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In this paper, we construct for the first time, in the first post-Newto(idN) approximation, a complete
model of a quasirigid body by means of a new constraint on the mass current density and mass density. In our
1PN quasirigid body model most of the relations, such as the spin vector proportional to the angular velocity,
the definition of the moment of inertia tensor, the key relation between the mass quadrupole moment and the
moment of inertia tensor, the rigid rotating formulas for the mass quadrupole moment, and the moment of
inertia tensor, are just an extension of the main relations in the Newtonian rigid body model. When all of the
1/c? terms are neglected, the 1PN quasirigid body model and the corresponding formulas reduce to the
Newtonian version. A key relation is obtained in this paper for the first time, which might be very useful in
future applications to problems in geodynamics and astronomy.
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[. INTRODUCTION ever all of the different interdependencies make the 1PN spin
S proportional to the angular velocif? and define a rela-
The idea of a Newtonian rigid body has been used to treativistic moment of inertia tensor. Certainly, the interdepen-
the rotation of astronomical bodies up to now. For exampledency for the Newtonian rigid body just corresponds to a
most Newtonian treatments of the Earth’s rotation are basesimple formula between mass density and current density
on an accurate rigid body theofguch as SMART 971,2]) [shown in Eq.(1.1)]. But none of them obtains the key
plus perturbative arguments from elasticity, the oceans, thgimple relation between the 1PN quadrupole momdnt,
atmosphere, the core and so[@1). The idea of a rigid body and the 1PN moment of inertia tendgy, like the Newtonian
in Newtonian theory is very powerful, introducing three prin- one shown in Eq(1.2). Some even assert that such a key
cipal axes of a body: the spin axis, rotation axis and figurge|ation is invalid in general relativity6,7]. Therefore the
axis without ambiguity. It makes the problem much simplerigea of 1PN rigidity has almost not been directly applied to
since there exists a key simple relation between the quadrysactical problems up to now. We have a different opinion.
pole moment and the moment of inertia tensor in a rigid\ye think that because no one has discovered a suitable in-
body. But even in Newtonian theory the concept of a rigidygjenendency inside the energy-momentum tensor and the
in the physical world(4]. Owing to the modem high accu- %Arawtatmnal field before, the key relation betwgen the 1PN
4 . ab and the 1PN 4, has not been found. In this paper we
racy requirements, the Newtonian theory has to be replaced . ) .
by Einstein's general relativity{at least its first post- present a smtapIe new interdependency to obtain thellpN
Newtonian(1PN) approximation. The problems of the post- a_nd. a key relation bgtween the ,1F_Nmab and the 1PN ab
Newtonian rigid body have been discussed ever since Bomglmllar to the Newtonian one. This is the first time t_he rigid-
kinematical rigidity (see Dixon’s review[5]). Kinematical 1ty Problem has been solved on the post-Newtonian level.
rigidity is dependent on the internal velocity distribution Recently we suggested another interdependency inside the
within the body while not considering the stress and energynergy-momentum tensor and gravitational field of the qua-
flux contributions to the energy-momentum tensbt?.  sirigid body on the 1PN level by means of a special gauge
Dixon [5], Thorne and Grsel[6], Klioner [7—9], and Soffel ~ condition [11], but the special gauge condition is more or
[10] have a much better way, the so-called dynamical rigidless speculative and not commonly accepted. In this paper
ity, in which the T*# of the body and the gravitational field We totally discard the special gauge condition, and present a
caused by the body satisfy a certain interdependency. THgeneral expression for the rigid spin with or without external

interdependency is not the same for different authors. Howfield (free precession _ S
First let us recall the basic aspects of the Newtonian rigid

body. We takes, andX?(=2V?) as the mass density and the

*Electronic address: cmxu@njnu.edu.cn mass current density of a rigid bodyrespectively. Then the
"Electronic address: jinhetao@sina.com mass multipole momentE/J,_ and spinS* of body A are
*Electronic address: xjwu@njnu.edu.cn defined as M =[,d3XS X" and S*= e,/ 403X XPE S,
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where X" is an abbreviation fox{1x'2... X, in which
i (j=1,2,
i

mean “symmetrize and take the trace-free pd&8TH. In a
Newtonian rigid body the rotational angular veloc®y is
independent of spatial coordinates; we have

32= ¢, 0PXC. (1.2

Inserting Eq.(1.1) into the expression for spin, we have a
linear relation between the spin and angular velo&fy
=1,,Q° where the moment of inertia tensog, is |,
=1pa=J Ad3XZ (X28,,— X2XP).
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symbolO(c™ ") simply asO(n). A spatial multi-index con-

etc), i.e. L=iji,- - -i;. A multisummation is always under-
stood for repeated multi-indices SITL=2 % -+

Ei|S‘1iz“-i|Ti1iz“'i|' Given a spatial vecton', its |th tenso-
rial power is denoted byt=n'in'z...n'l. Also, 4. =4, d;,

-~ d;. In addition to angular brackets the symmetric and
trace-free part of a spatial tensor will be denoted by a caret
when no ambiguity arises: STE ; (T -+ Ti)=Tq, ...
='T',_. The spatial indices,j=1,2,3 are freely raised or low-
ered by means of the Cartesian metfig= 6" = diag(+1,

The mass quadrupole moment and the moment of inertia 1 . 1) in Cartesian coordinates. The metric is presented by

tensor satisfy the key relation

1
—lapt §5ab|cc- 1.2

Map=
By means of the continuity equatiof> +3d,22=0, the
time derivative of the moment of inertia tendqy, is propor-
tional to the angular velocit$:

IabEd_TIab:(Gaquqb+ Ebpql aq)ﬂp. (13)

M, satisfies a relation similar to E@l.3). Therefore,l 4
and M,,, like constant tensors, will rigidly rotate in space
with the angular velocity(}.

Il. RIGID BLANCHET-DAMOUR  (BD) MASS MOMENT
AND RIGID PN SPIN

When we discuss 1PN rigidity, we will use the notation,

symbols, and conventions following the 1PN theoretical M’C(T)EJ d3X XS +
A

framework presented by Damour, Soffel, and ¥ited be-
low as the DSX schemil2—-14), since the DSX scheme is

means of the potentidlvV and vector potentialW, [see Eq.
(4.1 of Ref.[12]]. W andW, can be separated into a self-
part(with a “+") and an external paftvith an overbay, i.e.
W=W*+W andW,=W, +W,. The self-partv* andW,

will be solved from the gravitational mass densttyand the
mass current density>?: 3=(T%+T9/c?, and 3?2
=T%/c, through the 1PN Einstein field equation and the
coordinate conditionggauge conditions[see Eq.(4.3) of
Ref. [12]], where T is the energy-momentum tensti "
andW, will be expanded by the STF BD mass momeits
and STF spin momentS, [see Eq(6.11) of Ref.[12]]. The
external partW and W? can be expanded in terms of the
gravito-electric tidal moment&,; and gravito-magnetic tidal
momentsH, [see Eq.(4.15 of Ref.[13]]. G, andH, are
also STF spatial tensors dependent on time only. The BD
mass moment$15] are widely accepted as the best 1PN
mass moments and have the form

d2
2(21+3)c2 dT2

f d3X5<'-X22}
A

not only rather simple and complete but also describes the - Mi f dsxkaLga} (1=0).
1PN definition of spin in a satisfactory manner. In the DSX (1+1)(21+3)c2dT| Ja
scheme a complete 1PN general relativistic celestial mechan- 2.1)

ics for N arbitrarily composed and shaped, rotating deform-
able bodies is described. Here we will briefly summarize theThe 1PN spin moment has been discussed for a long time
notation and definitions in the DSX scheme. In the post{14,1§. In the DSX scheme, the expression for the 1PN spin
Newtonian expansion we will always abbreviate the orderf body A [see Eq(3.9) of [14]] is

4 4 1 11 1 ca
A, PN_ 3 b WA - +AL T + - - ANA_ _ MA KA
S —eabcfAd XX°| ¢ 1+C2w) C22<wc *gdiZa | |+ 2 17| g e~ g MaHL
1 : :
A A PA A AnA
~ €abe go a5 L+ 1ONGLGEL+8(21+3)PF GE — (14 2)Ngp,,"GE 1+ 0(4), (2.2

where Zy=G[ad3X'3(Ta, X" )| X—=X], W;'A tively. Later we omit the body label, on all quantities. In
=GJAd®X'2%(Ta,X")/[X=X|, the overdot means the Ref.[14], N, andP, are called “bad moments.” With such a
time derivativedr, NL and IE’L are defined apsee Eq(2.10 definition of the 1PN spin vectoSEN satisfies the rotational
of [14]] Ny = [ Ad3XX2X\S, and P, =/ ,d3X X332, respec- equation of motior{see Eq.(3.11) of Ref. [14]]. We also
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have the 1PN continuity equation fok (22) [see Eq(5.6b Lemma 1 The rigid BD mass moments of rigid body
of Ref.[12]] [Eq. (2.2)] can be simplified to

1
I3+ 0,22 =— (1T =29rW)+0(4). (2.3 149
Cc

Rl i yye ey

+0(4).
(2.5

M,_=J d3xx®
A

) X23

Those are the equations which are taken from the DSX
scheme and will be used in the following discussion on 1PN
rigidity.

The definition of the 1PN quasirigid body has to agree
with the Newtonian rigid body when d7 terms are ne-
glected. In the 1PN quasirigid body the angular velocity;
should be independent of the local coordin&feof body A.

A detail discussion of PN angular velocity will be carried out
later after Eq(3.2). In the DSX scheme we substituteand

3.¢ for the energy-momentum tensdf?, therefore the in-
terdependency inside the energy-momentum tensor andp

gravitational field in Refs[6—8] might be replaced by the

interdependency betweéh, 3.°, and the gravitational field.

We expect that the interdependency will produce equations Mab:f d3x x(ab
similar to Egs.(1.2) and(1.3) on the 1PN level. On the 1PN A

level it is sufficient to replacd* by 3, 3¢, and their de-
rivatives[17]. Before a further discussion of the quasirigid
body, the rigid BD moments and the rigid 1PN spin vector

should be considered. Sinég andN, are 1PN terms in the
discussion of the rigid 1PN spin, we can substitute the New-

Proof. Beginning with Eq.(2.1) (the definition of the BD
mass momentand replacing the third term in the right-hand
side of Eq.(2.1) by Eq. (2.4), the proof will be carried out
directly. In fact only the relativistic quadrupole moment is
interesting, because in the solar system all ofréiativistic
higher multipole moments are too small to be considered in
any modern measurements anticipated these days. Therefore
we take only the relativistic quadrupole moments into ac-

(2.6

11 ..
S+ ——X23 .
42c?

We define the 1PN part of the mass den3igy= 3 X?3 and
the total mass density

tonian relationd Eq. (1.1) and Newtonian continuity equa- o
tion] for the definitions of N, and P_. It is easy to S= 2+— 2.7
prove that

Lemma 2 The rigid 1PN spin vector of bodf [see Eg.

24 (2.2)] can be reduced to

PLu=" 1N

1 2
+_ J—

7 1 1
P fcdeQdﬂeZ+ + Efedfﬂdxfacez+ [4fcdeQdXeX<L>GL(T) + 1+2 6cedx<dL>H

)
SEN= €anc f d3XXb[ 34—
A c

c2 =0

[+10 - . [+10

- 2(I+2)(2I+5)XLX2G°L+ 2(1+2)(21+5) 2.9

ar(In E))A(LXZGCJ

Substituting Eqgs(1.1) and (2.4) for the 1PN part of Eq. s § . 1 o
(2.2), integrating by parts, assuming the surface integration Eext—|> m 4e g NIXXG (T)+ EcedX MHeL
for the whole bodyA to be zero, and taking some STF for- =0
mulas, we obtained Ed2.9) (the detailed calculations are |+10 L
shown in Appendix A — e =X XG,.

We define the 1PN self-part and 1PN external part of the 2(1+2)(21+3)
current density as |+10 -

+ —————97(In32)X"X?G (2.10
2(1+2)(21+5)°T cL|- '
7 d 1
Eself—2 6cde'Q d Z +_Eedf9 X' acez 2.9

Both 3. and3. S, as well ass© itself are spatially compact
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supported. When the tidal momer@s andH, are equal to space and time derivatives without difficuft¢7]. In the in-
zero, 3¢ and 3¢/c? form the 1PN self-part of the spin terdependencies described by Thorne ands€iy6] and
vector. We can define Klioner [8], they have their own models of a rigid rotating
body using another constraint off*?. By comparing the
. . constrained equatiorfsee Eq.(A7) in [6] or Eq. (7) in [8]
— Dol Dext and Eq.(8) in [8]] with Eq. (3.2, we see that Eq(3.2) is
=30+ ?Jr 2 (21D more complicated, but still reasonable.
Substituting Eq(3.2) for Eq. (2.12, we obtain the linear
relation between the 1PN spin vector of the quasirigid body
and the angular velocity:

then Eq.(2.8) becomes

— StN=1_,0°+0(4), 3.3
SZN: fabcj dsxxbzc_ (2.12) a ab! ( ) ( )
A

where the moment of inertia tensor is

Comparing the Newtonian definition of spin with E@.12), B
3¢ is a fully 1PN quantity. lap=1pa= f d3X(8,pX2—X3XP) S +0(4), (3.9
A

Ill. MODEL OF A POST-NEWTONIAN _
QUASIRIGID BODY in which X is defined in Eq(2.7).

By comparing Eq(3.4) with Eq. (2.6), we have
We add (1¢2)[ d1(Spn) + da(2 2+ 22, ] to both sides of
Eqg. (2.3) and have 1

Map=—lapt 3

Oaplcct O(4). (3.5

IS+ 3,33= iz[aTTbb—EaTWJr IrSpnt da(32,+32)].  Equation(3.5) is the key relation between the 1PN mass
c quadrupole momenfrigid BD momenj and the 1PN mo-
(3.)  ment of inertia tensor. It is just this relation that makes the
model of the quasirigid body very useful and applicable on
the 1PN level as shown in the Newtonian case. We have
N — : obtained in this paper, for the first time, the 1PN key relation.
constraining®® andX. to satisfy Making use of the extended 1PN continuity equation Eq.
(3.1, we immediately havédetailed calculation in Appendix
B)

Now we construct a model of the 1PN quasirigid body by

— 1
Ea+ 2_C2Xa[ ﬁTTbb_ EﬁTW-i- &TE PN+ &a(zge”-f— E:Xt)] d
_ = g7 ab= (€apql ab™ €bpglag) 2+ O(4). (3.6
= €5, NPXES +0O(4). (3.2

, ) . . The 1PNM,, satisfies a relation similar to E¢3.6). From
The relation Eg. (3.2)] is our most important assumption for Eq. (3.6) the behavior of the 1PN, (and also 1PN ,) in

the 1PN quasirigid body. In Eq3.2) Q is a parameter de- o quasirigid model is just like the Newtonian versidy.
pendent on time. Becguse in the Newtonian apprOX|mat|0|@1_3)]' i.e.1,, and M., rigidly rotate as a whole. Since the
Q is the angular velocity, we call the paramefeithe angu- 1 pp higher mass multiple momenits, (L>2) do not sat-

lar velocity also. Really, in the 1PN approximation sty 4 relation similar to Eq(3.6), therefore our model is
=Q XX is not valid. The velocity has a rather complicated 5jled a 1PN quasirigid body, but not a 1PN

relation wi.thE andEa. [se.e Eq(2.27) of [17]]._Substituting rigid body.
the complicated relation into E§3.2) we obtain a PN rela-

tion between the velocity and the angular velocitf2. Con-

sidering thal © andX, are expressed hy°® and;, which are

related toT%? in the DSX scheme, thef®? is also con- Equation(3.6) means that we can always introduce a ro-
strained by Eq(3.2). When the 1¢2 terms are neglected, Eq. tation matrixPi,(T), which is a time-dependent orthogonal
(3.2) goes to Eq(1.1). Later we will see that only in this Matrix and transforms the PN reference systd®) to a
model do the 1PN mass quadrupole moments and the méeference system corotating with the rigid body (RS
ment of inertia tensors satisfy similar Newtonian key rela-Pia(T) can be constructed using the rotational angular veloc-
tions like Eq.(1.2). We were not surprised by the appearanceity {1 of the rigid body according to the relatia2®(T)

of the time derivative off in Eq. (3.2), since in the DSX  =3e.pPin(T)Pic(T) [18]. In the new corotating coordi-
schemeT*# can be fully represented By and32 and their  nates we get

IV. DISCUSSION
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i o4 4.1 ly 1
ar oW, @9 bese2 £ 11(1+2)(21+5)
whereT; Plapjblab P,a satisfies the following relations: x[(1+10)Nf GE, +8(21+3)Pf GEy
PiaPja= 6, , PiaPib="5,, and dP;, /dT=e,, Q°P;. (here
We use0® 1o substitute for! in [18]). The proof is easy by —(1+2)Nj,GE 1+ O(4). (A1)

means of Eq(3.6). Equation(4.1) shows it is possible to
introduce the 1PN Tisserand reference system.

Finally, we should emphasize that the calculation of theln the following formulas we omit the body label, on all
1PN moment of inertia tensor Eq’.i4) is not too difficult,  quantities.
although the constrained relation & andZ, in Eq.(3.2) in Let us first rewrite the second term through the fourth
the model of the 1PN quasirigid body is complicated. Interm. Set
practical problems, from our 1PN rigid spin and the 1PN
moment of inertia tensdiEgs. (3.3)—(3.5)] it is possible to
define the three principal axes of the body, the spin axis,
rotation axis and figure axis as described in Newtonian
theory, which we will discuss in a separate paper in the fu-
ture.

In conclusion, the rigid BD(1PN) mass multipole mo- (A2)
ments Eq.(2.5 and the rigid 1PN spin moment E¢R.12
are discussed in this paper. We have successfully ConStrUCtednereW W*+W, andW* and Z* are defined in Eq.

a new 1PN model of a quasirigid body in which the con- (2.2). Because in EqA2) all the terms are 1PN terms, Eq.
straint on3¢ and 3, satisfies Eq(3.2). Our 1PN quasirigid (1.1) can be substituted fax°. We have

body model will reduce to the Newtonian one when all of the

1/c? terms are neglected. Most of the relations in our 1PN

rigid body model, such as the spin vector proportional to the

angular velocityQ [Eq. (3.3)], the definition of the moment 4

of inertia tensor[Eq. (3.4)], the key relation between the W= _2€cdeQdE(_‘9eZ++er+)- (A3)
mass quadrupole moment and the moment of inertia tensor ¢

[Eqg. (3.5], the rigidly rotating formulas ofl ;, and M,

[see Eq(3.6)] are similar to the Newtonian rigid body model

where the corresponding relations are mentioned at the 4 dve .

beginning of this paper. In particular, the 1PN key relation _WE :_EcdeQ X3 (W+W™), (A4)
betweenM,, andl ,, might be applied to practical problems

in geodynamics and astronomy in the future, e.g. the discus-
sion of the relativistic effects of nutation and
precession.

1 1
(E.l)E—Zeach’ d3xxb(42°W—42W+°— EzacaTF ,
C A

E + _ 2 e +
- _zfabcacaTZ = Feabc( €ced(1®0qZ
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APPENDIX A: THE PROOF OF LEMMA 2
We start from Eq(2.2): (E.1)= Eabcf d3XXb

2 dyevns Z +
4fcdeQ X*W+ Ecde(l J Z

SQ’PNE 6abcfAd3XXb %° (A6)

1+ iWA 1 dyf +
c2 + EfedfQ X dcdeZ )

4 1
——22(W§A+ gﬁcaTz;)

c
1yt | where W==(111)X{"'G, +0(2) [see Eq.(4.153 of Ref.
- S S HARNA- ——MAHD [13]].

02 i=o I! 2| +3 1+1 The fifth and sixth terms can be rewritten as
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1/ 1 . I

3NLHaL |+1 aLHL

Sh I 21+
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1 S l+1 1 l+1 .~
& T T Maie-aHiat S (+2) N\ (21+1)(21+3) 21+1) L at
I+l M., Hy + =—————-—N H
& (2| MantFout Gy gy a
—(|+1)2 N, H A7
& (1+2)1(21+1) L ek (A7)

We use the following identity:

A A 1
5b(aRL)TbL:W

whereR, andT,, are arbitrary STF spatial tensors. Hence

the second term of EqA7)

ﬁL-’l\—aL ’

|+1
&b (1+2)!

HpoL f d3X3XPX@EY —H,, j d3x2xbx<bL>}
A A

I+1
(A8) == (SadObe™

&b (l +2)| 5&65bd)

X|H

oL fAd3x2xbx<dL>}

+1 1+l L€abcE dJ d3Xx3 xPx(dh)
I N - < (1+2)! HeL€abcece
@+ D2 +3) a3 PN o D
; i 3 1 (dL)
Therefore the first and second terms of EAj7) can be writ- =€apc | A3XXP T €cedX' " HeL.
ten as A 1=0
(A11)
I+1 The seventh term in EGAL) can be rewritten as
& 0+ 2) ( MabtHoL* WNLWL)
1 2 [+10 R6
2c2 abc|>om bLOcL
I+1
3 (abL) b(ayL)y2
|>0( HbLfd XE(X s X) 1. Jd3xxb2 > __1+10 G XX2
c2 A SH11(1+2)(21+5) ’
(A12)
( HbL f d3x3 xPx @k, (A9)
IzO
where in deducing EqA12) we have considered two for-
mulas:
In terms of another identity, X°X("=(21+1)/(l
+1)XPXPL  the third term of Eq(A7) becomes
(bL) _ by (L) _ 2 oh(ajyL—1)
X XPX > +1X oNAX (A13)
(1+1)2 R
. and
=) (|+2)!(2|+1)"'6‘L'\'L
I+1 .
¥ 2y Ha f d3XEXPX®Y.  (A10) €abcd” X VG = €ap X UGy 1=0. (AL4)
I>0

By combining Eqs(A9) and (A10), Eq. (A7) has the form

The last two terms of EqA1) can be combined, because of
Eq. (2.4),
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1

1 .
"o Gabcgo W[B(2| +3)PpyGeL— (1 +2)Np ) Ge ]

1 I+10 -
T g2 e 11+ 2) (214 5) (bL ek

1 : | +10
3y yb BV AVI( )
—Czeabcf d3X X zéoﬁ Traas < <G (A15)

By adding Egs(A6), (A1l), (A12) and(A15) together, Eq(A1) for the rigid spin vector becomes

el IXEX L>GL(T>+ 5 €cedX

1 2
+—E m

7 1
5 Ecde()d‘?ez+ + zeedf()dxfacez+

p>
SAN=€anc f d3XXb[ 34—
A c

o+ XEX2G —O In3)X"X%G A16
20522145 X Celt 3221 +5) N2 XX Ger (AL6)
[
APPENDIX B: THE PROOF OF EQ. (3.6) From Eq.(3.2) we have
From the definition of ,, [see Eq.(3.4)] we have o _ xd
39= €411 X°T = —h, (B4)
f 3 2 yayh 2
= dx (5 X2—X3XP)+0O(4). (B1)
0= ° whereh= 97T~ 3 97W+ 912 pnt de(S St Seun) -
Substituting Eq(B4) into Eq. (B3) we get
By means of Eq(3.1), Eq. (B1) becomes ubstituting Eq(B4) a.(B3) we g
_ 1 (B3)=fd3x S €40 2EXE(— 83X — 84pX3)
ab—j d®x { — 03+ g(aTT"d—EaTWJraszN A ae ad™ b
— E((sabxz— xaxa)] . (B5)
+ (S et 2 o)) | (SapX2—X3X) { +0(4). c?

Substituting Eq(B5) into Eq.(B2) we find the second term
in Eqg. (B5) just by cancelling with the second part of Eq.

Because of the surface integration equaling zero, the first pafB2).- Then Eq.(B2) becomes
of the integrationB2) reduces to

(B2)

B lap= f XS (— €20 XXP— €peXX?) Q8
f d3x{ — 942 4 8,,X2— X3XP)}
A = (€aed cbT €bed ac) 2°+0(4), (B6)

:f AT (25, X0~ 5,.XP— 5,0X?). (B3)  Where the identitye, o 5epX?+ €pecdcaX>=0 has been used
A é a in the last step.
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