
on

PHYSICAL REVIEW D 69, 024015 ~2004!
SL„2,C… gravity with a complex vierbein and its noncommutative extension
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We show that it is possible to formulate gravity with a complex vierbein based onSL(2,C) gauge invariance.
The proposed action is a four-form where the metric is not introduced but results as a function of the complex
vierbein. This formulation is based on the first order formalism. The novel feature here is that integration of the
spin-connection gauge field gives rise to kinetic terms for a massless graviton, a massive graviton with the
Fierz-Pauli mass term, and a scalar field. The resulting theory is equivalent to bigravity. We then show that by
extending the gauge group toGL(2,C) the formalism can be easily generalized to apply to a noncommutative
space with the star product. We give the deformed action and derive the Seiberg-Witten map for the complex
vierbein and gauge fields.

DOI: 10.1103/PhysRevD.69.024015 PACS number~s!: 04.20.Fy, 02.40.Gh
e
th
pi

th
p
ts
e
a

e
ld
lu
le

ric
th
te

e

ie
th
fo
ity
it
o
sie
io
in
t

g
s
ty.

t
-

u-
it-
or-

ed.
c-

a

.

I. INTRODUCTION

The general theory of relativity can be formulated eith
as a geometrical theory in terms of a metric tensor over
space-time manifold, or in terms of a vierbein and a s
connection of the local Lorentz algebra@1,2#. Both formula-
tions lead to equivalent results as far as the dynamics of
graviton is concerned. The second approach is more ap
priate to couple to spinors@3–5#. There have been attemp
to unify gravitation with other interactions, notably th
Kaluza-Klein approach of compactifying higher dimension
theories, and the Einstein-Strauss-Schro¨dinger @6,7# ap-
proach of considering a Hermitian metric tensor and int
preting the antisymmetric field as that of the Maxwell fie
strength. The advantages and disadvantages of the Ka
Klein approach are well known, while the uses of a comp
space-time metric are less familiar@8,9#. It is now well
known that the antisymmetric part of the Hermitian met
cannot be interpreted as the photon field strength but ra
as an antisymmetric tensor where the theory is consis
only if the field is massive@10#. Recently, a formulation of
complex gravity using the idea of gauging the unitary alg
bra U(2,2) was made using a complex vierbein@11#. This
was shown to give an action with many desirable propert
the main disadvantage is that the density formed from
complex vierbein is not unique. As one of the motivations
introducing a complex metric is to deform general relativ
for a special noncommutative space with a star product,
necessary to require the full action to be invariant under b
the star product and the group transformations. The ea
way to implement this requirement is to construct the act
to be a trace of a four-form, ensuring that it is a gauge
variant density. It turned out that in this case it is not easy
obtain a simple action satisfying these properties. By usin
constrained gauge groupU(2,2) the construction become
possible, but only for conformal gravity, not Einstein gravi
Another disadvantage is that it was necessary to use
Seiberg-Witten map@12,13# in order to solve the noncommu
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tative constraints, resulting in complicated expressions.
It is therefore important to have a gauge invariant form

lation of deformed complex gravity where the action is wr
ten as a four-form. To do this we must first succeed in f
mulating complex gravity without introducinga priori a
metric tensor. Taking a close look at theSL(2,C) formulation
of gravity @14#, one notes that the following steps are need
First anSL(2,C) gauge field is introduced, the spin conne
tion

v5dxmvm5
1

4
dxmvmabg

ab,

wheregab is the antisymmetrized product of Dirac gamm
matrices.1 The field strength

R5dv1v25
1

2
dxm∧dxn~]m]n2]nvm1@vm ,vn#!

5
1

8
dxm∧dxnRmnabg

ab

transforms covariantly under theSL(2,C) gauge transforma-
tion V:

v→VdV211VvV21,

R→VRV21,

whereV5exp(14Labgab) andLab are the infinitesimal gauge
parameters. Next, the vierbeine defined by

e5dxmem5dxmem
a ga

is introduced, which transforms underSL(2,C) according to

e→VeV21.

The SL(2,C) invariant gravitational action is then given by

1We adopt the notation of Ref.@15# for the Dirac gamma matrices
In particular, $ga ,gb%52dab , ga

†5ga , a51,...,4, g45 ig0 , and
g55g1g2g3g4 .
©2004 The American Physical Society15-1
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I 5
1

8 EM
TrS ~a1bg5!e∧e∧R1

d

48
g5e∧e∧e∧eD

5
1

16EM
d4x emnklFeabcdS bem

a en
bRkl

cd1
d

6
em

a en
bek

cel
dD

22aem
a en

bRkl
abG .

After the vm
ab field is integrated out, this gives

I 5
1

4 EM
d4x e~R1d!,

which is the Einstein-Hilbert action plus a cosmological co
stant. Notice that the term with the coefficienta is of the
form emnklRmnkl and will vanish on shell by the symmetrie
of the Riemann tensor. The invariance of the action un
SL(2,C) transformations can be easily verified asV com-
mutes withg5 .

In noncommutative geometry where the star product
places ordinary products, the groupSL(2,C) is first extended
to GL(2,C) so that the star product of two group elements
a group element. The fielde is not preserved under grou
transformations

e→V* e* V
*
21,

whereV* V
*
2151. It is easily verified that the fielde will

become complex and must be replaced with the fieldL de-
fined by

L5dxm~em
a 1 ig5f m

a !ga ,

which transforms properly underL→V* L* V
*
21. It is there-

fore necessary before studying any noncommutative ge
alization to determine whether the gravitational theory w
the field e replaced byL is well defined. At first this idea
does not seem to be very promising because there wil
two vierbeinsem

a and f m
a and only one spin connectionvm

ab.
In the Einstein-Hilbert action given above, the fieldvm

ab

appears quadratically and can be determined exactly from
equation of motion as a function of the vierbein, and this
equivalent to performing a Gaussian integration. The qu
tion we have to address is whether the couplings ofvm

ab to
em

a and f m
a will be in such a way as to ensure the dynamic

propagation of both fields. What is needed is to get corr
couplings for two symmetric tensors and two antisymme
tensors that could be formed out ofem

a and f m
a . One combi-

nation of the antisymmetric tensors could be gauged awa
the SL(2,C) invariance of the action. Moreover, because
the diffeomorphism invariance of the full action, one com
nation of the symmetric tensors would correspond to
massless graviton. The other symmetric combination wo
then correspond to a massive graviton coupled to a sc
field ~dilatonlike!. The remaining antisymmetric field will be
massive. In other words, this complex gravity should
equivalent to bigravity@16–19# and yield the interaction of a
massless graviton coupled to a massive graviton and
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scalar field and a massive antisymmetric tensor. It is esse
to havevm

ab generate the correct kinetic energies for the t
tensors. Happily, we shall show that this is indeed the ca
and remarkably there exists a coupling of the complex v
beinL to the curvature tensor that gives precisely the des
form with correct signs. As mentioned before, the met
tensor is not introduceda priori but results as a combinatio
of the two fieldsem

a and f m
a . To deform the action so tha

ordinary products are replaced with star products it is nec
sary to extend the groupSL(2,C) to GL(2,C). Chiral rota-
tions are present inGL(2,C) and this further restricts the
form of the invariant action. The invariant action taken in t
commutative case has to be modified. In this case it will
necessary to impose a torsion-free constraint on the com
vierbeinL. TheGL(2,C) gauge fields have to be determine
by solving the torsion-free constraint instead of solving t
equations of motion. Again this can only be done pertur
tively but it is relatively easy to evaluate the deformed a
tion. It is also possible to derive the Seiberg-Witten m
@12,13# between the deformed and undeformed gauge fie
and complex vierbein. In contrast to earlier approaches,
shall show that the deformed action could be obtained w
out the use of this map, and that its form is manageable

The plan of this paper is as follows. In Sec. II we propo
the action for complex gravity in terms of the fieldL. In Sec.
III we eliminate the fieldvm

ab in terms ofem
a and f m

a and
show that both tensors obtain the correct kinetic and m
terms. In Sec. IV we extend the complex gravitational act
to the noncommutative case where ordinary products are
placed with star products. We also give transformations
the deformed fields, the deformed action as well as
Seiberg-Witten map. Section V contains the conclusion a
some comments.

II. GRAVITY WITH A COMPLEX VIERBEIN

We start by considering theSL(2,C) gauge connectionv
and the field L transforming under SL(2,C) as L
→VLV21. A generalization of the Einstein-Hilbert actio
for the complex field

L5dxm~em
a 1 i f m

a g5!ga

is given by

I 15
1

8 EM
Tr@~a1bg5!~L1 iL 8!∧~L2 iL 8!∧R#,

where

L85dxm~em
a 2 i f m

a g5!ga52CLTC21

with C being the charge conjugation matrix with the prope
Cga

TC2152ga . UnderSL(2,C) gauge transformations th
field L8 transforms asL8→VL8V21. Notice that this action
is Hermitian because

vm
† 52vm , Rkl

† 52Rkl ,

Lm
† 5Lm , Lm

†85Lm , g5Lm52Lmg5 .
5-2
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It is possible to construct a different action where the co
bination (LmLn81Lm8 Ln) replaces (LmLn1Lm8 Ln8). This
would yield the tensor combination (em

a en
b2 f m

a f n
b) instead of

(em
a en

b1 f m
a f n

b), which is an undesirable result as it gives t
wrong sign for the kinetic energy of the massive graviton
the action. There are many possibilities for the cosmolog
constant and mass terms. We shall choose a combinatio
terms such that it would be possible to set the cosmolog
constant to zero, have the linear terms in the fieldsem

a and f m
a

vanish, and get the Fierz-Pauli form@20# for the mass of the
spin-2 field. This is given by

I 25
1

192EM
TrH a1g5~L∧L∧L∧L1L∧L8∧L∧L8!

1
i

8
~L∧L82L8∧L !∧@a2~L1L8!∧~L1L8!

2a3~L2L8!∧~L2L8!#J .

To evaluate this action, we first expand it in terms of t
component fieldsem

a , f m
a , and vm

ab and then simplify the
Clifford algebra. The full actionI 5I 11I 2 simplifies to

I 5
1

2 EM
d4x emnklH eabcd@b~em

a en
b1 f m

a f n
b!12aem

a f n
b#Rkl

cd

22@a~em
a en

b1 f m
a f n

b!12bem
a f n

b#Rkl
ab

1
1

4!
eabcda1~em

a en
bek

cel
d1 f m

a f n
bf k

c f l
d!

1
1

4!
eabcd~a2em

a en
bek

c f l
d1a3f m

a f n
bf k

cel
d!J .

The fieldvm
ab appears quadratically. This means that it c

be eliminated from the action by a Gaussian integration.
ternatively, we can solve thevm

ab equations of motion and
substitute the value ofvm

ab back into the action. In genera
this would require inverting the tensor operator

emnkl$eabcd@b~em
a en

b1 f m
a f n

b!12aem
a f n

b#

22@a~em
c en

d1 f m
c f n

d!12bem
c f n

d#%.

This step could be done perturbatively only as function ofea
m

and f a
m , the inverses ofem

a and f m
a . In fact the analysis is

fairly complicated, and in order to determine the dynami
degrees of freedom of the system, it is essential to study
linearized approximation. This is done by expandingem

a and
f m

a around a flat background by writing@16#

em
a 5c1dm

a 1ēm
a ,

f m
a 5c2dm

a 1 f̄ m
a ,

where c1 and c2 are parameters. Keeping only up to th
bilinear terms inēm

a and f̄ m
a , we obtain
02401
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I 52E d4x$2@b~c1
21c2

2!12ac1c2#~vdcevced1veve!

1dbcd
nkl]kvlcd@~bc11ac2!ēn

b1~ac11bc2! f̄ n
b#

2@a~c1
21c2

2!12bc1c2#eabklvkaevleb

22eankl]kvlab@~ac11bc2!ēn
b1~bc11ac2! f̄ n

b#

1@a1~c1
41c2

4!1a2c1
3c21a3c1c2

3#

1~4a1c1
313a2c1

2c21a3c2
3!ē

1~4a1c2
313a3c1c2

21a2c1
3! f̄

13dmn
ab@~2a1c1

21a2c1c2!ēm
a ēn

b

1~2a1c2
21a3c1c2! f̄ m

a f̄ n
b1~a2c1

21a3c2
2!ēm

a f̄ n
b#1¯%.

As a first step, we write thevm
ab equation of motion, which

takes the form

$@b~c1
21c2

2!12ac1c2#~vdlc2vcld1dclvd2ddlvc!

1@a~c1
21c2

2!12bc1c2#~eadklvkac2eacklvkad!%

52dbcd
nkl]k@~bc11ac2!ēn

b1~ac11bc2! f̄ n
b#

1$ecnkl]k@~ac11bc2!ēn
d1~bc11ac2! f̄ n

d#

2c↔d%.

This is a difficult equation to solve. To simplify the problem
we first define the tensor

Xmab
npq5

a

2
~dm

n dab
pq1dnpdab

qm2dnqdab
pm!

1
b

2
~eabnpdqm2eabnqdpm!,

where

a5b~c1
21c2

2!12ac1c2 ,

b5a~c1
21c2

2!12bc1c2 .

We then define the tensor

Ymab5Xmab
npqvnpq ,

so that thevmab equation simplifies to

Ydlc2Ycld52]k~dbcd
nklEnb2ecnklFnd1ednklFnc!,

where

En
b5~bc11ac2!ēn

b1~ac11bc2! f̄ n
b ,

Fn
b5~ac11bc2!ēn

b1~bc11ac2! f̄ n
b .

We can easily solve forYcdl by a cyclic permutation of theY
equation to obtain
5-3
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Ycdl5
1

2
@]c~Edl2Eld!2]d~Ecl1Elc!1]l~Ecd1Edc!#

2dcl~]bEdb2]dE!1ddl~]bEcb2]cE!

1edlkn]kFnc ,

where E5Ebb . We now define the inverse of the tens
Xmab

npq by

~X21!rst
mabXmab

npq5
1

2
d r

ndst
pq .

To find the inverse we write the most general rank-6 ten
antisymmetric ins and t and in p and q then determine the
coefficients from the above constraint. After a lengthy cal
lation we obtain

~X21!rst
mab5

1

2~a22b2! FaS d r
mdst

ab2
1

2
d rsdmt

ab1
1

2
d rtdms

abD
2bS estmadbr2estmbdar1emabsd tr2emabtdsr

2
1

2
e rstadmb1

1

2
e rstbdmaD G .

We can then write

v rst5~X21!rst
mabYmab,

and after some algebra one finds

v rst5
1

2~a22b2!
~] r~aEst2bFst!2]s~aErt2bFrt !

1estmn]m~aFnr2bEnr !1d rse tmnm]m~aFnm2bEnm!

2s↔t !.
in

02401
r

-

This expression simplifies by noting that

aEst2bFst5~b22a2!~c1
22c2

2!gna ,

bErt2aFrt5~b22a2!~c1
22c2

2!hna ,

where we have defined

gna5~c1ēna2c2 f̄ na!,

hna5~2c2ēna1c1 f̄ na!.

We finally have

v rst5
1

2~c1
22c2

2!
@] rgst2]s~grt1gtr !1estmn]mhnr

1d rse tmnm]mhnm2s↔t#,

v t5
1

~c1
22c2

2!
S 2] rgtr1] tg1

1

2
e tmnr]mhnr D ,

wherev t5v rrt . To avoid degeneracy we shall impose t
following constraints on the parametersa, b, c1 , andc2 :

aÞb, c1Þc2 .

Substituting these expressions back into the action, we
that the antisymmetric part ofgab decouples, while both the
symmetric and antisymmetric parts ofhab couple and ac-
quire kinetic energies. We therefore write

gmn5
1

2
~smn1amn!,

hmn5~ l mn1Bmn!,

wheresmn ,l mn andamn ,Bmn are, respectively, the symmetri
and antisymmetric parts ofgmn andhmn . Keeping only up to
bilinear terms, the action reduces to
I 52
4

~c1
22c2

2!2 E d4x~]msnk]msnk22]msmk]nsnk12]msmn]ns2]ms]ms1]ml nk]ml nk22]ml mk]nl nk12]ml mn]nl

2]ml ]ml 1]mBnk]mBnk22]mBmk]nBnk!1E d4x@a1~c1
41c2

4!1a2~c1
3c2!1a3~c1c2

3!#

1
1

~c1
22c2

2!
E d4x$4@a1~c1

41c2
4!1a2c1

3c21a3c1c2
3#g1@4a1c1c2~c1

21c2
2!1a2c1

2~c1
213c2

2!1a3c2
2~c2

213c1
2!#h%

1
1

~c1
22c2

2!2 E d4xdmn
kl
„2@a1~c1

41c2
4!1a2~c1

3c2!1a3~c1c2
3!#gmkgnl

1$@4a1c1c2~c1
21c2

2!1a2c1
2~c1

213c2
2!1a3c2

2~c2
213c1

2!#gmkhnl%1@4a1c1
2c2

21~a21a3!c1c2~c1
21c2

2!#hmkhnl…,
where g5gmm ,h5hmm . By setting the cosmological term
and linear terms ing andh to zero we get three equations
the three parametersa1 , a2 , anda3 . Only two of the equa-
tions are independent, and they are
5-4
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a1~c1
41c2

4!1a2c1
3c21a3c1c2

350,

4a1c1
313a2c1

2c21a3c2
350.

These can be easily solved to determinea2 anda3 in terms
of a1 :

a25
k423

2k
a1 ,

a35
123k4

2k3 a1 ,

where

k5
c2

c1
Þ1.

With this solution one immediately finds that both the ma
term dmn

klgmkgnl and the mixing termdmn
klgmkhnl vanish.

There is, however, a mass term forhmn :

3a1~k411!

2k2 dmn
klhmkhnl ,

which is of the Fierz-Pauli type@20#. The order of the mass
term can be tuned by adjusting the parametersa1 andk. Note
that both the symmetric fieldl mn and the antisymmetric field
Bmn acquire mass. It is not unexpected that the graviton fi
remains massless as this is protected by diffeomorphism
variance. However, it is remarkable that through the coup
of the spin connectionvmab the correct kinetic energies fo
both fieldsgmn andhmn are generated. The degrees of fre
dom of this system are well defined. The graviton cor
sponds to a massless spin-2 field with two dynamical deg
of freedom, while the fieldhmn corresponds to a massiv
spin-2 field coupled to a dilaton and has six degrees of fr
dom @17#. The dilaton coupling can be seen only by going
higher order terms as it couples to curvature terms@18,19#.
To have a closed form for the fully nonlinear theory, it wou
be necessary to define an inverse for the tensor (em

a en
b

1 f m
a f n

b2en
aem

b 2 f n
af m

b ) so as to express the action in terms
this inverse.

Much work remains to be done to fully understand th
theory and to determine its full coupling at the nonline
level, but the above results are very encouraging
strongly indicate that this theory is consistent. It is also v
geometrical as it is based on the gauge principle where
terms in the action are four-forms, thus avoiding the use o
density factor to guarantee invariance under general coo
nate transformations. It would be very interesting to fi
some particular solutions to the full field equations such
generalizations of the Schwarzschild or de Sitter solution

III. NONCOMMUTATIVE DEFORMED GRAVITY

The construction of the complex gravity action propos
in the last section suggests that it could be easily general
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to the noncommutative case where the coordinates of sp
time do not commute,

@xm,xn#5 iumn,

whereumn are deformation parameters. An immediate step
to extend theSL(2,C) group toGL(2,C). This is necessary
because the commutator in a star product involves both
dinary commutators and anticommutators, as can be s
from the relation

A* B2B* A5@A,B#~* ,even!1$A,B%~* ,odd! ,

where

@A,B#~* ,even!5@A,B#1S i

2D 2

umnukl@]m]kA,]n]lB#

1O~u4!,

$A,B%~* ,odd!5
i

2
umn$]mA,]nB%

1S i

2D 3

umnukluab$]m]k]aA,]n]l]bB%

1O~u5!.

With this modification we first define theGL(2,C) gauge
field Ãm ,

Ã5dxmS i ~ ãm1b̃mg5!1
1

4
ṽmabg

abD ,

satisfying the conditionÃm
† 52Ãm and transforming under a

gauge transformation according to

Ã→Ṽ* Ã* Ṽ
*
211Ṽ* dṼ

*
21

whereṼ5el̃ with

l̃5 i ~ ã1b̃g5!1
1

4
l̃abg

ab.

One can easily verify that these transformations close as
the commutators and anticommutators ofgab with gc and
gcg5 are proportional togd andgdg5 . The field strength is

F̃5
1

2
dxm∧dxnF̃mn ,

F̃mn5]mÃn2]nÃm1Ãm* Ãn2Ãn* Ãm ,

transforming according to

F̃mn5Ṽ* F̃mn* Ṽ
*
21.

The field L̃ is defined as before,

L̃5dxm~ ẽm
a 1 ig5 f̃ m

a !ga ,
5-5
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and transforms according to

L̃→Ṽ* L̃* Ṽ
*
21.

Unlike the commutative case, the field

L̃852CL̃TC21

transforms as

L̃8→Ṽ8* L̃8* Ṽ8
*
21

whereṼ85el̃8 with

l̃852 i ~ ã1b̃g5!1
1

4
l̃abg

ab.

It is therefore not possible to construct a group invari
using bothL̃ andL̃8 as forSL(2,C) wherel andl8 coincide.
Therefore we are forced to use only the fieldsL̃ and Ã to
construct an action invariant underGL(2,C). It can be easily
seen from the analysis given in the last section that since
field L̃8 cannot be used, the coupling ofṽmab to ẽm

a and f̃ m
a

ensures only the propagation of one combination ofẽm
a and

f̃ m
a . It is clear that the deformed four-dimensional gravi

tional action invariant under the noncommutativeGL(2,C)
gauge transformations can be written as

Ĩ 5E
M

d4x emnklTr@~a11b1g5!~ L̃* L̃* F̃ !#

1E
M

d4x emnklTr@~a21b2g5!~ L̃* L̃* L̃* L̃ !#.

To this it is possible but not necessary to add the torsion-
constraint

T̃5dL̃1Ã* L̃1L̃* Ã50

which can be decomposed in terms of components and
solved.

We first determine the infinitesimal gauge transformatio
of the gauge fields

dÃ52dl̃1l̃* Ã2Ã* l̃,

whereṼ5el̃ andl̃5 i (ã1g5b̃)1(1/4)l̃abgab . In terms of
components, this reads

dãm52]mã2uklS ]kã]lãm1]kb̃]lb̃m1
1

8
]kl̃ab]lṽmabD

1O~u3!,

db̃m52]mb̃2uklS ]kb̃]lãm1]kã]lb̃m

2
1

16
eabcd]kl̃ab]lṽmcdD1O~u3!,
02401
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ṽmab52~]ml̃ab1ṽmacl̃cb2ṽmbcl̃ca!

2uklF ~]kã]lṽmab1]kl̃ab]lãm!

1
1

2
eabcd~]kb̃]lṽmcd1]kl̃cd]lb̃m!G

2
1

4
uabugd~]a]gṽmac]b]dl̃cb2]a]gṽmbc]b]dl̃ca!

1O~u3!.

Similarly the infinitesimal gauge transformation of the com
plex vierbeinL̃ is given by

dL̃5l̃* L̃2L̃* l̃,

which in component form reads

dẽm
a 5l̃acẽm

c 2ugdS ]gã]dẽm
a 2

1

8
eabcd]gl̃bc]d f̃ m

d D
2

1

4
uabugd~]a]gl̃ac]b]dẽmc!1O~u3!,

d f̃ m
a 5l̃acf̃ m

c 2ugdS ]ga]d f̃ m
a 1

1

8
eabcd]gl̃bc]dẽm

d D
2

1

4
uabugd~]a]gl̃ac]b]d f̃ mc!1O~u3!.

The components of the torsion constraints are

T̃mn5T̃mn
a ga1T̃mn

a5 ig5ga50,

where

T̃mn
a 5S ]mẽn

a1
1

2
$ṽmab ,ẽn

b%* 2
i

4
eabcd@ṽmbc , f̃ nd#*

1 i @ ãm ,ẽn
a#* 2$b̃m , f̃ v

a%* 2m↔n D ,

T̃mn
a 5S ]m f̃ n

a1
1

2
$ṽmab , f̃ n

b%* 1
i

4
eabcd@ṽmbc ,ẽnd#*

1 i @ ãm , f̃ n
a#* 1$b̃m ,ẽv

a%* 2m↔n D .

These equations simplify when written in terms of the co
plex field

Ẽm
a 5ẽm

a 1 i f̃ m
a

as they take the form

05S ]mẼn
a1

1

2
$ṽmab ,Ẽn

b%* 2
1

4
eabcd@ṽmbc ,Ẽnd#*

1 i @ ãm ,Ẽn
a# 1 i $b̃m ,Ẽv

a% 2m↔n D
* *

5-6
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as well as the complex conjugate equation.
We now determine the deformed action to second orde

u. The gauge field strength is given by

F̃mn5 i ~ ãmn1g5b̃mn!1
1

4
R̃mnabg

ab

where

ãmn5]mãn2]nãm1 i @ ãm ,ãn#* 1 i @ b̃m ,b̃n#*

1
i

8
@ṽm

ab ,ṽvab#* ,

b̃mn5]mb̃n2]nb̃m1 i @ ãm ,b̃n#* 1 i @ b̃m ,ãn#*

2
i

8
eabcd@ṽm

ab ,ṽv
cd#* ,

R̃mnab5]mṽvab1 i @ṽmab ,ãn#* 1
i

2
eabcd@ b̃m ,ṽv

cd#*

1
1

2
$ṽm

ac ,ṽnc
b %* 2m↔n.

To determine the deformed action we first expand the co
bination

L̃* L̃5
1

2
dxm∧dxn@ l mnabg

ab1 i ~ l mn
~1!1g5l mn

~5!!#,

where

l mn
ab5$ẽm

a ,ẽv
b%* 1$ f̃ m

a , f̃ n
b%2

i

2
eabcd~@ ẽmc , f̃ nd#* 2m↔n!,

l mn
~1!52 i @ ẽm

a ,ẽva#* 2 i @ f̃ m
a , f̃ va#* ,

l mn
~5!52$ẽm

a , f̃ va%* 1$ẽn
a , f̃ ma%* .

The kinetic part of the action then takes the form

Ĩ 15E
M

d4x emnklF2a1S l mn
~1!

* ãkl1 l mn
~5!

* b̃kl1
1

2
l mn
ab

* R̃klabD
2b1S l mn

~1!
* b̃kl1 l mn

~5!
* ãkl1

1

4
eabcdl mn

ab
* R̃kl

cd D G ,
while the cosmological term gives

Ĩ 25E
M

d4x emnkl@2a2~ l mn
~1!

* l kl
~1!1 l mn

~5!
* l kl

~5!12l mn
ab

* l klab!

2b2~2l mn
~1!

* l kl
~5!2eabcdl mn

ab
* l kl

cd !#.

The Seiberg-Witten map@12,13# determining the de-
formed gauge field in terms of the undeformed one is defi
by

Ã~gAg211gdg21!5g̃* Ã~A!* g̃
*
211g̃* dg̃

*
21.
02401
in

-

d

Its solution is given by

Ãm5Am2
i

4
ukl$Ak ,]lAm1Flm%1O~u2!,

F̃mn5Fmn1
i

4
ukl~2$Fmk ,Fnl%

2$Ak ,]lFmn1DlFmn%!1O~u2!,

l̃5l1
i

4
uab$]al,Ab%1O~u2!.

The deformed complex vierbeinL̃ is defined by the relation

L̃~gLg21,gAg21!1gdg215g̃* L̃~L,A!* g̃
*
21.

Its solution is given by

L̃m5Lm1
i

2
uklH ]kLm1

1

2
@Ak ,Lm#,AlJ 1O~u2!.

The component forms of these relations read

ãm5am1
1

2
uklFak~2]lam2]mal!1bk~2]lbm2]mbl!

1
1

8
vk

ab~]lvm
ab1Rlm

ab!G1O~u2!,

b̃m5bm1
1

2
uklFak~2]lbm2]mbl!1bk~2]lam2]mal!

2
1

16
eabcdvk

ab~]lvm
cd1Rlm

cd!G1O~u2!,

ṽm
ab5vm

ab1
1

2
uklH ak~]lvm

ab1Rlm
ab!

1vk
ab~2]lam2]mal!1

1

2
eabcd@bk~]lvm

cd1Rlm
cd!

1vk
cd~2]lbm2]mbl!#J 1O~u2!,

ẽm
a 5em

a 2uklFalS ]kem
a 1

1

2
vk

aeem
e D

2
1

4
eabcdvl

cdS ]k f m
b 1

1

2
vk

bef m
e D G1O~u2!,

f̃ m
a 5 f m

a 2uklFalS ]k f m
a 1

1

2
vk

aef m
e D

1
1

4
eabcdvl

cdS ]kem
b 1

1

2
vk

beem
e D G1O~u2!.

As an alternative to the deformed action obtained in t
section, one can use the Seiberg-Witten~SW! map for the
5-7



on
s
th
fo
li

is

v

ow

l

tio
m
he

is
n

th
,
n
io
he
iv
he
in

ar-
lds
not
nd
can
and

and
r
ht-
are
ns.

ned
t be
al-
u-
ed
oup
r
ust
ny
d-
de-
eter
nd
ct of
nd-
iza-
-

un-

ALI H. CHAMSEDDINE PHYSICAL REVIEW D 69, 024015 ~2004!
fields L̃m andÃm and then substitute the undeformed soluti
for vmab in terms ofem

a and f m
a . The resulting expression

would be very complicated, which shows that the use of
SW map in obtaining the deformed action is not practical
the gravitational system. These expressions might simp
for specific solutions wherevmab , em

a , and f m
a are given.

IV. CONCLUSIONS

The idea that the gravitational field could be complex
not new and was first considered by Einstein and Stauss@6#,
motivated by the unification of electromagnetism with gra
ity. The work of Weyl@3# and Cartan@4# on spinors in gen-
eral relativity and of Utiyama@1# and Kibble @2# relating
gravity to a gauge theory of the Lorentz group showed h
general relativity could be formulated based on theSL(2,C)
gauge invariance@14#. This symmetry also played a crucia
part in determining Ashtekar variables@21,22#. TheSL(2,C)
symmetry acts as a gauge symmetry of the spin connec
and in a first order formalism gives the correct kinetic ter
for the vierbein. It is also possible to include torsion in t
spin connection to accommodate the antisymmetricB field
appearing in string theory and give it a kinetic term. In th
paper we have shown that it is possible to go further a
complexity the vierbein, keeping theSL(2,C) symmetry. We
have proposed an action with the exceptional property
when the spin connection, which appears quadratically
eliminated by its equation of motion, then both the real a
imaginary parts of the metric propagate. One combinat
protected by diffeomorphism invariance will produce t
massless graviton, while the other will produce a mass
graviton coupled to a scalar field. This is identical to t
spectrum of bigravity, but has the advantage of using a m
e

02401
e
r
fy

-

n,
s

d
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d
n

e

i-

mal number of fields. We have worked out only the line
ized approximation of the theory and shown that all fie
acquire the correct kinetic terms. The computation is
simple, but it is very important to go one step further a
determine the higher order interactions. This calculation
only be performed perturbatively because the massless
massive gravitons are linear combinations of the real
imaginary parts of the complex vierbeinL, and these tenso
combinations should be inverted. It would be very enlig
ening to find some special solutions for this theory which
generalizations of the Schwarzschild and de Sitter solutio

When coordinates do not commute and fields are defi
on such noncommutative space, ordinary products mus
replaced with star products. Commutators of Lie algebra v
ued fields using star products, would result in both comm
tators and anticommutators in terms of the undeform
fields. This makes it necessary to extend the gauge gr
form SL(2,C) to GL(2,C). Having the proposed action fo
complex gravity based on the requirement that all terms m
be four-forms, the extension carries through without a
complications by replacing ordinary products with star pro
ucts. It is then a straightforward matter to determine the
formed action to second order in the deformation param
umn. We have only touched the surface in this direction, a
many questions remain to be addressed, such as the effe
the deformed parameters on quantization of the theory, fi
ing the SW map of some specific solutions, and general
tion to nonconstant parametersumn. These questions and oth
ers will hopefully be addressed in future investigations.
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