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Effective action for scalar fields and generalized zeta-function regularization
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Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effec-
tive action for a scalar field defined in the ultrastatic manifoldR3H3/G, H3/G being the finite volume,
noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is
shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the
model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormal-
ization group equations are derived.
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I. INTRODUCTION

Within the so-called one-loop approximation in quantu
field theory, the Euclidean one-loop effective action may
expressed in terms of the sum of the classical action an
contribution depending on a functional determinant of
elliptic differential operator, the so called fluctuation ope
tor. The ultraviolet one-loop divergences which are even
ally present, have to be regularized by means of a suita
technique~for recent reviews, see Refs.@1–3#!. In general,
one works on a Euclidean version of the spacetime and d
with a self-adjoint, non-negative, second-order differen
operator of the form

L52D1M2, ~1.1!

whereD is the Laplace-Beltrami operator andM2 a potential
term depending on the classical~constant! background solu-
tion fc and in general containing the mass, the nonminim
coupling with the gravitational field and a possible se
interaction term.

Within the one-loop approximation, one usually splits t
original field f into two parts: the classical backgroundfc
and a quantum fluctuationF. As a result, the theory can b
conveniently described by the~Euclidean! one-loop partition
function

Z@f#5e2S[fc]E DFe2*dVFLF5e2W[f] . ~1.2!

Here S[S@fc# is the classical action, whileW[W@F# is
the one-loop effective action, which can be related to
determinant of the field operatorL by

W52 ln Z5S1
1

2
ln det

L

m2
, ~1.3!

m2 being a renormalization parameter, which appears for
mensional reasons.
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The functional determinant is formally divergent, thus, t
last term in the latter equation must be regularized and
order to study the one-loop divergences, it is convenien
make use of a variant of the zeta-function regularizat
@4–6#. To this end, we select the regularization function@2#

r~«,t !5
t«

G~11«!
, ~1.4!

which goes to one as soon as the regularization parame«
goes to zero. Then we may write

W~«!5S2
1

2E0

`

dt
t«21

G~11«!
Tr e2tL/m2

5S2
1

2«
z~«uL/m2!, ~1.5!

where, as usual, for the elliptic operatorL, the zeta function
is defined by means of the Mellin-like transform

z~suL !5
1

G~s!
E

0

`

dtts21Tr e2tL, z~suL/m2!5m2sz~suL !.

~1.6!

For a second order differential operator in four-dimensio
the integral is convergent for Res.2.

We see that the heat kernel trace Tre2tL plays a preemi-
nent role in the investigation of the analytical properties
the zeta function. In fact, for a second-order, elliptic no
negative operatorL in a boundaryless smooth manifold, on
has the short-t asymptotic expansion

Tr e2tL.(
j 50

`

Aj~L !t j 22, ~1.7!

whereAj (L) are the well known Seeley-DeWitt coefficien
@7,8#. As a consequence,z(suL) is regular at the origin and
one gets the well known resultz(0uL)5A2(L). This quan-
tity is easily computable~see, for example, the recent work
@9,10#! and depends only on coupling constants and g
metrical invariants.

By expanding Eq.~1.5! in Taylor’s series one obtains
©2004 The American Physical Society04-1
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W~«!5S2
z~0uL/m2!

2«
2

z8~0uL/m2!

2
1O~«! ~1.8!

and the regularized one-loop effective actionWR can be de-
fined by taking the finite part ofW(«) in the limit «→0, that
is

WR5S2
z8~0uL/m2!

2
5S2

z8~0uL !

2
2 ln m2

z~0uL !

2
.

~1.9!

This leads to the usual zeta-function regularization presc
tion @5#, i.e.,

ln detL52z8~0uL !. ~1.10!

The one loop-divergences are governed byz(0uL)5A2(L),
which does not depend on the arbitrary scale parametem.
The coefficientA2(L) also determines the beta functions
the model, namely its one-loop renormalization group eq
tions ~RGEs! and its one-loop renormalizability. In fact, th
RGEs can be obtained by assuming that all coupling c
stants appearing in the renormalized effective actionWR are
depending onm and requiring

m
d

dm
WR[m

d

dm
S2

m

2

d

dm
z8~0uL/m2!50. ~1.11!

In this way, at one-loop level one obtains the renormalizat
group equations in the form@11,12#

m
d

dm
S5z~0uL !5A2~L !. ~1.12!

In this paper, we would like to discuss a more gene
case corresponding to the presence of logarithmic term
the heat-trace asymptotics. One may have logarithmic te
in the heat-kernel trace in the case of nonsmooth manifo
for example when one considers the Laplace operator
higher dimensional cones@13,14#, but also in four-
dimensional space-times with a three-dimensional, nonc
pact, hyperbolic spatial section of finite volume@15#. More
recently the presence of logarithmic terms in self-interact
scalar field theory defined on manifolds with noncommu
tive coordinates have also been pointed out@16,17#.

The content of the paper is the following. In Sec. II t
Heat kernel asymptotics with logarithmic terms are cons
ered and the consequences of their presence discuss
some detail. A generalization of zeta-function regularizat
is proposed and the generalized one-loop RGEs are der
In Sec. III an explicit example related to the work of Frie
mann, Robertson, and Walker~FRW! by a conformal trans-
formation is investigated in detail, and the generalized RG
are explicitly written down. The conclusions and two Appe
dixes end the paper.
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II. HEAT KERNEL ASYMPTOTICS WITH LOGARITHMIC
TERMS

In this section we will discuss the modification of th
formalism due to the presence of logarithmic terms in
heat kernel asymptotics. The starting point are Eqs.~1.3! and
~1.5!. We have to discuss the meromorphic extension of
zeta function, which depends on the form of the heat-ker
asymptotics.

Let us suppose to deal with a quite general expressio
the kind

Tr e2tL.(
j 50

`

Bjt
j 221(

j 50

`

Pj ln tt j 22, ~2.1!

where now, with respect to the standard case, new te
containing lnt are present in the expansion.

In order to obtain the meromorphic continuation of t
zeta function, we use the Mellin-like representation, E
~1.6!. The original integral overt can be split into two inte-
grals, the first from 1 tò , which gives analytic contribu-
tions to the zeta function and the second from 0 to 1, wh
gives rise the poles and can be explicitly computed using
small t expansion~2.1!. In this way we get

z~suL !5
1

G~s! S (
j 50

`
Bj~L !

s1 j 22
2(

j 50

`
Pj~L !

~s1 j 22!2
1J~s!D ,

~2.2!

the functionJ(s) being analytic.
We see that in contrast with the standard situation, h

the zeta function has also double poles and, ifP2 is nonva-
nishing, it is no longer regular at the origin, but it has
simple pole with residue2P2. Another important conse
quence for physics is that, due to the presence of logarith
terms, the heat-kernel coefficientsBn , with respect to scale
transformations, transforms in a nonhomogeneous man
This can be easily seen by replacing the dimensionless
rametert with t/m2 in the heat expansion. In this way

Tr e2tL/m2
.(

j 50

`

Bj~L/m2!t j 221(
j 50

`

Pj~L/m2!ln tt j 22

5(
j 50

`

Bj~L !S t

m2D j 22

1(
j 50

`

Pj~L !lnS t

m2D S t

m2D j 22

, ~2.3!

from which it follows that

Bn~L/m2!5m422n@Bn~L !2 ln m2Pn~L !#,

Pn~L/m2!5m422nPn~L !. ~2.4!

In particular, in contrast with the standard case, the coe
cientB2 is not scale invariant. It is convenient to split theBn
coefficients in two parts, that isBn5An1Qn , whereAn rep-
4-2
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resent the standard coefficients, obtained as integral of
local geometric quantitiesan , namely,

An~L !5
1

~4p!2E dVan~xuL !, An~L/m2!5m422nAn~L !,

~2.5!

while the second partQn is strictly connected with the pres
ence of logarithmic terms and transforms according to

Qn~L/m2!5m422n@Qn~L !2 ln m2Pn~L !#,

Q2~L/m2!5Q2~L !2 ln m2P2~L !, ~2.6!

P2~L/m2!5P2~L !.

The consequences of the presence of such a pole a
origin on the one-loop effective action can be investigated
using the regularization of Sec. I, namely,

ln det~L/m2!«52E
0

`

dt
t«21

G~11«!
Tr e2tL/m2

52
z~«uL/m2!

«
52

v~«uL/m2!

«2
. ~2.7!

In the latter equation we have conveniently introduced
new kind of zeta functionv, regular at the origin, by mean
of the relation

v~suL !5sz~suL !, v~suL/m2!5sm2sz~suL !5m2sv~suL !.

~2.8!

We may expandv in Taylor’s series arounds50, obtaining
in this way

ln det~L/m2!«52
1

«2
v~0uL/m2!2

1

«
v8~0uL/m2!

2
1

2
v9~0uL/m2!1O~«!. ~2.9!

As a consequence, the one-loop divergences are governe
the two coefficientsv(0uL/m2) andv8(0uL/m2), while the
nontrivial finite part is given by12 v9(0uL/m2). This suggests
a generalization of the zeta-function regularization for
functional determinant associated with an elliptic operatoL,
namely@3#,

ln detL52
1

2
v9~0uL !. ~2.10!

Of course, this reduces to the usual zeta-function regular
tion whenz(suL) is regular at the origin.

The two coefficients governing the one-loop divergen
can be computed making use of the meromorphic struct
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v~suL !5
1

G~s! (
j 50

`
sBj

s1 j 22

2
1

G~s! (
j 50

`
sPj

~s1 j 22!2
1

s

G~s!
J~s!.

~2.11!

One has

v~suL !52P2~L !1@B2~L !2gP2~L !#s1O~s2!
~2.12!

and so, using Eq.~2.8! or alternatively Eq.~2.4!, one has

v~0uL/m2!52P2~L !,

v8~0uL/m2!5B2~L !2~g1 ln m2!P2~L !, ~2.13!

g being the Euler-Mascheroni constant.
Recall that the model is one-loop renormalizable, if t

dependence ofB2 and P2 on the background field has th
same algebric structure of the classical action and the di
gences may be reabsorbed by the redefinition of mass
coupling constants.

With regard to the derivation of one-loop RGEs, they m
be obtained again by assuming that the mass and all coup
constants appearing in the classical action are dependin
m and requiring

m
d

dm
WR50, ~2.14!

where now the functional determinant appearing in Eq.~1.3!
is regularized according to Eq.~2.10!. In this way we get

WR5S2
1

4
v9~0uL/m2!

5S2
1

4
@v9~0uL !12 lnm2v8~0uL !1~ ln m2!2v~0uL !#.

~2.15!

Making use of Eqs.~2.13!–~2.15!, we finally get~at the one-
loop level!

m
d

dm
S5v8~0uL !1 ln m2v~0uL !

5B2~L !2~g1 ln m2!P2~L !. ~2.16!

If the theory is renormalizable, the action and the heat co
ficients have the same structure in terms of the fields. M
precisely, if the action has the form

S5E dV(
a

la~m!Fa , ~2.17!

then
4-3
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B2~L !5E dV(
a

ka~m!Fa ,

P2~L !5E dV(
a

ha~m!Fa , ~2.18!

where Fa[(1,f2/2,f4/24, . . . ) are theindependent build-
ing blocks, la[(L,m2,l, . . . ) the collection of all cou-
pling constants, including the ones concerning the grav
tional action, whileka and ha are constants, which can b
directly read off from the form of the heat coefficients. Fro
Eqs. ~2.16!–~2.18! one obtains the differential equation
from the beta functions in the form

ba[m
dla

dm
5ka2~g1 ln m2!ha , ~2.19!

which of course give the usual result whenP250.

III. SCALAR FIELDS IN A
FRIEDMANN-ROBERTSON-WALKER SPACE-TIME

Now we will provide an application of the formalism pre
viously developed. We shall study a scalar field defined o
spacetime of the kindR3S3, whereS3 is the constant cur-
vature spatial section. The physical motivations are due
the fact that, in a suitable coordinates system, the metri
the FRW space-time is conformally related to the metric
R3S3 and moreover, as we shall see, in usual cases,
renormalization properties do not depend on the confor
transformation. This statement will be clarified later on.

We start with a four-dimensional FRW space-time w
the standard metric

ds252dT21a2~T!ds3
2 , ~3.1!

ds3
2 being the metric associated with a three-dimensio

manifold with constant curvature. Then we introduce the
lated conformal timeh by

h5E dT

a~T!
. ~3.2!

In this way the metric assumes the form

ds25a2~h!~2dh21ds3
2!. ~3.3!

This means that~locally! the space-time is conformally re
lated to a constant curvature manifoldM45R3S3, possibly
equipped with a nontrivial topology. In particular we sha
investigate in detail the case of a noncompact and nonsm
hyperbolic spatial sectionS35H3/G, with finite volume,H3

being the three-dimensional hyperbolic manifold andG a
discrete group of isometries containing hyperbolic and pa
bolic elements@15#. We denote byM̃4 the original space-
time with the metricg̃i j conformally related to the metricgi j
of the constant curvature manifoldM4, that is

g̃i j 5e2sgi j , s5 ln a~h!, ~3.4!
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In general, by conformal transformations, the partiti

function is not invariant~see Appendix A!, but one has

W̃5W@f̃,g̃#5W@f,g#2 ln J@g,g̃#, ~3.5!

whereJ@g,g̃# is the Jacobian of the conformal transform
tion. Such a Jacobian~also called a cocycle function or a
induced effective action! can be computed for any infinites
mal conformal transformation~see, for example, Refs.@18–
21# and references cited therein!. Its expression in four-
dimensions reads~see Appendix A!

ln J@g,g̃#5
1

~4p!2E0

1

dqE d4xAgq@b2~xuLq!

2~g1 ln m2!p2~xuLq!#, ~3.6!

whereb2(xuLq) andp2(xuLq) are the local quantities relate
to the coefficientsB2(Lq) andP2(Lq) respectively, whileLq

is the field operator in the metricgi j
q 5exp(2qs)gij . Thus, in

principle, the knowledge of the partition functionZ@f,g# in
the manifoldM4 and the heat coefficientsb2 and p2, are
sufficient in order to get the partition function in the origin
manifold M̃4. For such a reason here we shall study t
heat-kernel asymptotics and the one-loop effective action
scalar fields inM45R3H3/G. If G contains parabolic ele
ments, the heat-kernel asymptotics for the Laplacian cont
also logarithmic terms@15#.

As can be trivially seen, in the standard case the relev
heat-kernel coefficienta2(xuL/m2) does not depend onm
and the JacobianJ@g,g̃# is finite. This means thatW andW̃
have the same one-loop divergences and give rise to
same renormalization group equations. The situation co
pletely change in the ‘‘nonstandard case’’ we are going
consider, since the Jacobian factor explicitly depends onm,
as one can see by looking at Eq.~3.6!.

A. Heat-kernel expansion for scalar fields onRÃH 3ÕG

We start with the classical Euclidean action for a massi
self-interacting scalar field inM4[R3H3/G, H3 being the
three-dimensional hyperbolic manifold andG a group con-
taining the identity, hyperbolic and parabolic elements.H3/G
is a rank-1 symmetric space with constant curvatureR.
This latter is also the scalar curvature ofM4. ~For more
details concerning the geometry of this spatial section,
Ref. @15#.!

The action for the matter field has the form

S@f,g#5E F2
1

2
fDf1Vc~f!GAgd4x, ~3.7!

where the classical potential reads

Vc~f!5
lf4

24
1

m2f2

2
1

jRf2

2
, ~3.8!
4-4
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m being the mass of the field,l the self-interacting coupling
constant andj a coupling constant which takes into accou
of a possible nonminimal coupling between matter a
gravitation~see, for example, Refs.@22,12#!.

Within the one-loop approximation, one splits the field
f5fc1F, fc being the background~classical! field andF
the quantum fluctuation. In this way, the relevant opera
associated with the quantum fluctuation is given by

L52D1M2, M25m21jR1
lfc

2

2
. ~3.9!

Since we are dealing with an ultrastatic space-time, we h

L52]h
22D31M252]h

21L3 ,

L352D31M2, ~3.10!

D3 being the Laplace-Beltrami operator acting on functio
in H3/G.

In the regularization scheme we have proposed in pr
ous sections, the one-loop effective action is given by

W5S1
1

2
ln det

L

m2
5S2

1

4
v9~0uL/m2!. ~3.11!

For the case under consideration, the heat-kernel trace
the form

Tr e2tL5
,

A4pt
Tr e2tL3, ~3.12!

, being the ‘‘infinite volume’’ ofR. For the rank-1 symmet
ric spaceH3/G, the trace of the heat kernel can be compu
by using the Selberg trace formula. In our case~the groupG
contains identity, hyperbolic and parabolic elements! we get
~see Ref.@15# for details!

Tr e2tL3;(
j 50

`

@Bj~L3!1Pj~L3!ln t#t j 23/2, ~3.13!

where

B0~L3!5
vF

~4p!3/2
,

B1~L3!52
vFd2

~4p!3/2
1

C

A4p
, ~3.14!

B2~L3!5
vFd4

2~4p!3/2
1

1

6Ap
2

Cd2

A4p
,

P0~L3!50, P1~L3!5
1

8Ap
,
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P2~L3!52
d2

8Ap
, ~3.15!

C being a known constant,vF the ~dimensionless! funda-
mental volume andd25uku1M2, wherek5R/6 is the nega-
tive, constant~Gaussian! curvature of the manifold. We hav
written only the coefficients which we need in the paper, b
in principle all coefficients can be computed. We have a
used units in whichk521.

From Eqs.~3.12! and ~3.13! we immediately obtain the
expansion we are interested in, that is

Tr e2tL;(
j 50

`

@Bj~L !1Pj~L !ln t#t j 22, ~3.16!

where trivially

Bj~L !5
,Bj~L3!

A4p
, Pj~L !5

,Pj~L3!

A4p
. ~3.17!

Then, in the standard units, we finally obtain

B0~L !5
V

16p2
,

B1~L !52
V

16p2 S d21
2pCR

3vF
D , ~3.18!

B2~L !5
V

16p2 S d4

2
1

pR2

27vF
1

2pCd2R

3vF
D ,

P0~L !50, P1~L !52
V

16p2

pR

6vF
,

P2~L !5
V

16p2

pRd2

6vF
. ~3.19!

Expanding the previous quantity we have in particular

B2~L !5
V

16p2 H m4

2
1lm2

fc
2

2
13l2

fc
4

24

1FlS j2
1

6D1
2plC

3vF
G Rfc

2

2

1Fm2S j2
1

6D1
2pm2C

3vF
GR

1F p

27vF
1

1

2 S j2
1

6D 2

1
2pC

3vF
S j2

1

6D GR2J ,

~3.20!
4-5
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P2~L !5
V

16p2 H pl

6vF

Rfc
2

2
1

pm2

6vF
R1

p

6vF
S j2

1

6DR2J .

~3.21!

B. The renormalized one-loop effective action
and the one-loop renormalization group equations

Here we would like to explicitly compute the beta fun
tions for the model considered above. In order to have
renormalisation of the model, to the matter action~3.7! we
have to add the action for the~classical! gravitational field,
then

S@f,g#5E FL2
1

2
fDf1Vc~f!1g1R1g2R2GAgd4x.

~3.22!

L being the bare cosmological constant, In this way we h
the independent building blocks

Fa[S 1,
f2

2
,
f4

24
,
Rf2

2
,R,R2D ~3.23!

and the corresponding coupling constantsla(m)
[(L,m2,l,j,g1 ,g2).

Now, from Eqs.~2.19!, ~3.20!, and~3.21!, we directly get

m
dL

dm
5

m4

32p2
, m

dm2

dm
5

lm2

16p2
, m

dl

dm
5

3l2

16p2
, ~3.24!

m
dj

dm
5

l~j21/6!

16p2
1

lC

24pvF
2

l~g1 ln m2!

96pvF
,

m
dg1

dm
5

m2~j21/6!

~16p2
1

m2C

24pvF
2

m2~g1 ln m2!

96pvF
,

m
dg2

dm
5

1

432pvF
1

~j21/6!2

32p2
1

C~j21/6!

24pvF

2
~j21/6!~g1 ln m2!

96pvF
. ~3.25!

Some remarks are in order. First, as in the 4-dimensio
smooth case, there is no renormalization of the wave fu
tion. Second, the RGEs concerning the coupling const
L, m2 andl @see Eq.~3.24!# are exactly the same which on
has in the smooth case~see, for example, Refs.@22,23#!,
while the RGEs related toj, g1 andg2 are modified by the
presence of the parabolic elements of the groupG.

IV. CONCLUSION

In this paper we have started an investigation concern
the one-loop effective action for a scalar field in a fou
dimensional FRW space-time. The one-loop effective act
may be considered as the sum of two contributions. The
one can be computed by considering the field in a cons
curvature space-time, conformally related to the origi
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manifold, while the second one takes its origin in the Ja
bian of the conformal transformation. This latter contributi
is what is usually called the conformal induced effective a
tion.

Here we have studied in detail the first contribution in t
particular spacetimeR3H3/G. Due to the nontrivial topol-
ogy of the manifold we have considered, new ultraviolet
vergences appear in the one-loop effective action. At the o
loop level, we have shown that all divergences may
reabsorbed by suitable counterterms in the classical ac
The new divergences depend on the coefficient

P2~L !5
V

16p2 FplRfc
2

12vF
1

pm2R

6vF
1

p~j21/6!R2

6vF
G .

~4.1!

In the massless and free case with the conformal coup
j51/6, one hasP250 and thus, in this particular situatio
the usual evaluation of the effective action by means of ze
function methods works without any modification. It has
be noted that the choicesm50, l50, andj51/6 are con-
sistent with RGGs. If theP2 coefficient is not vanishing, a
generalization of the zeta-function techniques has been u
and the RGEs have been derived in a consistent way, ch
ing that the model is indeed renormalizable at the one-lo
level.

As far as the anomaly induced effective action is co
cerned, in the caseP250 it can be computed making use o
the general expressions reported in Sec. I and in Append
@24,25,21#. The evaluation of it whenP2Þ0 is not an easy
task and we will investigate it in the near future.

APPENDIX A: CONFORMAL TRANSFORMATIONS

In this appendix we shall consider the conformal prop
ties of the first nontrivial Seeley-DeWitt coefficients~also
see Ref.@26#!. For more generality, here we work in
D-dimensional Euclidean manifold and for convenience
use the scalar densityw5g1/4f in place of the scalar fieldf.
The classical action then assumes the form

S5E dDxAgfLf5E dDxwLw, ~A1!

whereL52Dg1m21jR is a Laplacian-like operator (Dg
5gi j ¹i¹j , ¹i being the covariant derivative!.

A conformal transformation is defined by

g̃i j 5e2sgi j , g̃5udetg̃i j u5eDsg, i , j 50,1, . . . ,D21,

~A2!

w̃5esw, f̃5e(12D/2)sf, ~A3!

s[s(x) being a generic scalar function.
By a straightforword computation, for the connection c

efficients, the Riemann and Ricci tensors and scalar cu
ture one obtains, respectively,
4-6
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G̃ i j
k 5G i j

k 1S i j
k ,

R̃jrs
i 5Rjrs

i 1S j rs
i ,

R̃i j 5Ri j 1S i j , ~A4!

R̃5e22s~R1S!,

where

S i j
k 5s id j

k1s jd i
k2skgi j , sk5]ks. ~A5!

Furthermore, for any scalar functionf,

D g̃ f 5e22s@Dg1~D22!sk]k# f . ~A6!

In order to make explicit computations, we now introdu
the useful notation

s i j 5¹i¹js, sk
k5Ds,

Bi j 5Bji 5s i j 2s is j1
gi j

2
sksk ,

B5Bk
k5Ds1

D22

2
sksk ,

Bi j Bi j 5s i j s i j 22s i j s is j2Dssksk1
D~sksk!

2

2
.

~A7!

In this way

S j rs
i 5¹rSs j

i 2¹sS r j
i 1S rl

i Ss j
l 2Ssl

i S r j
l

52@gir Bjs2gisBjr 1gjsBir 2gjr Bis#,

S i j 5S ik j
k 52@~D22!Bi j 1Bk

kgi j #,

S5gi j S i j

522~D21!Dgs2~D21!~D22!sksk

522~D21!BS i j rsS i j rs4~D22!Bi j Bi j 14B2,

~A8!

S i j S i j 5~D22!2Bi j Bi j 1~3D24!B2.

Now it is easy to verify that the Weyl tensor

Ci jrs5Ri jrs1
1

D22
~gir Rjs2gisRjr 1gjsRir 2gjr Ris!

2
1

~D21!~D22!
R~gir gjs2gisgjr ! ~A9!

is conformally invariant, while the Gauss-Bonnet tensor

G5Ri jrsRi jrs24Ri j Ri j 1R2 ~A10!

transforms according to
02400
G̃5G18~D23!Ri j Bi j 24~D23!RB

24~D22!~D23!~Bi j Bi j 2B2!. ~A11!

Recall that in four-dimensions,G is a total divergence.
By definition, S̃5S ~the action is a number!, and so

w̃L̃w̃5wLw5w̃e2sLe2sw̃. ~A12!

As a consequence

w̃L̃w̃5w̃H 2D g̃1
l

2
f̃c

21jDR̃1e22s@m21~j2jD!R#J w̃,

~A13!

where f̃c is the classical solution~background field! and
jD5(D21)/4(D22). As a result, for a conformally
coupled (j5jD) massless scalar field, the action in invaria
in form.

The first heat-kernel coefficients related to a generic
erator of the form2D22Wk¹k1M2 on a Riemannian,
smooth manifold without boundary read

a051, a15
R

6
2M22W22¹̂kW

k,

a25
a1

2

2
1

D̂a1

6
1

1

180
~DR1Ri jrsRi jrs2Ri j R

i j !.

~A14!

Since in generalWk could be a matrix, we have introduce
the connection¹̂kf 5¹k1@Wk , f #.

For the operatorL we are dealing with,Wk50 andM2

5lf0
2/21m21jR, while, for L̃, M̃25lf̃0

2/21jDR̃
1e22s@m21(j2jD)R#. Then one has

ã15
R̃

6
2M̃25e22sFa12S jD2

1

6DSG ,
ã25

ã1
2

2
1

D g̃ã1

6
11

1

180
~D g̃R̃1R̃i jrsR̃i jrs2R̃i j R̃

i j !.

~A15!

The relation betweenã2 and a2 in general is very compli-
cated, but in the case of conformally coupled fields in fo
dimensions. In such a case we have in fact

ã15e22sa1 , ã25e24sS a22
1

3
Ds1¹kV

kD ,

~A16!

where¹kV
k is the total divergence due to the geometric p

of a2. From the latter equation, the well known result
4-7
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Ã25
1

~4p!2E d4xAg̃ã25
1

~4p!2E d4xAga25A2

~A17!

follows. For thePn andQn coefficients there are no gener
expressions in terms of geometrical quantities and so
cannot say anything about their conformal transformat
properties, without considering the specific problem.

To conclude this section, we present a simple derivat
of the conformal transformation properties of the one-lo
effective action, which, according to generalized ze
function regularization, is given by

W52 logZ5S2
1

4
v9~0uL/m2!. ~A18!

In general, this is not invariant even for conformally coupl
fields due to the presence of the functional measure, wh
breaks the symmetry. This phenomenon is well known a
in the physical literature, it is called a ‘‘conformal or trac
anomaly.’’

We set

ln Z̃[ ln Z@f̃,g̃#5J@g,g̃# ln Z@f,g#,

ln J@g,g̃#52~W̃2W!, ~A19!

and consider a family of continuous transformations of
forms

gi j
q 5e2qsgi j , gi j

0 5gi j , gi j
1 5g̃i j . ~A20!

wq5eqsw, Lq5e2qsLe2qs,

Wq5W@fq ,gq#. ~A21!

For an infinitesimal transformation we get

ln J@gq,gq1dq#52~Wq1dq2Wq!52dS1
dv9~0uLq /m2!

4
.

~A22!

We observe that

dv~suLq /m2!5d@s Tr Lq
2s#

52dqE dDxAgqs~x!sv~s;xuLq /m2!,

~A23!

wherev(s;xuL) represents the diagonal kernel ofv(suL),
that is

v~suL !5E dDxAgv~s;xuL !. ~A24!

In order to go on in arbitrary dimensions, we consider a m
general version of Eqs.~2.1! and ~2.12!, that is
02400
e
n

n
p
-

h
d,

e

e

Tr e2tL;(
0

`

Bjt
j 2D/21(

0

`

Pj ln tt j 2D/2, ~A25!

v~suL !52PD/2~L !1@BD/2~L !2gPD/2~L !#s1O~s2!,

~A26!

and suppose the local version

v~s;xuL !52
pD/2~xuL !

~4p!D/2
1

@bD/2~xuL !2gpD/2~xuL !#s

~4p!D/2

1O~s2!, ~A27!

Bn5
1

~4p!D/2E dDxAgbn~xuL !,

Pn5
1

~4p!D/2E dDxAgpn~xuL !, ~A28!

to be valid. Then, from Eqs.~A23! and ~A23!, we get

dv9~suLq!54dqE dDxAgqs~x!@bD/2~xuLq /m2!

2gpD/2~xuLq /m2!#. ~A29!

Now, integrating Eq.~A22! with respect toq we obtain the
final formula

ln J@g,g̃#5
1

~4p!D/2E0

1

dqE dDxAgq@bD/2~xuLq!

2~g1 ln m2!pD/2~xuLq!#. ~A30!

Here we have assumed the classical theory to be confo
invariant, that isdS50. In such a case, whenpD/250, the
latter equation gives rise to the well known form of the on
loop effective action.

APPENDIX B: A NONLOCAL INTERACTION EXAMPLE

In this appendix we shall present another explicit exam
in which logarithmic terms appear in the heat-kernel exp
sion.

We consider the following toy model which, in a simpl
fied manner, mimics an interacting scalar field defined o
noncompact flat manifold with pairs of noncommuting coo
dinates. Let theD-dimensional manifold beMD5Rd3Rp.
Moreover, let beLd and Lp Laplacian-like operators onRd

andRp, respectively, withD5p1d and LD5Ld1Lp . The
model may be defined by the classical Euclidean action

S5E dxF1

2
fS LD1

a2

Lp
Df1V~f!G . ~B1!

The nonlocal interaction mimics the ‘‘noncommuting’’ man
fold Rp as soon asp is even and the parametera2 controls its
presence. The self-interacting potential is given by
4-8
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V~f!5
f r

r
. ~B2!

In renormalizable theories, the powerr is nonarbitrary, but it
is related to the dimension. In fact one has the poss
couples (D53,r 56), (D54,r 54), (D56,r 53), . . . The
nonlocal one-loop fluctuation operator reads

L5LD1
a2

Lp
1V9~fc!5LD1

a2

Lp
1M2,

M25
fc

r 22

~r 22!!
. ~B3!

The heat-kernel trace and zeta function can be exactly ev
ated and read, respectively,

Tr e2tL5
2VDap/2

~4p!D/2G~p/2!

e2tM2
Kp/2~2at!

td/2
, ~B4!

z~suL !5
2p11ApVDap

~4p!D/2G~p/2!~M222a!s1(p2d)/2

3
G~s2~p2d!/2!G~s2D/2!

G~s!G~s1~12d!/2!

3FS s1
p2d

2
,11

p

2
;s1

12d

2
,
M222a

M212a
D ,

~B5!

Kn(z) being the modified Bessel function andVD the volume
of the whole manifold andF(a,b;g,z) the hypergeometric
function.
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