the symmetric regime of the system. In th€B regime,
k—0. The term~{= ¢+ ¢* breaks the [(1) symmetry of 1o mass term becomes negative, and we replace this cou-

simultaneous axial phase rotations of scalars and fermions; H”ng by the minimum of the potential, and its correspond-
accounts for the effects of the axial anomaly. However, thqng dimensionless variable defined by

presence of the axial anomaly is not relevant for universality
of spontaneousgySB, although it has, of course, a strong 7
o ! »Po

quantitative impact on resulting low-energy parameters such 0=—U(p=po), «=—%5. (10
as condensates and constituent quark masses. Therefore, we op k
postpone the discussion of this quantitative influence to Sec. o o
V and setv=0 in the following for the sake of clarity. Slmlla_rly, we defl_m_e)\(,, as the seconq!;-denvaﬂve OT the

In the gauge sector, we do not attempt to calculate the fuIPOtent'al at the_mmlmum n t.hQS.’B regime. _The running of
nonperturbative flow o, or alternatively the gauge cou- the_wave function ren_ormall_zatlons is studied using the as-
pling g, here, but study various possibilities for these ﬂowssouated anomalous dimensions,
and take over nonperturbative results from the literature. The __ __ __
most important features of the universality classes involve % ainzy, my=-anz,,  ne=-dn ZF’(ll)
only the perturbative running af.!

We will define the quantum theories by fixing the initial where 5 represents the major piece of information from the
conditions for the renormalization flow at the UV scdleln  gauge sector in our truncation. Here, the use of the

the gauge and fermion sectors, we choose background-field method for this gauge sector has two ad-
. vantages: first, it represents a bookkeeping device to set up
Zek-r=1, Zylk=a=1, N,|x=2=0. (7)  consistent gauge-invariant approximations within a certain

order of truncation. Second, the physical idea of the back-
The first two conditions normalize the gauge and fermionground field is that it accommodates the true ground state of
fields and imply thag denotes the bare gauge coupling. Thethe system arou_nd vv_h_ich the quantum fluctu_ations are inte-
last condition states that four-fermion interactions eithergrated out. In this spirit, we deduce the running gauge cou-
have been partially bosonized into the scalar sector or ar@ling from the RG behavior of the background field. Owing
completely absent at the UV cutoff scate to background gauge invariance, the product of gauge cou-
The choice of the scalar couplings at the UV cutoff will Pling and background gauge field is renormalization-group
finally determine whether we are in or beyond the QCD dodnvariant[5], so that the beta function for the renormalized
main. In order to describe standard QCD in our picture, dunning gauge coupling is related tozg by
natural choice is given by —
g
_ _ — 2=0,0°=ne0%  9°=5-. (12)
Ml=a=+TO(A?),  Nylu=2=0, (Z¢'h)|k:A"01( ) =09 =meg" 9 Ze
8
Actually, the effective action depends on both the back-
implying that the scalar fields are nondynamic, noninteractground and the fluctuating gauge field, and mhgoint func-
ing and heavy at\ and decouple from the fermion sector. tions can only be extracted from the functional depending on
both fields[6]. Nevertheless, once all fluctuations are inte-
grated out, the fluctuating field can be set to zero and the
The running ofg is universal in two-loop order. In the framework
of the exact renormalization group, this has been computed in Ref.
[8]. As discussed in the introduction, the one-loop running is actu- 2Already at this point, it is clear that,, , could also be chosen
ally sufficient to generate the main qualitative features needed fononzero, which would only result in an unimportant change of the
our argument. normalization of the functional integral.
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resulting effective action is gauge invariant. In general, the N, C,(Ny) 1
dependence of the effective action on both fields is needed 77¢|pert.:_2h27 nyl =& 5 2 2h2,

for the RG flow. With the help of background-field identities, 87 per. o7 16m

the dependences of the effective action on the fluctuating (15

gauge field and the background field are related. A detailed
record of the flow equations and results in the background'
field formalism, including the role of the gauge symmetry
and Slavnov-Taylor identities, can be found in R¢&7].

In the present work, we neglect possible differences be; _ _ 4, . 21 (P4 -
tween the RG flow for gauge couplings defined from the’t€= ~ (27 my) €= Buakyli(€ ) + 8N NT17(05 7)),

hich agrees with the literatufd 2].
In the symmetric regime, the flow of the purely scalar
sector can be summarized by

background-field effective action and from vertices of the (16)
fluctuating field[8,9]. _Thls is perfectly j.UStIerq in the limit I\ p= 274\ 4+ 2()()4)\$7|‘21(e;7]¢)_8|\|cv4h4| (2F),4(O;77¢/),
of small gauge coupling which is of primary importance for (17)

this work. Here the lowest-order running is universal. By

contrast, in the region of large coupling, our truncation of thewhereas in the¢SB regime, we find

gauge sector would anyway not be reliable if taken at face

value, so that we abstain from resolving the gauge field run-  dix=—(2+ 74) k+20411(0;74) + 6041 7(2kN 4 74)

ning andzg in this regime. In this region, we simply model h2
the running of the gauge coupling in order to obtain a first _8Nc04)\—|(1F)’4(Kh2§77¢), (18)
glance at theySB regime. Thereby, we assume that the in- ¢

fluence of higher gluonic operators can be effectively ac- 214/, 2.4 _
counted for by the increase of the gauge coupling. Although 9N ¢=27¢N 1 204N gl5(05774) + 180 AN Gl5(26N o 5 74)
this certainly represents an oversimplification, let us stress _ 41 (F) 4 |12

that the details of the flow in the gauge sector are only of BN a2 (kh%my), (19
secondary importance for the issue addressed in this papef, complete agreement with the results of Rdft]. Again,

Inserting the truncatioi4) into the exact RG flow equa- the quantities denoted blyare threshold function§4,13).

results. The scalar and fermion anomalous dimensions can Bjven by all sectors of the system:

written as
ah?=(29,+ n4)h?—4v 0"l (1,FlB)'4(Kh2’6; 7y 9)
=4p 4kN5m5 A0, 2c\ 4 ;
e 22( (F) 4 </>2’7¢>) 2 (4 12 — 1§D kh? e+ 26N 417y, m)]
+4Nwh?[my”(kh?; 57,) + kh*my”%(kh?; 5,)],
o 4h?[m v 2 v —8(3+£)Ca(Nouag®h?I{ P Y(xh?,0i7, 7e), (20)

(13
where we have to set=0 (e=0) in the symmetric {SB)
o= 2C2(Nc)v4gz[(3—f)m(lff)'4(xh2, 074, 7) regime. As a check, we take a look at the perturbative limit,

—3(1—&)m{B 4 kh?, 0:9,,, N.+1 3C,(Nyp)

( 3] 11 (K Ny 7] &th2|pert.: 8C - h4— . 2C 92h2’ (21)
+v4h2[m(1":25)’4(;<h2,6+ 2KN 43Ny M) & 7

here we rediscover known results and also observe that the

+m{P U kh?, € 1,,14)], g W W ISeov W . v

gauge-parametef dependence has dropped out as it should.
5 5 . A crucial ingredient is the flow of the fermion self-
where ”4:,1/(3,277) .an_d C2(N0)2(Nc__1)/(2Nc)' Th.|s interaction, which—in a dimensionful representation—can
representation is valid in the symmetric as well as in theyg \ritten as

xSB regime. In the formerx has to be set equal to zero,

wherease=0 has to be chosen in the latter. The various __ Zix 4 v
guantities denoted byn are threshold functions which con- at)\(,:—z[ﬁf— g*+ By h*],
trol the decoupling of massive modes for decreagintpey k 7 7

also contain all dependencies on the precise choice of the

cutoff functionR,.. Their definitions and explicit representa- Bg“ —— 6(N0+ 2)(Ne—1)

tions can be found in Appendix A or in R4#]. No 2
Equation (13) agrees with Refs[4,11]. We also find

agreement for the second line of Ed4), whereas the first 4 2

line arises from the gauge-field secfavhich has not been BIU‘Z N_+1

dealt with in Refs[4,11]). As a further check, we note that in ¢ 22)

the perturbative small-coupling limit, where the threshold

functionsm occurring above universally reduce to 1, we ob-Here we neglected terms « which arise only in the broken

tain regime but are suppressed therein owing to simultaneously

Ca(Nv ol 4 (kh?, 09, 7).

C

U4T§_I,:1B‘]B_)’4(Kh2, €,€+2KkN 471y, 1)
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occurring threshold function@hese terms are similar to the the fermion mass generated 8B is also momentum in-
last term in square brackets in Ed3), which has hardly any  dependent, so that the couplings in th8B regime have a
effect on the results eitherin Eq. (22) as well as in all  direct physical interpretation.

equations above, we neglected terms of orderon the The field transformatiori23) affects also the scalar cou-

right-hand side, because,= 0 will finally be guaranteed on Plings, and we obtain, in the symmetric regime,
all scales as discussed below. Furthermore, we have chosen

the same Fierz transformations in the Dirac algebra as in Ref.

[2] and decomposed the possible color structures of the four- 5, ¢= Ji€l g +2
fermion interaction into a color singlet (S—and color K
Ng—l-plets (S—Pp)g,l,(V)Ng,l. In the present work, we

focus on the (S—R)term; in principle, the (VQJ(z:,l term

could be absorbed into ledependent transformation of the
non-Abelian gauge field in the same way as suggested in
Ref. [2] for the Abelian cas@.

As mentioned above, there is a certain redundancy in theshere the corresponding first terms on the right-hand sides
parametrization of the effective actidf, owing to possible denote the flow equations for fixed fields as given above in
different choices of partial bosonization of the four-fermion Egs.(16) and(20). In the ySB regime, we find similarly
interaction. From a different viewpoint, this redundancy cor-
responds to the possible mixing of fields or composite opera-
tors with identical quantum numbers. We remove this redun-
dancy in the present truncation with the aid of the following
k-dependent transformation of the scalar fig¢ffiermion- . ,
boson translation): X ( ’B%ag4+ 'B%Uh‘l)'

e(l+e)
2

(L (L 9Qu) (8L "+ ),

aih?= a2, +2(1+ 26+ Q (1+ 2 (BL g+ B 1),
(25

2

K
atK:atK|¢k+2 (1+(1_K)\¢)Q0’)

Fri(d) = — (¢LhR) (A) ra(Q) + () 1 Bx(),
- dth?=6ih? 4 +2(1 =2\ 4+ Qu(1— K\ y)?)
drbic (A) = (Yrih) (— A) dra(Q) + Bic (A) 9 Bi( ), ) )
(23 x (B g*+ B h?). (26)

with a priori arbitrary functionsy,(q) andB,(q). Upon this
transformation, the flow equations given above receive addi

— . . N ._— 2 __ .
tional contributions~ a,(q),B«(q) according to Defining  ANy:=Ao(k)=1,(0),  the ~quantity Q,

=9;AN, /9N ,(0) measures the suppression x0f(s) for
ST STy large external momenta. Without'an gxplicit com.putation, we

N P f —at¢k+f —_ 0¢x . (24 may conclude that this suppression impkgs<0, in agree-

X S Oy ment with unitarity; furthermore, if the flow is in the

xSB regime, the fermions become massive, and non-

As described in more detail in Re2], these functions can pointlike four-fermion interactions in the channel will be

be uniquely determined by demanding féy d\,(q?) to  suppressed by the inverse fermion mass squtiéatrefore,

vanish for allk andg?, where the momentum dependence ofwe modelQ,, by the ansatz

\,, has been studied in trechannel for simplicity\ ,(q?)

éxo(s=q2), (i) th.? Yukawa couplingh to be.momentum Qa=ng(1,FzB)'4(Kh2, 0,74, 7). Q°%=consk0, (27)

independent, andiii) d,Z,(q°=k?*)=—174Z4 in order to

render the approximation of a momentum-independgnt ) _ )

self-consistent. Conditiofi) together with the initial condi- Where we have introduced a threshold function with the ap-

tion (7) guarantees that no four-fermion interaction of thisPropriate decoupling properties for massive fermions. The

type is generated under the flow; this interaction is bosonizegualitative results are independent of the precise choice of

into the scalar sector at all scalesCondition(ii) guarantees Q. @nd it is reassuring to observe a quantitative indepen-
dence of the IR observables on the precise valu@fbfe.g.,
Q%=-0.1).

3By neglecting some of the four-fermion interactions, our quanti-  1he field transformationg23) also modify the equation

tative result will depend slightly on the choice of the Fierz decom-for A, via the terms~a,8. In the pointlike limit (?

position. Using a “fermion-boson translation” to be described in the =0), the modified running is given by

following, this dependence can be removed in a larger truncation, as

was recently shown in Refl10]. However, we checked explicitly

that quantitative results in another natural Fierz decomposition in- 4This can be inferred from the heavy-fermion limit of the two-

volving (S—P,(V)s and (V)y2-, differ from the present ones gjuon/scalar-exchange box diagram where the internal fermion

only on the 1% level. propagators become pointlike;1/m; .
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ﬂth¢= 8t)\¢|¢k
)\¢ a* 4 h, 4
+AS (1T O+ (1+ Q1A g'+ B 1.

(28 <

It will turn out that the modification of the flow of 4 is also
quantitatively irrelevant, whereas the modifications dis-
played in Egs(25) and(26) are of crucial importance.

Il. BOUND-STATE FIXED POINT FIG. 2. Flow of € according to Eq(30) (schematic plot the
solid line corresponds to a QCD scenario at weak gauge coupling;
The universal features of spontaneguSB in the QCD  the arrows indicate the direction of the flow towards the infrared.
domain that will be quantitatively analyzed in the next sec-The dashed line corresponds to a system with fundamental scalar,
tion can be traced back to the occurrence of a fixed point foZ,lk-=x=1, e<1, and strong scalar self-interaction. The dotted
the scalar couplings. This fixed point is infrared attractive adines exhibit the destabilization of the bound-state fixed point by the
long as the gauge coupling remains weak and can be assodicreasing gauge coupling.
ated with a bound stafe]. _
The fixed-point structure can conveniently be analyzeddut approaches chiral symmetry breakirg<(0) in a pertur-

with the help of the coupling batively accessible waiPySB).
In this section, we concentrate on those initial values
e Zf,ﬁz which release the system to the right of the first fixed point,

(290 ‘e,>"er, i.e., which are weakly coupled in the NJL language.
This will be the range of the QCD universality class. As the

Since we are interested in the domain of weak gauge colyStem evolves, it flows towards the second fixed pejn
pling, for simplicity we can neglect the anomalous dimen-Which then governs the evolution over many scales. Here,

sions in the following. In this approximation and choosing the System ‘loses its memory” of the initial conditions; in

the gauge parameter=0 (background Landau gaugehe  particular, it is of no relevance whether we start with

flow of e yields <'e,<es or'e,>'es . The evolution towards and in the IR is
universally governed by this fixed poifété‘ , which can be
shown to be associated with a fermion-antifermion bound

h2 k2h?'

~_ F).4 4 ¢
dre=8N,l{” _8U4|1(6)F state; e.g., in QED, the properties of the scalar field at this
fixed point correspond to those of positronigif.
~ 4 4 ~ i 1 i H
—(2—24C.(N [(FB42ve— 2( g% g+ B h*)22. Be_fore we e_qudate. the f_|xed—p0|nt properties fgrther, let
( 2(NJJval1177g%) € (’BMg B%a Je us briefly mention that its existence can be generalized to the

(30) case of a scalar field describing a fundamental particle in the
UV (a Yukawa model with gauged fermions rather than

(Here, all arguments of the threshold functions which are noRCD). In this case, we havé,=1 ande=(0(1) at the UV
displayed are assumed to be equal to zero; therefore, thresgcale. Now the second term in E@O) can become impor-
old functions without any argument are simply numberstant, in particular for a large* coupling\ , and/or smalh?.
which depend on the details of the regularizatioi.the =~ When discussing the right-hand side of E80) for fixed g,
scalar field is auxiliary at the UV scale as in the QCD con-h, A4, one should keep in mind that these couplings may
text, its wave function renormalization is very small initially, change withk. For |arge)\¢/h2, the'e parabola is lowered
Z,<1, so that the dimensionless renormalized mass is verynq the first fixed point can move to negative values,

large, e>1. In this case, scalar fluctuations are suppressed-( (see Fig. 2, dashed lihen this case, we can release the
and the threshold functions dependingeowanish; the right-

hand S|d.e of Eq(30) .d.esc.nbes a.parab~o ia |~n*the Va”a.l,hie but it still evolves towards the bound-state fixed p&i@t In

and we find two positive fixed points;<0e] <€z , whereer  comparison with Fig. 1, this corresponds to initial values
is UV attractive but IR unstable, andg is an IR stNabIe fixed m2<mi <0. Physically, such a scenario describes a system
point (see Fig. 2, solid ling It can be shown tha¢} corre-  involving fundamental scalars, fermions and gauge fields,
sponds to the inverse of the critical coupling of the NJLwhere the scalar sector is initially weakly coupled to the
model, so that our flow describes a model with strong fourfermions. If we start in the broken regime, scalar fluctuations
fermion interaction if we choose UV initial conditions with will drive the system towards the symmetric regime before
‘e <€’ to the left of the first fixed pointsee, e.g., Ref14]  the fermion-gauge-field interactions induce sizable bound-
for a detailed analysis of the phase structure in the Abeliagtate effects which can exert an influence on the scalar sector.
cas@. For this choice, the system is not in the QCD domainin this scenario, the first fixed poirt <0 is a measure of

system even in the broken regime at the UV scale<0,
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the Strength of the initial effective Coupling between SC&'arSsome Va|ueg% of the gauge Coup”ng, the two ﬁxed_points in
and fermions. For strong effective coupling,<ef , anini- ¢ will be degenerate, so that there is no fixed point at all for

tial negative scalar mass of the order of the cutoff|,_,  all g2>g2. The beta functio,e is then strictly positive,
=—0O(A?) will induce a vacuum expectation value and ahich drives the system towards tySB regime.
fermion mass of the same order, in agreement with naive |n the limit e>1, the critical gauge coupling of fixed-

expectations. But at weak effective coupling, e’ point degeneracg? can be computed analytically, and we
~0O(1), A 4,=100 ande} <€, <0, the system can still start find

with an initial negative scalar mass?|,_ ,=— O(A?), but

finally run into the bound-state fixed point. As an important , 16 , N 1 4 , 1

result, the vacuum expectation value and the fermion mass 90~ 3 7 N—1 1+ N+ 1 1)=37 C,(Ny’

after symmetry breaking can easily be orders of magnitude (32)
smaller than the UV scale, as exhibited in Fig. 1 in Sec. . We

conclude that all systems witNhA>~e’{ belong to the QCD where we have used linear cutoff functiofi6] for which
universality class. IFP4=3/2. For instance, for SB) we get ap=g5/4m

Let us now turn to the properties of the system at the~ /4, which is in the nonperturbative domain, as expected.
bound-state fixed point. The crucial observation is that NoAs soon a$]2 exceedg‘]%’ the running of the scalar cou-
only € but also all dimensionless scalar couplings approackplings is no longer protected by the bound-state fixed point.
fixed points. In the general case, the fixed-point values deHere all couplings are expected to run fast, being strongly
pend in a complicated form on all parameters of the systemnfluenced by the details of the increase of the gauge cou-
However, in the limite>1 (QCD-like), we can find analytic  pling. Of course, owing to strong coupling, many higher-
expressions that satisfy the fixed-point conditionsorder operators can acquire large anomalous dimensions and

(?t(e,hz,)\d))=0 to leading order: contribute to the dynamics of the symmetry-breaking transi-
tion. Our truncation should be understood as the minimal
. 2 lowest-order approximation in this regime, but gives already

€= m a remarkably consisteribut not necessarily completic-

ture. Once chiral symmetry is broken, the fermions decouple

ot 4 and the fermionic andmost of the scalar flow essentially
.2 2|,8A”|g stops.
(h*)%= |Q,]| The scenario discussed here finally explains why the IR
values of the scalar and fermionic couplings inherit their or-
12 C5(N(N+2)(N.—1) (FB) 4.4 der of magnitude from the QCD scaleycp as they should,
= 1Q,] N2 valiz 9% BD  whereas particularly the details of the scalar sector at the UV
7 ¢ scale are of no relevance, owing to the fixed-point structure
inducing QCD universality.
Ny gQ Y.
¢ cn N2
6C,(No)g IV. NUMERICAL RESULTS

From the first equation, we read off that the approximation In the following, we concentrate on the set of theories that
e>1 is equivalent to assuming,|<1, which is roughly belong to the QCD universality class. In order to illustrate
fulfilled in our numerical study with our choice 0@2 how universality arises from the presence of the bound-state
=—01. fixed point, we initiate our flows at a GUT-like scale Af

The remarkable properties of the IR fixed point become= 10" GeV, where the gauge coupling is weak and increases
apparent when considering the renormalized scalar masgnly logarithmically towards the infrared. Therefore, the
m?=ek?. Since e—€*, the scalar mass simply decreasesbound-state fixed point exists over a wide range of scales. As
with the scalek, so that it is onlynatural to obtain small ~ discussed before, hardly any dependence on the specific ini-
massesn®< mi for small scale ratiok<A. In other words, tial V?'“es for the scalar potentla! and the Yukawa coupling
even if we start with a scalar mass of the order of the cutoff €Mains because of the fixed point, as we will demonstrate

— 2 . . . . guantitatively in the following.
m?=a~A% no fine tuning will be necessary to obtain "~ o jiystrative purposes, we concentrate here on QCD-
small mass values at low-energy scales, as long as the rufige scenarios where the scalar is auxiliary at the UV scale,
ning is controlled by the bound-state fixed point. and explore this parameter space using the natural choice
In order to approach thg SB regime, the bound-state
fixed point has to be destabilized; otherwise, the system will———
remain in the symmetric regime as is the case in QED. In s
QCD, this d_establllzatlon arises from the Increase of thE‘depends on the choice of the cutoff function, i.e., the regularization
gauge coupling towa_rd_s the I_nfrarélﬁ]. Frqm the t_h'rd and scheme. This is only natural, since the running of the coupling itself
last term of Eq.(30), it is obvious that an increasing gauge 5o depends on the regularization. The scheme dependence, how-
coupling lifts thed,e parabola(see Fig. 2, dotted lingsFor  ever, cancels out in physical quantities.

Strictly speaking, the value qjé is not a physical quantity and
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FIG. 3. Flow ofe, h and\ 4 in the symmetric regime according to Eq&6), (17), (20), and(25). The solid lines correspond to the
reference sef33), whereas the dotted and dashed lines represent the flows for strongly differing initial values as indicated. The insensitivity
with respect to the choice of initial conditions is clearly visible. On the horizontal axis, the expbpeist used for the scald
=1010 GeV.

given by Eq.(8) as a reference; to be precise, we use thechange for the couplings in Fig. 3 is visible aftgr exceeds

reference set gzD and the bound-state fixed point has disappeargd (
=<1).
azh(_A:Az f¢|k_A=0 Z¢|k_A=1078 The behavior of the system changes rapidly after the

gauge coupling has grown large. Fg?>g%, the bound-
o state fixed point vanishes and all couplings start to run fast.
h?-a=10"12%  <€l,=10°, N4,=0, h| =102 The system necessarily runs into th8B regime where the
(83)  scalars develop a vacuum expectation value and the fermions
acquire a mass
in our numerical studies. In all computations, we use linear m?= limk?kh?=(hog)?, (34)
cutoff functions proposed in Ref16] for which the thresh- k0
old functions can be determined analyticalee Appendix
A). We plot the flows of the renormalized dimensionless couwhereog=1lim,_.\Z4p, denotes the renormalized expecta-
plings €, hand\, in Fig. 3 for the symmetric regime. The tion value of the scalar field.
reference se{(33) is depicted as solid lines, whereas the This leads to a decoupling of the fermions, and, conse-
dashed and dotted lines correspond to initial values whiclyuently, fermion-boson translation is “switched off.” Also
deviate from the reference s@3) by many orders of mag- the flow of the Yukawa coupling stops, the scalar and fer-
nitude for the corresponding couplings. mion anomalous dimensions approach zero, amiins ac-
As long as we start in the range of attraction of the boundcording to its trivial mass scalings~1/k?, so thatm; ap-
state fixed point, we can obviously vary the initial values forproaches a constant value.
the scalar couplings over many orders of magnitude without Whereas the qualitative picture is rather independent of
any appreciable effect. The system quickly approaches thihe details of the running gauge coupling, quantitative results
bound-state fixed point, where the initial values of the cou-are highly sensitive to the flow of the gauge sector. This is
plings become unimportant. In particular, the scalar massecause a finite amount of “RG time” passes from the dis-
which is allowed to be of the order of the cutoff or even appearance of the bound-state fixed point to the transition
much larger atk=A, runs to small values-k while the into the ySB regime. In between, the running of the gauge
system is governed by the bound-state fixed point. No fingoupling exerts a strong influence on all other couplings
tuning is necessary for thfsLet us stress once more that which are no longer protected by any fixed point. A purely
these features of universality are not restricted to the refefperturbative running of the gauge coupling turns out to be
ence set(33) and the variations thereof. They can also beinsufficient for the present purpose, since {u@physical
found in Yukawa models with a fundamental scalarlLandau pole destabilizes the system in the infrared.
(Z4lk=21=1) and even if we start in the broken regime at the ~ For definiteness, let us consider a running coupling gov-
UV scale(see Fig. 1 erned by the beta function

At the bound-state fixed point, the couplings are modu-

4 6

lated only by the logarithmically slow increase of the gauge ;g2 g, .2~ — 2| b, 9 _+b, 9 —
coupling. Incidentally, the modulation oaf=e/h? is com- 16m (167°)
pletely carried byh, wherease stays fixed. This agrees with
our analytical fixed-point values found in E@1). A rapid 1 1 s
X| 1—exp, . E— ,
8As a fairly weak condition, we only have to ensure that the initial 4
scalar couplings are such that no strong four-fermion interaction is
implicitly induced by the initial values; in this case, the system _ 1_1 _ EN b —%NZ— E)N N;— 2C,(NN
starts to the left of the first fixed poirtf and rather resembles a 03¢ 37" 173 e g7 2(NeNy
non-Abelian gauged NJL model withy®B. (35
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FIG. 4. Flow of the scalar masg, the scalar VEVog, and the constituent quark masg close to and in the¢SB regime, using the
reference sef33). For the particular choice for the running of the gauge coupling according t@Bqwith «, =2.5, the transition occurs
atk, sg=423 MeV.

for our numerical studies. In the UV, this beta function ex-equation at our disposal this choice would fix the system
hibits an accurate two-loop perturbative behavior, whereasompletely.

the coupling runs to a fixed point;=g®(4m)— a, in the In our truncation, however, we have the paramegr in

IR for k—0. In the first place, the infrared fixed point is addition to the Yang-Mills beta function, which characterizes
convenient for numerical purposes, since it does not lead tg,,, ignorance of the exact flow. The quan@i measuring

g:if:ir?:alsz isncsatﬁabgigp?:ﬁx?]rte?uvr?r:inagnci)nlj;jirr?gd izxggmppoai\gtjl%]e momentum suppression of the four-fermion interaction
_ - . 0o_ ; ; ider-
with the expected mass gap in Yang-Mills theory. Below this lll be set toQ,=—0.1, in agreement with our consider

mass gap, all gauge field fluctuations decouple from the rovﬁ:'ons gt|ven abovel,\. It turEIS %Ut tha;th? |nfrf1hr_ed proper?es Ofd
and can no longer drive the flow of the coupling. Different € system are only weakly dependent on this parameter an

beta functions with and without infrared fixed points are©n ¢ (S€€ below which substantiates our truncation. Fur-

studied in Appendix B. It turns out that, though the infraredthzermore; we choose, to be of order 1, but not too close to
properties such as the constituent quark mass depend quais/ (4) in order to avoid pathologiest, = 2.5.

titatively on the choice of the beta function as expected, the For this concrete scenario, the transition to the
universal features discussed in the following remain unxSB regime occurs ak, sg=423 MeV. The renormalized
touched. This underlines our observation that the detailedcalar mass slightly above, sz and the VEV of the scalar
understanding of the flow for the region of strong gaugefield belowk, sg are depicted in Fig. 4left pane). Accord-
coupling is not essential for the overall picture. ing to Eq. (34), we find a constituent quark mass of;

In combination with Eq.(35), the system of flow equa- =371 MeV as shown in Fig. &ight pane). Of course, these
tions is now closed and provides us with an answer for th@aumbers depend strongly on the details of the Yang-Mills
(truncatedl quantum effective action, once we specify all pa-beta function for strong couplings~1; various other ex-
rameters and initial values. We have investigated gU( amples are discussed in Appendix B. Finally, the running of
=3) gauge theory with initial valug(A) chosen such that \,, h? and the scalar and fermionic wave function renormal-
ag acquires its physical value at tlleboson masse(M5) izations is collected in Fig. 5.
=0.117. We work in the background Landau gauge0, Focusing on low-energy QCD-like aspects of our trun-
which is known to be a fixed point of the renormalization cated system, it is also remarkable ttegpart form the scalar
flow in the gauge sectdil7,18. If we had an exact flow couplings the choice 0RQ? has little effect on infrared prop-

—_ Ag 100 h?
1
0.001 1
0. 01 FIG. 5. Flow of\ 4, h?, and
1.x107° : . @ h
: the wave function renormaliza-
1.x107 0.0001 tionsZ, andZ,, over the complete
txwor e L Lxot b L range of scales for the reference
to « tio set (33). The rapid change of all
couplings neart;o=log;K,sg/ A
7 6x10°° 2 =—0.5 is visible. Whereat?,
k4 -6 1.75 Z,4 andZ, approach fixed points
ax10t® 11; Zy in the deep infrared owing to de-
ok coupling, A, decreases logarith-
ko .75 mically owing to a massless “eta”
2x10 0.5 in absence of the axial anomaly.
1x10° 0.25
-3 -2 -1 2 3 4 St -3 -2 -1 1 2 t 3
10 k=101GeV 10
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erties of the system: varyin®° between—0.5...0.001 responds to an integrated flow, =My a(¥riL — YL ¥hR),

changes, sg or m; only at the level of less than 10%. This is h : —
. . ere the flow of the induced ma s given b
reassuring and in contrast to the strc@& dependence of the W W the Bi+a 1S OV y

bound-state fixed-point values ef andh, . The variations o
of the infrared properties are similarly small for changes in My a=21°Z, dg‘C(g)cE(Nc)
the gauge parameter in the intenégat0...2.
To summarize, a large class of QCD-like theories includ- — 4y
ing a scalar degree of freedom belong to the QCD universal- a(lp) afkm), (37
ity class owing to an attractive infrared fixed point present a(;) o T tT (K, M),

for weak gauge coupling. Even before the gauge coupling
becomes strong, all theories in this universality class are in- . L L — _ )
distinguishable at low energies. They exhibit an identical apVith the initial conditionm, ; p(k=A—2)—0. For consis-

proach toxySB which is triggered and quantitatively deter- [€NCY, We also included here the fermion wave function
mined by the increase of the gauge coupling. renormalizatiorZ ,, which was not taken into account in Eq.

(36) as derived if19]. Sincef_C has mass dimension 1, an

V. INSTANTON-MEDIATED INTERACTIONS, AXIAL appropriate choice is given by

ANOMALY AND THE FATE OF THE ETA BOSON

— 1
_ - 2 : _
Up to now, we have considered only that part of the fo(k,my) = ka(Kh ), with 1(0)=1,

model which has a global A§1) symmetry corresponding to

simultaneous axial phase rotations of the scalars and fermi- 1
ons. In QCD, this symmetry is anomalously broken by the fo(kh?)| h2_e— , (39
presence of gauge-field configurations of nontrivial topology. Vkh

For instance, instantons induce fermion interactions which -
break this symmetry. In an instanton—anti-instanton backsuch thatf (0, m{)=1/m¢. For our numerical solutions, we
ground, theN;=1 interaction is masslike and can be ex- will use f(x)=(1+x)~ Y2 for simplicity. With these defini-

pressed afl9] tions, we can rewrite Eq37) as
—4p
To(kmpd — k a(k/fy) 0
Lroa= [ 2 i o)CeNg 27%0) A a= = 272, Ay (Fe /KO CelNo) | ==
o " c a(p)
—afb '
1/ o (—fe)
o _p) (ripL— YLbR), x| 1+ — = a(kh?) |, (39
a(u) c
168N N wheref.=f(«xh?), and the prime denotes a derivative.
(o) = 4.6e "7 2m " o~ 2nlag o) Now we could repeat the calculation of the flow equations
0 (@)= 72(Ng— 1)1 (N—2)! adllo) ' of Sec. Il including this fermion mass term in the propagator.

(36) In this way, however, we would induce a number of(t)
noninvariant fermion-fermion and fermion-scalar couplings
where C¢(N,) is a color factor that arises from averaging Which complicate the calculation unnecessarily. Instead, we

over all possible embeddings &U(2) into SU(N,), e.g., Propose a generalization of the field transformati@3)
Ce(2)=1, Cg(3)=2/3, andu=1 GeV is the renormaliza- which serves to translate the instanton-induced interaction

tion scale for the fermion fields. Note that we introduced anfNto the scalar sector:

IR cutoff functionf_c(k,mf) in the upper bound of the instan- T
ton radiuse integration. This function should cut off the 9 P(Q) =~ (LR (Q) dr(Q) + Pi(Q) i Bi(Q) + Iy v«

contribution from all modes with momenta either belkwwr + (bt i) drdbx,
the generated fermion masg, and thereby implements the
renormalization group formulation of this interaction in a

* — (o _ *
simple manner. The integration is UV finite foro—0 91k (@)= (rip ) (— Q) drar(Q) + by () diBi(Q) + dy vk

owing to asymptotic frgedom, and the infrared-{ ) is +(pE Bi) b 3Dy, (40)
controlled by the cutofff, and by the increase of the cou-
pling. with additional a priori arbitrary functionsy, and &,

In the following, we intend to include this interaction as it whereasa, and B are those of Sec. Il. The term d,y,
is, being an example for aA§1) violating term. Contrary to corresponds to a A{1) violating shift of the scalar field
standard instanton based mode&l6], we do not employ fur-
ther information about, e.g., average instanton sizes and—
separations or other assumptions about the vacuum state ofA more rigorous treatment of anomaloug (@) breaking within
the gauge field. For this, we note that E§6) already cor- the flow equation formalism has been suggested in Rdi.
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which can compensate for the instanton-induced fermioThese equations are valid in the symmetric regime with simi-
mass. The flow ofn,,  is now given by lar equations for thegSB regime displayed in Appendix C.
Strictly speaking, the system is never in the symmetric
— — — 1 regime, since chiral symmetry is always broken implicitly by
My A= M4 al g, + NIy Svrenc, (4)  a nonzerov term which induces a nonzero VEY, for the
scalar field. For instance, rotating the VEV into the real com-

where the second and third terms arise from the transforma2onent,¢=oo=¢*, o= po, the location of the minimum
tion of the Yukawa interaction and the last term in K@), obeys

respectively. Now we can determing, such thatd,m,; —

_ . . . . _ _ v
=0 holds on all scales. !n this vyay, the instanton mtergctlon 0=U’(pg)=m?+\ 4po— T = O0=e+kh,— > T
does not affectn; 5, (which vanishes on all scalgsbut is 27 po K
translated into the scalar sector and contributes to the run- (47)
ning of ». In the point-like limit @“=0), we find Obviously, k=0 is not allowed ifv+0, owing to the linear

_ —, _ term in ¢ in Eq. (6). The running of the minimum can be

= —=2mM"dyy+ viPy. (42 inferred from
Introducing the dimensionless renormalized quantity 0=3,U"(po)| ,=VU"(po) drpo+ (?tU'(po)|p0
V=L = pr=kv (43 1 ,
71733’ REK, = dpo=—————aU'(po)| - (49)
¢ .V —ae
- . Nyt 4 Po

wherevg denotes the renormalizédimensionful value, we Po

finally arrive at
Since the instanton-induced terms are exponentially small for

74 2€ N, the major part of the flow, the minimum of the potential is
dy=—|3= o v—4m ﬁdo (fe/k)Ce(No) actually very close to zero, and the equations for the sym-
metric regime of Sec. Il can be used up to tiny corrections.
a(k/fe) “Hoq (—fo) ) The solution of the flow equations is numerically difficult
a(;) f_c + f—cé’t(Kh ) with an exponentially smalk in the broken regime. There-

fore, we decide to solve the flow equations for large enough
k in the symmetric-regime formulation. In this regime,
14 2 g4 4 h4 4 . . .
+=[1+(1+e)°Q,1(BL g*+ B, h*), (44  evolves according to Ed44) with only a subdominant cou-
h? 7 7 pling to the other flow equations via E@46). Then we
switch to the broken-regime description at that scale where
which describes the running of the axial anomaly in the in-he instanton-induced fermion mass is of the order of a
stanton approximation. o few MeV; this procedure induces an error only at the per-
The shift ~d,y, induces another A(1) violating term  mjjie level and turns out to be insensitive to the details of the
(¢* ¢)(¢* +¢) via the transformation of the ,(¢* #)*  switching scale.
term. This can be cancelled by an appropriate choice of the we have analyzed the flow equations including the
last transformation functiory in Eq. (40), which has to  jnstanton-mediated interaction numerically and used the ref-
satisfy erence set of initial conditions as defined in Sec[4¥e Eq.
(33)] for a direct comparison. As expected, most properties
(45) of the system are unaffected by the instantons, while the
system is governed by the bound-state fixed point. Here the
instanton-induced effects are exponentially suppressed, since
Finally, the terms~ &y in Eq. (40) influence the running of the coupling is small. In particular, the running of the scalar
\ , via the transformation of the scalar mass term. The modimasse and the Yukawa coupling are identical to the ones
fied flow equation fol , reads displayed in Fig. 3, and the universality properties discussed
in Sec. IV remain unaffected.
B W ) ¢ 4 4 The renormaliz_ed axial anomahyR is plotted in Fig. 6
I\ =N gl + 4F(1+ 2e+(1+€)°Q,)(B) 9"+ B, ") (left pane). It remains exponentially small for a large part of
the flow and becomes of order (Ge\and larger only in the
—4/bo strong-gauge-coupling regime. Here, however, it contributes
strongly to the VEV of the scalar field and consequently to
the constituent quark mass which leads to the decoupling of
the fermions.
at(Khz))_ (46) We observe a rather smooth onset of fermion-mass gen-
eration. Furthermore, the constituent quark mass is strongly

_ 1
)\(b&t')/k_ Evat(sk: 0.

a(k/f,)

a(pm)

A
+ 16772%dg'°(fclk)CE(Nc)

1 (—f0)
AR
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FIG. 6. Left panel: axial anomalyg in the vicinity of the scale of fermion decoupling. Right panel: instanton-induced fermion mass.
Both plots refer to the reference 9@3) and the particular choice for the running of the gauge coupling according t¢3Bqwith «,
=2.5. A comparison with Fig. 4 shows that the fermion mass is dominated by instanton effects.

enhanced by the instanton interactions. For the reference seders corresponding to Fig. (tight pane) with m2 slightly
we find m;=1765 MeV in the infrared limitk— 0. Again, — -
f —v. g below mZ, we find an extremely small eta mags, =2

this number depends strongly on the precise choice of the . —
running gauge coupling in the infrared, and a number of<10 ~ €V. For smallermy, the eta mass decreases even

other possibilities including instanton effects is listed in Ap-further, and larger eta masses require a tremendous fine-
pendix B. tuning ofm; close tom?.

Let us finally discuss the fate of the “would-be” Gold- In this scenario beyond the QCD universality class, we
stone boson, which we may call the eta boson in the style dhave thus found a mechanism to generate extremely small
real QCD. Neglecting the axial anomaly, this boson arisesnasses without any fine tuning. From another perspective,
from spontaneous breakdown of the global() as a true this mechanism exploits the fundamentally different RG
massless Goldstone boson; its effects on the scalar sectproperties of scalars and chiral gauge theories. For systems
even afterySB are visible in the logarithmic running of the in the universality class of ¥SB, thexSB scale of the sca-
scalar¢? coupling\ 4 as can be seen in Fig. 5. The(1)  lar sector is generically of the order of the UV scale, whereas
anomaly, however, generates a mass of the eta boson. In thee nonperturbative scale of the gauge sector can be much
present formulation, the A{1) anomaly occurs as theterm ~ Smaller. Now the mass of the would-be Goldstone boson is

in the scalar potential6). Its contribution to the renormal- 9enerated by the nonperturbative sector of the gauge theory
ized eta mass can be computed as which is exponentially suppressed at the UV scale. This in-

terplay finally leads to the generation of the extremely small
mass.

mh=o—. (49

VI. CONCLUSIONS

Within the above-given framework of instanton-mediated in- |, this work, we studied a class of theories involving one-
teraction, we find for the eta boson mass in the QCD universjayor massless QCD and a chiral color-singlet scalar field.
sality class a value ah,=4440 MeV. Of course, this value  oyr model is parametrized by the gauge coupling and a num-
also strongly depends on the choice of the running of ther of scalar couplings. In this framework, we identified the
gauge coupling and should be used only for comparison Wittycp universality class of theories which share the same
other masses computed for the same running gauge couplinghysics at low energies, namely spontaneous breaking of chi-
In particular, we find roughly the ratim, /m¢=3. This sce-  r5|'symmetry triggered by the strongly interacting gauge sec-
hario giving rise to a heavy mass of a would-be Goldstongoy at the QCD scale. As a remarkable result, the QCD uni-
boson is familiar from three-flavor QCD. versality class contains theories with fundamental scalars
_ By contrast, the fate of the eta boson is more spectaculgghere the microscopic scalar potential has its minimum at
if we go beyond the border of the QCD domain to that Ofnonzero fieId[mﬁ>H§~—O(A2)]. For these the theories,

PxSB, corresponding to a choice off <m; in Fig. 1 or  the scalar fluctuations drive the system first into the symmet-
ex<er in Fig. 2. Here, the VEV of the scalar field is generi- ric regime with a large positive scalar mass, and the remain-
cally of the order of the cutofi\ = 10" GeV. At the same ing flow is governed by the QCD sector. We checked explic-
time, the fermions rapidly become massive and decouplély that this is in accord with perturbative expectations for

from the flow only a little belowA. As a consequence, in- weak couplinggcf. Fig. 1, right panel

stanton contributions or other long-distance topological The mechanism that establishes QCD universality is the
properties have little effect on the fermion sector and thus theccurrence of an infrared attractive bound-state fixed point in
axial anomaly exerts hardly any influence on the scalars. Athe scalar couplings which persists over a wide range of
a result, the contributions to the eta mass are stronglgcales as long as the gauge coupling is weak. At this fixed
suppressed—powerlike in the denominator and exponentiallgoint, the scalar field exhibits quark-antiquark bound-state
in the numerator. For instance, for the set of initial param-behavior and the RG running of the scalar couplings is gov-
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erned by the RG behavior of QCD. All memory of the scalaras to whether our technique of fermion-boson translation is
initial conditions is lost by the system. As a remarkable con-capable of describing all possible mesonic degrees of free-
sequence, the scalar mass is not a relevant operator at tldem. Let us first look at two extreme situations. For a large
fixed point. For increasing gauge coupling, the bound-stat@egative renormalized scalar mass term, perturbation theory
fixed point is destabilized and the system runs towards thapplies: there is a fundamental scalar, and separately propa-
xSB regime. Here the role of the scalar field changes and igating meson states may not exist, similar to a very heavy
can characterizéquark condensates an@nesoni¢ excita-  top quark. For a positive renormalized mass term, the funda-
tions on top of the condensate. At strong coupling, the simplenental scalar decouples from the low-energy sector in per-
overall picture ofySB arising from our truncation can, of turbation theory. The low-energy sector then is QCD without
course, be modified quantitatively as well as qualitatively byscalars, as in our picture. The transition is less obvious: in
the influence of higher-order operators. In particular, mixecthe region where the fundamental scalar mass would pertur-
nonminimal fermion-gluon and scalar-gluon operators mighbatively be of the order of the strong interaction scale, there
add new features tawSB by providing a coupling to the s a strong mixing between operators corresponding to fun-
nontrivial gluonic vacuum structure. damental and composite scalars.

Beyond the QCD universality class, we find the class of In principle, in a situation with mixing the propagator in
theories exhibiting perturbative spontaneous chiral symmetryhe scalar sector may have one or several pole-like structures
breaking(PxSB). In this class, the system is mainly driven that can be associated with particle excitations. Our trunca-
by the scalar sector, and IR properties such as condensatgsn cannot fully resolve this issue, since, by construction, it
and generated fermion masses depend strongly on the initighllows the flow of only one pole in the propagator. Our
scalar parameters. The gauge sector exerts hardly any inflihvestigation shows the consistency of a picture with only
ence on the fermions in this class unless the scalar parangne pole. If the true physical situation had two poles our
eters are fine tuned to a high precision. In the deep IR, purguncation would follow the flow of the lowest mass. We see,
gluodynamics without dynamical quarks remains. The flowhowever, no indication that a second pole actually exists.
of the scalar couplings is never in the attractive domain oiNevertheless, it seems worthwhile to discuss the possible
the bound-state fixed point, but is governed by aimplications of a second scalar “pole” for the issue of uni-
fundamental-particle fixed point. Small deviations from this, e gajity classes. First of all, fon? larger than but not in the

fixed point have an infrared unstable component which Corfmmed'ate vicinity of .. a “second pole” could correspond
responds to the RG relevant scalar-mass operator. ! ! y omc, P P

In both universality classes, we found interesting implica—Only tc_’ an add_itional heavy scalar parti_cle. This would decay
! at a high rate into the QCD mesons, since no quantum num-

tions. Our setup of the QCD universality class admits a reso _
b Q y bers forbid such a decagOne expects at most a resonance

lution of an old puzzle: whereas QCD has no fine-tuning
problem and is completely determined by fixing the coupling'@er than a true poleFurthermore, effects from the ex-
hange of such a heavy scalar resonance would be sup-

at a certain scale, low-energy QCD models based on NJLS dbvi fth d theref |
type fermion self-interactions depend strongly on additionaP'€SS€U DY INVETSE pOWETS of the mass and therefore play no

arameters such as an intrinsic UV cutoff. In the context oirOIe for the Iow-energy_theory_. This is what_ one usgally un-
P erstands by “QCD universality clasga notion that is not

partial bosonization, this cutoff dependence corresponds to%‘ ; : .
strong dependence of IR observables on the bosonizatidh©udht to resolve the detailed short-distance physics

scale(or the value of the scalar mass at this sgale our This issue becomes more intere_sting whef is fine-
approach with scale-dependent field transformations, partialined to the immediated vicinity aiZ. In this case, we
bosonization occurs at all scales, and no artificial dependencgpproach theboundaryof the QCD universality class. We
on unphysical scales is introduced. In our truncation, QCDemphasize that this boundary is not uniquely defined in terms
flows continuously from a high scale with quarks and gluonsof the symmetries and particles characteristic for the QCD
as the relevant degrees of freedom to intermediate scalemiversality class. Considering the QCD universality class
with quarks, gluons and quark bound states and further térom the viewpoint of a larger space of models or param-
low scales with constituent quarks, condensates and mesongters, the spectrum of excitations that are relevant at the
In the PySB universality class with one fermion flavor, boundary can depend on the direction in parameter space
we identified a natural mechanism for the generation of exfrom which the QCD universality class is approached. Dif-
tremely small scalar masses without fine tuning. The meché&erent directions may yields a different “number of poles”in
nism exploits the fact that the spontaneous breaking of théhe boundary region. For this reason, a future more detailed
Ua(1) symmetry would lead to an exactly massless Gold-investigation of this issue would be quite interesting.
stone boson in the absence of gauge interactions. The axial We stress that all of our main conclusions can be drawn
anomaly in the gauge sector then endows a small mass to thiiom a mere perturbative knowledge of the gauge sector
boson. Owing to the highly different RG behavior of the which is well under control. In a broader sense, the pure
scalar and the gauge sector, the scaley@® differs generi- QCD sector in our work can be regarded as a particular ex-
cally from the scale of nonperturbative gauge effects byample for possible othemonperturbatively renormalizable
many orders of magnitude. This leads to an exponential sugheories leading to fermionic self-interactions in scalar chan-
pression of the influence of the axial anomaly and thus to amels.
exponentially small but nonzero scalar mass. Let us finally discuss our findings from a different per-
For theories with a fundamental scalar, the question arisespective, concentrating on the scalar sector. Scalar fields are
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known to lead to profound problems in quantum field theorythe “bound-state fixed point’es . As a particularity, the
for two reasons: triviality andun-naturalness. Triviality —gauge coupling is a marginal parameter for both fixed points.
tells us that an interacting scalar theory requires a UV cutoffrhe scale where it becomes strong sets the lowest possible
which cannot be removed without switching off the interac-gcgle for the effective fermion masses.
tion. Therefore, whenever we see a scalar quantum field at Quite generally, the existence of a bound-state-like fixed
some low scale, we know that there must be new physics Fgint leads to a mechanism with a naturally small scalar
a higher scale. The problem of naturalness tells us that it ifyass. In a sense, this is a realization of earlier ideas of a
difficult to achieve a large separation of scales for model§arge anomalous mass dimension for the scalar field or “self-
with interacting scalar fields without fine tuning. organized criticality”[23]. It would be interesting to know if
Our formulation has the potential to solve both problems 5 simjlar mechanism could contribute to an understanding of
A first example can be given within the QCD universality gjectroweak symmetry breaking which occurs at a character-

class. Although from a QCD perspective, the scalar fieldstic scale hundreds of times bigger as compared to QCD.
could be regarded as purely auxiliary, nothing prevents us

from considering it as fundamental, since the concepts of
compositeness and fundamentality are interchangeable from ACKNOWLEDGMENTS
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class. In this way, we can circumvent triviality by starting in
the UV from a scalar field theory without self-interaction and APPENDIX A: THRESHOLD FUNCTIONS

Yukawa coupling for which the continuum limit can be taken The regularization scheme dependence induced by the

trivially. The scalar interactions are induced by quantum . . : .
fluctuations. In this construction, the system is always in theCUtOff functionR is carried by the threshold functiohsnd

QCD universality class, and therefore inherits the number of™ é_et us repre?enéthe cutoff functions in the scalar, fermion
relevant and marginal operators form QCD. In particular, the?Nd 9auge sector by
scalar mass term is not a relevant operator, so that no natu-

ralness or fine-tuning problems arise in and from the scalar RI(OD)=Z40%r(y), RY(a)=—Z,a/r((y),
sector. Alternatively, we could also follow the bound-state

fixed point tok— o, where it presumably becomes an exact 1\q,9
fixed point even beyond our truncatiofThe 3 function for  (R¥(a)),,=Z¢9?r (y) gw—<1— —)%
the running gauge coupling vanishes, owing to asymptotic ¢/ q
freedom in this limit)

Perhaps more interesting is a second possibility in thevherey=qg?/k? andr andrg denote dimensionless cutoff
PxSB class. Let us consider fér—c a scalar model with  shape functions. Furthermore, it is useful to introduce the
Z4—0 and\ ,—0 andm? andh chosen such that corre-  inverse average 2prc;pagators’(x)jx[1+r(x/k2)] and
sponds to the fixed poing* . This model has an alternative Pr(X) =X[1+re(x/k)]*, wherex=q". o
interpretation as a model with four-fermion interactidgaad Most of the threshold functions given above are defined in

no scalar fieltl Both the gauge coupling and the critical four APPeNdix A of Ref. [4]. The ones which cannot be found
fermion coupling therein are marked with a tilde. These can be defined as

follows:

: (A1)

— 1
* __ ~
o 2’"&1: k2 (50) mg_',:f)Yd(WF "Wg; Ny ; 77¢)
vanish fork— oo, If this fixed point persists beyond our trun- 1 % _
cation, it defines a nonperturbatively renormalizable theory =— §k47df dxx¥2~ 15,
[22]. For lowerk a nonzera\ , is generated by the flow and 0
we end up with a theory that effectively looks like a model
with an interacting fundamental scalar field. This scalar field (A2)
can give mass to the quarks by $B independently of the
strong interactions, in analogy to the Higgs scalar. The trivi= ).d

: o (FB .
ality problem could be solved in this case—but not the natul 1.2 (We:Wg; 7y, 78)

1+re(x/k?) 1
Pr(X) + K2Wg P(x)+k2wg]

ralness problem, since we expect a relevant parameter corre- 1 -
sponding to the scalar mass term. - _ke—df dxod2- 15,
This discussion sheds new light on the continuous transi- 0
tion between the PSB and QCD universality classes. In the Pu(X) 1
F

language of statistical physics, it can be considered as a type
of crossover between the “fundamental fixed poiet” and

: (A3)

(P(X) +K2Wp)? (P(x)+ k?wg)?
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APPENDIX B:  NONPERTURBATIVE RUNNING

T¢F
1 OF THE GAUGE COUPLING

,ElB)’d(WF,WBLWM;W/J]B)
=_ lk6fd f ocd xxd2- 15, The infrared quantities serving as “physical observables”
2 0 in the present work, such as the constituent quark mass or the
eta boson mass, depend on the way we model the effective
Pe(X) 1 1 gauge coupling in the nonperturbative domain in our trunca-
(PE(X) + k2wWp)2 P(x) +k2Wg; P(X)+Kk2wWg, |’ tion. In .order to gain more ipsight int.o this depende.nce, we
study different gauge coupling functions proposed in the
(A4) literature in this appendix. Here we focus on theories within
) _ the QCD universality class which are sensitive to the infrared
where ng denotes one of the anomalous dimensions of thfbhysics of the gauge sector.
bosonic propagators under consideratigg, or 7¢ in our In Sec. IV, we used @ function with accurate two-loop
case. The derivativé, acts on thé& dependence of the cutoff behavior and an IR fixed point at, =2.5. We denote thig

function only (for an explicit representation af,; see Ref.  function defined in Eq(35) serving as a reference figerin

[4]). Some relations among the threshold functions are givethe following. Suchg functions with a fixed point of the
by gauge coupling in the infrared have a long tradition in the

literature and have frequently been discussed from a phe-
nomenological viewpoinf24]. Furthermore, some theoreti-
cal evidence for the existence of such a fixed point has been
collected in certain nonperturbative approximation schemes.
TP we=0, wg; 7y, 78) =112 %We=0, wg; 7,,75).  However, due to the lack of a unique nonperturbative defini-
' ' (A5)  tion of the gauge coupling and due to an inherent regulariza-
tion scheme dependence of tBefunction, a comparison of
For our numerical computations, we use the linear cutofdifferent theoretical approaches and a connection to phenom-
functions proposed in Ref16] (y=g%/k?), enology is difficult to make. Here we take a pragmatic point
of view and use the various running couplings as effective
ones which are implicitly defined by their use in our
r«w=(3—1)m1—w rey)=| = —1] aa-y) approach.
y roF \/§ ’ Recently, an actual nonperturbative computation of the
(AB) running coupling has been set up in the framework of trun-
cated Schwinger-Dyson equations in Landau gd@&é re-
for which all integrals listed above can be performed analytivealing an infrared fixed point; these results also receive
cally, yielding in the present context: some support from lattice calculatiof6]. For our pur-
poses, we use the representation given in R&f] for the
running coupling,

,d . _7 d .
(1',:518) (WFaWB-WB-ﬂw-ﬂB)=|(1',ZzB) (Wg,Wg; 7y, 78),

- d .
m{ 4 (we, 0,7, 7¢)

d da SDE
d ) F (1_§W> 95pel¥)= . where a, spe=2.972,

_ + In(e+a;x%2+c,x%2)
d+1 1+wg |’ (B1)

and a;=5.292 GeV %32, a,=2.324, ¢;=0.034 GeV 2%,
andc,=3.169. This coupling is also normalized to the stan-
dard value at th&Z mass, and we identifx=k?/(GeV)>.
The B function is given byBspe= d:95pe.
, (A7) As a second example, we use the running coupling arising
from a scheme called “analytic perturbation theor}28]
that has been devised for enforcing analyticity properties of
&FlB?)’d(WF,WLWziW,%) the coupling in the timelike and spacelikEuclidean re-
. gion. For our numerical routine, we use the approxinthte

T3 (e, 05y,

_ 1 2nr My
UF)_H (1+WF)2[<1_ d+2+d+l

2
1+we

v

* d+1

2 1 ( 1 1 two-loop accuraterepresentation
=- +
d (1+wp)2(1+wy)(1+w,) [ 1+w;  1+w, @m?( 1 L
2 _ T
ST N S T 73 910~ "5 00 F1mex 1) B2
d+2) | 1+we d+1
b
The representations of all other threshold functions for the [5(X)=Inx+ —;In JIn?x+ 412, (B3)
linear cutoff can be looked up in Rgf13]. bg

025001-16



UNIVERSALITY OF SPONTANEOUS CHIRAL SYMMETR . .. PHYSICAL REVIEW D 69, 025001 (2004

where we identifyx=k?/(1349 MeVY, so that this coupling TABLE |. Characteristic masses; andm,, for various nonper-

is also normalized at th& mass. In the infrarett—0, the turbative g functions for the strong gauge coupling. The main un-

coupling tends to the fixed point, apr=4m/by=1.22 for  certainty concerns the overall scale, whereas the mtjdm; is

N.=3 andN;=1. ’ relatively robust. We also show the scale of transitiory8B and
As a third example, we use a calculation of the runningthe fermion massn; in the absence of instanton effects.

coupling based on a truncated flow equation that also re= - =

vealed an infrared fixed poini, ¢ [29]. The corresponding A function m¢/MeV. m, /MeV. m,/m k,ss/MeV m/Mev

Bee function was obtained as an extensive multiple integral

which we will not display here. Since this result holds forBR‘Ef 1765 4438 2:5 423 371

pure gauge theory, we incorporate one quark flavor in & SPE 1rre 4226 2:4 ast 427
“quenched” approximation by adding the fermionic part of ~APT 563 1990 35 4 3
the two-loopB function to the pure gauge result. This leadsPre 903t2  211r/1 2.3 2432 241x3
to an infrared fixed-point value aef, g=3.43+0.01, where By,=-01 513 1793 3.5 11 8

; 1946 4534 2.3 394 395

the theoretical error arises from an incompletely resolved», =05
color structure in Ref[29]. We would like to point out that
the definition of the running coupling used in R¢R9]

agrees with the one of the present work. the gauge sector in our truncation. On the one hand, a strong

As a simple example for a running coupling which doesgauge couplingg2>gzD is all that is needed to triggerSB;
not tend to an infrared fixed point, we employ a clasg8of on the other hand, fermion decoupling cuts off any strong
functions that correspond to anomalous dimensions of théhfluence of the running coupling in the deep infrared. Quan-
gauge field7e which become constant fdt—0. This is ftitative results, of course, depend strongly on the flow of the
realized by the choice coupling between the scale at whigh= g3 and the scale of
fermion decoupling. This mainly concerns the overall scale,
whereas mass ratios like,, /m; turn out to be more robust.

4

g

g° )
1
6m? (16m?)? APPENDIX C:  FLOW EQUATIONS WITH AXIAL
- ANOMALY IN THE BROKEN REGIME
(167°)
1-expg - W( %)

19

-—2|b
1877* ( 01

X , (B4)

Here we collect the flow equations for the various cou-
plings in the broken regime, including the contributions aris-
) _ ing from the axial anomaly. Let us begin with the scalar and
so that in factye=g8,_ 19> 7, for k—0. For negative farmion anomalous dimensions:

74 » the running coupling increases(l/k)'”*‘ for k—0. As
explicit examples, we choosg, = —0.1 andzn, = —0.5 for
the numerical analysis. _ 2 4 v v .

The results of th%a numerical integration of the flow equa- 4= 404K\ M 2 ﬁ’m+2k)\¢’”¢
tions are collected in Table I. For the variogsfunctions
denoted in the first column, we listed the transition scale +4ch4h2[m2F)’4(Kh2;ﬂ¢)+Khzm(zF)’4(Kh2;W)],

k, sg into the ySB regime and the generated fermion mass (C1)
m; in the next two columns. These results refer to calcula-

tions without axial anomaly and instanton-mediated interac-

tions, similarly to Sec. IV. In the last two columns the fer-

mion mass w>i/th instanton contribution and the mass of the 74~ 2Co(NoJv4@’[ (3= &)mZ)(kh?, 0;y,, 7¢)

eta boson are given. aya (FB)A 12 A

Obviously, the quantitie&, sg and my in the calculation 3(1=&)my kN, 0377y, )]
without axial anomaly are roughly correlated. Furthermore,

Bapt and By, --01 lead to small values fok, sg and my, +v4h?

since both approach larger values of the coupling only very

slowly. The fermion and eta boson masses including the axial

anomaly are not strictly correlated with the former quantities. +m{FB4

The running of the gauge coupling enters these quantities '

over a wider range of scales, since sizable instanton contri-

butions can already arise while the bound-state fixed point is

still present. Including the appropriately adjusted fermion-boson transla-
Nevertheless, our main observation is that the overaltion as outlined in Sec. V, the flow equations for the mini-

gualitative picture of the approach {&B, even in the non- mum of the scalar potential and the scalar self-interaction

perturbative domain, is rather independent of the details ofead

(FB),4] 2 v .
m kh,——=+2kN 4 ;74,7
1,2 ( 2 — [ ¥ (b)

14

2&’7"”’”"’)

xh?,

. (C2
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A v v
¢
dik= = (2+ ) K+ 20, 11| =74 aih?= (27 + ng)h?=4vah*| 1P kh? —=imy. 74
v | N2vk 2k
Ayt 4,32
14
—1FBA h2 —— 4+ 2K\, 7y,
11 2\/; b1 My Mg

—8Nw 4h*1$7(kh?; 5,

4 ¥ .
+3|1<m+2K7\¢,77¢>

) 2(,@\4,— ﬁ)

—8(3+ &) Cy(Nov,g%h TP 4(kh?,0;m,, 79),

v 2
1- K)\¢+ m) Qo’]

14
+2| 12k y— —+
Ayt h2 2 o' 4y gh' e
¢ Ak 3/2 X(B)\Ug +B)\Uh ): (CS)

and the flow of the axial anomaly is given by

1- +2(>le<ﬁk g*+ BN, (C3)

X1+
12
12
AN =21\ yF 20 N2 13| —=: — g Y| g ONK 2& c
tho=2TMpN g 4¢2(2\/;’7¢) o= (3 2+4 h (fo/K)Cg(Ng)
—4/b
v a(kl/fy) 01 (—f)
+ 914 —+2k\y,; — 8N 4h*1 P4 kh?; X ¢ 214+ —2 5 (kh?
2(2\/; &1 Mo 0 4h™157%( 77¢f) () . f ((kh?)

& 14 14 2 14 2 g4 4 n4 4
Tt 1—2K7\¢+ﬁ+ 1—K>\¢+m Qs + |1+ 1—K)\¢+m Q, |(By g*+ By h?).
X (BL g*+ B h) (Co)

16772)\ v In these equations, the quantjdi*y;‘:1 is also modified,
__K)\ (fc/k)CE(Nc) o
vh 2k
—apm 2 v v
k/f °1 —f! TP kh2——=, —=+2KkN ;75,74 |
a(k/tJ 1,0 °)at(,<h2)). (C4) ﬁk N4 | Ky o e e e
a(p) fo fe (C7)

The Yukawa coupling flows in the broken regime according
to whereasﬁf remains the same.
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