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Radiation and evolution of a small relativistic dipole in QED

B. Blok*
Department of Physics, Technion– Israel Institute of Technology, Haifa 32000, Israel

~Received 24 June 2003; published 23 January 2004!

We study in the quasiclassical approximation the radiation reaction and its influence on the space-time
evolution for the small relativistic dipole moving in a constant external electromagnetic field in QED.
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I. INTRODUCTION

The problem of the radiation loss~radiation reaction! of a
particle moving in a given external field is a classical pro
lem both in quantum and in classical physics that has alw
attracted a lot of attention. The classical physics studies
thoroughly reviewed in Refs.@1–3#. Since the creation o
QED this problem was thoroughly studied on the quant
level by several groups of authors, and the results were
viewed in Refs.@4–10#. Two different lines of approach
were developed: one based on the use of the exact w
functions in the external field@5,6,8#, and the other based o
the quasiclassical approach@7#.

In particular, the classical results for the radiation react
were extended to the quantum case, and it was shown
for ultrarelativistic particles such thatFE/m3@1 (F is the
field strength,E the energy andm the mass of the particle!,
the law of radiation reaction changes drastically compare
the classical case due to the strong recoil effects. Recen
new version of the quasiclassical approach based on the
of the quasiclassical Schro¨dinger wave functions was deve
oped in Refs.@9,10# and references therein.

Although the theory of a particle in an external fie
seems to be thoroughly developed, there is still a lot of
terest in the subject. The reasons, apart from the inte
beauty of the subject, include a number of practical reas
First, the external field is the simplest model of the med
Second, the QED results can be viewed as a starting poin
the discussion of the propagation of the QCD particles in
media, this subject being extremely popular recently due
the recent interest in the quark-gluon plasma@11#. Next, it
was realized that the space-time evolution of the point cha
in the external field is closely connected with the fundam
tal properties of QED, leading to the concept of the semib
electron@12#.

The above research was devoted, however, to the ra
tion reaction of the charged particle in the external fie
Much less is known about the dipole propagation in the
ternal field. The experimental research of faste1-e2 pairs
propagating in the media continues since the 1950s, inc
ing the famous experiments by Perkins@13# in 1957. The
theoretical investigation of the faste1-e2 pairs leading to
the concept of charge transparency was started in R
@14,15#. Recently, there was renewed theoretical interes
the study of the relativistic dipole in QED. The reasons
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both practical ~explanation of the experimental data o
e1-e2 pairs! and theoretical. In particular, it was realize
that quantum effects play a much bigger role in the propa
tion of the dipole in the external field than that of the sing
particle, leading to the discovery of the quantum diffusi
@16#. The essence of the latter phenomenom is the diffusi
type law of the fast dipole expansion in the weak exter
field due to the non-Coulombic quantum photon exchan
between the components of the dipole. Thus it was reali
that the study of the propagating QED dipole, and in parti
lar of its space-time evolution, is important for the unde
standing of the fundamental properties of the QED, in lig
of Ref. @12#. Moreover, the study of the propagating dipole
extremely important due to its possible generalization
QCD, where the dipole, due to confinement, may be the
sic degree of freedom@17–19#. This approach led to the
discovery of color transparency phenomena in QCD@17#.
Moreover, the QED dipole is identical to the QCD dipo
connected to the deep inelastic scattering on the longitud
virtual photons@20#. However, there is still very little knowl-
edge about the properties of the propagating relativistic
pole ~in particular relative to what we know about the prop
gation of the single charged particles!.

The main goal of the present paper is to study the rad
tion reaction and in particular the pattern of the charge tra
parency and its influence on the evolution of the small
trarelativistic dipole in the arbitrary strong external field
QED. In particular we shall be interested in the influence
the interference between the fields created by different c
ponents of the dipole on the radiation reaction. For simplic
we shall consider the case of the dipole containing two
positely charged scalar particles of the same mass, movin
a constant external field whose direction is orthogonal to
direction of the motion of the center of mass of the dipo
We shall assume that two particles were created at the
T50 in the same point of the space-timerW(0)50W .

The main goal of this paper is to take into account t
influence of the quantum effects on the radiation reaction
the dipole. We shall be able to take into account the quan
effects connected with the recoil. We will not be able to ta
into account the quantum effects connected with the quan
character of the motion of the dipole, in particular we sh
not be able to take into account the spread of the dipole w
packets and the quantum diffusion. We will not take in
account the spin of the particle, limiting ourselves to t
scalar particle case. Throughout the paper we use the qu
classical wave functions first derived in Refs.@9,10#.

We shall see that there are three distinct time scales:E
©2004 The American Physical Society03-1
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B. BLOK PHYSICAL REVIEW D 69, 022003 ~2004!
!T!m/F ~this time regime exists for the dipole such th
the initial transverse motion of its components is nonrela
istic!, m/F!T!E/F, T@E/F. For the first regime~we shall
call it the very small dipole regime! the radiation reaction is
strongly suppressed by interference. The interference
decreases a number of emitted photons. For the secon
gime the decrease in radiation reaction, relative to the sum
radiation reactions of two independent particles, depend
the Lorentz invariant parameterx5FE/m3. For x!1 the
interference quickly decreases starting fromT;m/F. For
x@1 the interference starts to decrease only starting fr
the larger timeT* ;(E/F2)1/3. In the latter case the dipol
affects especially change the photon spectrum. The rele
photons first are concentrated near the end point of the s
trum, and not in the middle, as for a single charged parti
The maximum of the radiation reaction spectral curve mo
towards saturation at frequenciesv;0.4E.

The interference radically changes the frequency distri
tion of the number of radiated photons. Instead of an
bounded increase at small frequencies, it now goes to ze
v→0 and has a maximum at finite frequency of the order
the maximum of the radiation reaction.

Finally in the third regime, the interference does not
fluence the radiation reaction, but still cuts off the soft ph
tons withv!1/T. The photon distributions will have a finit
maximum atv;2/T.

Our results, derived in the approximation of the const
external field, can be translated to the model-independ
language of the propagation of the dipole through the a
trary external media. Indeed, the Lorentz-invariant param
x5FE/m3 is really a ratio of two parameters: the parame
l c5E/m2, which is ~up to a numerical coefficient, unimpo
tant here! a coherence length, andl F5m/F, which is the
field regeneration length~or time between successful inte
actions with the external field!. Thus the parameterx actu-
ally measures a number of collisions once the dipole pro
gates through the coherence length. In particular the c
transparency and quantum diffusion considered in R
@16,17,19# correspond to the casex!1. The regime of the
very small dipole corresponds to the caseT<m/F, i.e., in
model-independent language, to the case when the prop
tion time is less than a timeTF required to meet an externa
field photon. In other words,l F is analogous to the mean fre
path in the media language. Then it is clear that in this
gime the radiation is always suppressed, independent o
parameterx. However, the later time evolution depends
the parameterx. If x!1 ~which corresponds to the cas
considered in Refs.@16,17,19#!, the coherence length i
much less thanl F , the radiation suppression ends, as
shall see, atT;m/F, and apart from the small time interva
in the beginning;E/m2!m/F, one can use for the study o
the radiation reaction and the spectra of the emitted pho
a quasiclassical approximation. However, in the oppo
case,x@1, we have the situation of multiple collisions du
ing the coherence length. In this case, we were able to
velop a quasiclassical theory of the radiation emission tak
recoil into account. Our results show the suppression of
radiation reaction and the photon emission up to the t
T* @TF . This looks quite similar to the Landau
02200
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Pomeranchuk effect for the propagation of the fast particle
the media. There the effect also appears when the coher
length is much larger than the free mean path@9#. However,
as we discuss below, the classical approximation may be
applicable to the situation whenl F! l c for the dipole. This is
the case that occurs in statistical mechanics, when the co
ence length is larger than free mean path. Then there
number of the important effects that arise only beyond
quasiclassical approximation@21#. In this paper we shall only
study what one obtains sticking to the quasiclassical appr
mation. The results may be considered as a starting poin
future study.

The paper is organized in the following way. In Sec. II w
shall consider the small classical dipole but will derive
radiation reaction using relativistic quantum mechanics, a
check that the classical approach corresponds to the reco
limit of quasiclassical theory. We shall review the results
a single particle, then consider the case of the radiation of
arbitrary dipole, and then derive the radiation reaction in
small and very small dipole limits. In Sec. III we shall briefl
review the classical wave-function method of Refs.@9,10#
and extend it to the case of the arbitrary dipole. Next
shall assume that the dipole is small~in the plane transverse
to the direction of its center of mass motion! and derive the
general formula for the radiation reaction of such a sm
dipole. In Secs. IV and V we shall use the above formulas
study the radiation reaction in two important limiting case
In Sec. IV we shall study the frequency distribution of th
radiation and the time dependence of the total radiated
ergy for the limit of very small times when the dipole’s ow
field was not generated yet. We shall call this regime the v
small dipole regime. This regime can be also characterize
the regime when the particle deflection angle due to the
ternal field is less that the radiation angle. In Sec. V we sh
consider the scale of times when the dipole is still small,
its field has already been generated. The particle deflec
angle is much larger than the radiation angle. We shall st
the frequency distribution of the photons and the radiat
reaction also in this case. We shall see that the radia
reaction depends on the parameterx5FE/m3. @Recall that
for the single fast moving charged particle, the radiation
action qualitatively depends on this parameter, which is L
entz invariant:x5A(Fmnpn)2/m6 @1#.# In Sec. VI we shall
study the total back force acting on the dipole for very sm
times and its influence on both the transverse and the lo
tudinal evolution of the dipole. In Sec. VII we shall mak
some qualitative comments on the influence of the quan
nature of the dipole motion on the radiation reaction, in p
ticular on the possibility to go beyond the quasiclassical
proximation. Our results, the directions for the future wo
and possible implications for QCD will be summarized in t
Conclusion.

II. RADIATION REACTION OF THE FAST RELATIVISTIC
DIPOLE

A. Radiation of the single scalar particle

Let us start by briefly recalling the basic quasiclassi
formalism for radiation of photons by relativistic charge
3-2
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RADIATION AND EVOLUTION OF A SMALL . . . PHYSICAL REVIEW D 69, 022003 ~2004!
particles without taking recoil into account@4#. The results
are the same as those obtained by using classical electro
netism theory@1,9#, but we shall use from the beginning n
the wave but the photon formalism. This will easily be e
tended in the next section to the case when we need to
recoil into account and the classical electromagnetism the
will be inapplicable.

The matrix element of the interaction between the elec
magnetic field and the scalar particle is given by

S(1)52 iqE d4xAm~x!Jm~x!, ~2.1!

whereJm(x) is the current density operator in the extern
field,

Jm5F* ~PmF!2~PmF* !F. ~2.2!

The operatorPm is the generalized momentum operator
the external field. Consequently, the matrix element for
emission of the photon with the frequencyv, wave vectorkW ,
and polarization vectoreW is given by

M fi52 iqE
0

T

dtE d3rWA2p

v

1

AEiEf

f f* ~rW,t !~eW• P̂!

3exp@ i ~vt2kW•rW !#f i~rW,t !. ~2.3!

Heref i is the initial andf f is the final state wave functions
normalized by the condition

E d3rW f* ~rW !f~rW !51. ~2.4!

The operatorPW is

PW 5pW 2qAW ,

pW 52]/]xi is the momentum,q is the charge of the particle
andA(rW,t) is the vector potential.Ei andEf are the energies
of the initial and the final states.

We shall use the quasiclassical wave functions of the s
lar particle in the external field:

f~rW,t !5A D

Ei2qA0
expS i

\
S~r ,p,t ! D . ~2.5!

HereS(r ,p,t) is the action of the particle with the momen
tum pW calculated along the classical trajectory of the parti
passing through the point with the coordinaterW at the timet

and having the momentumpW at t50. D is the Van Vleck
determinant:

D5AI ]2S~rW,pW !

]rW]pW
I5

1

E
Ad„r 2W rW~ t !…. ~2.6!
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The wave functions~2.5! cannot be substituted directly int
the matrix element~2.3!, due to the appearance of th
quickly oscillating factors

exp$ i @S~r ,pf ,t !2S~r ,pi ,t !#%/\

for \→0. In order to avoid this difficulty we have to use th
representation

f i~rW,t !5E d3pW fp~rW,t !Spp0
, ~2.7!

wherefp is the quasiclassical wave function of the partic
in the external field possessing att→` the asymptotics

fp~rW,t !→ 1

A2Ep

exp@ i ~pW •rW2Et!#.

Spp0
is the scattering matrix of the particle in the extern

field considered. If we neglect the recoil and substitute
representation~2.7! for the final state wave function into th
matrix element~2.3!, we shall recover the classical ampl
tude for the radiation of the electromagnetic waves, and
classical expression for the energy loss during a time inte
T ~see, e.g., Refs.@7,9# for details!:

dWcl5
2q2

p2
~d3k!E

0

TE
0

T

dt dt8@eW•vW ~ t !#@eW* •vW ~ t8!#

3exp@ iv~ t2t8!#2 ikW•@rW~ t !2rW~ t8!#. ~2.8!

After averaging over the photon polarization vectors we o
tain

dWcl5q2
1

2p2
d3kWE

0

TE
0

T

dt dt8„@vW ~ t !•vW ~ t8!#2@nW •vW ~ t !#

3@nW •vW ~ t8!#…exp†iv~ t2t8!2 ivnW •@rW~ t !2rW~ t8!#‡,

~2.9!

where kW5vnW . Note that nW •vW (t)5vW •¹WrW5]/]t. Hence the
terms in the latter equation containingnW in the preexponen-
tial factor can be integrated by parts:
3-3
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dWfi5q2
1

2p2
d3kS E

0

TE
0

T

dt dt8@vW ~ t !•vW ~ t8!21#exp†iv~ t2t8!2 ivnW •@rW~ t !2rW~ t8!#‡D
1

4

vE0

T

sin$@vT1nW •rW~T!#/2%cos$v~T22s!1nW •@rW~T!22rW~s!#%/2

2
2

v2
@12cosvT1vnW •rW~T!#. ~2.10!

It is straightforward to see, however, that the last two lines in Eq.~2.10! correspond to terms decreasing or bounded withT,
while the expression in the first line increases withT. Thus the two last lines can be omitted if we are interested in large
intervalsT@1/v. Indeed, we can integrate Eq.~2.10! over the photon directionnW and obtain

dWcl5q2
2

p
v dvF E

0

TE
0

T

dt dt8@vW ~ t !•vW ~ t8!21#cos„v~ t2t8!…
sin@vurW~ t !2rW~ t8!u#

urW~ t !2rW~ t8!u

1
2

vE0

Tcos@vs2vr ~s!#2cos@vs1vr ~s!#

r ~s!

1
2

vE0

T cos@v~T2s!2vurW~T!2rW~s!u#2cos@vs1vurW~T!2rW~s!u#

urW~T!2rW~s!u

2
2

v2 S 12
sin$v@T1r ~T!#%2sin@vT2r ~T!#

r ~T! D G . ~2.11!

It is easy to see that the last three lines in Eq.~2.11! are suppressed similar to 1/(vT) relative to the double integral in the firs
line, and thus can safely discarded if we are interested in the frequencies and time intervalsvT@1. In order to know
numerically how large these terms are, we shall, however, keep them.

Finally, since we are usually interested in the energy losses in units of time, we can differentiate Eq.~2.11! over timeT and
obtain

dWcl

dT
5q2

4

p
vdvF E

0

T

dt@vW ~T!•vW ~ t !21#cos„v~T2t !…
sin@vurW~T!2rW~ t !u#

urW~T!2rW~ t !u

1
2

v

cos@vT2vr ~T!#2cos@vT1vr ~T!#

r ~T!

1
2

vE0

T d

d/T

cos@vs2vurW~T!2rW~T2s!u#2cos@vs1vurW~T!2rW~T2s!u#

urW~T!2rW~T2s!u

2
d

dT

2

v2 S 12
sin$v@T1r ~T!#%2sin@vT2r ~T!#

r ~T! D G . ~2.12!
n e,
ical

iv-

of
l
as
Below we shall use the first line in the latter equation a
check that the last three lines can be neglected:

dW

dT
5q2

4

p
vdvF E

0

T

dt@vW ~T!•vW ~ t !21#

3cos„v~T2t !…
sin@vurW~T!2rW~ t !u#

urW~T!2rW~ t !u
G . ~2.13!
02200
dThe latter equation, if the limits of integration are infinit
can be easily brought into the standard form of the class
electromagnetic theory@4,9#.

B. Radiation of the relativistic dipole: General theory

Let us now consider the radiation reaction of the relat
istic dipole in the case we can neglect recoil, i.e.,v!E. For
simplicity we consider the symmetric dipole, whose center
mass moves with the speedv;c in the direction orthogona
to the direction of the constant external field, and which w
3-4
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RADIATION AND EVOLUTION OF A SMALL . . . PHYSICAL REVIEW D 69, 022003 ~2004!
created at timeT50 in the pointrW(0)50. We shall denote
the components of the dipole asP andA ~particle and anti-
particle!. Let us assume that the particles of the dipole ha
after its creation, the same initial energyEi , and the ortho-
gonal component of the velocityv0t . Note that ifu0t is the
velocity in the transverse plane in the center of m
~c.m.! reference frame, moving with the dipole, thenv0t
5(m/E)u0t , meaning that in any casev0t<m/E. In our
kinematics the two components of the dipole will have t
same velocity component in the direction of c.m. motion a
the opposite sign components in the transve
plane.

The amplitude of the radiation of the photon with pola
ization vectoreW , wave vectorkW , and frequencyv will be the
difference~due to the different charges of the dipole comp
nents! of the amplitudes of the photon emission of the p
ticle and the antiparticle components of the dipole. Using
equations of the preceding section it is straightforward
write

M fi52 iA2p

v

1

AEiEf
E

0

T

dt$eW•vW P~ t !expi @vt2kW•rWP~ t !#

2eW•vW A~ t !expi @vt2kW•rWA~ t !#%. ~2.14!

Here rWP(t) and rWA(t) are the radius vectors of the partic
and antiparticle components of the dipole. The energy ra
tion loss during the time from creation of the dipole at tim
t50 until time T with the photons radiated in the frequen
rangedv and the solid angle rangedo is

dW5
q2

4p2
v2do dvE

0

T

dtE
0

T

dt8expiv~ t2t8!

3$eW•vW P~ t !expi @kW•rWP~ t !#%2eW•vW A~ t !expi @kW•rWA~ t !#

3$eW* •vW P~ t8!exp2 i @kW•rWP~ t8!#%

2eW* •vW A~ t8!exp2 i @kW•rWA~ t8!#. ~2.15!

Summing over the polarizations of the photon we obtain

dW

dv
5

q2

4p2
v2E

0

T

dtE
0

T

dt8$expi @v~ t2t8!#%„$vW P~ t !•vW P~ t8!

2@nW •vW P~ t !#@nW •vW P~ t8!#%expi ~kW•@rWP~ t !2rWP~ t8!#…

1~P↔A!2„vW P~ t !•vW A~ t8!2@nW •vW P~ t !#@nW •vW A~ t8!#…

3expi $kW•@rWP~ t !2rWA~ t8!#%1~P↔A!…. ~2.16!
02200
,

s

d
e

-
-
e
o

a-

Here kW5vnW . Using, as for the single particle,nW •vW (t)
5vW •¹WrW5]/]t, we can carry out the integration by parts a
obtain:

dW

dv do
5

q2

4p2
vE

0

T

dtE
0

T

dt8expi @v~ t2t8!#@vW P~ t !•vW P~ t8!

21#expikW•@rWP~ t !2rWP~ t8!#1~P↔A!

2@vW P~ t !•vW A~ t8!21#expikW•@rWP~ t !2rWA~ t8!#

1~P↔A!1DW~v,T!. ~2.17!

The latter equation gives us the formula for the radiat
of the arbitrary relativistic dipole. Note that it is a sum of tw
terms that correspond to the radiation of the single part
and two terms that correspond to the interference betw
the particle and the antiparticle.

The termDW arises from the integration by parts~cf. the
single particle! and is equal to

DW~v,T!5do
q2

4p2
v2S 2

vE0

T

sin$v~T2s!1vnW •@rWP~T!

2rWP~s!#%1~P↔A! D 2
2

vE0

T

ds„sin$v~T2s!

1vnW •@rWP~T!2rWA~s!#%1sin$v~T2s!

1vnW •@rWA~T!2rWP~s!#%…2~P↔A!

2
2

v2
$12cosvnW •@rWP~T!2rWA~T!#%. ~2.18!

We can integrate over the angle variabledo and obtain

dW

dv
5

q2

p E
0

T

dtE
0

T

dt8cos@v~ t2t8!#@vW P~ t !•vW P~ t8!21#

3
sinurWP~ t !2rWP~ t8!u

urWP~ t !2rWP~ t8!u
1~P↔A!2@vW P~ t !•vW A~ t8!21#

3
sinurWP~ t !2rWA~ t8!u

urWP~ t !2rWA~ t8!u
2~P↔A!1DG~v,T!. ~2.19!

Here the termDG corresponds to the integral ofDW:
3-5
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dG5
2q2v

p F E
0

T

dsS cos@v~T2s!2vurWP~T!2rWP~s!u#

vurWP~T!2rWP~s!u
2

cos@v~T2s!1vurWP~T!2rWP~s!u#

vurWP~T!2rWP~s!u
D G

1~A↔P!2S cos@v~T2s!2vurWP~T!2rWA~s!u#

vurWP~T!2rWA~s!u
2

cos@v~T2s!1vurWP~T!2rWA~s!u#

vurWP~T!2rWA~s!u
D

2~A↔P!2
1

v S 12
sinvurWP~T!2rWA~s!u

vurWP~T!2rWA~s!u
D . ~2.20!
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In order to get the radiation reaction it is enough to differe
tiate the above equations overT. The latter equations de
scribe the radiation of an arbitrary relativistic dipole, int
grated over the angles, for the time intervalT. Now we can
move to our goal—to consider the case of the small rela
istic dipole.

C. Radiation of the small relativistic dipole

Consider the small quasiclassical relativistic dipole, i
v@v t , wherev is the center of mass velocity andv t is the
transverse component of the velocity (v t can be both relativ-
istic and nonrelativistic!. For sufficiently small times one ca
estimate

v t~T!;v0t1FT/E. ~2.21!

HereF is the external field,

FW 5EW 1vW 3HW , ~2.22!

EW is an electric field, andHW is a magnetic field. Conse
quently, one considers a dipole as small if

FT!E. ~2.23!

For larger time scales,

FT>E,

the components of the dipole behave as independent part
and there is no interference. Let us study the interfere
pattern in the small dipole. Let us assume that the condi
~2.23! is satisfied. Then the photons are radiated into
small cone around thez axis ~we choose thez axis in the
direction of the propagation of the dipole!, of orderm/E at
T;1/Ei , whereEi is the initial energy of each of the com
ponents of the dipole. Later the radiated photons are con
trated in two cones around the directions of the compone
of the dipole. It is clear that there exist, even if the conditi
~2.23! is satisfied, two distinct possibilities: the two radiatio
cones, generated by the dipole components, overlap, and
they stop to overlap. Since the cone angle for the ultrar
tivistic particle is u;m/Ei , we see that the condition fo
overlapping is

vot1FT/E<m/E. ~2.24!
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If we can neglect the initial transverse velocity, the lat
condition becomes

T<m/F. ~2.25!

If

m/F!T!E/F

the dipole is still small, but the cones do not overlap, and
interference must decrease drastically. There is also the
consistency condition: sinceT@1/E, we must have

mE@F ~2.26!

for the possibility of considering the very small dipole, wi
overlapping cones, quasiclassicaly. We need the weaker
dition

E2@F, ~2.27!

for the possibility to consider the small quasiclassical dipo
If the latter conditions are not fulfilled, we must take in
account the interference of the dressing by the external fi
and the generation of the self-field by bare particles. This
beyond the scope of this research~although it could be that
our analysis is qualitatively true even in the latter case, si
the self-dressing usually generates quickly oscillating ter
that can be singled out!.

We conclude that the classical dipole has two regimes:~1!
a very small dipole, when the radiation cones of the parti
and the antiparticle overlap strongly,T!m/F, and ~2! a
small dipole in the sense that it still moves along thez axis,
but the cones of the radiation do not overlap, and the in
ference decreases. Note that these two cases correspo
two possible relations between the depletion angle of
single charged particle in the external field and the radiat
angle. The very small dipole corresponds to the case w
the latter angle is much larger than the former and the sm
dipole corresponds to the case when the former is larger
the latter. Note also that for a relativistic dipole in the c.m.
the dipole, transverse motion means~thenv t;m/E) we have
only the small dipole regime.

Suppose we have the very small dipole. Let us analyze
interference pattern. Consider the exponents in Eq.~2.17!.
The exponents in the terms that contain only the particle
only the antiparticle radiation are
3-6
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v$cosu@z~T!2z~ t !#1sinu@y~T!2y~ t !#%.

Here u is the angle between the photon wave vector a
direction of thez axis, and

z~T!2z~ t !;vz~T2t !, y~T!2y~ t !;v t~T2t !.

It is clear that the corresponding integrals will be satura
by t;T, and the first term will be dominant since sinu!1
Consider now the exponents in the interference terms in
~2.17!. These exponents have the form for the chosen k
matics

v$cosu@z~T!2z~ t !#1sinu sin~f!@y~ t !1y~T!#%.

Heref is the azimutal angle. In the first approximation w
can sety(t);y(T)5d(T)/2 in the latter equation, and in
.,

th

rm
th
st
o

w
a
o
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stead of integrating, substitute sinu by its characteristic value
m/E. @d(T) is the scale of the dipole, i.e., the separati
between the charges, which in our kinematics is purely tra
verse.# Then the integral over the anglef gives the Besse
function

1

2pE0

2p

exp@ i sinfvd~T!m/E#df5J0S v

E
d~T!mD .

~2.28!

With the same accuracy we can substitute cosu@z(t)2z(T)#
with cosu @z(t)2z(T)#1sinu sinf@y(t)2y(T)#, i.e., after tak-
ing into account the interference term, the exponent in
interference term will be the same as in the direct term
Then for very small dipoles we can rewrite Eq.~2.17! as
e same
dW

dvdT
5

4q2

p E
0

T

dt cos@v~T2t !#@vW P~T!•vW P~ t !21#
sinurWP~T!2rWP~ t !u

urWP~T!2rWP~ t !u
F12J0S v

E
md~T! D G . ~2.29!

In addition, there is contribution from the terms that correspond to integration by parts, where it is enough to do th
approximation:

dG

dTdv
5

q2

p

2

vE0

T d

dT

cos~vs!2vurW~T!2rW~T2s!u2cos@vs1vurW~T!2rW~T2s!u#

urW~T!2rW~T2s!u
F12J0S v

E
md~T! D G1

d

dT

2

v2

sinvd~T!

T
.

~2.30!
f
ce
-
l-

be
HeredẆ (s) is the time derivative of the dipole moment, i.e
the relative velocity of the particle and antiparticle:

dẆ ~s!5
]@rWP~s!2rWA~s!#

]s
. ~2.31!

The latter equation gives the radiation energy loss rate for
very small relativistic dipole between times 0 andT, emitted
in the particular interval of photon frequencies.

Note that our interference analysis could be made in te
not of the characteristic radiation angles, but in terms of
longitudinal and transverse momenta. Our characteri
anglesm/E correspond to the characteristic transverse m
mentum of the emitted photonsqt;mv/E. In particular, if
we consider photons whose energy is a finite part ofE, the
characteristic transverse momentum will beqt;m.

Consider now the next regime,E/F@T@m/F. This is the
case of the small, but not very small dipole. In this case
can still consider the trajectory of each of the particles
almost a straight line. We can follow the above derivation
the interference terms, but in this case, although stillu!1,
we need to take asu the anglev t /v;v t;v0t1FT/E. We
then get an equation similar to Eq.~2.29!, but with a different
argument for the Bessel function:
e

s
e
ic
-

e
s
f

dW

dvdT
5

4q2

p E
0

T

dt cos@v~T2t !#@vW P~T!•vW P~ t !21#

3
sinurWP~T!2rWP~ t !u

urWP~T!2rWP~ t !u
@12J0„vu~T!d~T!…#,

~2.32!

where

u~T!5v0t1FT/E5vy~T!. ~2.33!

Since for the classical dipoled(T);vy(T)T;votT
1FT2/(2E), we see that interference is suppressed as

12J0S v

E
@v0t

2 TE13votFT2/21F2T3/~2E2!# D .

Since v t<m/E ~due to the relativistic law of the velocity
summation! andT@m/F, the third term in the argument o
the Bessel function will be dominant, i.e., the interferen
decreases asJ0„(v/E)(F2T3/E)…, and quickly becomes neg
ligible. Finally note that for very small frequencies one a
ways has interference.

Note also that the argument of the Bessel function can
represented as
3-7
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xb~t!, b~t!5m
dd2~t!

dt
,

i.e., as a Lorentz invariant~see also the discussion below!.
Heret is the proper time in the reference frame of the c.
of the dipole.

Finally, since the integrands in Eqs.~2.29! and~2.32! are
concentrated nearT5s, we can expand them in a Taylo
series nears5T. Consider first the differencerW(T)2rW(s) in
the argument of the exponents.

For a small dipole it is possible to use the approximatio
@9,10#

vW ~T!5v~0!@12v t
2~T!/2v~0!2#1vW t~T! ~2.34!

and

vẆ ~T! t5qFW /E. ~2.35!

In this approximation up to the terms of orderm/E,

vẆ ~T!;vẆ t;qFW /E,

i.e., the vectorsvW anddvW /dT are orthogonal. Also

d2vW

dT2
52v0

2vW ~T!,

v05qF/E.

Then

urW~T!2rW~s!u

5Av2~T!~T2s!2@12v0
2~T2s!2#21v0

2~T2s!2/4

;v~T!~T2s!@11v0
2~T2s!2/24#. ~2.36!

Then we have in the standard way~Ref. @9#!:

vW P~T!vW P~ t !2152@12v2~T!1~T2t !2v0
2/2#.

~2.37!

In the same approximation

dẆ ~T!•dẆ ~s!54@v t~T!22~T2s!v0v t~T!#. ~2.38!

Thus we have our final result for the radiation of the sm
dipole:

dW

dvdT
52v

4q2

p E
0

T

dtS 12v2~T!1v0
2~T2t !2/2

T2t

3sin@v~12v !~T2t !#1v0
2~T2t !3/24D

3@12J0„vu~T!d~T!…#. ~2.39!

Here
02200
.

s

ll

u~T!5m/E T!m/F,

u~T!;v t~T!;m/E1FT/E, E/F@T@m/F.
~2.40!

In order to obtain the full radiation reaction we must int
grate the latter formulas overv. We thus obtained the clas
sical radiation reaction of the dipole using simple wave m
chanics. In parallel we understood the nature of
interference in the transverse plane, which we shall use in
quantum case.

III. RADIATION REACTION FOR THE RELATIVISTIC
DIPOLE: RECOIL EFFECTS

A. Single particle

In the preceding section we studied, using the relativis
quantum mechanics method, the classical radiation from
classical dipole. Let us now move to quantum effects. Th
are two types of quantum effects@9#. First, there are effects
due to the quantum character of the particle motion in
external field. This effect is characterized by the parame
F/E2 @9#. Second, there are quantum effects specifically d
to the motion of the quantum dipole@16,17,19#. We will not
take these effects into account. Third, there are recoil effe
that arise if we takeEiÞEf into account. The general theor
of such effects was first derived in Ref.@7#. Recently a new
approach was derived by Akhiezer and Shulga@9,10#. Let us
briefly review the idea of Ref.@9#. We return to the deriva-
tion of the matrix element of the radiation of photons~2.3!.
We still use the representation~2.7! for the quasiclassica
wave functions, but when we substitute them into the ma
element~2.3! we take into account that the correspondi
integral overpW is saturated not atpW 5pW f , as we assumed
when we neglected recoil, but atpW ;pW f1kW , where as usualkW
is the wave vector of the emitted photon. Then it is possi
to prove that the generalized actionS5Sf2(vt2kW•rW) satis-
fies the generalized Hamilton-Jacobi equation

]S

]t
5~¹W S2qAW 2kW !21m2. ~3.1!

Solving this equation and substituting the solution into t
matrix element~2.3!, where we use the representation~2.7!
for the wave functionf i , one obtains the quasiclassical m
trix element of the photon radiation where the recoil is tak
into account:

M fi52 iqE
0

T

dtE d3rWA2p

v
AEi

Ef

3FeW•vW ~ t !expS i
Ei

Ef
@vt2kW•rW~ t !# D G . ~3.2!
3-8
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Here we can setEf5Ei2v.
The corresponding radiation reaction will be the same

that for the single particle in the preceding section, except
the rescaling of the frequency

v→v
Ei

Ef

in the exponent and the general multiplierEi /Ef :
e
e
e

w
u
r

su

e
on

to
.
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dWfi5q2
2

p2

E

Ef
d3kE

0

TE
0

T

dtdt8

3@eW•vW ~ t !#@eW* •vW ~ t8!#expS E

Ef
D

3$ iv~ t2t8!2 ikW•@rW~ t !2rW~ t8!#%. ~3.3!

After averaging over the photon polarizations and integrat
by parts we obtain, as in the preceding section, the equa
for the radiation reaction of the single particle including t
recoil effects:
dW

dT
5vq2

4

p
dvS E

0

T

dt@vW ~T!•vW ~ t !21#cosS E

Ef
v~T2t !D sin@~E/Ef !vurW~T!2rW~ t !u#

urW~T!2rW~ t !u

1
2

~E/Ef !v

cos@~E/Ef !~vT2vr ~T!!#2cos@~E/Ef !~vT1vr ~T!!#

r ~T!

1
2

~E/Ef !v
E

0

T d

dT

cos@~E/Ef !~vs!2vurW~T!2rW~T2s!u#2cos~E/Ef !@vs1vurW~T!2rW~T2s!u#

urW~T!2rW~T2s!u

2
d

dT

2

@~E/Ef !v#2 S 12
sin~E/Ef !v@T1r ~T!#2sin@~E/Ef !~vT2vr ~T!!#

r ~T! D D . ~3.4!
he

es
e of
All other formulas from the Sec. II A are transformed in th
same way:v is rescaled except in the measure, and the g
eral multiplier is added,E/Ef . Note that the terms that aris
from integration by parts~boundary effects! are suppressed
now, even stronger, asvTE/(E2v).

We keep the terms due to integration by parts so that
shall be able to check explicitly that they are small in o
analysis of Eq.~3.4!. For convienience, let us write the latte
equation without the back reaction term, that is, the re
that will be used in the calculations:

dW

dT
5q2

4

p
v dvF E

0

T

dt@vW ~T!•vW ~ t !21#cosS E

Ef
v~T2t ! D

3
sin@~E/Ef !vurW~T!2rW~ t !u#

urW~T!2rW~ t !u
G . ~3.5!

The recoil effects lead to the qualitative change of the sp
trum of the single particle. The maximum of the radiati
reaction will be shifted tovm;0.4E for largex, and will be
virtually x independent. For the opposite limit of smallx the
maximum will remain at the classical value of;Ex.

B. Recoil effects in the dipole radiation

It is clear from the previous sections that taking recoil in
account will mean just rescalingv in the preceding section
Consequently, we obtain
n-

e
r

lt

c-

dW

dv dT
5

4q2

p E
0

T

dt cosS E

Ef
v~T2t ! D @vW P~T!•vW P~ t !

21#
sinurWP~T!2rWP~ t !u

urWP~T!2rWP~ t !u
F12J0S E

Ef
vu~T!d~T! D G ,

~3.6!

where the functionu(T) is given by Eq.~2.40!. Since the
main contibution still comes froms;T, we obtain

dW

dvdT
52v

4q2

p E
0

T

dt
12v2~T!1v0

2s2/2

s
sinF E

Ef
~v@~12v !

3~s!#1v0
2~s!3/24!GF12J0S E

Ef
vu~T!d~T! D G .

~3.7!

One can obtain the full radiation reaction by integrating t
above equation over all frequencies.

IV. RADIATION REACTION
FOR THE VERY SMALL DIPOLE

Let us analyze the above equations for different regim
discussed in Sec. III. We consider in this section the cas
the very small dipole: 1/v!T!m/F. First, let us check
what time scales contribute to Eq.~2.39! in this case. For the
3-9
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linear term in the argument of the cosine in Eq.~2.39! to be
dominant we need

~12v !@v0
2s2/24

or

s!2A6
m

A2E
~E/F !52A3

m

F
;3.5

m

F
.

Here s5T2t, Since the latter condition is satisfied for th
very small dipole for the entire integration region ins, we
can neglect the cubic terms in the arguments of the cosin
well as the nonleading terms in the preexponentials. The
tegrals overs in Eq. ~2.39! can be taken explicitly. As ex
plained in Appendix A, in this case we can discard the ter
in Eq. ~2.39! proportional to 12v2, as well as the terms
originating from the integration by parts. The reason is t
up to the terms suppressed asm2/E2 these terms correspon
icl
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te
he
th

he
i-

hi
o

e

th

02200
as
n-

s

t

to the radiation reaction of the free charged particle mov
with a constant velocity. The latter is of course a nonphysi
phenomena~see discussion in the Appendix A! and must be
subtracted. We start with an integral

dW

dv
52

4q2

p E
0

T

dtE
0

t

ds
v0

2

2
s sinF E

Ef
~v@~12v !~s!# !GF1

2J0S E

Ef
v

m

E
d~T! D G . ~4.1!

Note that the latter integral, as is well known from the cla
sical theory@1#, is proportional toF2, i.e., to the square o
the acceleration.

The latter integral can be taken eplicitly under the a
sumption that the interference multiplier weakly depends
time T in the limit of integration, and thus can be take
outside of the integrand. We obtain
dW

dv
5v0

2v
q2

p S 2$12cos@v8~11v !T#2v~11v !T sin@v8~11v !T#%

v83~11v !3

2
2$12cos@v8~12v !T#2v~12v !T sin@v8~12v !T#%

v83~12v !3
D F12J0S E

Ef
v

m

E
d~T! D G . ~4.2!
e
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The corresponding spectral curve for the single part
~without taking into account radiation! is depicted in graph
~a! of the Fig. 1. The spectral curve for the same energy
field, but for the dipole, whose transverse motion velocity
v t!1 and the interference is taken into account is depic
in the graph~b! of Fig. 1. We see a drastic decrease of t
radiation for all frequencies. We also see that increasing
factor g ~i.e., decreasing the mass for a given energy! leads
the maximum to be shifted further to the end point of t
spectrum@graph ~c! of Fig. 1#. Indeed, the classical max
mum of radiation is at

vcl;
1

T

E2

m2
~4.3!

and for sufficiently big energies is beyond the end point. T
is the case when the recoil effects are most important. N
that atT;m/F the classical radiation maximumvcl of Eq.
~4.3! reachesvH—the classical radiation maximum for th
small ~but not very small! time regime.

We see that the effects of interference are the largest if
transverse motion is nonrelativistic. Forv0t;1 the interfer-
ence effects are small@see graph~c! of Fig. 1#.
e

d
s
d

e

s
te

e

The latter equation can be differentiated inT and then
integrated overv to obtain the total radiation reaction of th
very small dipole:

dE

dT
5

q2

p
T2E2v0

2E
0

`

dx
1

x* ~11x!3
sin~xb!

2b* x cos~b* x!Y b2

2@sin~xa!2a* x cos~a* x!/a2#@12J0„xmd~T!…#

~4.4!

Herea5ET(12v), b5ET(11v). The latter intergal, con-
trary to the single-particle case~see Appendix A!, cannot be
taken explicitly. In order to estimate this integral, it is wort
while to get rid of oscillating terms using the representat

1

~11x!3
50.5E

0

`

p2 exp~2p!

and Eqs.~B7! and ~B8! from Appendix B. We obtain
3-10
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FIG. 1. The spectral distribution curves for the radiated energydW/dv ~normalized byq2/p) for the the very small dipole regime (T
<m/F). For all graphsE5100 GeV, the fieldF5100 GeV2, T50.1 GeV21. ~a! The spectral distribution of a single particle,v50.99,
m514 GeV. ~b! The dipole,v50.99, the center of mass transverse velocityv0t50.2. ~c! The dipole,v50.999,v0t50.2. ~d! The dipole,
v50.99, v0t50.9.
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dE

dT
50.5

q2

p E
0

`

p2 exp~2p!@G1„p,b,md~T!…

2G2„p,b,md~T!…#. ~4.5!

The corresponding time dependence is given in graph~b! of
the Fig. 1. We put this graph along the radiation react
curve for the single particle@graph~a! of Fig. 2#. The radia-
tion reaction decreases drastically due to interference.
nally, note that forT;m/F the radiation reaction forx→`
behaves like 1/x, while like Ax for x→0.

Numerically, it is easy to see that the condition for t
interference to decrease the total radiation reaction sig
cantly is that the radiation maximum must occur for the f
quencies where the interference is still strong, i.e., the
quencyvm is such that

vmE/~E2vm!md~T!<1. ~4.6!

It is easy to see that this condition is equivalent to
02200
n

i-

fi-
-
-

E/m<T/d~T!;1/v t . ~4.7!

In other words, the interference decreases the dipole ra
tion by an order of magnitude if it is nonrelativistic in it
c.m. reference frame, while the interference influences
total radiation reaction only slightly if the dipole transver
motion is relativistic (v0t;1).

It is worthwhile to describe qualitatively the position o
the radiation maximum and the structure of the spec
curve for differentx. First, considerx!1. In this case we
see that atT;E/m2!m/F the maximum of radiation will be
near the end point of the spectrum. The radiation itself w
be negligible. For larger times the total radiation slowly i
creases, while the radiation maximum moves to;Ex, where
it reaches at times;m/F. Then the curve smoothly trans
forms itself into the curve for the small dipole that is studi
in the next section. The radiation maximum no long
moves. Afterwards the radiation reaction quickly increas
while the interference diminishes. The reason why the rad
FIG. 2. Radiation reaction of
the single particle~a! and for di-
pole ~b! as a function of a
5m2T/2E for the very small time
regime T<m/F. For the picture
m2/2E51 GeV, E5100 GeV, F
5100 GeV2. The radiation eac-
tion dE/dT is normalized by
q2/p. For the dipolev0t50.2.
3-11
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FIG. 3. The spectral curve for the spectral distribution of the number of the radiated photonsdN/dv ~normalized byq2/p) versus the
photon energyv. ~a! Photon number for a single particle. The velocityv50.99, E5100 GeV, m514 GeV, field F5100 GeV2, T
50.1 GeV21. ~b! The dipole with the same parameters and c.m. transverse velocityv0t50.2.
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tion is still suppressed at times;m/F for the nonrelativistic
transverse motion is that the suppression factor in the m
mum is 12J0(v0txm).

For the opposite casex@1 the situation quite different
There is a complete suppression of radiation and the ra
tion maximum remains near the end point well into the sm
dipole regime~see the next section!.

The results for the radiation reaction are in corresp
dence with the situation with the total number of the photo
Without interference@see graph~a! in Fig. 3# the total num-
ber of radiated photons remains finite, and has a maxim
Including the interference cuts off the soft photons and
creases the total number of photons drastically@see graph~b!
of Fig. 3#. The maximum in the distribution of the number
radiated photons, as seen from the figure, is parametric
located at the same frequencies as that of radiation reac
i.e., most of radiated photons are hard photons.

In this discussion we did not take into account the imp
tant effects of Sudakov form factors and wave-functi
renormalization that generally tend to cancel out. For
number of photons we expect these factors to be more
portant than for the energy. Consequently, our discussio
just a conjecture that needs further calculation.

V. SMALL DIPOLE

In the preceding section we discussed the case of v
small dipoles, corresponding toT!m/F. The goal of this
section will be to consider the opposite limiting caseT
@m/F. In the latter case we can substitute the integrat
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limits by infinity and discard the terms due to integration
parts. We immediately obtain for spectral density

dE

dTdv
5

2q2

Ap

m2

E2
vS 1

2Ea

`

F~u!du1
1

a

]F~a!

]a D
3@12J0„v8u~T!d~T!…#, ~5.1!

where

a5~v/vH!2/3, vH5v0~E/m!3, ~5.2!

v85vE/~E2v!. ~5.3!

FunctionF is the standard Airy function~see Appendix B!.
This result is the single-particle answer times the interfere
multiplier.

Let us first consider the case ofx!1. The corresponding
graphs are depicted in Fig. 4. Figure 4~b! corresponds to time
T;m/F, while the graph in Fig. 4~c! to time T;E/F. We
see that for the first graph the interference is very stro
while for the second case it is only slight. For comparison
also present the analogous graph for a single charged pa
@graph~a! in Fig. 4#.

The opposite limiting casex@1 is depicted in Fig. 5. We
see that forT;m/F the interference decreases the radiat
reaction dramatically, forT;E/F the decrease is only sligh
~if fact we see a very slight increase!. Most interesting, we
see that interference remains important numerically eve
T;(E/F2)1/3, where we see that it decreases the maxim
FIG. 4. Spectral curve as a function ofx5v/E. We choose hereF5100 GeV2, E5100 GeV,v50.8, x50.04. @All graphs in this and
the next figure depictdE/(dTdv), normalized byq2/Ap.# ~a! The spectral curve for a single charged particle.~b! Spectral curve for the
dipole in a small time regime,T5m/F525 GeV21. ~c! Spectral curve for the dipole in a small time regime,T5m/F5100 GeV21.
3-12
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FIG. 5. Spectral curves as
function ofx5v/E, as in the pre-
vious figure. We choose hereF
5100 GeV2, E5100 GeV, v
50.999, x5111.6. ~a! Single
charged particle.~b! The dipole in
the small time regime,T5m/F
50.045 GeV21. ~c! The dipole in
the small time regime, T
5(E/F2)1/350.21 GeV21. ~d!
The dipole in the small time re-
gime,T5E/F5100 GeV21.
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by the order of 1.5 and clearly significantly decreases
total radiation reaction~the spectral curve is still ‘‘dipole
like’’ !. Moreover, the interference leads to a further shift
the radiation maximum to the end point of the spectrum.

Let us now consider the total radiation reaction. Integr
ing Eq. ~5.1! we obtain

dE

dT
5

2q2

Ap
m2E

0

`

dx
x

~11x!3 S 0.5E
u

`

F~u!1F8~u!/uD
3@12J0„xEd~T!u~T!…#, ~5.4!

where the functionu(T) is given by Eq.~2.40! above. The
expression in the case without interference differs sligh
from that for the single particle, since we did not do the us
integration by parts:

u5
x2/3

x2/3
. ~5.5!

In order to understand qualitatively the influence of the
pole interference let us change the integration variable tu.
Then

dE

dT
5

3q2x2

Ap
m2E

0

`

du
u2

~11xu3/2!3 S 0.5E
u

`

F~s!ds

1F8~u!8uD @12J0„u
3/2xEd~T!u~T!…#. ~5.6!
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The radiation reaction is the function of two parameters:
relativistic invariantx and relativistic invariantb(t), which
is equal to

b~t!5Eu~T!d~T!5m
dd2~t!

dt
~5.7!

for the small dipole and

b~t!5md~t! ~5.8!

for the very small dipole. The radiation reaction can be w
ten as

dE

dT
5F„x,c~t!…, ~5.9!

where

c~t!5b~t!x. ~5.10!

Heret is the proper time in the c.m. reference frame of t
dipole.

In order to understand qualitatively the influence of t
dipole interference consider two limits:x!1 andx@1. For
x!1 we can use Eq.~5.6!. For the timeT@m/F we can
estimate,

dd2~T!/dT;F2T3/E,

and the argument of the Bessel function in Eq.~5.6! is just
u3/2(T/T0)3, whereTF5m/F. We then putx50 in the de-
nominator in the latter equation and obtain
3-13
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FIG. 6. Radiation reaction of
the dipole as a function of
T(GeV)21 for the small time re-
gime E/F>T>m/F. The radia-
tion reactiondE/dT is normalized
by q2/Ap. ~a! x50.04, E
5100 GeV,F5100 GeV2. ~b! x
5111.4, E5100 GeV, F
5100 GeV2, T* ;0.22 GeV21.
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dE/dT52
2

3

F2E2

m4
G~T/TF!, ~5.11!

where the first term corresponds to the classical Pome
chuk effect, and the functionG(T/TF) is defined by

G~s!5
9

2Api
E

0

`

u2S 0.5E
u

`

@F~u!

1F8~u!/u# D @12J0„u
3/2~T/TF!3

…#. ~5.12!

It is clear that forT@T0 , G(T)→1. The radiation reaction
in this case is depicted in the first graph in Fig. 6, where
see the sharp increase of the radiation reaction atT;TF . We
see that it becomes weakly time dependent numericall
T;E/F.

For the opposite casex@1 the main contribution in the
integral of Eq.~5.6! comes from theu→0. In this case we
can put the argument in the Airy functions to zero, and u
F8(0);20.5. We then obtain

dE/dT52
q2m2x2/3F8~0!

p
F~T/T* !, ~5.13!

where

F~T/T* !5E
0

`

x1/3/~11x!3@12J0„x~T/T* !3
…#,

~5.14!

i.e., T* 5(E/F2)1/3.
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Note that forx@1E/F@T* @TF5m/F. Thus the argu-
mentx of the Bessel function is multiplied by a number le
than 1. Consequently, as it is clear from the second grap
Fig. 6, the radiation reaction remains negligible up toT
;T* . Afterwards, it increases rapidly, and atT;E/F be-
comes approximately time independent and a sum of ra
tion reactions of the components of the dipole. In both ca
the qualitative dependence on the parameterx for the dipole
is the same as that for the single particle.

It is worthwhile, as in the preceding section, to follow th
position of the maximum of radiation. For smallx we saw
that it does not change, and the interference in this regim
small. The interesting case is the case of largex. We see that
up toT;T* the spectrum is shifted to the end point. This
in contrast with the single particle, where, as it seen from
first graph in Fig. 5~see also Refs.@9,10#! the spectrum is
concentrated nearvm;0.4E. The strong interference in th
maximum is the reason for the suppression of the total ba
reaction. WhenT>T* , the maximum, as it is clear from th
figures above, starts to move to the position of the maxim
of the single particle, i.e., 0.4E, where it comes byT
;E/F, and the radiation reaction quickly increases.

Consider now the number of radiated photons in theq2

approximation of the perturbation theory. It is clear that th
number is drastically decreased by interference. We se
Fig. 7~a! the number of emitted photons without the interfe
ence, while in Fig. 7~b! the number of emitted photons i
shown with the interference taken into account. We see
the interference qualitatively changes the spectrum: inst
of being infinite in the limit of soft photons (v→0), now the
spectrum has no infrared singularity for soft frequencies.
stead a number of radiated photons→0 at v→0 and has a
finite maximum at finite frequency. Moreover, it is clear th
e

FIG. 7. Number of radiated

photons in the small dipole regim
as a function of frequency.~nor-
malized byq2/Ap). ~a! No inter-
ference.~b! Interference is taken
into account.
3-14
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RADIATION AND EVOLUTION OF A SMALL . . . PHYSICAL REVIEW D 69, 022003 ~2004!
up to a numerical coefficient of the order one, the position
this maximum will be the same as the frequency that co
sponds to the maximum of the radiation reaction. In parti
lar, for the ultrarelativistic dipolex@1 the relevant fre-
quency will shift to the end point of the spectrum. Th
photons will take almost the entire energy of the radiat
electron in a single radiation event for the time intervalT*
!T!E/F. For x;1 one radiating event will take;1/2 of
the initial energy of the electron.

An even more interesting effect will take place for high
timesT;E/F ~andx@1). Since the soft photons will be cu
by the dipole effects, the number of photons will have
maximum for finite frequencies. Numerical analysis sho
that in this case

vm;2/T. ~5.15!

This means that there are two distinct groups of radiat
events for largeT: radiation of large numbers of soft photon
with frequencies given by Eq.~5.15! and the radiating event
where the dipole loses approximately half of its energy e
time, this half being carried by a photon.

VI. BACKREACTION AND EVOLUTION
OF THE VERY SMALL DIPOLE

We can answer now how the backreaction influences
evolution of the very small dipole, and where the energy l
goes due to radiation: to the relative motion of the partic
in the center of mass or to the loss of the total energy of
center of mass motion. Our results show, that for the sin
particle and for very small times the backreaction force
haves according to Eq.~A7! in Appendix A. For the dipole
the backreaction force behaves in much less singular fash
Note that for very small times one can write

dE/dT5
q2a3

p~12v !2E0

`

ds@sin~s!

2s cos~s!#* @12J0~2v0ts!#/@s~s1a!3#.

~6.1!

Here as in the previous sectionsa5ET(12v). Equation
~6.1! can be used to obtain the first several terms in
expansion of the backreaction force for smallT:

dE/dT5
q2T3m2F2v0t

2

2pE S 12
3

2

m2Tp

4E D
1O„T5log~m2T/E!…. ~6.2!

Recall thatv0t is the transverse velocity in the c.m. frame
The backreaction force for the dipole is smaller than t

for the single particle, logarithmic terms are present o
starting fromT5, and its leading term is proportional toT3.
The condition for the applicability of the expansion~6.2! is

T!min~E/m2,m/F !. ~6.3!
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Since the photons are radiated almost parallel to the direc
of the dipole, the corresponding backreaction force is
rected in the direction opposite to the direction of the dip
and leads to the decrease of its center of mass velocity.

There is an additional backreaction force that slows
expansion of the dipole in the orthogonal direction. For t
very small time regime this force is evidentl
;sin2u(dE/dT)/pt , where u;m/E is the radiation cone
angle, andpt;v0tm is the transverse momentum. Cons
quently the orthogonal component of the backreaction fo
is

Fy~T!;
q2

p

F2m3T3v0t

E2
1O„T4,T5log~m2T/E!….

~6.4!

The influence of this force on the wave packet radius beg
only from the terms of;T5, i.e., for very smallT the ex-
pansion due to quantum diffusion and external field is do
nant.

VII. THE QUANTUM DIPOLE

In the latter analysis we did not take into account t
quantum character of the dipole motion. In fact, there is
additional effect that influences the motion of dipole, and t
is the non-Coulombic photon exchange between the com
nents of dipole. This effect is significant if the distance b
tween the components of the dipole is less then 1/m and
leads to so-called quantum diffusion: the distance betw
the components of the dipole increases not linearly or q
dratically as in the usual relativistic quantum mechanics,
in the diffusion way, i.e., as;AT @16# ~a simple qualitative
explanation of this phenomena is contained in Ref.@27#!.
Moreover, the dipole motion along the coherence length m
stop being quasiclassical, as assumed throughout this p
@16#.

It is easy to see that the effect is important for the
trarelativistic dipole withx@1. Indeed, the diffusion is im-
portant until the distance between the components of
dipole is ;1/m, where 1/m is the scale of bound state i
QED. In order to take into account the external field we ne
to write the wave functions in the external field, taking in
account quantum non-Coulombic photon exchanges. Th
beyond the scope of the current paper. Here we shall tr
build a qualitative model to indicate the influence of t
quantum effects. In order to estimate the field influence
the diffusion let us note that the diffusion law,

d2~T!5
2T

E
, ~7.1!

can be obtained from the equation

ẏ/E5h~ t !, ~7.2!

whereh is the random external force such that

^h~ t !h~ t8!&5Ed~ t2t8!. ~7.3!
3-15
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B. BLOK PHYSICAL REVIEW D 69, 022003 ~2004!
In order to include the external field, we generalize this eq
tion in an obvious way:

ÿ~ t !1 ẏ/E5h~T!1F/E. ~7.4!

This equation can be easily solved with the result

d2~T!54^y2~T!&52T/E12F2T2/E41O~T3! ~7.5!

and

^y~T!&5FT/E2, ^vy~T!&5F/E2. ~7.6!

We see that quantum diffusion changes the velocity and
distance between charges. The average velocity is sm
F/E2, and constant. Diffusion is important until the distan
between dipole components is 1/m, i.e., 2T/E;1/m2, or

T;~E/m!~2/m!. ~7.7!

Note that forx@1 this time is@m/F. Also note that for all
reasonable times<E/F the first term in Eq.~7.5! is domi-
nant.

Consider now the interference in the case of diffusion.
need to average the product sin(u)vd. There are two possi
bilities. If the angle between the direction of a component
the dipole and z axis is much bigger thanm/E, we use
sinu;vy . Then we need to average^vyd(T)&5dd(T)2/dT
52/E, and we get as the argument of the Bessel funct
2x52v/E (v8/E if we also take into account recoil effects!.
The interference multiplier will be

12J0~2x!. ~7.8!

If the angle is m/E, we shall get the argumen
vm^d(T)&/E;2vmFT/E3. We must choose the larger o
two arguments. It is easy to see that the first argument wil
larger up to timesT;E2/(mF)5(E/F)(E/m), i.e., for all
times where the dipole notion has meaning. Thus, in
simple model, in the diffusion regime, which lasts parame
cally longer, asx increases, the interference depends on ti
only weakly.

For smallx the diffusion law holds only for very smal
times !m/F. Thus the largest influence seems to occur
x>1, when the interference multiplier may significant
change the radiation.

We have developed above a simple phenomenolog
model, indicating the effects connected with the quant
character of the dipole motion. Unfortunately, at the mom
we can, on the basis of this model, only indicate that th
may be very important for largex and that they lead to the
suppression of the dipole radiation, as in the quasiclass
dipole.

The reason for the difficulties we encounter is the ina
equacy of the classical approximation. It is possible to e
mate the area of reliability of the quasiclassical approxim
tion: we must demand that the transverse velocity acquire
the classical approximation due to the action of the exte
field is larger than the velocity due to quantum diffusio
Quite remarkably this gives us the conditionT>T* , i.e., the
quantum diffusion effects are important for largex up to the
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scale when quasiclassically, radiation suppression stops
the radiated energy quickly increases as we saw in Sec
This result is consistent with the conclusion above, that
the time interval when the quantum effects in the dipole m
tion are important, there is still a suppression of the radiat
reaction ~the charge transparency!. The origin of the diffi-
culty is clear. The parameterx5 l c / l F , where l c;E/m2 is
the coherence length, whilel F;m/F is the field regeneration
length, in other words the average distance the dipole m
travel before colliding with the external field photon. It
clear that the external field does not break coherence. T
we are in the situation when we have multiple coheren
conserving collisions along the coherence length. In this s
ation it is well known~see, e.g., Ref.@21#! that the classical
approximation is, generally speaking, not applicable. T
quasiclassical approximation corresponds to neglecting
coherence conservation and thus can lead to the wrong
sults. Further analysis along the lines of Ref.@21# is therefore
needed.

VIII. CONCLUSION

We have studied the backreaction and its influence on
evolution of the relativistic dipole in the arbitrary strong e
ternal field using the quasiclassical approximation. We h
taken into account the quantum recoil effects in radiation,
not quantum effects in the motion of the dipole, i.e., quant
diffusion. We found that the dipole motion is governed
two invariant parameters; one of them describes the long
dinal motion and is equal tox5EF/m3; another describes
the motion in the transverse plane and is equal to

b~t!5md~t! if T!m/F,

b~t!5m
dd2~t!

dt
if E/F@T@m/F.

It is quite possible that there exists a single formula forb,
although we were not able to obtain it.

We have studied the pattern of charge transparency in
external field. We have found that the interference effects
be taken into account by the use of the general interfere
multiplier 12J0„xb(t)…, wherex5v/(E2v). For arbitrary
times the radiation reaction is given by Eq.~2.39!.

We have seen that there are three different time sca
First, is the very small dipole regime,T!m/F. This time
scale exists if the dipole transverse velocityv0t!1. In this
regime the radiation reaction is strongly suppressed by in
ference, leading to the strong decrease of the backreac
i.e., the fast moving dipole does not lose its energy. In t
case we were able to calculate analytically the backreac
force analytically for both the entire regime, and for ve
small times @Eq. ~6.2!#. For larger time scalesE/F@T
@m/F the influence of interference on backreaction depe
on the value of the parameterx5EF/m3. If x!1, the ra-
diation reaction quickly increases starting fromT;m/F, and
by the timeT;E/F it is a sum of radiation reaction of th
components of the dipole@see graph~a! in Fig. 6#. However,
for the opposite casex@1, the radiation reaction starts t
3-16
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increase only from the timesT;T* 5(E/F2)1/3, and then
once again goes quickly to the sum of the radiation reacti
of the components.

For the third regimeT@E/F the components of the di
pole can be considered as independent particles. For ea
the regimes we obtained the analytical expressions for b
the spectral distribution of the radiation and the total ba
force. The results are qualitatively shown in Figs. 1–7.

The results for the radiation reaction are in the corresp
dence with the influence of the interference on the numbe
radiated photons and on the scattering cross sections. T
physical quantities are qualitatively influenced by interf
ence up to times;E/F. Without interference the number o
photons is maximum~infinite! at v→0. As a result of the
interference the number of photons goes to zero whenv
→0. The photon-number distribution has maximum atv*
;g/d(T) for the very small dipole regime, i.e., for the u
trarelativistic dipole the maximum of the number of radiat
photons shifts to the end point of the spectrum.

For larger times~small dipole regime! the maximum in
the number of the radiated photons is finite and parame
cally lies at the same frequencies as the maximum of
radiation reaction2Ex for x!1, 0.4E for x@1. Moreover,
we have seen that forx@1 the radiated particles carry;1/2
of the dipole energy for arbitrary timesT@E/F, when the
particles move as independent ones. There are two dis
maxima and two groups of photons. One group is resp
sible for the energy loss, and its spectral curve maximum
at v;0.4E for large x. Another group is the soft photons
responsible for the total number of photons emitted~and they
may give the main contribution to the cross sections!. These
photons in the regime under discussion are the soft phot
with the maximum of the spectral curve located atv;2/T
for largex.

It is also interesting to summarize the behavior of t
radiation spectrum for differentx. For x!1, the relevant
maximum lies near the end point ifT<E/m2, but the radia-
tion is strongly suppressed. However, if it occurs, the dip
will be immediately destroyed, since the photon takes al
its energy. Then it moves toEx by the timem/F, and only
afterwards does the radiation begin to increase.

In the opposite casex@1 the maximum is near the en
point until T;T* , and only then begins to move to satur
tion, 0.4E, which corresponds to the single particle ma
mum. ForT<T* the radiation is suppressed, but if occurs
destroys the dipole~the photon carries its entire energy!. For
timesT@E/F the radiation reaction is a sum of the comp
nent radiation events, and at each radiation event on ave
half of the electron energy is taken by the photon.

We have seen that our results, although they were
tained for the simple model of the constant transverse fi
can be reformulated in a model-independent way. The
rameterx5 l c / l F is the ratio of the coherence and the fie
generation length. The very small dipole regime correspo
to the situation when the dipole travels a distance less t
l F . There exists a charge transparency in this region in
pendently ofx. However, for large times the parameterx
starts to play an important role. Ifx!1 ~this is the situation
considered in Refs.@16,17,19#! one can see the external fie
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as a small perturbation. The region of the quantum diffus
is small ~since l c! l F) and charge transparency~i.e., radia-
tion suppression! continues up toT;m/F, well beyond the
quantum diffusion range. However, oncex>1, we are in a
completely different situation. In the quasiclassical approa
we have here the situation is quite similar to the Land
Pomeranchuk effect in the single particle dynamics of
fast particle moving through the amorphous media. The
diation reaction continues to be suppressed even after
field regeneration time, thus extending parametrically
charge transparency interval to timesT;T* . However, as it
was noted in the preceeding section, the area ofT<T* must
be studied beyond the quasiclassical approximation, since
must take into account multiple coherent collisions. We e
pect that the radiation will still be strongly suppressed in t
time interval, but further analysis is needed to make qual
tive statements, and to compare the results with those f
the quasiclassical approach.

The main possible drawback of our paper is the validity
the quasiclassical approximation. Forx<1 the quasiclassica
approximation works for all times larger thanTc;E/m2

<TF . For x>1 for the dipole one may expect significa
corrections to the quasiclassical approximation for all tim
in light of the results of Ref.@16# ~see also the precedin
section!. Nevertheless, quasiclassical analysis is still imp
tant as a first step for understanding the radiation pattern
this regime of parameters.

Our work certainly leaves a number of questions op
First, there is the question about the influence of the quan
effects in the dipole motion on the radiation reaction. This
important for the study of the quantum dipole. We have se
that such effects for the dipole may be much more import
than those for a single particle, and may require analy
beyond the quasiclassical approximation due to the cohe
multiple scattering.

Second, it will be interesting to study further the depe
dence of the number of the radiated photons onx, in par-
ticular taking the multiple photon radiation into account. O
results suggest that, since the electrons are created in p
i.e., as a dipole, the infrared photons are always cut off,
the evolution continues by a series of radiative events, s
that in each of these events the electron loses approxima
half of its energy. This is true at least ifx@1, i.e., the dipole
is ultrarelativistic or the field is very strong. This is oppos
of the scenario when the fast electron loses its energy
radiating soft photons, with a small energy loss in each of
radiating events. This result can be important for carrying
the next-to-leading order logarithmic calculations. The
sults of this paper imply, roughly, that such a dipole mov
until times T* without radiation, then after the transitio
period~up toT;E/F), starts to radiate, losing at each eve
;1/2 of its energy.

Moreover, the numerical analysis shows that for lar
times there are two parallel processes for the ultrarelativi
dipole. First, it emits soft photons. The maximum of th
photon number distribution for largex, as the numerical
analysis of Eq.~4.1! shows, lies at

v;2/T, T@E/F. ~8.1!
3-17
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B. BLOK PHYSICAL REVIEW D 69, 022003 ~2004!
These photon numbers make significant contributions
cross sections. But the energy loss of the dipole occurs v
series of different events, when;0.4E is lost in each event
and the relevant photons are hard for the ultrarelativistic
pole.

It will be interesting to see if the different regimes
radiation discussed in this paper are connected with
theory of the production of thee1-e2 pairs by fast particles
in the external field discussed in Ref.@28#. Finally, it will be
interesting to study the implications of our results for QC
In particular, our results are clearly relevant to the studies
the color transparency phenomena, first discussed in R
@16,17,19#. As it was noted in the Introduction for the case
the deep inelastic scattering on the longitudinal photons,
charge transparency is directly translated into color trans
ency @20#. Our results give qualitative bounds on the co
transparency for the arbitrary external fields, and indicate
direction of the research one needs to extend the color tr
parency for the case of the arbitrary external field.

It will be especially interesting to extend our results to t
gluon color dipole radiation, since then the shift of the sp
trum to the end point will mean that the dipole loses all
energy by a single radiative event for a small time. It w
also imply that the color dipole loses its energy by a serie
events in each of which the gluon looses half of its ener
Note, however, that the extension to the color dipole is n
trivial since the mass of the gluon is zero, and we need
additional regularization. Moreover, the definition of th
QCD dipole is slightly different then the one in this paper.
this paper the dipole is a system of two oppositely char
particles with interfernce, and the QCD dipole is only
quantum dipole, i.e., the times considered are always
than the time interval that corresponds to the cohere
length. For such a case, as we saw above there may be
nificant corrections to the quasiclassical approximation t
need further study. Nevertheless our results imply that
recoil effects may be very important also for the color dipo
i.e., for the small deep inelastic scattering.
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APPENDIX A: RADIATION REACTION FOR A SINGLE
QUANTUM PARTICLE FOR SMALL TIMES

„SMALL DEFLECTION ANGLES …

Although the article is devoted to the radiation reaction
a dipole, in this section we shall discuss the radiation re
tion of a single particle for small times, taking into accou
recoil effects. Although such a problem may look unphysic
since charged particles are created by pairs, exactly the s
problem appears if the particle goes through the line of
constant external field of the lengthL<m/F. The purely
classical case was discussed by Landau and Lifshits@1#.
However, we were not able to find the quantum case in
literature.

We start from Eq.~2.10! for total energy radiated by a
single particle during the time intervalT. Using the approxi-
mation of Eqs.~2.38! and ~2.39! we see that the radiation
reaction is the sum of three terms: the term proportiona
12v2, the term proportionalv0

2, and the term due to the
integration by parts. Note that all cubic terms in the arg
ments are negligible and thus can be omitted. The terms
arise due to the integration by parts do not depend on
external field, up to the terms additionally suppressed
m2/E2, and are the same as that for the free particle. So o
the term proportional tov0

2 remains. It is straightforward to
find

dW

dv
5v0

2 q2

2pE0

TE
0

T

ds ds8E
21

1

d~cosu!~s2s8!2

3cos@v~s2s8!#exp$ i @vv~s2s8!cosu#%. ~A1!

The latter triple integral can be easily taken. We obtain
dW

dv
52v0

2 q2

vp

2$12cos@v~11v !T#2v~11v !T sin@v~11v !T#%

v2~11v !3

1v0
2 q2

p

2$12cos@v~12v !T#2v~12v !T sin@v~12v !T#%

v2~12v !3
. ~A2!

This is the classical formula. The recoil is taken by first rewriting

dv

v2
5

vdv

v3
.

Then we need to rescalev in the right-hand side~r.h.s.! of Eq. ~A2!, except in the productvdv, as discussed in the text:

v→v85vE/~E2v!. ~A3!
3-18
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We obtain:

dW

dv
52v0

2 q2

vp
v

2$12cos@v8~11v !T#2v8~11v !T sin@v8~11v !T#%

v83~11v !3

1v0
2 q2

p
v

2$12cos@v8~12v !T#2v8~12v !T sin@v8~12v !T#%

v83~12v !3
. ~A4!

The typical spectral curve is depicted in the first graph of Fig. 1.@In the figure we also added the contribution of the te
proportional to (12v2).]

It is straightforward to integrate the latter equation overv from 0 to E @for this we change the integration variable toy
5v/(E2v)]. After trivial integration we obtain

dE

dT
5

q2

p~12v !2
v0

2
„@~12v !2/~11v !2#$2b1Ci~b!@b cosb2sin~b!1b2sin~b!/22b3cos~b!/2#

1Si~b!@cos~b!2b sinb2b2cos~b!/22b3sin~b!/2#%…1pb~21/21b2/4!sinb1p~21/21b2/4!cosb

2$2a1Ci~a!@a cosa2sin~a!1a2sin~a!/22a3cos~a!/2#

1Si~a!@cos~a!2a sina2a2cos~a!/22a3sin~a!/2#1pa~21/21a2/4!sina1p~21/21a2/4!cosa%. ~A5!
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a5~12v !ET;m2T/~2E!, b5~11v !ET;2ET.
~A6!

The corresponding typical radiation reaction curve is
picted in Fig. 2.

Expanding the latter equation in powers inT we see that
the backreaction force for small times is very small:

dE

dT
52

q2

6p

m2F2T3

E
@ log~m2T/2E!1g11#1O~T4!,

~A7!

whereg;0.55 is the Euler constant. This force is direct
against the direction of the particle.

The latter equation works for the whole range ofT
<m/F if x@1. For T;m/F, x!1, the parametera;1/x
@1, and we have to use the whole equation~A5! in the limit
a@1. For x@1 the expansion parametera;m2T/E;1/x
and is still small forT;m/F. Then the backreaction force i
for this time scale:

Fb.r.;
q2m5

6pEF
log~E2/m2!5

q2m2

6px
log1/x.

We see that the backreaction is strongly suppressed for s
particles in the ultrarelativistic case.

Finally, let us make a comment on the discarded ter
proportional to (12v2), and those originating from integra
tion by parts. It may be strange from first sight that the
terms really exist, since they are nonzero for a particle m
02200
-

le

s

e
-

ing with constant velocity and finite mass, i.e., a particle t
does not emit any radiation field. In fact this situation
usual in quantum mechanics and quantum field theory.
deed, when we calculate the transition rate due to pho
radiation in standard perturbation theory between station
states we encounter the multiplier

sin2~Ef2Ei2v!T/T~Ef2Ei2v!. ~A8!

For infinite T this term gives a delta functiond(Ef2Ei

2v), ensuring the law of the energy conservation. Howev
for finite T and nonfiniteDE5Ef2Ei2v this will be a
function of T decreasing as a function ofT for fixed DE.
This decrease, as it is well known, just expresses the en
uncertainty principle. If we consider the system for a fin
time, the energy cannot be measured unambiguously:DET
>\. The discarded terms in the radiation reaction have
actly the same origin and the same character. They decr
for large T as 1/T or faster and thus disappear at infiniteT
altogether. They exhibit the ambiguity in the measuremen
the electromagnetic field of the free particle due to the fin
time of our process. In practice this leads to the finite wid
of spectral lines for finite times. It is interesting to stud
these terms in more detail in connection with the Land
Pierels inequalities@29#. However, it is clear from the abov
that these terms must be discarded if we are interested in
radiation in external field. In other words, all quantum c
culations must contain renormalization, meaning that a f
particle does not radiate.
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APPENDIX B:
SOME USEFUL INTEGRALS AND THEIR PROPERTIES

Here we shall collect some useful integrals a
asymptotic expansions, as given in Refs.@22–25#. We shall
also collect the definitions of several special functions t
differ in the literature by normalization constants. We use
following integrals, directly expressible through Airy func
tions:

1

Ap
E

0

`

ds ssin~as1s3!52
d

da
Ai ~a!, ~B1!

E
0

`

ds
1

Ap
sin~as1s3!/s52E

a

`

dzAi ~z!.

~B2!

Here Ai(z) is an Airy function@22,23#:

E
0

`

ds
1

Ap
cos~as1s3/3!5Ai ~a!. ~B3!

Note that the Airy function decreases as;exp(2z3/2)/z1/4 for
the positivez→`.

We use integral of the Airy function:

E
0

`

zb21Ai ~z!dz53(4b21)/621G~a/3!G„~a11!/3….

~B4!
s
ar

.

02200
t
e

We define the integral sinus and cosinus as

Si~x!5E
0

xsin~x!

x
, ~B5!

Ci~x!52E
x

`cos~x!

x
, ~B6!

While studying the dipole radiation we used some formu
for the integrals of Bessel functions@26#. We use

G2~p,a,b!5E
0

`

exp~2px!sin~bx!J0~ax!/x5arcsin~2b/r !,

~B7!

G1~p,a,b!5E
0

`

exp~2px!cos~bx!J0~ax!

5
1

Ap21~b1a!2*Ap21~b2a!2
* A~r 2/42b2!.

~B8!

Here

r 5A~b1a!21p21Ap21~b2a!2. ~B9!
d
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