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Damping of tensor modes in cosmology

Steven Weinberg
Theory Group, Physics Department, University of Texas, Austin, Texas 78712, USA

~Received 10 June 2003; revised manuscript received 25 September 2003; published 15 January 2004!

An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free
streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological
gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6% for
wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological
parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths
by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest
wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7%
for VMh250.1 to 9.0% forVMh250.15. An appendix gives a general proof that tensor as well as scalar modes
satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not
negligible.
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I. INTRODUCTION

It is widely expected that the observation of cosmologi
tensor fluctuations through measurements of the polariza
of the microwave background may provide a uniquely va
able check on the validity of simple inflationary cosmol
gies. For instance, for a large class of inflationary theo
with single scalar fields satisfying the ‘‘slow roll’’ approxi
mation, the wave-number dependenceP S}knS21 and P T
}knT of the scalar and tensor power spectral functions
the ratio of these spectral functions after horizon exit dur
inflation are related by@1#

PT /PS52nT/2. ~1!

But in order to use observations to check such relations,
need to know what happens to the fluctuations between
time of inflation and the present. There is a very large lite
ture on the scalar modes, but ever since the first calculat
@2# of the production of tensor modes in inflation, with on
one exception@3# known to me, the interaction of thes
modes with matter and radiation has simply been assume
be negligible in studies of the cosmic microwave backgrou
@4#. It is not included in the widely used computer progra
of Seljak and Zaldarriaga@5#. As we shall see, the effect i
not negligible even at the relatively low values of, where
the B-type polarization multipole coefficientsCB, are likely
to be first measured, and becomes quite significant for la
values of,.

II. DAMPING EFFECTS IN THE WAVE EQUATION

The interaction of tensor modes with matter and radiat
vanishes in the case of perfect fluids, but not in the prese
of traceless transverse terms in the anisotropic stress te
In general, the tensor fluctuation satisfies

ḧi j 1S 3ȧ

a
D ḣi j 2S ¹2

a2 D hi j 516pGp i j , ~2!
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where dots indicate ordinary time derivatives. Here the co
ponents of the perturbed metric are

g00521, gi050, gi j ~x,t !5a2~ t !@d i j 1hi j ~x,t !# ~3!

wherehi j (x,t) is treated as a small perturbation; andp i j (x,t)
is the anisotropic part of the stress tensor, defined by writ
the spatial part of the perturbed energy-momentum tenso
Ti j 5 p̄gi j 1a2p i j , or equivalently

Ti
j5 p̄d i j 1p i j , ~4!

where p̄ is the unperturbed pressure. In these formulas
are considering only tensor perturbations, so that

hii 50, ] ihi j 50, p i i 50, ] ip i j 50. ~5!

For a perfect fluidp i j 50, but this is not true in genera
For instance, in any imperfect fluid with shear viscosityh,
we have@6# p i j 52hḣi j . Nevertheless, as we shall show
the Appendix, even where hydrodynamic approximations
inapplicable,hi j becomes time-independent as the wav
length of a mode leaves the horizon, and remains tim
independent until horizon re-entry. All modes of cosmolo
cal interest are still far outside the horizon at the tempera
'1010 K, where neutrinos are going out of equilibrium wit
electrons and photons, sohi j can be effected by anisotropi
inertia only later, when neutrinos are freely streaming.

We can calculate the contribution of freely streaming ne
trinos top i j exactly @7#. We define a densityn(x,p,t) as

n~x,p,t ![(
r

S )
i 51

3

d [ ~xi2xr
i ~ t !# D S )

i 51

3

d @pi2pri ~ t !# D ,

~6!

with r labeling individual neutrino and antineutrino traject
ries. The relativistic equations of motion in phase space
any metric withg00521 andgi050 are
©2004 The American Physical Society03-1
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ẋr
i 5

pr
i

pr
0

, ṗri 5
pr

j pr
k

2pr
0 S ]gjk

]xi D
x5xr

. ~7!

It then follows thatn satisfies a Boltzmann equation

]n

]t
1

]n

]xi

pi

p0
1

]n

]pi

pj pk

2p0

]gjk

]xi
50, ~8!

it being understood thatpi andp0 are expressed in terms o
the independent variablepi by pi5gi j pj and p0

5(gi j pipj )
1/2. At a time t1 soon after neutrinos started fre

streaming,n had the ideal gas form~assuming zero chemica
potentials!

n~x,p,t1!5
N

~2p!3
$exp@Agi j ~x,t1!pipj /kBT1#11%21

[n1~x,p!, ~9!

whereN is the number of types of neutrinos, counting a
tineutrinos separately, andkB is Boltzmann’s constant. We
therefore write

n~x,p,t !5n1~x,p!1dn~x,p,t ! ~10!

so thatdn vanishes fort5t1.
In the absence of metric perturbations, Eq.~8! and the

initial condition ~9! have the solutionn(p)5n̄(p), where
n̄(p) is the zeroth-order part ofn1:

n̄~p!5
N

~2p!3
@exp~p/kBT1a1!11#21, ~11!

andp[Apipi . To first order in metric perturbations, Eq.~8!
gives

]dn~x,p,t !

]t
1

p̂i

a~ t !

]dn~x,p,t !

]xi

52
p

2a~ t !
n̄8~p!p̂i p̂ j p̂k

]

]xk
@hi j ~x,t !2hi j ~x,t1!#,

~12!

where hats denote unit vectors.@In putting the Boltzmann
equation in this form, we use that fact thatn1 depends onx
andpi only through the combinationgi j (x,t1)pipj , so that to
first order]kn1(x,p)52pn̄8(p) p̂i p̂ j]khi j (x,t1).#

We now suppose that thex dependence ofhi j (x,t) is con-
tained in a factor exp(ik•x), wherek is a co-moving wave
number.1 Equation~12! and the initial condition thatdn50
at t5t1 then have the solution

1Conventionally the comoving coordinatex and wave numberk
are normalized by defininga(t) so thata51 at present. Here we
will leave this normalization arbitrary.
02350
-

dn~p,u!52
i

2
pn̄8~p! p̂• k̂p̂i p̂ jE

0

u

du8eip̂• k̂(u82u)@hi j ~u8!

2hi j ~0!#, ~13!

where we now drop the position argument, and writedn and
hi j as functions of a variableu instead oft, with u defined as
the wave number times the conformal time

u[kE
t1

t dt8

a~ t8!
. ~14!

The space part of the neutrino energy-momentum ten
is given by

Tn
i

j5
1

ADetg
(

r

pr
i pr j

pr
0

d3~x2xr !

5
1

ADetg
E S )

k51

3

dpkD npipj

p0
. ~15!

This yields terms of first order inhi j (u) from pi5gi j pj and
p05Agi j pipj , a term of first order inhi j (0) from the term
n1 in n, and a term of first order inhi j (u)2hi j (0) from dn.
Collecting all these terms and using Eq.~5! yields a surpris-
ingly simple formula forp i j :

p i j ~u!524r̄n~u!E
0

u

K~u2U !hi j8 ~U !dU, ~16!

where primes now indicate derivatives with respect toU or
u; K is the kernel

K~s![
1

16E21

11

dx~12x2!2eixs52
sins

s3
2

3 coss

s4
1

3 sins

s5
,

~17!

and r̄n5a24*d3ppn̄(p) is the unperturbed neutrino energ
density.

To continue, we use Eq.~16! in Eq. ~2! and express time
derivatives in terms ofu-derivatives. This gives an integro
differential equation forhi j (u) @8#:

hi j9 ~u!1
2a8~u!

a~u!
hi j8 ~u!1hi j ~u!

5224f n~u!S a8~u!

a~u! D 2E
0

u

K~u2U !hi j8 ~U !dU,

~18!

where f n[r̄n / r̄.
We took the initial timet1 to be soon after neutrino

started free streaming, so interesting perturbations are
side the horizon then, and for some time after. As we show
the Appendix,hi j rapidly became time independent after h
rizon exit, and remained so until horizon re-entry. In terms
u, we then have the initial condition
3-2
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hi j8 ~0!50. ~19!

The solution of Eq.~18! can therefore be put in the gener
form

hi j ~u!5hi j ~0!x~u!, ~20!

wherex(u) satisfies the same integro-differential equation
hi j (u)

x9~u!1
2a8~u!

a~u!
x8~u!1x~u!

5224f n~u!S a8~u!

a~u! D 2E
0

u

K~u2U !x8~U !dU,

~21!

and the initial conditions

x~0!51, x8~0!50. ~22!

III. SHORT WAVELENGTHS

We will first consider wavelengths short enough to ha
re-entered the horizon during the radiation-dominated
~though long after neutrino decoupling!, and then turn to the
general case in Sec. IV. We can take the initial timet1 to be
early enough so that it can be approximated ast1.0, with
the zero of time defined so that during the radiatio
dominated era we havea}At. Then in Eq.~21! we can set
a8/a51/u, while for 3 neutrino flavorsf n takes the constan
value f n(0)50.40523. Then Eq.~21! becomes

x9~u!1
2

u
x8~u!1x~u!52

24f n~0!

u2 E
0

u

K~u2U !x8~U !dU.

~23!

Because of the decrease of the factor 1/u2, the right-hand of
Eq. ~23! becomes negligible foru@1, so deep inside the
horizon the solution of Eqs.~22! and ~23! approaches a ho
mogeneous solution

x~u!→A sin~u1d!/u ~24!

as compared with the solution sin(u)/u for f n50. A numeri-
cal solution of Eqs.~22! and ~23! shows thatx(u) follows
the f n50 solution pretty accurately untilu'1, when the
perturbation enters the horizon, and thereafter rapidly
proaches the asymptotic form~24!, with A50.8026 andd
very small. This asymptotic form provides the initial cond
tion for the later period when the matter energy density
comes first comparable to and then greater than that o
diation, so the effect of neutrino damping at these later tim
is still only to reduce the tensor amplitude by the same fac
A50.8026. Hence, for wavelengths that enter the horiz
after electron–positron annihilation and well befo
radiation-matter equality, all quadratic effects of the ten
modes in the cosmic microwave background, such as
tensor contribution to the temperature multipole coefficie
C, and the whole of the ‘‘B-B’’ polarization multipole coef
02350
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ficientsC,B , are 35.6% less than they would be without t
damping due to free-streaming neutrinos.~Photons also con-
tribute top i j , but this effect is much smaller because at la
scattering photons contribute much less than 40% of the t
energy.!

IV. GENERAL WAVELENGTHS

To deal with perturbations that may enter the horizon a
the matter energy density has become important, let
switch the independent variable fromu to y[a(t)/aEQ,
whereaEQ is a(t) at the timetEQ of radiation-matter equality.
To see how they are related, note that

dy

du
5

ȧ

aEQk/a
5

a2

aEQk
H0AVMS a0

a
D 3

1~Vg1Vn!S a0

a
D 4

.

~25!

The redshift of matter-radiation equality is given by 11zEQ
5a0 /aEQ5VM /(Vg1Vn), so Eq.~25! can be simplified to
read

du

dy
5

Q

A11y
, ~26!

where

Q[
k

a0H0AVM~11zEQ!
. ~27!

Sinceu→0 for y→0, the solution of Eq.~26! is

u52Q~A11y21!. ~28!

The Hubble constant at matter-radiation equality has
valueHEQ5H0A2VM(11zEQ)3, so Eq.~28! can be written

Q5A2k/kEQ, ~29!

where kEQ[aEQHEQ is the wave number of perturbation
that just enter the horizon at the time of radiation-mat
equality.~Hence in particular the results of the previous se
tion apply forQ@1.!

The fraction of the total energy density in neutrinos
well known,

f n~y!5
Vn~a0 /a!4

VM~a0 /a!31~Vg1Vn!~a0 /a!4
5

f n~0!

11y
, ~30!

where

f n~0!5
Vn

Vn1Vg
50.40523. ~31!

A little algebra then lets us put Eq.~21! in the form
3-3
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~11y!
d2x~y!

dy2
1S 2~11y!

y
1

1

2D dx~y!

dy
1Q2x~y!

52
24f n~0!

y2 E
0

y

K~y,y8!
dx~y8!

dy8
dy8, ~32!

whereK(y,y8) is the same as theK(s) given by Eq.~17!,
but with s now given by

s[u2u852Q~A11y2A11y8!. ~33!

The initial conditions~22! now read

x~0!5
dx~y!

dy U
y50

50. ~34!

We now have to face the complication that for generaQ
the value ofy at last scattering is not in an asymptotic regi
where the effect of anisotropic inertia is simply to dampx(t)
by some constant factor. We therefore now have to cons
what feature ofx(t) is related to observations of the cosm
microwave background. It isẋ that enters into the Boltz
mann equation for perturbations to the temperature
Stokes parameters@9#, so in the approximation of a sudde
transition from opacity to transparency, we expect all ten
multipole coefficients to depend onx(y) only through a
factor ux8(yL)u2, whereyL5(11zEQ)/(11zL) is the value
of y at last scattering. Hence we will be primarily interest
in calculating the value ofux8(yL)u2 for various values ofQ,
and comparing these values with what they would be in
absence of anisotropic inertia.

For Tg052.725 K, we haveVg1Vn54.1531025h22,
so, taking 11zL51090, the parameteryL is

yL522.1VMh2.

It will be useful also to have an idea of the value of, for
which the multipole coefficients in various correlation fun
tions are dominated by perturbations with a givenQ. The
dominant contribution to a multipole coefficient of order,
comes from wave numbersk.aL,/dL , whereaL is a(t) at
the time of last scattering, anddL is the angular diamete
distance of the surface of last scattering, which for flat
ometries is

dL5
1

H0~11zL!
E

1/(11zL)

1 dx

AVMx1~12VM !x4
,

wherezL is the redshift of last scattering. Thus the multipo
order that receives its main contribution from waveleng
that are just coming into the horizon at matter-radiat
equality is
02350
er

d

r

e

-

s

,EQ[
dLkEQ

aL

5A2VM~11zEQ!E
1/(11zL)

1 dx

AVMx1~12VM !x4
,

~35!

where zEQ is the redshift of matter-radiation equality. Fo
present radiation temperatureTg052.725 K and VMh2

50.15 this redshift iszEQ53613. If alsoVM50.3 and 1
1zL51090 then the integral in Eq.~35! has the value 3.195
and so Eq.~35! gives,EQ5149. Hence for these cosmolog
cal parameters, Eq.~29! gives

Q5A2
,

,EQ
.

,

105
.

When referring below to specific values of,, it will always
be understood that the conversion fromQ to , has been
made using these cosmological parameters, but it shoul
kept in mind that the dependence of the functionx(y) on y
and Q is independent of cosmological parameters, and t
the value ofy at last scattering depends only onTg0 , 1
1zL , andVMh2, not onVM or Vvac.

Let us first consider the caseQ!1, which for the above
cosmological parameters corresponds to,!100. Here the
kernel K(y,y8) has the constant value 1/15, and Eqs.~32!
and ~34! have a solution of the form

x~y!→12Q2g~y! for Q→0 ~36!

whereg(y) is independent ofQ, and satisfies the inhomoge
neous differential equation

~11y!
d2g~y!

dy2
1S 2~11y!

y
1

1

2D dg~y!

dy
1

8 f n~0!

5y2
g~y!51

~37!

and the initial conditions

g~0!5g8~0!50. ~38!

According to the above discussion, the streaming of f
neutrinos damps the various tensor correlation functions
the cosmic microwave background by a fact
ux8(yL)/x08(yL)u2, which for Q!1 becomes
ug8(yL)/g08(yL)u2, the subscript 0 denoting quantities calc
lated ignoring this damping, i.e., forf n50, and yL again
equal to the ratio ofa(t) at last scattering to that at matte
radiation equality. Numerical solutions of Eqs.~37! and~38!
for f n(0)50.40523 and forf n50 show that the damping
factor ug8(yL)/g08(yL)u2 is very close to a linear function o
yL and hence ofVMh2 for observationally favored values o
VMh2, increasing from 0.893 atVMh250.10 to 0.910 for
VMh250.15.

This damping is relatively insensitive toQ for small Q.
For instance, numerical integration of Eqs.~32! and ~34!
3-4
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shows that forVMh250.15, the damping has only decreas
from 9% to 8% for Q50.55 (,.58), and to 7% forQ
50.8 (,.84). Matters are more complicated for larger va
ues of Q and ,, because the damping facto
ux8(yL)/x08(yL)u2 is the ratio of two oscillating functions
with slightly different phases, so that the plot
ux8(yL)/x08(yL)u2 vs Q shows narrow spikes: this ratio be
comes infinite at values ofQ for which x08(yL) vanishes and
then almost immediately drops to zero at the slightly lar
value ofQ for which x8(yL) vanishes.@Even if we average
over the small range ofy values over which last scatterin
occurs, the plot of̂ ux8(yL)/x08(yL)u2& vs Q still shows finite
though high narrow spikes at the zeroes ofx08(yL).# These
spikes are not particularly interesting, because they occu
values ofQ wherex8(yL) is particularly small, so that the
multipole coefficients in the various tensor temperature
polarization correlation functions will be very difficult t
measure for the corresponding values of,. The values of
ux8(yL)/x08(yL)u2 in the relatively flat regions between th
spikes steadily decreases from the value.0.9 for Q!1 to a
value close to the result 0.644 found in the previous sec
for Q.10.

The effects considered in this paper will doubtless ev
tually be taken into account in the computer programs u
to analyze data from PLANCK and other future facilities.
the meanwhile, the planning of future observations sho
take into account that the damping of cosmological grav
tional waves is not negligible.

Notes added in proof.After the preprint of this paper wa
circulated, the damping of tensor modes was included in
computer program described in Ref.@5#. Because the aniso
tropic part of the stress tensor is gauge invariant, it vanis
outside the horizon in the scalar and tensor modes giv
respectively, by Eqs.~A3! and ~A4!. It follows that for the
scalar mode given by Eq.~A3!, the general solution of Eq
~A5! is e5(R/a)*a dt.
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APPENDIX: SUPERHORIZON CONSERVATION LAWS

This appendix will prove a result quoted in Sec. II, that
all cases there is a tensor mode whose amplitude rem
constant outside the horizon, even where some particles
have mean free times comparable to the Hubble time.
argument is similar to one used previously to show the e
tence under very general conditions of two scalar modes
which a quantityR is constant outside the horizon@10#. It is
based on the observation that for zero wave number
02350
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Newtonian gauge field equations and the dynamical eq
tions for matter and radiation as well as the conditionk50
are invariant under coordinate transformations that arenot
symmetries of the unperturbed metric.2 The most genera
such transformations are

x0→x01e~ t !, xi→S d i j 2
1

2
v i j D xj , ~A1!

where H[ȧ/a, e(t) is an arbitrary function of time, and
v i j 5v j i is an arbitrary constant matrix. Under these con
tions we have something like a Goldstone theorem: since
metric satisfies the field equations both before and after
transformation, the change in the metric under these trans
mations must also satisfy the field equations. This chang
simply

dg005 ė~ t !, dgi050, dgi j 5a2~ t !@2H~ t !e~ t !d i j 1v i j #.
~A2!

This means that for zero wave number we always hav
solution with scalar modes

C5He2v i i /3, F52 ė ~A3!

and a tensor mode

hi j 5v i j 2
1

3
d i j vkk . ~A4!

~The notation forF and C is standard, and the same as
Ref. @10#.! These are just gauge modes for zero wave nu
ber, but if they can be extended to non-zero wave num
they become physical modes, since transformations~A1! are
not symmetries of the field equations except for zero wa
number. For the scalar modes there are field equations
disappear in the limit of zero wave number, so that con
tions F5C28pGpS and du5e ~where pS is the scalar
part of the anisotropic inertia, calleds in Ref. @10#! anddu
is the perturbation to the velocity potential! must be imposed
on solutions~A3! for them to have an extension to non-ze
wave number. It follows then that the zero wave numb
scalar modes that become physical for non-zero wave n
ber satisfy

ė52He1vkk/328pGpS , du5e. ~A5!

Then for zero wave number the quantityR[2C1hdu has
the time-independent value

R5vkk/3. ~A6!

For tensor modes there are no field equations that disap
for zero wave number, so the solutionhi j 5constant auto-
matically has an extension to a physical mode for a nonz
wave number.

2In this respect, the theorem proved here is similar to the Go
stone theorem@11# of quantum field theory. The modes for whichR
or hi j are constant outside the horizon take the place here of
Goldstone bosons that become free particles for long waveleng
3-5
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As examples, we note that both the anisotropic stress
sorp i j 52hḣi j for an imperfect fluid with shear viscosityh
and tensor~16! for freely streaming neutrinos vanish fo
ḣi j 50, so in the limit of zero wave numbers Eq.~2! has a
solution with ḣi j 50. The above theorem shows that this r
sult applies even when some particle’s mean free time
comparable with the Hubble time, in which case neither
hydrodynamic nor the free-streaming approximations are
plicable.

The solution withḣi j 50 for zero wave number is not th
n
cu
e
.

ag
lti-
be
.

n
av
ct

en

-
As

o
A.
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only solution, but the other solutions decay rapidly after h
rizon exit. There is no anisotropic inertia in scalar field the
ries, and in the absence of anisotropic inertia, Eq.~2! for zero
wave number has two solutions, one withhi j a constant, and
the other withḣi j }a23, for which hi j rapidly becomes a
constant. The energy-momentum tensor of the universe
parts from the perfect fluid form later, during neutrino deco
pling, and perhaps also during reheating or periods of bar
or lepton nonconservation, but during all these epochs c
mologically interesting tensor fluctuations are far outside
horizon, and hence remain constant.
esult

lent
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