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Damping of tensor modes in cosmology
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An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free
streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological
gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6% for
wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological
parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths
by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest
wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7%
for QO h?=0.1 t0 9.0% for),,h?>=0.15. An appendix gives a general proof that tensor as well as scalar modes
satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not
negligible.
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[. INTRODUCTION where dots indicate ordinary time derivatives. Here the com-
ponents of the perturbed metric are

It is widely expected that the observation of cosmological
tensor fluctuations through measurements of the polarization ggg=—1, g;0=0, gij(x,t)zaz(t)[éij +hi;(x,)] (3
of the microwave background may provide a uniquely valu-
able check on the validity of simple inflationary cosmolo- whereh;;(x,t) is treated as a small perturbation; amgi(x,t)
gies. For instance, for a large class of inflationary theoriess the anisotropic part of the stress tensor, defined by writing
with single scalar fields satisfying the “slow f?”" approxi- the spatial part of the perturbed energy-momentum tensor as
mation, the wave-number dependerBgok"s and.PT Tij:agij'l'azﬂ'ij: or equivalently
o«k"T of the scalar and tensor power spectral functions and
the ratio of these spectral functions after horizon exit during P =
inflation are related by1] Tj=poi+ mij , )
PrlPs=—n+/2. (1)  Wwherep is the unperturbed pressure. In these formulas we

are considering only tensor perturbations, so that

But in order to use observations to check such relations, we

need to know what happens to the fluctuations between the hi=0, d;h;;=0, m;=0, g;m;=0. 5
time of inflation and the present. There is a very large litera-

ture on the scalar modes, but ever since the first calculations For a perfect fluidm;; =0, but this is not true in general.
[2] of the production of tensor modes in inflation, with only For instance, in any imperfect fluid with shear viscosity
one exception3] known to me, the interaction of these we have[6] ;= — ﬂhij . Nevertheless, as we shall show in
modes with matter and radiation has Slmply been assumed tBe Appendixl even where hydrodynamic approximaﬁons are
be negligible in studies of the cosmic microwave backgroundnapplicable, h;j becomes time-independent as the wave-
[4]. Itis not included in the widely used computer programjength of a mode leaves the horizon, and remains time-
of Seljak and Zaldarriaggb]. As we shall see, the effect is independent until horizon re-entry. All modes of cosmologi-
not negligible even at the relatively low values ©fwhere  ca| interest are still far outside the horizon at the temperature

the B-type polarization multipole coefficientSg, are likely  ~10'°K, where neutrinos are going out of equilibrium with
to be first measured, and becomes qute Slgnlflcant for |arg%|ectrons and photonS, $’Qj can be effected by anisotropic
values of¢. inertia only later, when neutrinos are freely streaming
We can calculate the contribution of freely streaming neu-
Il. DAMPING EFFECTS IN THE WAVE EQUATION trinos to ij exactly[?]. We define a densityl(x,p,t) as

The interaction of tensor modes with matter and radiation 3 3
vanishes in the case of perfect fluids, but not in the presencen(x,p,t)=>, (H 5[(xi—xir(t)]) ( IT sipi— pri(t)]) ,
of traceless transverse terms in the anisotropic stress tensor. ro\i=1 i=1
In general, the tensor fluctuation satisfies (6)

34 V2 with r labeling individual neutrino and antineutrino trajecto-
_) hij _( )h” =16nGm;, (2)  ries. The relativistic equations of motion in phase space for

h.: + _
! a? any metric withgo,=—1 andg;,=0 are
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N
Xi==5, Pri= ( ; (7)
P! 2p?
It then follows thatn satisfies a Boltzmann equation
on onp  on p pK IGjk _ @
gt ox' p° ap; 2p° ox!

it being understood thai' andp® are expressed in terms of

the independent variablep; and p°

by p'=g"p;

—(g”plpj)l/2 At a timet; soon after neutrlnos started free
streamingn had the ideal gas forrtassuming zero chemical

potential$

N _
)S{GXF[ Va' (x,ty)pipj kT, ]+1} 1
ar

Enl(xip)! (9)

n(x,p,ty)=
(2

whereN is the number of types of neutrinos, counting an-
tineutrinos separately, anlds is Boltzmann’'s constant. We

therefore write

n(x,p,t)=ny(x,p)+ on(x,p,t) (10

so thatén vanishes fot=t;.

In the absence of metric perturbations, E§) and the
initial condition (9) have the solutiom(p)zﬁ(p), where
F(p) is the zeroth-order part ofy:

— N
n(p)= (ZW)S[qup/kBT1a1)+1]7l, (11)

andp=/p;p;. To first order in metric perturbations, E®)
gives

ot a0 o

T 2a(t )n (p)pp,pk “[hy; () —hyj(x,t)],

(12

where hats denote unit vectoffdn putting the Boltzmann
equation in this form, we use that fact that depends orx
andp; only through the combinatiog’ (x,t;) p;p; , so that to
first orderdny(x,p) = —pn'(p) pip;dkhij(x,t1).]

We now suppose that thedependence dij;(x,t) is con-
tained in a factor ex-x), wherek is a co-moving wave
numbert Equation(12) and the initial condition thasn=0
att=t, then have the solution

IConventionally the comoving coordinateand wave numbek

are normalized by defining(t) so thata=1 at present. Here we

will leave this normalization arbitrary.
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i — A A~ A u A ’
5n(p,U)=—Epn’(p)p'kpipjfodulelp'k(u lhij(u’)

—h;;(0)],

where we now drop the position argument, and wéiteand
hj; as functions of a variable instead oft, with u defined as
the wave number times the conformal time

(13

t dt’

u=k .
ty a(t’)

(14

The space part of the neutrino energy-momentum tensor
is given by

- 1 PPy
T .= 83 (X—xX
V) ’_Detg Er p(r) ( r)

3 .

1 np'p;

= d .
\/Detg (kgl pk) p°

Th|s yields terms of first order ih;;(u) from p'= g”p and
pO= V@' pip;, a term of first order irh;;(0) from the term
n, in n, and a term of first order |h,J(u) hi;(0) from én.
Collecting all these terms and using ES) yields a surpris-
ingly simple formula forar;; :

(15

i (u)= —4;V(U)JOUK(U—U)hi’j(U)dU, (16)

where primes now indicate derivatives with respecttor
u; K is the kernel

3 coss 3sins
4 5

17

sins
—-

K(s)= ifﬂolx(l—xz)zei“: -
16) -,

S S S

andp,=a *fd3ppn(p) is the unperturbed neutrino energy
density.

To continue, we use E16) in Eq. (2) and express time
derivatives in terms ofl-derivatives. This gives an integro-
differential equation foih;;(u) [8]:

, 2a’'(u)
i (W) = (W) (W)
a’'(u) ,
=—24f (u) a(u) fK(u—U)hij(U)dU,

(18

wheref ,=p,/p.

We took the initial timet; to be soon after neutrinos
started free streaming, so interesting perturbations are out-
side the horizon then, and for some time after. As we show in
the Appendixh;; rapidly became time independent after ho-
rizon exit, and remained so until horizon re-entry. In terms of
u, we then have the initial condition
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The solution of Eq(18) can therefore be put in the general
form

hij(u)=h;;(0) x(u), (20)

wherey(u) satisfies the same integro-differential equation as

hij(u)
"(u)
X"(u)+ a(u) X' (U)+ x(u)
ar(u) 2 ru /
=—24fy(u)(m) fo K(u—=U)x'(U)dU,
(21
and the initial conditions
x(0)=1, Xx'(0)=0. (22
I1l. SHORT WAVELENGTHS

We will first consider wavelengths short enough to have
re-entered the horizon during the radiation-dominated era

(though long after neutrino decouplin@nd then turn to the
general case in Sec. IV. We can take the initial timé¢o be
early enough so that it can be approximatedas0, with
the zero of time defined so that during the radiation-
dominated era we havax\t. Then in Eq.(21) we can set
a'l/a=1/u, while for 3 neutrino flavorg, takes the constant
valuef,(0)=0.40523. Then Eq.21) becomes

24f (0)

u2

2 u
X”(u)+ax’(u)+x(u)=— f K(u—U)x'(U)dU.
0

(23

Because of the decrease of the factar’1the right-hand of
Eqg. (23) becomes negligible fou>1, so deep inside the
horizon the solution of Eq422) and (23) approaches a ho-
mogeneous solution

x(u)—Asin(u+8)/u (24

as compared with the solution sipfu for f,=0. A numeri-
cal solution of Eqs(22) and (23) shows thaty(u) follows
the f,=0 solution pretty accurately untii=1, when the

PHYSICAL REVIEW B9, 023503 (2004

ficientsC,g, are 35.6% less than they would be without the
damping due to free-streaming neutrin@hotons also con-
tribute tor;; , but this effect is much smaller because at last
scattering photons contribute much less than 40% of the total
energy)

IV. GENERAL WAVELENGTHS

To deal with perturbations that may enter the horizon after
the matter energy density has become important, let us
switch the independent variable from to y=a(t)/agq,
whereagq is a(t) at the timetgq of radiation-matter equality.

To see how they are related, note that
ag\
e

Ao
Ho QM(;
(25

The redshift of matter-radiation equality is given by-2gq
=ag/age=0n/(2,+Q,), so Eq.(25 can be simplified to
read

2 3

+(Q,+Q,)

dy a a

du aggk/a - aggK

du_ Q 26
dy 1+y'
where
Q= X 27
aHoVQu(1+2zeQ)
Sinceu—0 for y—0, the solution of Eq(26) is
u=2Q(y1+y—1). (28)

The Hubble constant at matter-radiation equality has the
vaIueHEQ:Ho\/ZQM(1+zEQ)3, so Eq.(28) can be written

Q=2K/keq, (29
where Keq=aggHeq is the wave number of perturbations
that just enter the horizon at the time of radiation-matter
equality.(Hence in particular the results of the previous sec-
tion apply forQ>1.)

perturbation enters the horizon, and thereafter rapidly ap- 1n€ fraction of the total energy density in neutrinos is

proaches the asymptotic for(24), with A=0.8026 ands
very small. This asymptotic form provides the initial condi-
tion for the later period when the matter energy density be

comes first comparable to and then greater than that of ra- f.(y)=
diation, so the effect of neutrino damping at these later times

is still only to reduce the tensor amplitude by the same facto
A=0.8026. Hence, for wavelengths that enter the horizo
after electron—positron annihilation and well before

radiation-matter equality, all quadratic effects of the tensor

modes in the cosmic microwave background, such as th

well known,

O, (agl/a)* _ f,00)
Qu(ag/a)’+(Q,+Q,)(ap/a)* 1+y’

(30

r

I%/vhere

v

Q,+0Q

14

f,(0)= =0.40523. (31
e Y

tensor contribution to the temperature multipole coefficients
C, and the whole of the “B-B” polarization multipole coef- A little algebra then lets us put EQ1) in the form
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d’x(y) (2(1+Y) 1) dx(y) | dikeg
_ o=
(1+y) dy? Ty T3 Ty +Q%x(y) QT g,
! 1 dx
24f,(0) (v Sty =\20,(1+z )j

(35

whereK(y,y’) is the same as thK(s) given by Eq.(17),

but with s now given by where zgq is the redshift of matter-radiation equality. For

present radiation temperatur&,,=2.725K and Qyh?
=0.15 this redshift iszgo=3613. If also{),=0.3 and 1
s=u—u'=2Q(J1+y—Ji1+y'). (33 +2z,=1090 then the integral in EG35) has the value 3.195,
and so Eq(35) gives{gq=149. Hence for these cosmologi-
The initial conditions(22) now read cal parameters, Eq29) gives

¢ ¢

dx(y) Q ¢ 105
x(0)= dy | .~ 0. (34) FQ
y=0 When referring below to specific values 6f it will always
o be understood that the conversion franto ¢ has been
We now have to face the complication that for gen@al made using these cosmological parameters, but it should be
the value ofy at last scattering is not in an asymptotic regionkept in mind that the dependence of the functefy) ony

where the effect of anisotropic inertia is simply to dag(h)  and Q is independent of cosmological parameters, and that
by some constant factor. We therefore now have to considghe value ofy at last scattering depends only dno, 1

what feature ofy(t) is related to observations of the cosmic 1 7 | and(,,h?, not onQy or Q..

microwave background. It ig that enters into the Boltz- Let us first consider the casg<1, which for the above
mann equation for perturbations to the temperature andosmological parameters corresponds(t€100. Here the
Stokes parametef®], so in the approximation of a sudden kernel K(y,y’) has the constant value 1/15, and E(f2)
transition from opacity to transparency, we expect all tensoand (34) have a solution of the form

multipole coefficients to depend og(y) only through a

factor [x'(y.)|?, wherey, =(1+2gQ)/(1+2) is the value x(Y)—1—Q?%g(y) for Q—0 (36)
of y at last scattering. Hence we will be primarily interested

in calculating the value dfy’ (y,)|? for various values 0,  whereg(y) is independent of, and satisfies the inhomoge-
and comparing these values with what they would be in theneous differential equation

absence of anisotropic inertia.

For T,,=2.725K, we haveQ),+Q,=4.15<10 °h~?, d?g(y) (2(1+y) 1)\dg(y) 8f,(0)
so, taking Hz, =1090, the parametsr, is (1+y) ay? + y + 5) dy + 5y° g(y)=1
(37)
yL:22'th2'
and the initial conditions
It will be useful also to have an idea of the value for 9(0)=g'(0)=0. (39)

which the multipole coefficients in various correlation func-
tions are dominated by perturbations with a giv@n The

. L . - According to the above discussion, the streaming of free
dominant contribution to a multipole coefficient of ordér ng Ve dIScuss] ng

¢ bel /4 h is a(t) at neutrinos damps the various tensor correlation functions of
fr?mteirsr’\ rorplwatve mtjtmrir? a iL'thW err1ea|i 'f c?i( r)nat ; the cosmic microwave background by a factor
e time of last scattering, and{ is the angular diamete Y (YO X012 which for Q=1 becomes

distance of the surface of last scattering, which for flat ge_lg'(yL)/gé(yL)lz, the subscript O denoting quantities calcu-

ometries Is lated ignoring this damping, i.e., fdr,=0, andy, again
equal to the ratio ofi(t) at last scattering to that at matter-

1 1 dx radiation equality. Numerical solutions of Ed87) and(38)
de for f,(0)=0.40523 and forf ,=0 show that the damping

“Ho(1+z oI
ol 1 20) Juiarz) Q-+ (1= Q) x factor |g’ (y.)/g4(yL)|? is very close to a linear function of

y, and hence of),h? for observationally favored values of
wherez, is the redshift of last scattering. Thus the multipole Q\,h?, increasing from 0.893 af),,h?=0.10 to 0.910 for
order that receives its main contribution from wavelengths),,h?=0.15.
that are just coming into the horizon at matter-radiation This damping is relatively insensitive Q for small Q.
equality is For instance, numerical integration of Eq82) and (34)
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shows that foK),,h?=0.15, the damping has only decreasedNewtonian gauge field equations and the dynamical equa-
from 9% to 8% forQ=0.55 ((=58), and to 7% forQ  tions for matter and radiation as well as the conditiGnO
=0.8 (f=84). Matters are more complicated for larger val- are invariant under coordinate transformations that reve
ues of Q and ¢, because the damping factor symmetries of the unperturbed metfidhe most general
Ix' (yO)/x4(y)|? is the ratio of two oscillating functions such transformations are
with slightly different phases, so that the plot of

Ix" (YO /x6(yD)|? vs Q shows narrow spikes: this ratio be- X0 x4+ €(t), X —
comes infinite at values @ for which y((y,) vanishes and
then almost immediately drops to zero at the slightly larger : . . . .
value ofQ for WhiCh)(’())//L) vgnishes[Even if we %ve):ageg where H=ala, €(t) is an arbitrary function of time, and

over the small range of values over which last scattering @il = @ii IS an arbitrary constant matrix. Under these condi-
/ / 2 : - tions we have something like a Goldstone theorem: since the
occurs, the plot of| x’ (yo)/ xo(YL)|?) vs Q still shows finite

thouah hiah i t th Th metric satisfies the field equations both before and after the
ough nigh naIrow Spikes a e.zeroesxg(yL).] €S€ " transformation, the change in the metric under these transfor-
spikes are not particularly interesting, because they occur gf,ations must also satisfy the field equations. This change is
values ofQ where x'(y,) is particularly small, so that the

multipole coefficients in the various tensor temperature anéImply

polarization correlation funct'ions will be very difficult to 5q = ¢(t), 8gi,=0, 59”=a2(t)[—H(t)e(t)5ij+wij].
measure for the corresponding values€ofThe values of A2

[x' (YO /x5(y)|? in the relatively flat regions between the _

spikes steadily decreases from the va@.9 for Q<1 to a This ‘means that for zero wave number we always have a
value close to the result 0.644 found in the previous sectiof0Ution with scalar modes

for Q=10. _ -

The effects considered in this paper will doubtless even- Y=He-w;/3, ®=-e (A3)
tually be taken into account in the computer programs usednd a tensor mode
to analyze data from PLANCK and other future facilities. In
the meanwhile, the planning of future observations should
take into account that the damping of cosmological gravita-
tional waves is not negligible.

Notes added in prooffter the preprint of this paper was (The notation ford and ¥ is standard, and the same as in
circulated, the damping of tensor modes was included in th&ef.[10].) These are just gauge modes for zero wave num-
computer program described in RE5]. Because the aniso- ber, but if they can be extended to non-zero wave number
tropic part of the stress tensor is gauge invariant, it vanishethey become physical modes, since transformatiévis are
outside the horizon in the scalar and tensor modes giverlot symmetries of the field equations except for zero wave
respectively, by Eqs(A3) and (A4). It follows that for the = number. For the scalar modes there are field equations that
scalar mode given by E4A3), the general solution of Eq. disappear in the limit of zero wave number, so that condi-

S X, (A1)

a)ij

ij_E

1
hij = wij = 3 8ij @ik (Ad)

(A5) is e=(R/a)fa dt. tions =V -87wGwg and Su=e (where 7g is the scalar
part of the anisotropic inertia, called in Ref.[10]) and du
ACKNOWLEDGMENTS is the perturbation to the velocity potenjiahust be imposed

on solutions(A3) for them to have an extension to non-zero

| am grateful for valuable conversations with Richardwave number. It follows then that the zero wave number
Bond, Lev Kofman, Eiichiro Komatsu, Richard Matzner and scalar modes that become physical for non-zero wave num-
Matias Zaldarriaga. Thanks are due to Michael Trott for ad-ber satisfy
vice regarding the numerical solution of E(L8), and to ,
Matthew Anderson for checking the numerical results. This €=—Het+w/3-8mGms, du=e. (A5)
research was supported in part by the Robert A. Welch Foun-
dation, by NSF erant No.pPHY}/0071512, and by the s hen for zero wave number the quantfly=— +hau has
Navy Grant No. N00014-03-1-0639, “Quantum Optics Ini- ("€ time-independent value

tiative.” R= wkk/3. (AG)

APPENDIX: SUPERHORIZON CONSERVATION LAWS For tensor modes there are no field equations that disappear
for zero wave number, so the solutidnﬂj =constant auto-

This appendix will prove a result quoted in Sec. Il, that in matically has an extension to a physical mode for a nonzero
all cases there is a tensor mode whose amplitude remaiRgave number.
constant outside the horizon, even where some particles may
have mean free times comparable to the Hubble time. The———
argument is similar to one used previously to show the exis- 2in this respect, the theorem proved here is similar to the Gold-
tence under very general conditions of two scalar modes fogtone theorerfil1] of quantum field theory. The modes for whigh
which a quantityR is constant outside the horiz¢h0]. Itis  or h;; are constant outside the horizon take the place here of the
based on the observation that for zero wave number th&oldstone bosons that become free particles for long wavelengths.
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As examples, we note that both the anisotropic stress terenly solution, but the other solutions decay rapidly after ho-
sor ;= — nh” for an imperfect fluid with shear viscosity ~ f1zon exit. There is no anisotropic inertia in scalar field theo-

and tensor(16) for freely streaming neutrinos vanish for
hi;=0, so in the limit of zero wave numbers E@) has a
solution withhij =0. The above theorem shows that this re-

ries, and in the absence of anisotropic inertia, @gfor zero
wave number has two solutions, one with a constant, and
the other withhijoca*3, for which h;; rapidly becomes a
constant. The energy-momentum tensor of the universe de-

sult applies even when some particle’'s mean free time i3, from the perfect fluid form later, during neutrino decou-

comparable _Wlth the Hubble time, in which c_ase_nelther thep”ng, and perhaps also during reheating or periods of baryon

hydrodynamic nor the free-streaming approximations are apy |epton nonconservation, but during all these epochs cos-

plicable. _ mologically interesting tensor fluctuations are far outside the
The solution withh;; =0 for zero wave number is not the horizon, and hence remain constant.
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