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Post-Newtonian quasirigid body
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In this paper, we construct for the first time, in the first post-Newtonian~1PN! approximation, a complete
model of a quasirigid body by means of a new constraint on the mass current density and mass density. In our
1PN quasirigid body model most of the relations, such as the spin vector proportional to the angular velocity,
the definition of the moment of inertia tensor, the key relation between the mass quadrupole moment and the
moment of inertia tensor, the rigid rotating formulas for the mass quadrupole moment, and the moment of
inertia tensor, are just an extension of the main relations in the Newtonian rigid body model. When all of the
1/c2 terms are neglected, the 1PN quasirigid body model and the corresponding formulas reduce to the
Newtonian version. A key relation is obtained in this paper for the first time, which might be very useful in
future applications to problems in geodynamics and astronomy.
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I. INTRODUCTION

The idea of a Newtonian rigid body has been used to t
the rotation of astronomical bodies up to now. For examp
most Newtonian treatments of the Earth’s rotation are ba
on an accurate rigid body theory~such as SMART 97@1,2#!
plus perturbative arguments from elasticity, the oceans,
atmosphere, the core and so on@3#. The idea of a rigid body
in Newtonian theory is very powerful, introducing three pri
cipal axes of a body: the spin axis, rotation axis and fig
axis without ambiguity. It makes the problem much simp
since there exists a key simple relation between the qua
pole moment and the moment of inertia tensor in a ri
body. But even in Newtonian theory the concept of a rig
body is only an ideal one, because there is no real rigid b
in the physical world@4#. Owing to the modern high accu
racy requirements, the Newtonian theory has to be repla
by Einstein’s general relativity@at least its first post-
Newtonian~1PN! approximation#. The problems of the post
Newtonian rigid body have been discussed ever since Bo
kinematical rigidity ~see Dixon’s review@5#!. Kinematical
rigidity is dependent on the internal velocity distributio
within the body while not considering the stress and ene
flux contributions to the energy-momentum tensorTab.
Dixon @5#, Thorne and Gu¨rsel @6#, Klioner @7–9#, and Soffel
@10# have a much better way, the so-called dynamical rig
ity, in which theTab of the body and the gravitational fiel
caused by the body satisfy a certain interdependency.
interdependency is not the same for different authors. H
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ever all of the different interdependencies make the 1PN s
Si proportional to the angular velocityVa and define a rela-
tivistic moment of inertia tensor. Certainly, the interdepe
dency for the Newtonian rigid body just corresponds to
simple formula between mass density and current den
@shown in Eq. ~1.1!#. But none of them obtains the ke
simple relation between the 1PN quadrupole momentMab

and the 1PN moment of inertia tensorI ab like the Newtonian
one shown in Eq.~1.2!. Some even assert that such a k
relation is invalid in general relativity@6,7#. Therefore the
idea of 1PN rigidity has almost not been directly applied
practical problems up to now. We have a different opinio
We think that because no one has discovered a suitable
terdependency inside the energy-momentum tensor and
gravitational field before, the key relation between the 1
Mab and the 1PNI ab has not been found. In this paper w
present a suitable new interdependency to obtain the 1PNI ab

and a key relation between the 1PNMab and the 1PNI ab

similar to the Newtonian one. This is the first time the rigi
ity problem has been solved on the post-Newtonian lev
Recently we suggested another interdependency inside
energy-momentum tensor and gravitational field of the q
sirigid body on the 1PN level by means of a special gau
condition @11#, but the special gauge condition is more
less speculative and not commonly accepted. In this pa
we totally discard the special gauge condition, and prese
general expression for the rigid spin with or without extern
field ~free precession!.

First let us recall the basic aspects of the Newtonian ri
body. We takeS andSa(5SVa) as the mass density and th
mass current density of a rigid bodyA respectively. Then the
mass multipole momentsML and spinSa of body A are
defined as ML5*Ad3XSX̂L and Sa5eabc*Ad3XXbSc,
©2004 The American Physical Society03-1
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where X̂L is an abbreviation forX^ i 1Xi 2
•••Xi l &, in which

i j ( j 51,2, . . . ,l ) is a spatial index, and the angular bracke
mean ‘‘symmetrize and take the trace-free part’’~STF!. In a
Newtonian rigid body the rotational angular velocityV is
independent of spatial coordinates; we have

Sa5eabcSVbXc. ~1.1!

Inserting Eq.~1.1! into the expression for spin, we have
linear relation between the spin and angular velocitySa

5I abV
b, where the moment of inertia tensorI ab is I ab

5I ba5*Ad3XS(X2dab2XaXb).
The mass quadrupole moment and the moment of ine

tensor satisfy the key relation

Mab52I ab1
1

3
dabI cc . ~1.2!

By means of the continuity equation]TS1]aSa50, the
time derivative of the moment of inertia tensorI ab is propor-
tional to the angular velocityV:

İ ab[
d

dT
I ab5~eapqI qb1ebpqI aq!V

p. ~1.3!

Ṁab satisfies a relation similar to Eq.~1.3!. Therefore,I ab
and Mab , like constant tensors, will rigidly rotate in spac
with the angular velocityV.

II. RIGID BLANCHET-DAMOUR „BD… MASS MOMENT
AND RIGID PN SPIN

When we discuss 1PN rigidity, we will use the notatio
symbols, and conventions following the 1PN theoreti
framework presented by Damour, Soffel, and Xu~cited be-
low as the DSX scheme@12–14#!, since the DSX scheme i
not only rather simple and complete but also describes
1PN definition of spin in a satisfactory manner. In the DS
scheme a complete 1PN general relativistic celestial mec
ics for N arbitrarily composed and shaped, rotating defor
able bodies is described. Here we will briefly summarize
notation and definitions in the DSX scheme. In the po
Newtonian expansion we will always abbreviate the or
e
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symbolO(c2n) simply asO(n). A spatial multi-index con-
taining l indices is simply denoted byL ~andK for k indices,
etc.!, i.e. L[ i 1i 2••• i l . A multisummation is always under
stood for repeated multi-indices SLTL5( i 1

( i 2
•••

( i l
Si 1i 2••• i l

Ti 1i 2••• i l
. Given a spatial vector,ni , its l th tenso-

rial power is denoted bynL[ni 1ni 2
•••ni l. Also, ]L[] i 1

] i 2
•••] i l

. In addition to angular brackets the symmetric a
trace-free part of a spatial tensor will be denoted by a ca
when no ambiguity arises: STFi 1••• i l

(Ti 1
•••Ti l

)[T^ i 1••• i l &

5T̂L . The spatial indicesi , j 51,2,3 are freely raised or low
ered by means of the Cartesian metricd i j 5d i j 5diag(11,
11,11) in Cartesian coordinates. The metric is presented
means of the potentialW and vector potentialWa @see Eq.
~4.1! of Ref. @12##. W and Wa can be separated into a sel
part ~with a ‘‘1’’ ! and an external part~with an overbar!, i.e.
W5W11W̄ andWa5Wa

11W̄a . The self-partW1 andWa
1

will be solved from the gravitational mass densityS and the
mass current densitySa: S[(T001Tss)/c2, and Sa

[T0a/c, through the 1PN Einstein field equation and t
coordinate conditions~gauge conditions! @see Eq.~4.3! of
Ref. @12##, whereTab is the energy-momentum tensor.W1

andWa
1 will be expanded by the STF BD mass momentsML

and STF spin momentsSL @see Eq.~6.11! of Ref. @12##. The
external partW̄ and W̄a can be expanded in terms of th
gravito-electric tidal momentsGL and gravito-magnetic tida
momentsHL @see Eq.~4.15! of Ref. @13##. GL and HL are
also STF spatial tensors dependent on time only. The
mass moments@15# are widely accepted as the best 1P
mass moments and have the form

ML
A~T![E

A
d3XX̂LS1

1

2~2l 13!c2

d2

dT2 F E
A
d3XX̂LX2SG

2
4~2l 11!

~ l 11!~2l 13!c2

d

dT F E
A
d3XX̂aLSaG ~ l>0!.

~2.1!

The 1PN spin moment has been discussed for a long t
@14,16#. In the DSX scheme, the expression for the 1PN s
of body A @see Eq.~3.9! of @14## is
Sa
A,PN[eabcE

A
d3XXbFScS 11

4

c2
WAD 2

4

c2
SS Wc

1A1
1

8
]c]TZA

1D G1
1

c2 (
l>0

1

l ! F 1

2l 13
HaL

A N̂L
A2

l

l 11
MaL

A HL
AG

2eabc

1

2c2 (
l>0

1

l ! ~ l 12!~2l 15!
@~ l 110!N̂bL

A ĠcL
A 18~2l 13!P̂bL

A GcL
A 2~ l 12!Ṅ^bL&

AGcL
A #1O~4!, ~2.2!
l

where ZA
1[G*Ad3X8S(TA ,X8)uX2X8u, Wc

1A

[G*Ad3X8Sc(TA ,X8)/uX2X8u, the overdot means th
time derivative]T , N̂L andP̂L are defined as@see Eq.~2.10!
of @14## N̂L[*Ad3XX2X̂LS and P̂L[*Ad3XX̂aLSa, respec-
tively. Later we omit the body label,A, on all quantities. In

Ref. @14#, N̂L andP̂L are called ‘‘bad moments.’’ With such a
definition of the 1PN spin vector,Sa

PN satisfies the rotationa
equation of motion@see Eq.~3.11! of Ref. @14##. We also
3-2
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have the 1PN continuity equation for (S,Sa) @see Eq.~5.6b!
of Ref. @12##

]TS1]aSa5
1

c2
~]TTbb2S]TW!1O~4!. ~2.3!

Those are the equations which are taken from the D
scheme and will be used in the following discussion on 1
rigidity.

The definition of the 1PN quasirigid body has to agr
with the Newtonian rigid body when 1/c2 terms are ne-
glected. In the 1PN quasirigid body the angular veloc
should be independent of the local coordinateXa of body A.
A detail discussion of PN angular velocity will be carried o
later after Eq.~3.2!. In the DSX scheme we substituteS and
Sc for the energy-momentum tensorTab, therefore the in-
terdependency inside the energy-momentum tensor
gravitational field in Refs.@6–8# might be replaced by the
interdependency betweenS, Sc, and the gravitational field
We expect that the interdependency will produce equati
similar to Eqs.~1.2! and~1.3! on the 1PN level. On the 1PN
level it is sufficient to replaceTab by S, Sc, and their de-
rivatives @17#. Before a further discussion of the quasirig
body, the rigid BD moments and the rigid 1PN spin vec
should be considered. SinceP̂L andN̂L are 1PN terms in the
discussion of the rigid 1PN spin, we can substitute the Ne
tonian relations@Eq. ~1.1! and Newtonian continuity equa
tion# for the definitions of N̂L and P̂L . It is easy to
prove that

P^L&52
1

2l 11
Ṅ^L& . ~2.4!
tio
r-
e

th
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Lemma 1. The rigid BD mass moments of rigid bodyA
@Eq. ~2.1!# can be simplified to

ML5E
A
d3XX^L&FS1

1

c2 S l 19

2~ l 11!~2l 13! DX2S̈G1O~4!.

~2.5!

Proof. Beginning with Eq.~2.1! ~the definition of the BD
mass moment! and replacing the third term in the right-han
side of Eq.~2.1! by Eq. ~2.4!, the proof will be carried out
directly. In fact only the relativistic quadrupole moment
interesting, because in the solar system all of therelativistic
higher multipole moments are too small to be considered
any modern measurements anticipated these days. Ther
we take only the relativistic quadrupole moments into a
count:

Mab5E
A
d3XX^ab&S S1

11

42c2
X2S̈ D . ~2.6!

We define the 1PN part of the mass densitySPN[ 11
42 X2S̈ and

the total mass density

S̄[S1
SPN

c2
. ~2.7!

Lemma 2. The rigid 1PN spin vector of bodyA @see Eq.
~2.2!# can be reduced to
Sa
PN5eabcE

A
d3XXbH Sc1

S

c2 S 7

2
ecdeV

d]eZ
11

1

2
eed fV

dXf]ceZ
1D1

1

c2 (
l>0

S

l ! F4ecdeV
dXeX^L&GL~T!1

1

l 12
ecedX

^dL&HeL

2
l 110

2~ l 12!~2l 15!
X̂LX2ĠcL1

l 110

2~ l 12!~2l 15!
]T~ ln S!X̂LX2GcLG J . ~2.8!
t

Substituting Eqs.~1.1! and ~2.4! for the 1PN part of Eq.
~2.2!, integrating by parts, assuming the surface integra
for the whole bodyA to be zero, and taking some STF fo
mulas, we obtained Eq.~2.8! ~the detailed calculations ar
shown in Appendix A!.

We define the 1PN self-part and 1PN external part of
current density as

Sself
c [SS 7

2
ecdeV

d]eZ
11

1

2
eed fV

dXf]ceZ
1D , ~2.9!
n

e

Sext
c [(

l>0

S

l ! F4ecdeV
dXeX^L&GL~T!1

1

l 12
ecedX

^dL&HeL

2
l 110

2~ l 12!~2l 15!
X̂LX2ĠcL

1
l 110

2~ l 12!~2l 15!
]T~ ln S!X̂LX2GcLG . ~2.10!

Both Sself
c andSext

c as well asSc itself are spatially compac
3-3
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supported. When the tidal momentsGL andHL are equal to
zero, Sc and Sself

c /c2 form the 1PN self-part of the spin
vector. We can define

S̄c[Sc1
Sself

c

c2
1

Sext
c

c2
; ~2.11!

then Eq.~2.8! becomes

Sa
PN5eabcE

A
d3XXbS̄c. ~2.12!

Comparing the Newtonian definition of spin with Eq.~2.12!,

S̄c is a fully 1PN quantity.

III. MODEL OF A POST-NEWTONIAN
QUASIRIGID BODY

We add (1/c2)@]T(SPN)1]a(Sself
a 1Sext

a )# to both sides of
Eq. ~2.3! and have

]TS̄1]aS̄a5
1

c2
@]TTbb2S]TW1]TSPN1]a~Sself

a 1Sext
a !#.

~3.1!

Now we construct a model of the 1PN quasirigid body

constrainingS̄c and S̄ to satisfy

S̄a1
1

2c2
Xa@]TTbb2S]TW1]TSPN1]a~Sself

a 1Sext
a !#

5eabcV
bXcS̄1O~4!. ~3.2!

The relation@Eq. ~3.2!# is our most important assumption fo
the 1PN quasirigid body. In Eq.~3.2! V is a parameter de
pendent on time. Because in the Newtonian approxima
V is the angular velocity, we call the parameterV the angu-
lar velocity also. Really, in the 1PN approximationv
5V3X is not valid. The velocityv has a rather complicate
relation withS andSa @see Eq.~2.27! of @17##. Substituting
the complicated relation into Eq.~3.2! we obtain a PN rela-
tion between the velocityv and the angular velocityV. Con-

sidering thatS̄c andS̄ are expressed bySc andS, which are
related toTab in the DSX scheme, thenTab is also con-
strained by Eq.~3.2!. When the 1/c2 terms are neglected, Eq
~3.2! goes to Eq.~1.1!. Later we will see that only in this
model do the 1PN mass quadrupole moments and the
ment of inertia tensors satisfy similar Newtonian key re
tions like Eq.~1.2!. We were not surprised by the appearan
of the time derivative ofS in Eq. ~3.2!, since in the DSX
schemeTab can be fully represented byS andSa and their
02400
n

o-
-
e

space and time derivatives without difficulty@17#. In the in-
terdependencies described by Thorne and Gu¨rsel @6# and
Klioner @8#, they have their own models of a rigid rotatin
body using another constraint onTab. By comparing the
constrained equations@see Eq.~A7! in @6# or Eq. ~7! in @8#
and Eq.~8! in @8## with Eq. ~3.2!, we see that Eq.~3.2! is
more complicated, but still reasonable.

Substituting Eq.~3.2! for Eq. ~2.12!, we obtain the linear
relation between the 1PN spin vector of the quasirigid bo
and the angular velocity:

Sa
PN5I abV

b1O~4!, ~3.3!

where the moment of inertia tensor is

I ab5I ba5E
A
d3X~dabX

22XaXb!S̄1O~4!, ~3.4!

in which S̄ is defined in Eq.~2.7!.
By comparing Eq.~3.4! with Eq. ~2.6!, we have

Mab52I ab1
1

3
dabI cc1O~4!. ~3.5!

Equation ~3.5! is the key relation between the 1PN ma
quadrupole moment~rigid BD moment! and the 1PN mo-
ment of inertia tensor. It is just this relation that makes t
model of the quasirigid body very useful and applicable
the 1PN level as shown in the Newtonian case. We h
obtained in this paper, for the first time, the 1PN key relatio
Making use of the extended 1PN continuity equation E
~3.1!, we immediately have~detailed calculation in Appendix
B!

İ ab[
d

dT
I ab5~eapqI qb1ebpqI aq!V

p1O~4!. ~3.6!

The 1PNṀab satisfies a relation similar to Eq.~3.6!. From
Eq. ~3.6! the behavior of the 1PNI ab ~and also 1PNMab) in
our quasirigid model is just like the Newtonian version@Eq.
~1.3!#, i.e. I ab and Mab rigidly rotate as a whole. Since th
1PN higher mass multiple momentsML (L.2) do not sat-
isfy a relation similar to Eq.~3.6!, therefore our model is
called a 1PN quasirigid body, but not a 1P
rigid body.

IV. DISCUSSION

Equation~3.6! means that we can always introduce a r
tation matrixPia(T), which is a time-dependent orthogon
matrix and transforms the PN reference system~RS! to a
reference system corotating with the rigid body (RS1).
Pia(T) can be constructed using the rotational angular vel
ity Va of the rigid body according to the relationVa(T)
5 1

2 eabcPib(T) Ṗic(T) @18#. In the new corotating coordi-
nates we get
3-4
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d Ĩ i j

dT
5O~4!, ~4.1!

where Ĩ i j 5PiaPjbI ab . Pia satisfies the following relations
PiaPja5d i j , PiaPib5dab and dPia /dT5eabcV

bPic ~here
we useVb to substitute forv j in @18#!. The proof is easy by
means of Eq.~3.6!. Equation~4.1! shows it is possible to
introduce the 1PN Tisserand reference system.

Finally, we should emphasize that the calculation of
1PN moment of inertia tensor Eq.~3.4! is not too difficult,

although the constrained relation onS̄c andS̄ in Eq. ~3.2! in
the model of the 1PN quasirigid body is complicated.
practical problems, from our 1PN rigid spin and the 1P
moment of inertia tensor@Eqs. ~3.3!–~3.5!# it is possible to
define the three principal axes of the body, the spin a
rotation axis and figure axis as described in Newton
theory, which we will discuss in a separate paper in the
ture.

In conclusion, the rigid BD~1PN! mass multipole mo-
ments Eq.~2.5! and the rigid 1PN spin moment Eq.~2.12!
are discussed in this paper. We have successfully constru
a new 1PN model of a quasirigid body in which the co

straint onS̄c and S̄ satisfies Eq.~3.2!. Our 1PN quasirigid
body model will reduce to the Newtonian one when all of t
1/c2 terms are neglected. Most of the relations in our 1
rigid body model, such as the spin vector proportional to
angular velocityV @Eq. ~3.3!#, the definition of the momen
of inertia tensor@Eq. ~3.4!#, the key relation between th
mass quadrupole moment and the moment of inertia te
@Eq. ~3.5!#, the rigidly rotating formulas ofI ab and Mab
@see Eq.~3.6!# are similar to the Newtonian rigid body mod
where the corresponding relations are mentioned at
beginning of this paper. In particular, the 1PN key relati
betweenMab andI ab might be applied to practical problem
in geodynamics and astronomy in the future, e.g. the disc
sion of the relativistic effects of nutation an
precession.
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APPENDIX A: THE PROOF OF LEMMA 2

We start from Eq.~2.2!:

Sa
A,PN[eabcE

A
d3XXbFScS 11

4

c2
WAD

2
4

c2
SS Wc

1A1
1

8
]c]TZA

1D G
1

1

c2 (
l>0

1

l ! F 1

2l 13
HaL

A N̂L
A2

l

l 11
MaL

A HL
AG
02400
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2eabc

1

2c2 (
l>0

1

l ! ~ l 12!~2l 15!

3@~ l 110!N̂bL
A ĠcL

A 18~2l 13!P̂bL
A GcL

A

2~ l 12!Ṅ^bL&
A GcL

A #1O~4!. ~A1!

In the following formulas we omit the body label,A, on all
quantities.

Let us first rewrite the second term through the fou
term. Set

~E.1![
1

c2
eabcE

A
d3XXbS 4ScW24SW1c2

1

2
S]c]TZ1D ,

~A2!

where W5W11W̄, and W1c and Z1 are defined in Eq.
~2.2!. Because in Eq.~A2! all the terms are 1PN terms, Eq
~1.1! can be substituted forSc. We have

4

c2
W1cS5

4

c2
ecdeV

dS~2]eZ
11XeW1!, ~A3!

4

c2
WSc5

4

c2
ecdeV

dXeS~W̄1W1!, ~A4!

2
S

2c2
eabc]c]TZ152

S

2c2
eabc~ecedV

e]dZ1

1eed fV
dXf]c]eZ

1!. ~A5!

By combining Eqs.~A3!–~A5!, we have

~E.1!5eabcE
A
d3XXbF S

c2 S 4ecdeV
dXeW̄1

7

2
ecdeV

d]eZ
1

1
1

2
eed fV

dXf]c]eZ
1D G , ~A6!

where W̄5((1/l !)X^L&GL1O(2) @see Eq.~4.15a! of Ref.
@13##.

The fifth and sixth terms can be rewritten as
3-5
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(
l>0

1

l ! S 1

2l 13
N̂LHaL2

l

l 11
MaLHLD52H (

l>1

1

l !

l

l 11
MailL21Hi lL211(

l>0

l 11

~ l 12!! S 1

~2l 11!~2l 13!
2

l 11

2l 11D N̂LHaLJ
52H (

l>0

l 11

~ l 12!! S MabLHbL1
1

~2l 11!~2l 13!
N̂LHaLD

2(
l>0

~ l 11!2

~ l 12!! ~2l 11!
N̂LHaLJ . ~A7!
ce

-

of
We use the following identity:

db^aR̂L&T̂bL5
1

~ l 11!~2l 11!
R̂LT̂aL , ~A8!

whereR̂L and T̂aL are arbitrary STF spatial tensors. Hen
the second term of Eq.~A7!

1

~2l 11!~2l 13!
N̂LHaL5

l 11

2l 13
db^aNL&HbL .

Therefore the first and second terms of Eq.~A7! can be writ-
ten as

2(
l>0

l 11

~ l 12!! S MabLHbL1
1

~2l 13!~2l 11!
N̂LHaLD

52(
l>0

l 11

~ l 12!!
HbLE d3XSS X^abL&1

l 11

2l 13
db^aXL&X2D

52(
l>0

l 11

~ l 12!!
HbLE d3XSXbX^aL&. ~A9!

In terms of another identity, X2X^L&5(2l 11)/(l
11)XbX^bL&, the third term of Eq.~A7! becomes

(
l>0

~ l 11!2

~ l 12!! ~2l 11!
HaLN̂L

5(
l>0

l 11

~ l 12!!
HaLE d3XSXbX^bL&. ~A10!

By combining Eqs.~A9! and ~A10!, Eq. ~A7! has the form
02400
2(
l>0

l 11

~ l 12!! FHbLE
A
d3XSXbX^aL&2HaLE

A
d3XSXbX^bL&G

52(
l>0

l 11

~ l 12!!
~daddbe2daedbd!

3FHeLE
A
d3XSXbX^dL&G

5(
l>0

l 11

~ l 12!!
HeLeabcecedE

A
d3XSXbX^dL&

5eabcE
A
d3XXb(

l>0

1

l !

S

l 12
ecedX

^dL&HeL .

~A11!

The seventh term in Eq.~A1! can be rewritten as

1

2c2
eabc(

l>0

l 110

l ! ~ l 12!~2l 15!
N̂bLĠcL

5
1

2c2
eabcE

A
d3XXbSS (

l>0

l 110

l ! ~ l 12!~2l 15!
ĠcLX̂LX2D ,

~A12!

where in deducing Eq.~A12! we have considered two for
mulas:

X^bL&5XbX^L&2
l

2l 11
X2db^alXL21& ~A13!

and

eabcd
b^alX̂L21&ĠcL5eabcX

^L21&ĠcbL2150. ~A14!

The last two terms of Eq.~A1! can be combined, because
Eq. ~2.4!,
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2
1

2c2
eabc(

l>0

1

l ! ~ l 12!~2l 15!
@8~2l 13!P^bL&GcL2~ l 12!Ṅ^bL&GcL#

5
1

2c2
eabc(

l>0

l 110

l ! ~ l 12!~2l 15!
Ṅ^bL&GcL

5
1

2c2
eabcE d3XXbṠ(

l>0

l 110

l ! ~ l 12!~2l 15!
X2X^L&GcL . ~A15!

By adding Eqs.~A6!, ~A11!, ~A12! and ~A15! together, Eq.~A1! for the rigid spin vector becomes

Sa
PN5eabcE

A
d3XXbH Sc1

S

c2 S 7

2
ecdeV

d]eZ
11

1

2
eed fV

dXf]ceZ
1D1

1

c2 (
l>0

S

l ! F4ecdeV
dXeX^L&GL~T!1

1

l 12
ecedX

^dL&HeL

2
l 110

2~ l 12!~2l 15!
X̂LX2ĠcL1

l 110

2~ l 12!~2l 15!
]T~ ln S!X̂LX2GcLG J . ~A16!
pa
q.
APPENDIX B: THE PROOF OF EQ. „3.6…

From the definition ofI ab @see Eq.~3.4!# we have

İ ab5E
A
d3x

]S̄

]T
~dabX

22XaXb!1O~4!. ~B1!

By means of Eq.~3.1!, Eq. ~B1! becomes

İ ab5E
A
d3xH F2]dS̄d1

1

c2
„]TTdd2S]TW1]TSPN

1]d~Sself
d 1Sext

d !…G ~dabX
22XaXb!J 1O~4!.

~B2!

Because of the surface integration equaling zero, the first
of the integration~B2! reduces to

E
A
d3x$2]dS̄d~dabX

22XaXb!%

5E
A
d3xS̄d~2dabX

d2dadX
b2dbdX

a!. ~B3!
y

ro

a-

02400
rt

From Eq.~3.2! we have

S̄d5ed f cV
fXcS̄2

Xd

2c2
h, ~B4!

whereh5]TTee2S]TW1]TSPN1]e(Sself
e 1Sext

e ).
Substituting Eq.~B4! into Eq. ~B3! we get

~B3!5E
A
d3xH S̄edecV

eXc~2dadX
b2ddbX

a!

2
h

c2
~dabX

22XaXa!J . ~B5!

Substituting Eq.~B5! into Eq. ~B2! we find the second term
in Eq. ~B5! just by cancelling with the second part of E
~B2!. Then Eq.~B2! becomes

İ ab5E
A
d3xS̄~2eaecX

cXb2ebecX
cXa!Ve

5~eaecI cb1ebecI ac!V
e1O~4!, ~B6!

where the identityeaecdcbX
21ebecdcaX

250 has been used
in the last step.
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