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SL(2,C) gravity with a complex vierbein and its noncommutative extension
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We show that it is possible to formulate gravity with a complex vierbein base?l¢®,C) gauge invariance.

The proposed action is a four-form where the metric is not introduced but results as a function of the complex
vierbein. This formulation is based on the first order formalism. The novel feature here is that integration of the
spin-connection gauge field gives rise to kinetic terms for a massless graviton, a massive graviton with the
Fierz-Pauli mass term, and a scalar field. The resulting theory is equivalent to bigravity. We then show that by
extending the gauge group @L(2,C) the formalism can be easily generalized to apply to a noncommutative
space with the star product. We give the deformed action and derive the Seiberg-Witten map for the complex
vierbein and gauge fields.
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[. INTRODUCTION tative constraints, resulting in complicated expressions.
It is therefore important to have a gauge invariant formu-
The general theory of relativity can be formulated eitherlation of deformed complex gravity where the action is writ-
as a geometrical theory in terms of a metric tensor over théen as a four-form. To do this we must first succeed in for-
space-time manifold, or in terms of a vierbein and a spinmulating complex gravity without introducing priori a
connection of the local Lorentz algehia,2]. Both formula- metric tensor. Taking a close look at tB8&(2,C) formulation
tions lead to equivalent results as far as the dynamics of th@f gravity[14], one notes that the following steps are needed.
graviton is concerned. The second approach is more appr&irst anSL(2,C) gauge field is introduced, the spin connec-
priate to couple to spinof8—5]. There have been attempts 10N
to unify gravitation with other interactions, notably the 1
Kaluza-Klein approach of compactifying higher dimensional w:dx#wﬂzzdx#wuabyab,
theories, and the Einstein-Strauss-Sdlimger [6,7] ap-
proach of considering a Hermitian metric tensor and interyynere 42 js the antisymmetrized product of Dirac gamma
preting the antisymmetric field as that of the Maxwell field matrices! The field strength
strength. The advantages and disadvantages of the Kaluza-
Klein approach are well known, while the uses of a complex
space-time metric are less famili§,9]. It is now well
known that the antisymmetric part of the Hermitian metric
cannot be interpreted as the photon field strength but rather _ de“Ddx”R 2P
as an antisymmetric tensor where the theory is consistent wrab
only if the field is massiv¢10]. Recently, a formulation of .
complex gravity using the idea of gauging the unitary alge_:irgrr:s(f)c.)rms covariantly under tt#l(2,C) gauge transforma-
bra U(2,2) was made using a complex vierbéil]. This :

1
R=dw+ w2=§dXMDdXV(r9M(9V—(9,,wM+[wM Ly, ])

was shown to give an action with many desirable properties; 0—QdO 1+ Qw0 !,
the main disadvantage is that the density formed from the
complex vierbein is not unique. As one of the motivations for R—QRQ L,

introducing a complex metric is to deform general relativity
for a special noncommutative space with a star product, it isvhereQ =expGA., ¥ andA ,, are the infinitesimal gauge
necessary to require the full action to be invariant under botfharameters. Next, the vierbegndefined by
the star product and the group transformations. The easiest
way to implement this requirement is to construct the action e=dx“eM:dx“eiya
to be a trace of a four-form, ensuring that it is a gauge in- _ ) _
variant density. It turned out that in this case it is not easy tdS introduced, which transforms und8i(2,() according to
obtain a simple action satisfying these properties. By using a e—eO L
constrained gauge grougd(2,2) the construction becomes
possible, but only for conformal gravity, not Einstein gravity. The SL(2,C) invariant gravitational action is then given by
Another disadvantage is that it was necessary to use the
Seiberg-Witten mapl2,13 in order to solve the noncommu-
We adopt the notation of RefL5] for the Dirac gamma matrices.
In particular, { va, o} =265, Yi=7Va, a=1,....4, y4=i7y,, and
*Email address: chams@aub.edu.lb V5= Y1Y2Y3Y4-
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S scalar field and a massive antisymmetric tensor. It is essential
(a+ Bys)ellelR+ 4—8758565956) to havew ,2 generate the correct kinetic energies for the two
tensors. Happily, we shall show that this is indeed the case,
S and remarkably there exists a coupling of the complex vier-
Eabcd( ﬁe‘;etV’RmCdJr ge3e5e2e2> beinL to the curvature tensor that gives precisely the desired
form with correct signs. As mentioned before, the metric

tensor is not introduced priori but results as a combination
—ZaEZekV’RKAab . of the two fieldse{, and f} . To deform the action so that
ordinary products are replaced with star products it is neces-
After the w ,2° field is integrated out, this gives sary to extend the grouBL(2,C) to GL(2,C). Chiral rota-

tions are present ilL(2,C) and this further restricts the
4 form of the invariant action. The invariant action taken in the
I= ZfMd x &(R+9), commutative case has to be modified. In this case it will be
necessary to impose a torsion-free constraint on the complex
which is the Einstein-Hilbert action plus a cosmological con-VierbeinL. TheGL(2,C) gauge fields have to be determined
stant. Notice that the term with the coefficientis of the by solving the torsion-free constraint instead of solving the
form €#”*R . and will vanish on shell by the symmetries equations of motion. Again this can only be done perturba-
of the Riemann tensor. The invariance of the action undefively but it is relatively easy to evaluate the deformed ac-
SL(2,0) transformations can be easily verified @scom- ~ tion. It is also possible to derive the Seiberg-Witten map
mutes withys. [12,13 between the deformed and undeformed gauge fields

In noncommutative geometry where the star product re&nd complex vierbein. In contrast to earlier approaches, we
to GL(2,C) so that the star product of two group elements isPUt the use of this map, and that its form is manageable.

a group element. The field is not preserved under group  1he plan of this paper is as follows. In Sec. Il we propose
transformations the action for complex gravity in terms of the fidldIn Sec.
Il we eliminate the fieldw,2® in terms ofe? and % and
e—QrerQ, 1 show that both tensors obtain the correct kinetic and mass
terms. In Sec. IV we extend the complex gravitational action
whereQ*Q_'=1. It is easily verified that the fielé will to the noncommutative case where ordinary products are re-
become complex and must be replaced with the fielde-  placed with star products. We also give transformations of
fined by the deformed fields, the deformed action as well as the
Seiberg-Witten map. Section V contains the conclusion and
L=dx*(e5+iysf%)va, some comments.

which transforms properly undér— Q * L*Q;l. Itis there-

fore necessary before studying any noncommutative gener-

alization to determine whether the gravitational theory with We start by considering th8L(2,C) gauge connectiow

the field e replaced byL is well defined. At first this idea and the field L transforming under SL(2,C) as L

does not seem to be very promising because there will be-QLQ 1. A generalization of the Einstein-Hilbert action

two vierbeinse, andf? and only one spin connectian,®”.  for the complex field

In the Einstein-Hilbert action given above, the fiethﬁ‘b uiaaiea

appears quadratically and can be determined exactly from its L=dx“(e,+if,v5)va

equation of motion as a function of the vierbein, and this is._ .
. . S . is given by

equivalent to performing a Gaussian integration. The ques-

tion we have to address is whether the couplinga)g?b to 1

e’ andf? will be in such a way as to ensure the dynamical |1=§f Tr{(a+ Bys)(L+iL")O(L—iL")OR],

propagation of both fields. What is needed is to get correct M

couplings for two symmetric tensors and two antisymmetricyhere

tensors that could be formed outef andf?,. One combi-

nation of the antisymmetric tensors could be gauged away by L'= dx"(eZ— if‘;yS) ya=-—CLTC?

the SL(2,C) invariance of the action. Moreover, because of

the diffeomorphism invariance of the full action, one combi-With C being the charge conjugation matrix with the property

nation of the symmetric tensors would correspond to theC7aC '=—y,. UnderSL(2,C) gauge transformations the

massless graviton. The other symmetric combination wouldield L' transforms ag’—QL’Q 1. Notice that this action

then correspond to a massive graviton coupled to a scalag Hermitian because

field (dilatonlike). The remaining antisymmetric field will be

II. GRAVITY WITH A COMPLEX VIERBEIN

. . i T_ T
massive. In other words, this complex gravity should be w0, =0, Ra=—Rag,
equivalent to bigravity16—19 and yield the interaction of a
i i - LT=L LT =L L,=—L
massless graviton coupled to a massive graviton and to a - tur bu wr o Ysbu wYs5-
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It is possible to construct a different action where the com-
bination (,L,+L,L,) replaces K,L,+L,L}). This
Would yleld the tensor comblnatloreie —f f ) instead of
(e ) which is an undesirable result as it gives the
wrong S|gn for the kinetic energy of the massive graviton in
the action. There are many possibilities for the cosmological
constant and mass terms. We shall choose a combination of
terms such that it would be possible to set the cosmological
constant to zero, have the linear terms in the fi andfi
vanish, and get the Fierz-Pauli fofr20] for the mass of the
spin-2 field. This is given by

1

T Tr(a1y5(LDLDLDL+LDL’DLDL)
i
+g(LOL — L 00 Oap(L+ L) O(L+L)

—ag(L—L’)D(L—L’)]].

To evaluate this action, we first expand it in terms of the
component fieldse fa, and wﬂab and then simplify the
Clifford algebra. The fuII action =1,+1, simplifies to

f d4XEW""[eabC@[B(eaeb+f ) +22e3f]R,,

—2[a(eled+ 210 +28e3f0]R,\ P

1
+ 70 — €apcaar(€edetel + FAfofCfs)

e d agbgc  d
4| Eabcd(QZep, v Kf +a’3f,u,fvf/<e)\

The field wﬂab appears quadratically. This means that it can
be eliminated from the action by a Gaussian integration. Al-
ternatively, we can solve theﬂab
substitute the value abj‘b back into the action. In general
this would require inverting the tensor operator

GMVK)\{fabct[ﬁ(eaeb+f f )+2a’erg]
— 2l a(eSel+ 1519 +2p8eS 0]

This step could be done perturbatively only as functioe:pf
and f4, the inverses oéz and fj‘L In fact the analysis is

As a first step, we write the,2°
takes the form

{{B(
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= ZJ d4X{ - [ﬁ(ci+ C%) +2aC1C|(@gcecedt Wewe)

+ 85N G ey cdl (BC1+ aCy) €0+ (aci+ BCy) o]
—[a(ci+c3) +2Bc1Cr] €™ aewyen
— 2639, w, o (aC1+ BCo) €S+ (BCy+ ac,) Y]
+lag(ci+cd) + ancde, + agcycd]

+ (4alcf+ 3(1205024— a3cg)€

+(4a 3+ 3azc,Ce+ ayc)f

+382[ (22103 + a,C1C)) ESED

+ (Zalcz—l- ClgClCZ)f ot ( azc + a3C§)

B
Eifv]+...}_

equation of motion, which

2, .2
Ci+C5)+2aC1Col(wgnc— @engt Ien@g— Sgp @)
ad)}

2 2
+[a(ci+c5)+2Bc,Co]( 9Ny 1oc— 89N

VK)\

= Speqdil (BCi1+acy)e
+{€ g, [ (acy+ Be,) €S

—c—d}.

€0+ (ac,+ Bcy) 7]

+(Bey+ acy) 9]

This is a difficult equation to solve. To simplify the problem,
we first define the tensor

mab—

a
Xil= 5 (O aEg+ 67635~ 570)

+ E(fabnpéqm_ 6abnq5pm)u

equations of motion and where

a=B(c2+c3)+2accy,

b= a(ci+c3)+28c,c,.

We then define the tensor

_yn
Ymab= meaqbwnpq-

fairly compllcated and in order to determine the dynamicals© that thewp,p, equation simplifies to

degrees of freedom of the system, it is essential to study the
linearized approximation. This is done by expanddﬁgand
fi around a flat background by writind 6]

a __ —a
eﬂ—cléi+eﬂ,

fZ:CZ(S;aL"‘f_Z,

Yd)\c_

— A
YC)\d - &K( 6ggd Evb_ ECVK)\F vt edVK)\F VC) i

where

E,!f: (Bey+ aCz)ES"‘ (0101+,302)?EV),

Fo=(acy+ Bcy) e+ (Bey + aCz)?E-

where ¢, and ¢, are parameters. Keeping only up to the we can easily solve for 4, by a cyclic permutation of th¥

bilinear terms |r‘e andfa we obtain
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This expression simplifies by noting that
aEq—bFg= (B~ a?)(ci—c5)0,a,

bE,—aF,=(B8%—a?)(ci-cd)h,,,

1
ch)\zi[ﬁc(Ed)\_ Exg) = d4(Ecy + Exc) + I\(Ecqt Eqo) ]

Ocrn(IpEqp— gE) + 6gr (IpEcp— dcE)
+ €amndiFocs :

Cahieri ve where we have defined
where E=E,. We now define the inverse of the tensor

pn%qb by 9va™ (Cla/a_ sz_l/a)’

hya=(—Cs8a+Cif a).
(X l);ga nm%qb:_(sp(sgg. va ( C2€,aTCy Va)
We finally have

To find the inverse we write the most general rank-6 tensor

antisymmetric ins andt and inp and q then determine the Wrst= F[ﬁ r9st™ Is(Grt + Ger) + €sund Ny
coefficients from the above constraint. After a lengthy calcu- !
lation we obtain + Ors€tuumd N ym— S,
(X~ hymab_ a| sms2P— 35 $520 4 = 5 520, _t !
rst (a?_ b?) r9%t 5 s rt = (Ci—Cg) WO T g+ 5 varﬁﬂhw ,

where w;= w,,; . TO avoid degeneracy we shall impose the

—Db| €simadpr— € +e — €mabtO
stma®r ~ EstmbOar t €mabDir ~ Emapsr following constraints on the parametets g, ¢;, andc.:

1 1 aF ﬂ, C]_:»’é CQ .
) €rstaOmb™ 2 Erstbéma) . o ) ) ) )
Substituting these expressions back into the action, we find
We can then write that the antisymmetric part @f,;, decouples, while both the
symmetric and antisymmetric parts bf, couple and ac-
W= ?;?meab, quire kinetic energies. We therefore write

, 1
and after some algebra one finds 9= §(Sw+aﬂy)y

1
wrst:m(ar(aEst_bFst)_&s(aErt_bFrt) huw=(,,+B,,),
+ €au(@F  —DE, ) + Srs€md, (@F m—bE,y)  Wheres,,.l,, anda,, B, are, respectively, the symmetric
and antlsymmetrlc parts wa andh,,, . Keeping only up to
—Set). bilinear terms, the action reduces to
4 4
I:—m d™%( 9, SykduSvk—20,8,10,Syt20,,8,,0,8— 3,89,8+ 9, Dl — 20,00 +20,) .0,
~3,19,1+39,B,,3,B,,—23,B,.9, VK)+J d*x[ ay(c]+ca) + an(cicy) + ag(ciC3)]

1
4 4 4 3 3 2 2 2,2 2 2,2 2
t o =) f d*x{4[ a1(c]+C5)+ asCiCrt a3CiC5]g+[4a CCo(CT+ C5) + arci(C]+3C5) + asc5(c5+3c7) 1h}
2

(c1
2 f d4X5K)\(2[01(01+ Cz)+aZ(C102)+a3(ClC2)]g,quv)\

+{[4a1C1Co(CE+C5) + a,Ca(cT+3C3) + asch(C5+3¢2) 19, o} +[4ascics+ (ap+ as)ciCa(ci+c)h,h,)),

whereg=g,,.,h=h,, . By setting the cosmological term the three parameters,, a,, andaz. Only two of the equa-
and linear terms ig andh to zero we get three equations in tions are independent, and they are
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al(c‘lhr c‘2‘)+ azC§Cz+ a3010§=0, to the noncommutative case where the coordinates of space-
time do not commute,

4C¥1C§+3&2C%C2+ CY3C§:O. [X,u. XV]:ig,uV
These can be easily solved to determingand a; in terms  \\hereg#7 are deformation parameters. An immediate step is

of a;: to extend theSL(2,C) group toGL(2,C). This is necessary
because the commutator in a star product involves both or-

4_

a,= K 3a17 dinary commutators and anticommutators, as can be seen
2k from the relation
1_3k4 A*B_B*A:[AiB](*,ever)+{AvB}(*,Odd)1

SCTRER

where
where i\?
[ABlx even=[AB]+| 5 0" 0" ,0,A,9,d,B]
Cz
k=—#1.

c, +0(6%,

With this solution one immediately finds that both the mass i v
term 55,9,,.9,, and the mixing termsy)g,,h,, vanish. {A*B}(*,odwzie {0.A.9,B}

There is, however, a mass term foy,: .

0" 0" 6°P{3,,0,.9,A, 0,3, 0 gB}

Bay(k*+1) +(‘
oz FuNudn
+0(6°).

}’(‘;”r‘r'ﬁi:n%fet:‘jngfg ZZ;’J[S:%%E‘?% ;‘;ﬂ‘ig;::;?e,\{;‘;ss With this modification we first define th&L(2,C) gauge
that both the symmetric field,, and the antisymmetric field field A, ,
B,., acquire mass. It is not unexpected that the graviton field
remains massless as this is protected by diffeomorphism in- A=dx*
variance. However, it is remarkable that through the coupling
of the spin connectiom ,,,, the correct kinetic energies for o L=t ~ )
both fieldsg,, andh,, are generated. The degrees of free-Satisfying the conditioh, = —A,, and transforming under a
dom of this system are well defined. The graviton corre-92uge transformation according to
sponds to a massless spin-2 field with two dynamical degrees . o
of freedom, while the fielch,, corresponds to a massive A—QxA*Q, "+ 0xdQ,
spin-2 field coupled to a dilaton and has six degrees of free- -~
dom[17]. The dilaton coupling can be seen only by going towhereQ =e with
higher order terms as it couples to curvature tefi&19.
To have a closed form for the fully nonlinear theory, it would X=i(’5z+73y5)+ E’Xab,yab_
be necessary to define an inverse for the tensgre} 4
+f2fP—eled —f2f7) so as to express the action in terms of
this inverse.

Much work remains to be done to fully understand this
theory and to determine its full coupling at the nonlinear 7¢7s
level, but the above results are very encouraging and 1 5
strongly indicate that this theory is consistent. It is also very F= de“Ddx”FM,
geometrical as it is based on the gauge principle where all
terms in the action are four-forms, thus avoiding the use of a ~ ~ . m o~ o~
density factor to guarantee invariance under general coordi- Fu=0,A,—d, A +A XA —AFA,,
nate transformations. It would be very interesting to find
some particular solutions to the full field equations such ad
generalizations of the Schwarzschild or de Sitter solutions.

. -~ 1~
i(@,+b,ys)+ Zwuabyab ,

One can easily verify that these transformations close as both
the commutators and anticommutators yf, with y. and
are proportional toyy and y47ys. The field strength is

ransforming according to
F=0xF, x0 %

ll. NONCOMMUTATIVE DEFORMED GRAVITY The fieldT is defined as before

The construction of the complex gravity action proposed ~ o . ~a
in the last section suggests that it could be easily generalized L=dx“(€,+iyst,) va,
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and transforms according to 5% o= —(%Xab"‘@ﬂacxcb—z)ﬂbcxca)
[ R I O I -
-0~ (aKa(?)\(,()‘uale‘ &K)\ab(?)\alu)
Unlike the commutative case, the field

~ ~ 1 -~ ~ ~
L'=—CL'c™? +EEabcd(axﬁa)\w,ucd"'&chdé))\b,u)

transforms as 1 5 - -
2 0“P07°(0 40, 1269 g0 5N b D0y ® 1y pI 5N ca)

-, +0(6%).

whereQ)'=e* with
Similarly the infinitesimal gauge transformation of the com-

= (@4 Byo)+ %Xab')’ab- plex vierbeinL is given by
SL=X+L—LxX,

It is therefore not possible to construct a group invariant =

using both_ andL’ as forSL(2,C) wherex and\’ coincide. which in component form reads

Therefore we are forced to use only the fieldsand A to I bed. ~ v

construct an action invariant undér_(2,C). It can be easily S8, =NT€, = 07| 0,0 €, — g € Iy Npcdsl

seen from the analysis given in the last section that since the

field L" cannot be used, the coupling &f,,,, to &% and T,

ensures only the propagation of one combinatiori‘afpfand

~fi. It is clear that the deformed four-dimensional gravita- 1

tional action invariant under the noncommutati@e (2,C) SFA=NaFc _ 99| 9_qo F2+ = abcdy N 5 ad

gauge transformations can be written as . a ( v yibeto ”)

1 aB pyd, T ac = 3

~ ~ o~ ~ a b N F 3
|=f d*x e M (aq+ Brys) (L¥L*F)] = 207707040, M0 40) +O(67).
M

o The components of the torsion constraints are
+f d*x e*" M (ap+ Boys) (LxLxLxL)]. . ~a
M T,uV:T,uV’ya_l—T,uvl Y5Ya= 0!

To this it is possible but not necessary to add the torsion-freghere
constraint

JFa _
T.,.,=

1 i .
Fodl+ A+T+T+A=0 3,8+ 5{@ a0 By = 7 € TDupe. Fral

which can be decomposed in terms of components and then o a ~ =
solved. +i[a, &l —{b, . f il —nev),
We first determine the infinitesimal gauge transformations

of the gauge fields ~ ~ -~ [ - -
~ o TZV: &Mfi-l— E{w,uab’fs}* + ZEabcc{w#bC,evd]*
SA=—dN+A*A—Ax\,
- ~ - - - iy fa T B _
whereQy=e" and\ =i(a+ ysB) + (1/4)A3Py,,. In terms of Fild,,f ] +{b, Bk 'U“(_}V)'

components, this reads
These equations simplify when written in terms of the com-
plex field

1

88, == 0, d— 6| 9,@d\A,+ 3, Bo\b,+ 3 ﬁKKabf?xa’uab)
a _=a _j i'fa
I =it}

+0(6%),
as they take the form

&b, =—a,B— 0“*( 9, BANE,+,&3\D,

~ 1 ~ 1 _ ~
0= ﬁuEi_F E{wuamEg}* 2 eabcctw,ubc-Evd]*

+0(63),

1 ~
abcd ~
S — 9, N apd ira. T i{b,,F
166 kNabO\® ycd +|[aM,E3]*+I{b,“E3}*_M‘—’V

024015-6



SL(2,C) GRAVITY WITH A COMPLEX VIERBEIN AND . . . PHYSICAL REVIEW D 69, 024015 (2004

as well as the complex conjugate equation. Its solution is given by
We now determine the deformed action to second order in

6. The gauge field strength is given by A =A, - akx{A WAL+ Fy b+ O (62),
n K1ON A

L - 1.
F,u,vzl(a;ui+ Y5buv)+ZRuvabyab ~ i
F,uv:F,uv—i_ZeK}\(z{F,uKva)\}
where
. L —{A«,0\F ., +DyF ,,}) +0(67),
3,,=d,3,~,3,+i[3, 3,1, +i[b,.b,l SR

~ i
N=Nt 7 0*P{3,\ Agt+O(67).

el

i
b ~
+§[ Z vwvab]* ’

B o—g By—%ﬁfri[?\# b1, +i[BM A, The deformed complex vierbein is defined by the relation

i L(gLg *,gAg H+gdg *=G+L(L,A)*G, "
— g €abed @, D,
8 Its solution is given by

~ _ s _ i - _ i 1
R,u,l/ab= [?;vaab+ I [w,u,ab vav]* + E eab(:({bp. 1w5d]* LM: L#+ E 9K)\[ (?KLM‘F E[A

1AL +O(67).

K=
n %{aac@gc}* — we . The component forms of these relations read

aK(Zo'?)\a’u— &Ma)\) + bK(Z&)\bM— &l"b)\)

1
To determine the deformed action we first expand the com@,=2a,+ > o

bination
1
-~ 1 + = 09,0+ R, ,2°) | +0(6?),
LD =5 dx*OdXT | uyay™*+ 110+ 75l )], g “x (Awp R [+OL8)
h I 1 a
where bu:b;ﬁgﬁ“ a,(20\b,—d,by)+b,(2d\a,—d,a,)
i ~
120 = {82 B0}, {12 10— 5 €480 . TLalu — ),
{ u}* { wrivi T ([ 14C dlx —mev) 16€abcdw (5)\(0 Cd"'R)\,qu) +O(02)
I8 = —i[8% Byal, —ilT2 Toal. T o
. s @, =0+ 50" (ak(&)\wﬂaﬂ-R)\Ma)
Ifgz_{ezv ua}*+{eivf;¢a}*- 2
N . 1
The kinetic part of the action then takes the form + wKab(Zt?xaM—t? a,)+ _eachbK(aAchdjL chd)
~ 1 ~
| =J d*x e N — (|<1>*aK +1Pb o+ S13°+ R, )
Y » N2 b ®,4(2d\b,—3,b))]{ +0(62),
_,31 *b )\+| *a )\+1Ebd|ab*ﬁ0d) 1
K abc v KN '
4 : e =el-0"a|del+ Emkaeei)
while the cosmological term gives 1 1
- Zeabcdw)fd( 9,85+ Ewaef; +0(6?),
f d*x €N — a1+ 1D+ 10515 + 21351, o)
~ 1
a__fa KN\ a e
_ﬁ2(2|213*|5<5x> eabcdﬁlb 1°9)]. fo=1—0%a,| d.f,+ EwKaef#)
The Seiberg-Witten mafd12,13 determining the de- 1 1, 5
formed gauge field in terms of the undeformed one is defined ~ + Zfabcd‘% 4 oeb+5 5@k ‘e, | |+0(67).
by
~ . e el e 1 As an alternative to the deformed action obtained in this
A(gAg “+gdg ) =G*A(A)*G, " +G+dg, . section, one can use the Seiberg-Witt&W) map for the

024015-7



ALI H. CHAMSEDDINE PHYSICAL REVIEW D 69, 024015 (2004

fieldsL,, andA,, and then substitute the undeformed solutionmal number of fields. We have worked out only the linear-
for w,ap in terms ofe? and 2. The resulting expressions ized approximation of the theory and shown that all fields

would be very complicated, which shows that the use of thécauiré the correct kinetic terms. The computation is not

SW map in obtaining the deformed action is not practical for5|mple, but it is very important to go one step further and

o . : - .. determine the higher order interactions. This calculation can
the gravllt.anonallsystem. These eaxpressgns mlght SImpIIfgnly be performed perturbatively because the massless and
for specific solutions where .y, €}, andf}, are given.

massive gravitons are linear combinations of the real and

imaginary parts of the complex vierbein and these tensor

IV. CONCLUSIONS combinations should be inverted. It would be very enlight-

ening to find some special solutions for this theory which are

generalizations of the Schwarzschild and de Sitter solutions.
When coordinates do not commute and fields are defined

on such noncommutative space, ordinary products must be

eral relativity and of Utiyamd1] and Kibble [2] relating replaced with star products. Commutators of Lie algebra val-

gravity to a gauge theory of the Lorentz group showed hom{’etd f|eldsdusm? star pr;)(:ucts,_ wct)uld resn;lttlr? bOtth?mmué
general relativity could be formulated based on &1€2,C) ff"‘ Ic()jrs _?R an ;((:om'r[nu ators n termst Od the undetorme
gauge invariancgl4]. This symmetry also played a crucial I€lds. TNIS makes It necessary 10 exten € gauge group

part in determining Ashtekar variablg21,22. The SL(2,C) form SL(2.C) to GL(2.). Having the proposed action for

symmetry acts as a gauge symmetry of the spin connectioﬁ,omplex gravity based on the requirement that all terms must

and in a first order formalism gives the correct kinetic termsbe four-forms, the extension carries through without any

for the vierbein. It is also possible to include torsion in thecomplic_ations by repl_acing ordinary products With_star prod-
spin connection to accommodate the antisymmegritield ucts. It is then a straightforward matter to determine the de-
appearing in string theory and give it a kinetic term. In thisfoﬂrined action to second order in the deformatpn parameter
paper we have shown that it is possible to go further an . We ha\(e only togched the surface in this direction, and
complexity the vierbein, keeping tH@L(2,C) symmetry. We many questions remain to be addressed, such as the effect of

have proposed an action with the exceptional property thatl!qe ;jhefosrr\;lved para][neters on qgfgntlz?t[{pn of thedtheory, f||_nd-
when the spin connection, which appears quadratically, i ng the map Of Some Specific solutions, and generaliza-

eliminated by its equation of motion, then both the real an lon tq honconstant paramete?é”.. These q'uestlolns gnd oth-
imaginary parts of the metric propagate. One combinatiorf™s will hopefully be addressed in future investigations.
protected by Qiﬁeomo_rphism invarian_ce will produce th_e ACKNOWLEDGMENT

massless graviton, while the other will produce a massive
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The idea that the gravitational field could be complex is
not new and was first considered by Einstein and Stkgiss
motivated by the unification of electromagnetism with grav-
ity. The work of Weyl[3] and Cartarj4] on spinors in gen-
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