PHYSICAL REVIEW D 69, 024011 (2004

Can the “brick wall” model present the same results in different coordinate representations?
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By using the 't Hooft's “brick wall” model and the Pauli-Villars regularization scheme we calculate the
statistical-mechanical entropies arising from the quantum scalar field in different coordinate settings, such as
the Painleveand Lemaitre coordinates. At first glance, it seems that the entropies would be different from that
in the standard Schwarzschild coordinate since the metrics in both the Paamiéueemaitre coordinates do
not possess the singularity at the event horizon as that in the Schwarzschild-like coordinate. However, after an
exact calculation we find that, up to the subleading correction, the statistical-mechanical entropies in these
coordinates are equivalent to that in the Schwarzschild-like coordinate. The result is not only valid for black
holes and de Sitter spaces, but also for the case that the quantum field exerts back reaction on the gravitational
field provided that the back reaction does not alter the symmetry of the spacetime.
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I. INTRODUCTION modes associated with different coordinates will be different.
The aim of this paper is to study this question carefully by
In quantum field theory, we can use a timelike Killing applying the BWM to two different coordinate representa-
vector to define particle states. Therefore, in static spaceions of the general standard static black hole and studying
times we know that it is possible to define positive frequencythe statistical-mechanical entropy. The two coordinate repre-
modes by using the timelike Killing vector. However, in sentations which we use are the stationary Paintmardi-
these spacetimes there could arise more than one timelikeate and the time dependent Lemaitre coordinate. In both
Killing vector which make the vacuum states inequivalent.Painleveand Lemaitre coordinates, the metrics have no co-
This means that the concept of particles is not generally coerdinate singularity which are different from the standard
variant in curve spacetime. Schwarzschild-like coordinate. However, they both acquire
Bekenstein and Hawkinff,2] found that, by comparing singularity at the event horizon in the action function. There-
black hole physics with thermodynamics and from the dis-fore, there could be particle production in these coordinates
covery of black hole evaporation, black hole entropy is pro-and hence we can use the knowledge of the wave modes of
portional to the area of the event horizon. The discovery ighe quantum field in these coordinate settings to calculate the
one of the most profound in modern physics. However, thestatistical-mechanical entropies.
issue of the exact statistical origin of the black hole entropy In order to compare the statistical-mechanical entropies
has remained a challenging one. Recently, much effort hagbtained in this paper with the result for the standard
been concentrated on the probl¢&-30]. The “brick wall” Schwarzschild-like coordinate, we first introduce the expres-
model (BWM) proposed by 't Hooff11] is an extensively sion of the entropy for the Schwarzschild-like coordinate in
used way to calculate the entropy in a variety of black holesthe following. In the BWM, in order to eliminate divergence
black branes, de Sitter spaces, and anti—de Sitter spates which appears due to the infinite growth of the density of
30]. In this model the Bekenstein-Hawking entropy of the states close to the horizon, 't Hooft introduces a brick wall
black hole is identified with the statistical-mechanical en-cutoff: a fixed boundar,, near the event horizon within the
tropy arising from a thermal bath of quantum fields propa-quantum field does not propagate and the Dirichlet boundary
gating outside the event horizon. condition was imposed on the boundary, i.e., wave function
The concept of particles in quantum field theory is not¢=0 forr=r(X). However, Demers, Lafrance, and Myers
generally covariant and depends on the coordinate represef31] found, in the Pauli-Villars regulated theory, that
tations. This leads to an interest question: can we get th#& Hooft’'s brick wall can be removed by introducing five
same results for statistical-mechanical entropy of black holegegulator fields:¢; and ¢,, which are two anticommuting
in differen; coordinqte representationg, such as the Paiinlewgems with massm, =m,= \/m (where . represents
and Lemaitre coordinates, by employing the BWM by mak-the UV cutoff; ¢ and ¢4, which are two commuting fields
ing use of the wave modes in this model? At first sight, we . o m o .
might anticipate that the results are different since the wav/ith massmz=m,=y3u“+m? and ¢s, which is an anti
modes obtained by using semiclassical techniques are tr@mmuting field with massns= \4u?+m?. Together with
exact modes of the quantum system in the asymptotic regiorthe original scalar field>= ¢, with massm=m, these fields
Thus, if the asymptotic structures of the spacetime are difsatisfy the two constraintE?_,A;=0 and 37_,A;m?=0,
ferent for any two coordinates, then the semiclassical wavevhere A;=+1 for the commuting fields, and;=—1 for
the anticommuting fields. By using the BWM and Pauli-
Villars regulators, Demers, Lafrance and My¢®&l], and
*Electronic address: jiliang.jing@ncl.ac.uk Solodukhin[32] found that the statistical-mechanical entropy
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arising from the minimally coupled quantum scalar field in aR?(r)=r?; and(c) there is now no singularity aj(r)=0.

general nonextreme static black hole That is to say, the coordinate complies with perspective of a
free-falling observer, who is expected to experience nothing
ds?= —g(r)dt>+ 1 dr2+R2(r)(d 6%+ sir26d?) out of the ordinary upon passing through the event horizon.

S

a(r) However, the event horizon manifests itself as a singularity
(1.2 in the expression for the semiclassical action. It is easily to

rove that the inverse Hawking temperature
(whereg(r) is an arbitrary function of. The event horizon P 9 P

is determined byg(r)=0. And [dg(r)/dr]lrﬂéo for the 1+y1—g(r) dg(r)
nonextreme black holgsan be expressed as ﬁHZZW—dg(r) = / ar | @3
—_— +
5 dr
A
S=4—22 A;m?inm? -
=0 is recovered in the Painléxaordinate by using the complex
As 1/ a%g(r) 1 ag(r) oRA(r) path techniqué34,35.
~%88:| " 5 S 5 p We now try to find an expression of the statistical-
a°r R(r) of r r, mechanical entropy due to the quantum scalar field in ther-
5 mal equilibrium at temperature A/in the Painlevecoordi-
5 nate by suing the BWM. Using the WKB approximation with
X >, Ajlnm?, (1.2)
=0

d=exd —iEt+iW(r,0,¢)], (2.4
whereAs =Jdode[ ‘g“gw]u Is the area of the event ho- and substituting the metri@.2) into the Klein-Gordon equa-

rizon, R is a scalar curvature of the spacetime. Theon of the scalar fields with massm and nonminimakR ¢
stansncal—mgchamcal entropyl.Z)_ obtained by th.IS ap- (R is the scalar curvature of the spacetinseupling
proach consists of two parts: the first part, after taking renor-

malization of the gravitational constant asGk~ (1/Gg) 1

+(1/127) 2> )A;m?Inn?, gives Bekenstein-Hawking en- S — \/—_agﬂvay¢)—(m2+ ER)=0, (2.5
tropy, and the second part can be considered as a quantum \/__”g

correction to the entropy of the black hole due to the quan-

tum scalar field. we find

The paper is organized as follows. In Sec. Il the Painleve
spacetime is introduced and the statistical-mechanical en-
tropy arises from the quantum scalar field in the Painlev F=——|VJ1-g(r)E
coordinate that is studied. In Sec. Il the statistical- g(r)
mechanical entropy due to the quantum scalar field in the

Lemaitre coordinate is investigated. The summary and dis- E2 p3 pi
cussions are presented in Sec. IV. +/g(r) - + +M2(r) | |,
g(r) \R*%(r) R3(r)sirtg
Il. STATISTICAL-MECHANICAL ENTROPY (2.6)

IN THE PAINLEVE COORDINATE

We now investigate statistical-mechanical entropy thatWhere Pr=0W(r,0,0), py=0,W(r,0,¢), and p,

arises from the quantum scalar field in the Painlegerdi- =3d,W(r, 0, ¢) are the momentum of the particles moving in

nate system. The time coordinate transformation from thé’ 0, and ¢, respectively. The sign ambiguity of the square

H “ H »n &+ “; H ” -
standard Schwarzschild-like coordindfiel) to the Painleve root is related to the "out-going”§’) or "in-going” (p; )
coordinate is particle, respectively. If the scalar curvatuRetakes a non-

zero value at the horizon then this region can be approxi-

\/m mated by some sort of constant curvature space. However,
t=ts+ j ——F—dr. (2.1 the exact result for such a black hole showed that the mass
9(r) parameter in the solution enters only in the combination
The radial and angular coordinates remain unchanged. Wittm?—R/6) [32,33, and thenM?(r)=m?— (3 — &R in the
this choice, the line elemeil.1l) becomes Eqg. (2.6). In this paper our discussion is restricted to study
minimally coupled €= 0) scalar fields since the main aim of
ds?=—g(r)dt?+2y1-g(r)dtdr+dr?+R*(r)(d¢? this paper is to see whether the brick wall model can present

the same result in different coordinates.

; 2
i ode?), (22 The partition function is given by

which is the Painleveoordinate representation. The coordi-

nate has distinguishing featuréa) The spacetime is station- 7= Z exd — B(Eq)ngl, (2.7
ary but not statici(b) the constant-time surfaces is flat if ng
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whereq denotes a quantum state of the field with eneggy
The free energy is

:%f dp,,J dp¢J dn(E,p,.p,)In{1—exd — BE]}
—jdpef dpJ —n(;si'f‘a)dE
Z_J' n(E)

efE—1

dE, (2.9

wheren(E)=[dp,/dp,n(E,ps.p,) presents the total num-
ber of the modes with energy less thanin phase space the

total number of modes witk is given by

n(E)——f dBJ' drfdpedp¢ P
r.+h

:%f dafr;hdrfdpgdpwﬁ

><\/E2 —( i + Pe +
g(r) \R%(r) R¥(r)sirte

M?(r) |.

(2.9
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We now use the Pauli-Villars regularization scheme intro-
duced in the preceding section. Since each of the scalar fields
makes a contribution to the free energy, the total free energy
can be expressed as

5
F=> BAF;. (2.12
i=0

Substituting Eqs(2.8) and (2.10 into Eqg. (2.12 and then
taking the integration ovel, we have

_ 1 B
:_@B_Zf dﬂqu{\/geagw}u

5
X 2 AMA(r)InMZ(ryy)
i=0

1

B,
~ 58307 Ef dodey V9pe9ee

a%g(r)
ar?

1 dg(r) aR?(r)
_Rz(r) ar ar

5
] ZO AdnMZ(ry).

+

(2.13

Using the assumption that the scalar curvatirat the ho-
rizon is much smaller than each, and inserting free energy
into the relation

The integral is taken only over those values for which the JE

square root exists. In E42.9) we utilize the average of the
radial momentum(the minus before th@, is caused by a

different direction. In this way, the total number of modes is
related to all kinds of particles. We checked that this defini-
tion can also be used for all previous corresponding works

Carrying out the integrations of the,, p,, andr, we get

n(E)———fdof NCH (B” ) c(r)

1
3 B Jd0|: Vg(i(iggmp M r)

E3
E_ - 1
Emln ry

(2.10

where

a%g(r) 1 a9g(r) dR?(r)
[?Zr B Rz(r) oar ar

C(r)=

m|n [Mz(r)g(r)]ih (2.1])

Sﬂﬁ

(2.19

we obtain the expression of the statistical-mechanical en-
‘tropy due to a minimally coupled scalar field in the Painleve
Scoordinates

2
=187 EAmInm
As 1( d%g(r) 1 dg(r) aR*(r)
288 5\ g&r  RYr) ar or
ry
5
X > Ajnm?, (2.19
i=0

where Ay = [ded0{\/gs60,,}r, =47R?(r ;) is the area of
the event horizon.

By the equivalence principle and the standard quantum
field theory in flat space, to construct a vacuum state for the
massless scalar field in the Painlesgacetime we should
leave all the positive frequency modes empty. Kra86]
pointed out that for the metri@.2) it is convenient to work
along a curve

dr++1—9g(r)dt=0, (2.16

024011-3



JILIANG JING PHYSICAL REVIEW D 69, 024011 (2004

then the condition is simply a positive frequency with respect Substituting Eq.(3.5 and metric(3.2) into the Klein-
to t near this curve. It is easy to prove that the modes used tGordon equation of the scalar field with massEq. (2.5),
calculate the entropy are essentially the same as that in thee have

Schwarzschild-like coordinates. Therefore, it is reasonable

that the resulf2.15 is exactly equal to entropgl.2). f

Pu=1=%

1+f
f

lIl. STATISTICAL-MECHANICAL ENTROPY
IN THE LEMAITRE COORDINATE

o - _ 5 p2 ,
In this section we study statistical-mechanical entropy due v sk +M=(U) ||,
to the quantum scalar field in the Lemaitre coordinates. The y

coordinates that transform from the Painleveordinates (3.6
(2.2) to the Lemaitre coordinates are given by

where py=dJdyW(U,60,¢), py=9d,W(U,60,¢), and Pe
=J,W(U,0,¢) are the momentum of the partlcle moving in

T=t+ | —, U, 0 ande, respectively, an#?(U)=m?—:R. Therefore,
1=g(r) in phase space we obtain the number of modes
U=r-t, 3
3 n( =—ifd0d¢fL dUJ.dmﬂp¢p Py
V=T+t, (3.1 Uo+h
wheret is the Painlevdime. The angular coordinatgsand 2 L f
¢ remain the same. The line elemé@t2), in the new coor- = ;f ded@fu +Ede dpydp,\/ 77
dinates, is described by 0
E2 (p;  P: M%)
f(U)—-1 f(U)+1 — | @
d§=££7}—laﬂﬂ+du%+—£%——dVdU “N 1=t 4y 4yg¥0+ 2| G7
+y(U)(d6*+sinfode?), (3.2 where we make use of the average of thalirection mo-
mentum (the minus before thg is caused by a different
where direction. The integral in the second line is taken only over
f(U)=1—g(r) those values for which the square root exists. Carrying out
=+, the integrations of th@,, p,,, andU, we get
y(U)=R2(r). (3.3 ,
_ — H
The line element3.2) is the Lemaitre coordinate represen- n(E)= f da[ 9069 [ ( ) c)

tation of the spacetimé¢l.1). The metric in the Lemaitre

coordinate is no singularity @f(r)=0 just as in the Painleve By 2
coordinates. However, the horizon also manifests itself as a +M2(U)(—) In—
) o : . : . A E2.
singularity in the expression for the semiclassical action. We minJ
can also show that the inverse Hawking temperature, .
1 By E
(1+11)? dg(r) —ggz;fd4}@wgwM2ﬂU(E—E7—H ’
IBH:—’W—[?f =47 ar "+ (3.9 min/ Jy,
FVRN (38
0
is recovered in the Lemaitre coordinate by employing the’Vnere
complex path techniquEd4,35. In Eq. (3.4 U, represents
the root of the equation (f)=g=0. ~ 1 9°f af 1 of gy
We can use the WKB approximation with CU)= f2u ﬁ aul W U au’
d=exd —iEV/2+iW(U,0,¢)]. (3.5 )
mln [M (UO)(l f)]Eh (3-9)

The reason for using the modes with positive frequency with

respect to the coordinaté is that another coordinate =T We now introduce the Pauli-Villars regularization scheme as
—t=/[dr/{1—g(r) is related to the space coordinatf  before. Substituting Eq$2.8) and(3.8) into Eq.(2.12 and
the original coordinates only. then taking the integration ové we have
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It is shown that the two definitions of positive frequency—
with respect tov in the Lemaitre spacetime and with respect

— 1 Bu [
F:—@_Zf dad(P{ gﬂﬁggaqa}UO

B to t in the Painlevespacetime—do coincide. Therefore, it
5 should not be surprised at the entropies driven from the
Xz A-M-Z(UO)InM-Z(UO) modes in the Lemaitre and Painlewsordinates are the
E ' same.
1 B 1 2f 1 [af\2 IV. SUMMARY AND DISCUSSIONS
~ 2880n —de’d*" V90i9ee {?T_ﬁ U - . . |
B a°u We have investigated the statistical-mechanical entropies
¢ 5 arising from the quantum scalar field in the Painlevsd
_ i ‘9_ a_y E AdnM2(Uy) (3.10 Lemaitre coordinates by using the 't Hooft brick wall model
fy oU 9U e S : A\ 2 :
y i=0 and the Pauli-Villars regularization scheme. At first glance,

0 we might have anticipated that the results are different from
Using the assumption that the scalar curvatirat the ho- that of the standard S_chvyarzschnd c_oordlnate 'due to two
rizon is much smaller than each and inserting free energy reasons(a) both the Painlevand Lemaitre spacetimes pos-

into the relationS= 82(JF/33), we obtain the expression of S€SS a distinguishing property: the metrics do not possess
the statistical-mechanical entropy in the Lemaitre coordinat§ingularity at event horizorib) it is not obvious that the time

As <

- 2N m2
S= 5. ;O A;m?Inm:
Ay - 1|1 0% 1 [af\2 1 of gy
2887 | 5|f g2y 2f2\0U) fyaU au
My
5
X > Ainm?, (3.11)
1=0

WhereA2=4Try|U0=47rR2(r+) is the horizon area.
By using Eq.(3.2), it is easy to prove

1 of gy
fy oU aU

1 9%f 1 (af)z

fou 2f2laU

Uo

g(r) 1 ag(r) dR¥(r)
9%r _Rz(r) ar or

(3.12

M

This shows that the resulB.11) for the Lemaitre coordinate

V in the Lemaitre spacetime tends to the tiima the Pain-
leve spacetime. Nevertheless, for either the Painlevée-
maitre coordinate, the event horizon manifests itself as a sin-
gularity in the action function and then there could be
particles production. Hence we can use the knowledge of the
wave modes of the quantum field to calculate the statistical-
mechanical entropies. By comparing our resyisl5 and
(3.11), which are worked out exactly, with the well-known
result (1.2 we find that, up to a subleading correction, the
statistical-mechanical entropies arising from the quantum
scalar field in both the Painlexand Lemaitre coordinates are
equivalent to that in the standard Schwarzschild-like coordi-
nate. When we construct a vacuum state for the massless
scalar field in the Painlévspacetime we take the condition
dr++1—g(r)dt=0, and then we find that the modes used
to calculate the entropies in both the Painlewel Lemaitre
coordinates are essentially the same as that in the
Schwarzschild-like coordinates since batlandt tend to the
Schwarzschild timeg asr goes to infinity under this condi-
tion. Therefore, it should not be a surprise that the entropies
driven from the modes in the Lemaitre, Painlevand
Schwarzschild coordinates are the same.

We should note that all the results are obtained based

is equal to entropy2.15 for the Painleveeoordinate, and the alone on the most general metrit.1) and the conditions
entropy(1.2) for the standard Schwarzschild coordinate. It isg(r)|r+=0 and dg(r)/dr|,+¢0 (nonextreme black hole

well known that the wave modes obtained by using semiclastherefore, the results are valid not only for the spacetimes
sical techniques, in general, are the exact modes of the quathat we have known, such as the Schwarzschild, the
tum system in the asymptotic regions. Thus, if theReissner-Nordstr, the Garfinkle-Horowitz-Strominger di-
asymptotic structure of the spacetime is the same for the twgyion [37], the Gibbons-Maeda dilatof88], the Garfinkle-
coordinates, then the semiclassical wave modes associatgghne dilaton[39] black holes, and the Schwarzschild—de
with these two coordinate systems will be the same. Frongitter and the Reissner—Nord3trede Sitter spaces, etc., but
Eq. (3.1 we know that the differential relationship between g|so for the case that the quantum field exerts back reaction
the Lemaitre time/ and the Painlevémet can be expressed g the gravitational field provided that the back reaction does

as

dV=dt+dr=2dt+ (3.13

dr
Vi-g(r)

Now let us also work along the cundr ++/1—g(r)dt=0,
Eq. (3.13 then becomes

dv=dt. (3.14

not alter the symmetry of the spacetime.
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