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Can the ‘‘brick wall’’ model present the same results in different coordinate representations?

Jiliang Jing*
Institute of Physics and Physics Department, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of Ch

and School of Mathematics and Statistics, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE1 7RU, United King
~Received 25 May 2003; published 30 January 2004!

By using the ’t Hooft’s ‘‘brick wall’’ model and the Pauli-Villars regularization scheme we calculate the
statistical-mechanical entropies arising from the quantum scalar field in different coordinate settings, such as
the Painleve´ and Lemaitre coordinates. At first glance, it seems that the entropies would be different from that
in the standard Schwarzschild coordinate since the metrics in both the Painleve´ and Lemaitre coordinates do
not possess the singularity at the event horizon as that in the Schwarzschild-like coordinate. However, after an
exact calculation we find that, up to the subleading correction, the statistical-mechanical entropies in these
coordinates are equivalent to that in the Schwarzschild-like coordinate. The result is not only valid for black
holes and de Sitter spaces, but also for the case that the quantum field exerts back reaction on the gravitational
field provided that the back reaction does not alter the symmetry of the spacetime.

DOI: 10.1103/PhysRevD.69.024011 PACS number~s!: 04.70.Dy, 97.60.Lf
g
c
c

in
eli
nt
c

is
ro

th
p
h

le

he
n
a

o
s
th
le

le
k

w
av

t
io
di
av

nt.
by
ta-
ing
re-

oth
co-
rd
ire
re-
tes
s of
the

ies
rd

es-
in
e
of
all
e
ary
ion
rs
at
e

li-

py
I. INTRODUCTION

In quantum field theory, we can use a timelike Killin
vector to define particle states. Therefore, in static spa
times we know that it is possible to define positive frequen
modes by using the timelike Killing vector. However,
these spacetimes there could arise more than one tim
Killing vector which make the vacuum states inequivale
This means that the concept of particles is not generally
variant in curve spacetime.

Bekenstein and Hawking@1,2# found that, by comparing
black hole physics with thermodynamics and from the d
covery of black hole evaporation, black hole entropy is p
portional to the area of the event horizon. The discovery
one of the most profound in modern physics. However,
issue of the exact statistical origin of the black hole entro
has remained a challenging one. Recently, much effort
been concentrated on the problem@3–30#. The ‘‘brick wall’’
model ~BWM! proposed by ’t Hooft@11# is an extensively
used way to calculate the entropy in a variety of black ho
black branes, de Sitter spaces, and anti–de Sitter spaces@11–
30#. In this model the Bekenstein-Hawking entropy of t
black hole is identified with the statistical-mechanical e
tropy arising from a thermal bath of quantum fields prop
gating outside the event horizon.

The concept of particles in quantum field theory is n
generally covariant and depends on the coordinate repre
tations. This leads to an interest question: can we get
same results for statistical-mechanical entropy of black ho
in different coordinate representations, such as the Pain´
and Lemaitre coordinates, by employing the BWM by ma
ing use of the wave modes in this model? At first sight,
might anticipate that the results are different since the w
modes obtained by using semiclassical techniques are
exact modes of the quantum system in the asymptotic reg
Thus, if the asymptotic structures of the spacetime are
ferent for any two coordinates, then the semiclassical w
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modes associated with different coordinates will be differe
The aim of this paper is to study this question carefully
applying the BWM to two different coordinate represen
tions of the general standard static black hole and study
the statistical-mechanical entropy. The two coordinate rep
sentations which we use are the stationary Painleve´ coordi-
nate and the time dependent Lemaitre coordinate. In b
Painlevéand Lemaitre coordinates, the metrics have no
ordinate singularity which are different from the standa
Schwarzschild-like coordinate. However, they both acqu
singularity at the event horizon in the action function. The
fore, there could be particle production in these coordina
and hence we can use the knowledge of the wave mode
the quantum field in these coordinate settings to calculate
statistical-mechanical entropies.

In order to compare the statistical-mechanical entrop
obtained in this paper with the result for the standa
Schwarzschild-like coordinate, we first introduce the expr
sion of the entropy for the Schwarzschild-like coordinate
the following. In the BWM, in order to eliminate divergenc
which appears due to the infinite growth of the density
states close to the horizon, ’t Hooft introduces a brick w
cutoff: a fixed boundarySh near the event horizon within th
quantum field does not propagate and the Dirichlet bound
condition was imposed on the boundary, i.e., wave funct
f50 for r 5r (Sh). However, Demers, Lafrance, and Mye
@31# found, in the Pauli-Villars regulated theory, th
’t Hooft’s brick wall can be removed by introducing fiv
regulator fields:f1 and f2, which are two anticommuting

fields with massm15m25Am21m2 ~where m represents
the UV cutoff!; f3 andf4, which are two commuting fields

with massm35m45A3m21m2; and f5, which is an anti

commuting field with massm55A4m21m2. Together with
the original scalar fieldf5f0 with massm5m0 these fields
satisfy the two constraints( i 50

5 D i50 and ( i 50
5 D imi

250,
where D i511 for the commuting fields, andD i521 for
the anticommuting fields. By using the BWM and Pau
Villars regulators, Demers, Lafrance and Myers@31#, and
Solodukhin@32# found that the statistical-mechanical entro
©2004 The American Physical Society11-1
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arising from the minimally coupled quantum scalar field in
general nonextreme static black hole

ds252g~r !dts
21

1

g~r !
dr21R2~r !~du21sin2udw2!

~1.1!

„whereg(r ) is an arbitrary function ofr. The event horizon
is determined byg(r )50. And @dg(r )/dr#ur 1

Þ0 for the
nonextreme black holes… can be expressed as

S5
AS

48p (
i 50

5

D imi
2ln mi

2

2
AS

288p FR2
1

5 S ]2g~r !

]2r
2

1

R2~r !

]g~r !

]r

]R2~r !

]r D G
r 1

3(
i 50

5

D i ln mi
2 , ~1.2!

whereAS5*dudw@Aguugww# r 1
is the area of the event ho

rizon, R is a scalar curvature of the spacetime. T
statistical-mechanical entropy~1.2! obtained by this ap-
proach consists of two parts: the first part, after taking ren
malization of the gravitational constant as 1/GR5(1/GB)
1(1/12p)( i 50

5 D imi
2ln mi

2 , gives Bekenstein-Hawking en
tropy, and the second part can be considered as a qua
correction to the entropy of the black hole due to the qu
tum scalar field.

The paper is organized as follows. In Sec. II the Painle´
spacetime is introduced and the statistical-mechanical
tropy arises from the quantum scalar field in the Painle´
coordinate that is studied. In Sec. III the statistic
mechanical entropy due to the quantum scalar field in
Lemaitre coordinate is investigated. The summary and
cussions are presented in Sec. IV.

II. STATISTICAL-MECHANICAL ENTROPY
IN THE PAINLEVE´ COORDINATE

We now investigate statistical-mechanical entropy t
arises from the quantum scalar field in the Painleve´ coordi-
nate system. The time coordinate transformation from
standard Schwarzschild-like coordinate~1.1! to the Painleve´
coordinate is

t5ts1E A12g~r !

g~r !
dr. ~2.1!

The radial and angular coordinates remain unchanged. W
this choice, the line element~1.1! becomes

ds252g~r !dt212A12g~r !dtdr1dr21R2~r !~du2

1sin2udw2!, ~2.2!

which is the Painleve´ coordinate representation. The coord
nate has distinguishing features:~a! The spacetime is station
ary but not static;~b! the constant-time surfaces is flat
02401
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R2(r )5r 2; and ~c! there is now no singularity atg(r )50.
That is to say, the coordinate complies with perspective o
free-falling observer, who is expected to experience noth
out of the ordinary upon passing through the event horiz
However, the event horizon manifests itself as a singula
in the expression for the semiclassical action. It is easily
prove that the inverse Hawking temperature

bH52p
11A12g~r !

dg~r !

dr
U

r 1

54pY dg~r !

dr U
r 1

, ~2.3!

is recovered in the Painleve´ coordinate by using the comple
path technique@34,35#.

We now try to find an expression of the statistica
mechanical entropy due to the quantum scalar field in th
mal equilibrium at temperature 1/b in the Painleve´ coordi-
nate by suing the BWM. Using the WKB approximation wi

f5exp@2 iEt1 iW~r ,u,w!#, ~2.4!

and substituting the metric~2.2! into the Klein-Gordon equa-
tion of the scalar fieldf with massm and nonminimaljRf
(R is the scalar curvature of the spacetime! coupling

1

A2g̃
]m~A2g̃gmn]nf!2~m21jR!50, ~2.5!

we find

pr
65

1

g~r !
FA12g~r !E

6Ag~r !A E2

g~r !
2S pu

2

R2~r !
1

pw
2

R2~r !sin2u
1M2~r !D G ,

~2.6!

where pr[] rW(r ,u,w), pu[]uW(r ,u,w), and pw

[]wW(r ,u,w) are the momentum of the particles moving
r, u, andw, respectively. The sign ambiguity of the squa
root is related to the ‘‘out-going’’ (pr

1) or ‘‘in-going’’ ( pr
2)

particle, respectively. If the scalar curvatureR takes a non-
zero value at the horizon then this region can be appro
mated by some sort of constant curvature space. Howe
the exact result for such a black hole showed that the m
parameter in the solution enters only in the combinat

(m22R/6) @32,33#, and thenM2(r )5m22( 1
6 2j)R in the

Eq. ~2.6!. In this paper our discussion is restricted to stu
minimally coupled (j50) scalar fields since the main aim o
this paper is to see whether the brick wall model can pres
the same result in different coordinates.

The partition function is given by

z5(
nq

exp@2b~Eq!nq#, ~2.7!
1-2
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whereq denotes a quantum state of the field with energyEq .
The free energy is

F5
1

bE dpuE dpwE dn~E,pu ,pw!ln$12exp@2bE#%

52E dpuE dpwE n~E,pu ,pw!

ebE21
dE

52E n~E!

ebE21
dE, ~2.8!

wheren(E)[*dpu*dpwn(E,pu ,pw) presents the total num
ber of the modes with energy less thanE. In phase space th
total number of modes withE is given by

n~E!5
1

pE duE
r 11h

L

drE dpudpw

pr
12pr

2

2

5
1

pE duE
r 11h

L

drE dpudpw

1

Ag~r !

3A E2

g~r !
2S pu

2

R2~r !
1

pw
2

R2~r !sin2u
1M2~r !D .

~2.9!

The integral is taken only over those values for which
square root exists. In Eq.~2.9! we utilize the average of the
radial momentum~the minus before thepr

2 is caused by a
different direction!. In this way, the total number of modes
related to all kinds of particles. We checked that this defi
tion can also be used for all previous corresponding wo
Carrying out the integrations of thepu , pw , andr, we get

n~E!52
1

2pE duH Aguugww F2

3 S bHE

4p D 3

C~r !

1M2~r !S bHE

4p D G ln E2

Emin
2 J

r 1

2
1

3p

bH

4pE duFAguugww M2~r !S E2
E3

Emin
2 D G

r 1

,

~2.10!

where

C~r !5
]2g~r !

]2r
2

1

R2~r !

]g~r !

]r

]R2~r !

]r
,

Emin
2 5@M2~r !g~r !#Sh

. ~2.11!
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We now use the Pauli-Villars regularization scheme int
duced in the preceding section. Since each of the scalar fi
makes a contribution to the free energy, the total free ene
can be expressed as

bF̄5(
i 50

5

bD iFi . ~2.12!

Substituting Eqs.~2.8! and ~2.10! into Eq. ~2.12! and then
taking the integration overE, we have

F̄52
1

48p

bH

b2E dudw$Aguugww% r 1

3(
i 50

5

n iM i
2~r H!ln Mi

2~r H!

2
1

2880p

bH
3

b4E dudwH Aguugww F ]2g~r !

]r 2

2
1

R2~r !

]g~r !

]r

]R2~r !

]r G J
r 1

(
i 50

5

n i ln Mi
2~r H!.

~2.13!

Using the assumption that the scalar curvatureR at the ho-
rizon is much smaller than eachmi and inserting free energy
into the relation

S5b2
]F

]b
, ~2.14!

we obtain the expression of the statistical-mechanical
tropy due to a minimally coupled scalar field in the Painle´
coordinates

S5
AS

48p (
i 50

5

D imi
2ln mi

2

2
AS

288p FR2
1

5 S ]2g~r !

]2r
2

1

R2~r !

]g~r !

]r

]R2~r !

]r D G
r 1

3(
i 50

5

D i ln mi
2 , ~2.15!

whereAS5*dwdu$Aguugww% r 1
54pR2(r 1) is the area of

the event horizon.
By the equivalence principle and the standard quant

field theory in flat space, to construct a vacuum state for
massless scalar field in the Painleve´ spacetime we should
leave all the positive frequency modes empty. Kraus@36#
pointed out that for the metric~2.2! it is convenient to work
along a curve

dr1A12g~r !dt50, ~2.16!
1-3
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then the condition is simply a positive frequency with resp
to t near this curve. It is easy to prove that the modes use
calculate the entropy are essentially the same as that in
Schwarzschild-like coordinates. Therefore, it is reasona
that the result~2.15! is exactly equal to entropy~1.2!.

III. STATISTICAL-MECHANICAL ENTROPY
IN THE LEMAITRE COORDINATE

In this section we study statistical-mechanical entropy d
to the quantum scalar field in the Lemaitre coordinates. T
coordinates that transform from the Painleve´ coordinates
~2.2! to the Lemaitre coordinates are given by

r̃ 5t1E dr

A12g~r !
,

U5 r̃ 2t,

V5 r̃ 1t, ~3.1!

wheret is the Painleve´ time. The angular coordinatesu and
w remain the same. The line element~2.2!, in the new coor-
dinates, is described by

ds25
~ f ~U !21!

4
~dV21dU2!1

f ~U !11

2
dVdU

1y~U !~du21sin2udw2!, ~3.2!

where

f ~U ![12g~r !,

y~U ![R2~r !. ~3.3!

The line element~3.2! is the Lemaitre coordinate represe
tation of the spacetime~1.1!. The metric in the Lemaitre
coordinate is no singularity atg(r )50 just as in the Painleve´
coordinates. However, the horizon also manifests itself a
singularity in the expression for the semiclassical action.
can also show that the inverse Hawking temperature,

bH52p
~11Af !2

] f

]U
U

U0

54pY dg~r !

dr r 1
, ~3.4!

is recovered in the Lemaitre coordinate by employing
complex path technique@34,35#. In Eq. ~3.4! U0 represents
the root of the equation (12 f )5g50.

We can use the WKB approximation with

f5exp@2 iEV/21 iW~U,u,w!#. ~3.5!

The reason for using the modes with positive frequency w
respect to the coordinateV is that another coordinateU5 r̃
2t5*dr/A12g(r ) is related to the space coordinater of
the original coordinates only.
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Substituting Eq.~3.5! and metric ~3.2! into the Klein-
Gordon equation of the scalar field with massm, Eq. ~2.5!,
we have

pU
65

f

12 f F11 f

f
E

6A12 f

f
A E2

12 f
2S pu

2

y
1

pw
2

y sin2u
1M2~U !D G ,

~3.6!

where pU[]UW(U,u,w), pu[]uW(U,u,w), and pw

[]wW(U,u,w) are the momentum of the particle moving
U, u, andw, respectively, andM2(U)5m22 1

6 R. Therefore,
in phase space we obtain the number of modes

n~E!5
1

pE dudwE
U01h̃

L̃
dUE dpudpw

pU
12pU

2

2

5
2

pE dudwE
U01h̃

L̃
dUE dpudpwA f

12 f

3A E2

12 f
2S pu

2

4y
1

pw
2

4y sin2u
1

M2~U !

4 D , ~3.7!

where we make use of the average of theU-direction mo-
mentum~the minus before thepU

2 is caused by a differen
direction!. The integral in the second line is taken only ov
those values for which the square root exists. Carrying
the integrations of thepu , pw , andU, we get

n~E!52
1

2pE duH Aguugww F2

3 S bHE

4p D 3

C̃~U !

1M2~U !S bHE

4p D G ln E2

Emin
2 J

U0

2
1

3p

bH

4pE duFAguugwwM2~U !S E2
E3

Emin
2 D G

U0

,

~3.8!

where

C̃~U !5
1

f

]2f

]2U
2

1

2 f 2 S ] f

]U D 2

2
1

f y

] f

]U

]y

]U
,

Emin
2 5@M2~U0!~12 f !#Sh

. ~3.9!

We now introduce the Pauli-Villars regularization scheme
before. Substituting Eqs.~2.8! and ~3.8! into Eq. ~2.12! and
then taking the integration overE we have
1-4
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F̄52
1

48p

bH

b2E dudw$Aguugww%U0

3(
i 50

5

n iM i
2~U0!ln Mi

2~U0!

2
1

2880p

bH
3

b4E dudwH Aguugww F1

f

]2f

]2U
2

1

2 f 2 S ] f

]U D 2

2
1

f y

] f

]U

]y

]UG J
U0

(
i 50

5

n i ln Mi
2~U0!. ~3.10!

Using the assumption that the scalar curvatureR at the ho-
rizon is much smaller than eachmi and inserting free energ
into the relationS5b2(]F/]b), we obtain the expression o
the statistical-mechanical entropy in the Lemaitre coordin

S5
AS

48p (
i 50

5

D imi
2ln mi

2

2
AS

288p HR2
1

5 F1

f

]2f

]2U
2

1

2 f 2 S ] f

]U D 2

2
1

f y

] f

]U

]y

]UG J
r 1

3(
i 50

5

D i ln mi
2 , ~3.11!

whereAS54pyuU0
54pR2(r 1) is the horizon area.

By using Eq.~3.1!, it is easy to prove

F1

f

]2f

]2U
2

1

2 f 2 S ] f

]U D 2

2
1

f y

] f

]U

]y

]UG
U0

5F ]2g~r !

]2r
2

1

R2~r !

]g~r !

]r

]R2~r !

]r G
r 1

. ~3.12!

This shows that the result~3.11! for the Lemaitre coordinate
is equal to entropy~2.15! for the Painleve´ coordinate, and the
entropy~1.2! for the standard Schwarzschild coordinate. It
well known that the wave modes obtained by using semic
sical techniques, in general, are the exact modes of the q
tum system in the asymptotic regions. Thus, if t
asymptotic structure of the spacetime is the same for the
coordinates, then the semiclassical wave modes assoc
with these two coordinate systems will be the same. Fr
Eq. ~3.1! we know that the differential relationship betwee
the Lemaitre timeV and the Painleve´ time t can be expresse
as

dV5dt1dr̃52dt1
dr

A12g~r !
. ~3.13!

Now let us also work along the curvedr1A12g(r )dt50,
Eq. ~3.13! then becomes

dV5dt. ~3.14!
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It is shown that the two definitions of positive frequency
with respect toV in the Lemaitre spacetime and with respe
to t in the Painleve´ spacetime—do coincide. Therefore,
should not be surprised at the entropies driven from
modes in the Lemaitre and Painleve´ coordinates are the
same.

IV. SUMMARY AND DISCUSSIONS

We have investigated the statistical-mechanical entrop
arising from the quantum scalar field in the Painleve´ and
Lemaitre coordinates by using the ’t Hooft brick wall mod
and the Pauli-Villars regularization scheme. At first glan
we might have anticipated that the results are different fr
that of the standard Schwarzschild coordinate due to
reasons:~a! both the Painleve´ and Lemaitre spacetimes po
sess a distinguishing property: the metrics do not poss
singularity at event horizon;~b! it is not obvious that the time
V in the Lemaitre spacetime tends to the timet in the Pain-
levé spacetime. Nevertheless, for either the Painleve´ or Le-
maitre coordinate, the event horizon manifests itself as a
gularity in the action function and then there could
particles production. Hence we can use the knowledge of
wave modes of the quantum field to calculate the statisti
mechanical entropies. By comparing our results~2.15! and
~3.11!, which are worked out exactly, with the well-know
result ~1.2! we find that, up to a subleading correction, t
statistical-mechanical entropies arising from the quant
scalar field in both the Painleve´ and Lemaitre coordinates ar
equivalent to that in the standard Schwarzschild-like coo
nate. When we construct a vacuum state for the mass
scalar field in the Painleve´ spacetime we take the conditio
dr1A12g(r )dt50, and then we find that the modes us
to calculate the entropies in both the Painleve´ and Lemaitre
coordinates are essentially the same as that in
Schwarzschild-like coordinates since bothV andt tend to the
Schwarzschild timets as r goes to infinity under this condi
tion. Therefore, it should not be a surprise that the entrop
driven from the modes in the Lemaitre, Painleve´, and
Schwarzschild coordinates are the same.

We should note that all the results are obtained ba
alone on the most general metric~1.1! and the conditions
g(r )ur 1

50 and dg(r )/drur 1
Þ0 ~nonextreme black hole!.

Therefore, the results are valid not only for the spacetim
that we have known, such as the Schwarzschild,
Reissner-Nordstro¨m, the Garfinkle-Horowitz-Strominger di
laton @37#, the Gibbons-Maeda dilaton@38#, the Garfinkle-
Horne dilaton@39# black holes, and the Schwarzschild–d
Sitter and the Reissner–Nordstro¨m–de Sitter spaces, etc., bu
also for the case that the quantum field exerts back reac
to the gravitational field provided that the back reaction do
not alter the symmetry of the spacetime.
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