PHYSICAL REVIEW D 69, 024004 (2004

Effective action for scalar fields and generalized zeta-function regularization
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Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effec-
tive action for a scalar field defined in the ultrastatic manifRs H3/T', H3/T being the finite volume,
noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is
shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the
model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormal-
ization group equations are derived.
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[. INTRODUCTION The functional determinant is formally divergent, thus, the
last term in the latter equation must be regularized and in
Within the so-called one-loop approximation in quantumorder to study the one-loop divergences, it is convenient to
field theory, the Euclidean one-loop effective action may benake use of a variant of the zeta-function regularization
expressed in terms of the sum of the classical action and [@—6]. To this end, we select the regularization functj@n
contribution depending on a functional determinant of an
elliptic differential operator, the so called fluctuation opera-
tor. The ultraviolet one-loop divergences which are eventu- plet)= T(1+e)’
ally present, have to be regularized by means of a suitable
technique(for recent reviews, see RefEl-3]). In general, which goes to one as soon as the regularization parameter
one works on a Euclidean version of the spacetime and deaffoes to zero. Then we may write
with a self-adjoint, non-negative, second-order differential
operator of the form

&

1.9

W(e)=S— Efocdt—ts_l Tre—t/n?
L=—A+M?2 (1.0 YT 2k Tk

1
whereA is the Laplace-Beltrami operator amf a potential =S—5_4(s] L/ u?), 1.9
term depending on the classidabnstant background solu-
tion ¢ and in general containing the mass, the nonminimalyhere, as usual, for the elliptic operatarthe zeta function

coupling with the gravitational field and a possible self-i5 gefined by means of the Mellin-like transform
interaction term.

Within the one-loop approximation, one usually splits the 1
original field ¢ into two parts: the classical backgrougd L(s|L)= (s
and a quantum fluctuatio®. As a result, the theory can be (s)
conveniently described by tH&uclidean one-loop partition
function

f:dttS*lTre*‘L, L(s|L/ u?)=u?S¢(s|L).
(1.6

For a second order differential operator in four-dimensions,
the integral is convergent for Re-2.

z[¢]:efsw>dj Dde JAVOLD _ o~ W[4] (1.2) We see that the heat kernel traceeTi" plays a preemi-
nent role in the investigation of the analytical properties of
the zeta function. In fact, for a second-order, elliptic non-

Here S=5 4] is the classical action, whil®V=W[®] is  negative operatok in a boundaryless smooth manifold, one
the one-loop effective action, which can be related to thg,55 the short-asymptotic expansion

determinant of the field operatarby
1 Tre"LzJZ0 Aj(L)E2, 1.7)

W=-InZ=S+

In detLZ, (1.3
“
whereA(L) are the well known Seeley-DeWitt coefficients
w? being a renormalization parameter, which appears for dif7,8]. As a consequencé(s|L) is regular at the origin and
mensional reasons. one gets the well known resu{0|L)=A,(L). This quan-
tity is easily computablésee, for example, the recent works
[9,10)) and depends only on coupling constants and geo-
*Email: cognola@science.unitn.it metrical invariants.
TEmail: zerbini@science.unitn.it By expanding Eq(1.5) in Taylor’s series one obtains
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§(0||—/M2) é"(0|L/M2) Il. HEAT KERNEL ASYMPTOTICS WITH LOGARITHMIC
5% - > +0(e) (1.8 TERMS

W(e)=S—

In this section we will discuss the modification of the

and the regularized one-loop effective actldf can be de- formalism due to the presence of logarithmic terms in the
fined by taking the finite part diV(¢) in the limit e—0, that heat kernel asymptotics. The starting point are E§) and

is (1.5. We have to discuss the meromorphic extension of the
zeta function, which depends on the form of the heat-kernel
, 2 , asymptotics.
Wg=S— £'OIL/p% =S— £'OL) —In MZ&“‘)_ Let us suppose to deal with a quite general expression of
2 2 2 the kind
(1.9
—tL_ -2 -2
This leads to the usual zeta-function regularization prescrip- Tre _120 B;t +j20 Piintt/ ™, 2.7

tion [5], i.e.,
where now, with respect to the standard case, new terms
IndetL=—¢'(O|L). (1.10  containing Irt are present in the expansion.
In order to obtain the meromorphic continuation of the
zeta function, we use the Mellin-like representation, Eq.

_ - (1.6). The original integral ovet can be split into two inte-
which does not depend on the arbitrary scale parameter grals, the first from 1 toe, which gives analytic contribu-

The coefficientA,(L) also determines the beta functions of tions to the zeta function and the second from 0 to 1, which

the model, namely its one-loop renormalization group equa-.. : s ;
. : - gives rise the poles and can be explicitly computed using the
tions (RGE9 and its one-loop renormalizability. In fact, the smallt expansion2.1). In this way we get

RGEs can be obtained by assuming that all coupling con-
stants appearing in the renormalized effective actMpare “ Bi(L) o P.(L)
i _ i

. g 1
depending o and requiring {(s]L)= (s Jzo SH-2 % (s1]_2)?

The one loop-divergences are governedZb9|L)=A,(L),

+J(s) |,

d d_ & 2.2
2

d ’ 2
Wy We=r g S dM((OIL/M)—O- (1.11 _ _ _
the functionJ(s) being analytic.
) ) o We see that in contrast with the standard situation, here
In this way, at one-loop level one obtains the renormalizationne zeta function has also double poles andfis nonva-
group equations in the forfi1,12 nishing, it is no longer regular at the origin, but it has a
simple pole with residue-P,. Another important conse-
d quence for physics is that, due to the presence of logarithmic
M@SZ (0[L)=Ay(L). (112 terms, the heat-kernel coefficierBs , with respect to scale
transformations, transforms in a nonhomogeneous manner.

) . , This can be easily seen by replacing the dimensionless pa-
In this paper, we would like to discuss a more generalametert with t/42 in the heat expansion. In this way
case corresponding to the presence of logarithmic terms in

the heat-trace asymptotics. One may have logarithmic terms *
in the heat-kernel trace in the case of nonsmooth manifolds, Tr e*tuf‘zzz B(L/p®)t =2+ >, Pi(L/u?)Intti~2
for example when one considers the Laplace operator on 1=0 1=0

higher dimensional coneq13,14, but also in four-

©

dimensional space-times with a three-dimensional, noncom- _ 2 Bi(L) L e

pact, hyperbolic spatial section of finite volurfis]. More <o ! u?

recently the presence of logarithmic terms in self-interacting .

scalar field theory defined on manifolds with noncommuta- ~ t t -2

tive coordinates have also been pointed [di,17. +2, Pi(L)In —2) —| 2.3
The content of the paper is the following. In Sec. Il the 1=0

Heat kernel asymptotics with logarithmic terms are consid-f[om which it follows that

ered and the consequences of their presence discussed in

some detail. A generalization of zeta-function regularization Bi(L/?)=pu* 2" [B,(L)—In w?P,(L)],

is proposed and the generalized one-loop RGEs are derived.

In Sec. Il an explicit example related to the work of Fried- Po(L/uw?)=pu* 2"P,(L). (2.9

mann, Robertson, and WalkéFRW) by a conformal trans-

formation is investigated in detail, and the generalized RGE#n particular, in contrast with the standard case, the coeffi-
are explicitly written down. The conclusions and two Appen-cientB, is not scale invariant. It is convenient to split tBg
dixes end the paper. coefficients in two parts, that B,=A,+Q,,, whereA, rep-
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resent the standard coefficients, obtained as integral of the * SB,
local geometric quantitiea,, namely, o(s|L)= (s ]Z,O sTj—2
1 2 4-2 1 < SP; S
An(L)=——— | dVay(X|L), Ay(L/u?)=u* 2"A(L), B 45 ),
(4) I'(s) =0 (s+j-2)2 TI'(9)
(2.9
(2.11)
while the second paR,, is strictly connected with the pres-
ence of logarithmic terms and transforms according to One has
Qn(L/u?) = p* 2 Qu(L) —In u2Py(L)], (s|L)=—Pa(L) +[By(L) = yPy(L)]s+O(s?) (212
2\ — 2
Qa(L/p%)=Qa(L) —In uPa(L), (26 and so, using Eq2.9) or alternatively Eq(2.4), one has
Po(L/u2)=Py(L). o(0|L/u?)=—Py(L),
.T.he consequences of thg presence of su_ch a pole at the o' (0|L/u?)=B,(L)— (y+In u?)Py(L), (2.13
origin on the one-loop effective action can be investigated by
using the regularization of Sec. I, namely, v being the Euler-Mascheroni constant.
Recall that the model is one-loop renormalizable, if the
o te ! —tL/? dependence oB, and P, on the background field has the
Inde(L/u%),=— . dtp(1+8) Tre same algebric structure of the classical action and the diver-
gences may be reabsorbed by the redefinition of mass and
L(e|L/u?) w(e|L/u?) coupling constants.
= . =- - (27 With regard to the derivation of one-loop RGEs, they may
& be obtained again by assuming that the mass and all coupling

. . . constants appearing in the classical action are depending on
In the latter equation we have conveniently introduced the PP g P ¢

new kind of zeta functiorw, regular at the origin, by means w and requiring
of the relation d
u—Wg=0, (2.19
w(s|L)=s{(s|L), w(s|L/u?)=su?¢(s|L)=u®w(s|L). du
(2.9 where now the functional determinant appearing in @)

is regularized according to ER.10. In this way we get

We may expandv in Taylor’s series around=0, obtaining 1
in this way Wr=S— Zw”(OI L/ u?)

1 1
IndetL/u?),=— —w(0|L/u?)— —w' (0|L/u? 1
(L/p9)e= = ZolLu) = Co' OILIWT =S 2[0"(0L)+2 I 4?0’ (O]L) + (In 42 %w(O|L)].

1 (2.15
- Ew”(O|L/,u2)+O(s). (2.9
Making use of Eqs(2.13—(2.15), we finally get(at the one-
) L())Op leve)

As a consequence, the one-loop divergences are governed by
the two coefficientso(0|L/u?) and »’(0|L/u?), while the d
nontrivial finite part is given by ”(0|L/u?). This suggests rg.S= o' (0|L)+In u2w(0|L)
a generalization of the zeta-function regularization for a K
functional determinant associated with an elliptic operator =B,(L)— (y+In u?)P,(L). (2.16
namely[3],

If the theory is renormalizable, the action and the heat coef-

1 ficients have the same structure in terms of the fields. More
IndetL=-so (O|L). (2.10 precisely, if the action has the form
Of course, this reduces to the usual zeta-function regulariza- _ J’
: ’ . - S= [ dV2, \ Fa 2.1
tion when{(s|L) is regular at the origin. ; «(WFa .19

The two coefficients governing the one-loop divergences
can be computed making use of the meromorphic structurethen
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o:=0(X) being a scalar function.
Ba(L)= dvg Ka(p)Fa, In general, by conformal transformations, the partition
function is not invarianfsee Appendix A but one has

PaL)= f V2 ho(w)F., (218 W=W[$,91=W[ 4,91~ 1nJ[g.9], (3.5

where F,=(1,$%/2,¢*/24, . . .) are thandependent build- whereJ[g,g] is the Jacobian of the conformal transforma-
ing blocks, \,=(A,m?\, ...) thecollection of all cou- tion. Such a Jacobiafalso called a cocycle function or an
pling constants, including the ones concerning the gravitaimduced effective actioncan be computed for any infinitesi-
tional action, whilek, andh, are constants, which can be mal conformal transformatiofsee, for example, Ref§18—
directly read off from the form of the heat coefficients. From21] and references cited therginlts expression in four-
Egs. (2.16—(2.18 one obtains the differential equations dimensions read&see Appendix A

from the beta functions in the form

1 1
dx, 1o 4 q
Bomug =k (y+inudh,, (219 inJlg.0] (4w>2fo dqf 4% VgTbz(x|Lo)
2
which of course give the usual result whBa=0. —(ytInu)pa(xLy)], (3.6
Il SCALAR FIELDS IN A whereb,(x|Ly) andp,(x|L,) are the local quantities related
FRIEDMANN-ROBERTSON-WALKER SPACE-TIME to the coefficientd,(L4) andP,(L,) respectively, whild_

is the field operator in the metrig;; =exp(djo)g; . Thus, in
Now we will provide an application of the formalism pre- principle, the knowledge of the partition functic@ ¢,g] in
viously developed. We shall study a scalar field defined on #he manifoldM* and the heat coefficients, and p,, are
spacetime of the kindk XX 3, whereX ; is the constant cur-  sufficient in order to get the partition function in the original
vature spatial section. The physical motivations are due t@,anifold M4. For such a reason here we shall study the
the fact that, in a suitable coordinates system, the metric Qfeat-kernel asymptotics and the one-loop effective action for
the FRW space-time is conformally related to the metric ofg.g(ar fields inM4=RxXH3/T. If T’ contains parabolic ele-

Rx23 and moreover, as we shall see, in usual cases, thgens, the heat-kernel asymptotics for the Laplacian contains
renormalization properties do not depend on the conformal,s, logarithmic term§15).

transformation. This statement will be clarified later on. As can be trivially seen, in the standard case the relevant
We start with a four-dimensional FRW space-time with paat-kernel coefficiena,(x|L/u2) does not depend op

the standard metric and the Jacobiad[g,g] is finite. This means that/ and W
dszz—dT2+a2(T)dcr§, (3.1) have the same one-loop divergences and give rise to the
same renormalization group equations. The situation com-
do3 being the metric associated with a three-dimensionaPletely change in the “nonstandard case” we are going to
manifold with constant curvature. Then we introduce the reconsider, since the Jacobian factor explicitly dependg.on
lated conformal timey by as one can see by looking at HG.6).

n= f dT (3.2 A. Heat-kernel expansion for scalar fields onRXH¥/T

a(T) We start with the classical Euclidean action for a massive,

self-interacting scalar field iM4=RxH3T, H? being the

three-dimensional hyperbolic manifold ahda group con-
ds?=a?(n)(—dn?+do?). (3.3 taining the identity, hyperbolic and parabolic elemehtd/ T

is a rank-1 symmetric space with constant curvat&®e

This means thatlocally) the space-time is conformally re- This latter is also the scalar curvature Bf*. (For more

lated to a constant curvature manifdf=RX 35, possibly ~ details concerning the geometry of this spatial section, see

equipped with a nontrivial topology. In particular we shall Ref.[15].)

investigate in detail the case of a noncompact and nonsmooth The action for the matter field has the form

hyperbolic spatial sectioB ;=H?3/T", with finite volume,H3

bging the three-djmensiqnal hype_rpolic manifolld anda S[¢'g]:f {—E¢A¢+VC(¢) \/§d4x, (3.7

discrete group of isometries containing hyperbolic and para- 2

bolic elementg15]. We denote byM* the original space-

time with the metriag; j conformally related to the metrig;;
of the constant curvature manifoM*, that is

In this way the metric assumes the form

where the classical potential reads

A 4 2 42 R 2
V()= 2(2 +m2¢ +§2¢ , (3.9

éij:ezggij, o=Ina(7n), (3.9
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m being the mass of the field, the self-interacting coupling 52
constant and a coupling constant which takes into account Po(La)=——F=, (3.19
of a possible nonminimal coupling between matter and 8\m
gravitation(see, for example, Ref§22,17). ) ) )

Within the one-loop approximation, one splits the field asC being a known constant_the (dimensionlessfunda-
b= e+ D, ¢ being the backgrounttiassical field andd ~ mental volume and®=|«|+M?, wherex=R/6 is the nega-
the quantum fluctuation. In this way, the relevant operatofive, constantGaussiancurvature of the manifold. We have

associated with the quantum fluctuation is given by written only the coefficients which we need in the paper, but
in principle all coefficients can be computed. We have also
A p2 used units in whichc=—1.
L=—A+M? M?=m?+¢R+ > (3.9 From Egs.(3.12 and (3.13 we immediately obtain the

expansion we are interested in, that is
Since we are dealing with an ultrastatic space-time, we have

—tL__ . . j—2
L=~ AgM2=— P+ Ly, Tre JZO[BJ(LH—PJ(L)Int]t , (318

Ly=—A3+M?, (3.10  where trivially
43 b3e|ng the Laplace-Beltrami operator acting on functions ¢B;(Ls) €P;(Ls)
in H/T". Bj(L)= , (L= . (3.17
In the regularization scheme we have proposed in previ- vam vam
ous sections, the one-loop effective action is given by
Then, in the standard units, we finally obtain
1 L 1
W=S+ =Indet— =S— —"(0|L/u?). (3.11)
2 2 4
H Bo(L)= :
1672
For the case under consideration, the heat-kernel trace has
he f
the form e v ( .. ZWCR) a8
¢ ! 1672 3ve ) '
Tre t=—=Tre s, (3.12
4t
V [& =R?> 27Cé&°R
€ being the “infinite volume” of R. For the rank-1 symmet- Ba(L)= 16572 E”L 27 + v /'
ric spaceH®/T", the trace of the heat kernel can be computed
by using the Selberg trace formula. In our cébe groupl’
contains identity, hyperbolic and parabolic elemgmis get Po(L)=0, Py(L)=— \ 7T_R
(see Ref[15] for detailg 0 ol 1672 6Ug’
“tly _ Lp. j-3/2 . V wR&?
Tre ;Zo [Bj(Lg)+Pj(La)Int]ti 32 (3.13 PL(L)= _ (3.19
1672 6vE
where ) ) ) . )
Expanding the previous quantity we have in particular
Bo(L3) oF 4 2 4
oll3)="———=5 m 10 ¢
47r)32 _ i 2r¢ 27¢C
(4m) B,(L) 16772{ 5> FAMP-+ 3\
ved®  C [ 1| 2m\C|R¢?
Bilg)=———F;+—, (3.19 _ ettt e
(4m)¥  \ax TIMETE) T B | 2
[ 2
By(Ls) ved” L CF * m2< —%)+27§m C}R
= - ' v
27 2am¥? 6n  JAnm _ "
m 1 1\? 2=C 1 =2
b0, Pl L 2% 20578 T 158 R
AR N (3.20
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16m2 | 6UF 2

mm

Po(L)= 6or

B. The renormalized one-loop effective action
and the one-loop renormalization group equations

Here we would like to explicitly compute the beta func-

PHYSICAL REVIEW D69, 024004 (2004

manifold, while the second one takes its origin in the Jaco-
bian of the conformal transformation. This latter contribution
is what is usually called the conformal induced effective ac-
tion.

Here we have studied in detail the first contribution in the
particular spacetim&xH3/T". Due to the nontrivial topol-
ogy of the manifold we have considered, new ultraviolet di-
vergences appear in the one-loop effective action. At the one-

tions for the model considered above. In order to have thd?OP level, we have shown that all divergences may be

renormalisation of the model, to the matter acti@n7) we
have to add the action for thelassical gravitational field,
then

1
So.01- | [A—§¢A¢+vc(¢>+glR+ng2} Vgdix
(3.22

reabsorbed by suitable counterterms in the classical action.
The new divergences depend on the coefficient

V
6’77'2

TARG2
120

mm’R . m(£—1/6)R?

Pa(L)= 1 Bor

61)|:
4.7

A being the bare cosmological constant, In this way we havé the massless and free case with the conformal coupling

the independent building blocks
2

F“E<1'7’24' 2

4 2

— —,R,Rz) (3.23

and the corresponding

E(A!mza)\!glglIQZ)'
Now, from Egs.(2.19), (3.20), and(3.21), we directly get

coupling constants ,(u)

dA m* dm2_ Am? dn 3\? (3.24
Pdu 3072 "du 1642 Mdu 16027

dé N(£-1/6)  AC  N(y+Inu?)
Md,u,_ 1672 24mvE 967vE

dg; m*(¢{-1/6) m’C  m*(y+Iinpu?)
,um— (1672 247Tv,:_ 96mve

dg, 1 (£—1/6)2 C(£—-1/6)
Mdp ™ 432mor T 3042 2470,

—1/6)(y+In p?
_ (VO ytInp’) (3.25
967TU|:

Some remarks are in order. First, as in the 4-dimensional

£=1/6, one ha®,=0 and thus, in this particular situation
the usual evaluation of the effective action by means of zeta-
function methods works without any modification. It has to
be noted that the choicas=0, A=0, andé=1/6 are con-
sistent with RGGs. If thé®, coefficient is not vanishing, a
generalization of the zeta-function techniques has been used
and the RGEs have been derived in a consistent way, check-
ing that the model is indeed renormalizable at the one-loop
level.

As far as the anomaly induced effective action is con-
cerned, in the casB,=0 it can be computed making use of
the general expressions reported in Sec. | and in Appendix A
[24,25,2]. The evaluation of it wher?,#0 is not an easy
task and we will investigate it in the near future.

APPENDIX A: CONFORMAL TRANSFORMATIONS

In this appendix we shall consider the conformal proper-
ties of the first nontrivial Seeley-DeWitt coefficientalso
see Ref.[26]). For more generality, here we work in a
D-dimensional Euclidean manifold and for convenience we
use the scalar density=g'*¢ in place of the scalar fielg.

The classical action then assumes the form

s:f de@¢L¢:f d®xeL g, (A1)

smooth case, there is no renormalization of the wave func- _ _ _
tion. Second, the RGEs concerning the coupling constantwhereL=—A +m?+¢R is a Laplacian-like operatorA(

A, m? and\ [see Eq(3.24)] are exactly the same which one
has in the smooth cas@ee, for example, Ref$22,23),
while the RGEs related t§, g; andg, are modified by the
presence of the parabolic elements of the grbup

IV. CONCLUSION

. . . . . -~ ~ — a(1-D/2
In this paper we have started an investigation concerning e=e"¢, ¢=¢l 7 ¢h,

the one-loop effective action for a scalar field in a four-

=g”ViVj , Vi being the covariant derivatiye
A conformal transformation is defined by

aij=ez"gij, §=|det§ij|=eD”g, i,j=0,l,...D—1,

(A2)

(A3)

dimensional FRW space-time. The one-loop effective actiorr= o (x) being a generic scalar function.

may be considered as the sum of two contributions. The first By a straightforword computation, for the connection co-
one can be computed by considering the field in a constargfficients, the Riemann and Ricci tensors and scalar curva-
curvature space-time, conformally related to the originalture one obtains, respectively,
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Tl=rk+3k,
Ris=Rjs+3s.
Rij=R;+3j,
R=e"2(R+3),
where
2:(1- =0 5}‘4— g o~ a'kgij ,  Ox=0O.

Furthermore, for any scalar functidn

Azf=e"2[Ay+(D—2)a*g]f.

In order to make explicit computations, we now introduce

the useful notation

aij=ViVjo, 0E=A(r,

— — k

2

B=Bf=Ao+ —D_Za'ka'
2 ke

D(O'k()'k)2

BiBjj=0'gij— 20" gj0;— Ago*o + 5

(A7)
In this way
PANEVA SNSRI I FEED 0 4
=—[0irBjs—9isBjr + 9;sBir — 9;:Bis],
2 :E:(ka —[(D—=2)B; +Btgij],
Ezgijzij
=-2(D-1)Ayo0—(D—1)(D—2)c% 0y
=-2(D—-1)B33;,s4(D—2)BBj; +4B?,
(A8)
3US, =(D-2)?BB;+(3D—4)B2

Now it is easy to verify that the Weyl tensor
1
C:ijrs: Rijrs+ m(giers_gistr +gstir _geris)

1
- mR(girgjs_gisgjr) (A9)

is conformally invariant, while the Gauss-Bonnet tensor
G=RI*Rys—4RIR;; +R? (A10)

transforms according to

(A4)

(A5)

(AB)

PHYSICAL REVIEW 39, 024004 (2004

G=G+8(D-3)RIB;;—4(D—-3)RB

—4(D-2)(D—-3)(B'B;;—B?). (A11)

Recall that in four-dimension$ is a total divergence.
By definition, S=S (the action is a numbgrand so

oLo=¢Lo=pe Le “p. (A12)

As a consequence

_~ ST B a— 207 m2 p
pLe=¢| —Ag+ ShctEpRTe I Im™+(E—ép)R] ¢,
(A13)

where T;SC is the classical solutiofbackground fieldd and
é&p=(D—-1)/A(D—2). As a result, for a conformally
coupled ¢= &p) massless scalar field, the action in invariant
in form.

The first heat-kernel coefficients related to a generic op-
erator of the form—A—2WKV,+M? on a Riemannian,
smooth manifold without boundary read

R .
a;=—=—M2—W2— VWK

aO:l, 6
2 ~
ay Aay 1 ijrs ij
32:?4'?4‘ @(AR—i_RijrsR _R”R )
(A14)

Since in generalV* could be a matrix, we have introduced
the connectiorV,f = Vi, +[W,,f].

For the operatot. we are dealing withW,=0 andM?
=N@22+mP+¢R, while, for L, M2=\¢52+ &R
+e 2[m?+ (¢— &p)R]. Then one has

= ﬁ N2 —20 1

a1=E—M =e a;— fD—E 3,
L

G M, LRk RIS_R R,
2 6 180 ¢ irs 1

(A15)

The relation betweerm, anda, in general is very compli-
cated, but in the case of conformally coupled fields in four-
dimensions. In such a case we have in fact

1

— 4o
a,=e ar,—
2 273

Ao+ Vkvk) )
(A16)

whereV, VK is the total divergence due to the geometric part
of a,. From the latter equation, the well known result

024004-7
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X\/§a2=A2

(A17)

2

J \/:az =

(4m)?

follows. For theP, andQ,, coefficients there are no general

PHYSICAL REVIEW D69, 024004 (2004

Tr e*tL~; Bjti*D’2+; PiIntti b2 (A25)

o(s|L)=—Pp;(L) +[Bpp(L) — yPpp(L)Is+0O(s?),
(A26)

expressions in terms of geometrical quantities and so one _
cannot say anything about their conformal transformatiorfnd suppose the local version

properties, without considering the specific problem.

To conclude this section, we present a simple derivation
of the conformal transformation properties of the one-loop

effective action, which, according to generalized zeta-

function regularization, is given by

1
—logZ=S- Zw”(O|L/,u2). (A18)

In general, this is not invariant even for conformally coupled
fields due to the presence of the functional measure, which
breaks the symmetry. This phenomenon is well known and, n (44r)PP2
in the physical literature, it is called a “conformal or trace

anomaly.”
We set

InZ=InZ[$,9]1=3[9,91In Z[ #,9],

InJ[g,g]=—(W—-W), (A19)

w(s_le):_lez(X“-) [bp/(X|L) = ypor(X|L)]s
y (47T)D/2 (477_)D/2
+0(s?), (A27)
D
Bn= an )D,zjd x\gby(x|L),
Pa= — f d®x\gpa(x|L), (A28)

to be valid. Then, from EqgA23) and (A23), we get

dw'(s|Lg) =459 f d°x g (X) [ bora(X|Lq/ 1)
— YPor(X|Lqg/ )], (A29)

Now, integrating Eq(A22) with respect tog we obtain the

and consider a family of continuous transformations of thennal formula

forms
9]=€*g;, 9;=0j. ;=0 (A20)
0q=ep, Lo=e %Le 9,
Wo=WL¢q,9%). (A21)

For an infinitesimal transformation we get
Sw"(0|Lq/u?)
597 — _ q
InJ[g9,g%" %)= — (Wg 5g— Wg) = — 6S+ —
(A22)
We observe that

Sw(s|Lg/u?)=0[sTrL,®]

= ZéqJ’ dPx\glo(x)sw(s;x|L o/ ?),
(A23)

where o(s;x|L) represents the diagonal kernel @fs|L),
that is

w(s||_):f d®x\gw(s;x|L). (A24)

InJ[g,9]=

)D,zf da | P\ TboLy

—(y+In p?)ppaA(x|Ly)]. (A30)

Here we have assumed the classical theory to be conformal
invariant, that is6S=0. In such a case, when,,,=0, the
latter equation gives rise to the well known form of the one-
loop effective action.

APPENDIX B: A NONLOCAL INTERACTION EXAMPLE

In this appendix we shall present another explicit example
in which logarithmic terms appear in the heat-kernel expan-
sion.

We consider the following toy model which, in a simpli-
fied manner, mimics an interacting scalar field defined on a
noncompact flat manifold with pairs of noncommuting coor-
dinates. Let theD-dimensional manifold bevi®=RIx RP.
Moreover, let beLy andL, Laplacian-like operators oR¢
and RP, respectively, withD=p+d andLp=L4+L,. The
model may be defined by the classical Euclidean action

s [ o

The nonlocal interaction mimics the “noncommuting” mani-

2

¢+V(9)|. (B1)

2¢(LD+

In order to go on in arbitrary dimensions, we consider a mordold RP as soon ag is even and the parametat controls its

general version of Eqg2.1) and(2.12, that is

presence. The self-interacting potential is given by

024004-8
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@' The function Tre™'* can be written as an exact serieg,of
V()= (B2)  which assumes different forms for odd and epeim fact for
odd p=n+1/2 we have
In renormalizable theories, the poweis nonarbitrary, but it M2 2at n—k
is related to the dimension. In fact one has the possible Tre-tL= VmVoe e > (nt+k)!(ay
couples P=3r=6), (D=4r=4), (D=6r=3),... The (4mt)PPT(n+1/2) k=0 k!(n—Kk)!4K
nonlocal one-loop fluctuation operator reads (B6)
- +a2+v"(¢)—|_ +a2+|\/|2 while, for evenp=2n,
D Lp [ D Lp ’ T w VDe*tM2 nil ( 1)k(n_k_1)|(at)2k
re tt=—— -
-2 (4mt)P2 | =0 (n—1)!
2__ "¢
M=G—2r (B3) (at) 2+
—(-1)"

The heat-kernel trace and zeta function can be exactly evalu- k=0 (n=1)!k!(n+k)!

ated and read, respectively,

2VpaP2 efthKp/z(Zat) X[2In(at)— y(k+1)—¢(n+k+1)];.

Tre "= : (B4)
(47)PPT (pl2) t9/2 (B7)
1 One can see that logarithmic terms in the heat expansion
)= 2P \/;Voap only appear for evep. Moreover, one has a pure logarithmic
Lslb)= D/2 2__o4\st+(p—d)2 term only for evend, equal or greater thap. In particular,
(4)°" ' (p/2)(M~—2a) ) X
R for D=4, d=p=2, M2=\(42/2) one obtains
S—(p— S—
T(S)T(s+(1—d)/2) V,ae M
Tre = K,(2at)
< +p—d1+p 1-d M?-2a 8t
S _1 _; _!— 1
2 2 2 "M?+2a V| 1 M2+M4+ 2yt 12
=—|———--+—+a na—
(B5) gm?|2t?2 2t 4 ’
K, (2) being the modified Bessel function a¥g the volume
of the whole manifold andF(«,B;y,z) the hypergeometric +a’nt+0(t,tInt)|. (B8)
By yperg
function.
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