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Radiation and evolution of a small relativistic dipole in QED
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We study in the quasiclassical approximation the radiation reaction and its influence on the space-time
evolution for the small relativistic dipole moving in a constant external electromagnetic field in QED.
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[. INTRODUCTION both practical (explanation of the experimental data on
e"-e” pairs and theoretical. In particular, it was realized
The problem of the radiation loggadiation reactionof a  that quantum effects play a much bigger role in the propaga-
particle moving in a given external field is a classical prob-tion of the dipole in the external field than that of the single
lem both in quantum and in classical physics that has alwaygarticle, leading to the discovery of the quantum diffusion
attracted a lot of attention. The classical physics studies argl6]. The essence of the latter phenomenom is the diffusion-
thoroughly reviewed in Refd.1-3]. Since the creation of type law of the fast dipole expansion in the weak external
QED this problem was thoroughly studied on the quantundfield due to the non-Coulombic quantum photon exchange
level by several groups of authors, and the results were rédetween the components of the dipole. Thus it was realized
viewed in Refs.[4-10. Two different lines of approach that the study of the propagating QED dipole, and in particu-
were developed: one based on the use of the exact wavar of its space-time evolution, is important for the under-
functions in the external fielfb,6,8), and the other based on standing of the fundamental properties of the QED, in light
the quasiclassical approagHi. of Ref.[12]. Moreover, the study of the propagating dipole is
In particular, the classical results for the radiation reactiorextremely important due to its possible generalization to
were extended to the quantum case, and it was shown th&CD, where the dipole, due to confinement, may be the ba-
for ultrarelativistic particles such th&E/m®>1 (F is the sic degree of freedomil7-19. This approach led to the
field strength E the energy andn the mass of the partigle ~ discovery of color transparency phenomena in Q[3].
the law of radiation reaction changes drastically compared tdloreover, the QED dipole is identical to the QCD dipole
the classical case due to the strong recoil effects. Recently @onnected to the deep inelastic scattering on the longitudinal
new version of the quasiclassical approach based on the ug#tual photong20]. However, there is still very little knowl-
of the quasiclassical Schiimger wave functions was devel- edge about the properties of the propagating relativistic di-
oped in Refs[9,10] and references therein. pole (in particular relative to what we know about the propa-
Although the theory of a particle in an external field gation of the single charged particles
seems to be thoroughly developed, there is still a lot of in- The main goal of the present paper is to study the radia-
terest in the subject. The reasons, apart from the interndion reaction and in particular the pattern of the charge trans-
beauty of the subject, include a number of practical reasongarency and its influence on the evolution of the small ul-
First, the external field is the simplest model of the mediatrarelativistic dipole in the arbitrary strong external field in
Second, the QED results can be viewed as a starting point f62ED. In particular we shall be interested in the influence of
the discussion of the propagation of the QCD particles in thdhe interference between the fields created by different com-
media, this subject being extremely popular recently due t@onents of the dipole on the radiation reaction. For simplicity
the recent interest in the quark-gluon plaspi4]. Next, it ~ we shall consider the case of the dipole containing two op-
was realized that the space-time evolution of the point charggositely charged scalar particles of the same mass, moving in
in the external field is closely connected with the fundamena constant external field whose direction is orthogonal to the
tal properties of QED, leading to the concept of the semibarélirection of the motion of the center of mass of the dipole.
electron[12]. We shall assume that two particles were created at the time
The above research was devoted, however, to the radid=0 in the same point of the space-timgd)=0.
tion reaction of the charged particle in the external field. The main goal of this paper is to take into account the
Much less is known about the dipole propagation in the exinfluence of the quantum effects on the radiation reaction of
ternal field. The experimental research of faste™ pairs  the dipole. We shall be able to take into account the quantum
propagating in the media continues since the 1950s, includeffects connected with the recoil. We will not be able to take
ing the famous experiments by Perkifs3] in 1957. The into account the quantum effects connected with the quantum
theoretical investigation of the fagt™-e™ pairs leading to character of the motion of the dipole, in particular we shall
the concept of charge transparency was started in Refsot be able to take into account the spread of the dipole wave
[14,15. Recently, there was renewed theoretical interest irpackets and the quantum diffusion. We will not take into
the study of the relativistic dipole in QED. The reasons areaccount the spin of the particle, limiting ourselves to the
scalar particle case. Throughout the paper we use the quasi-
classical wave functions first derived in Reff8,10].
*Email address: blok@physics.technion.ac.il We shall see that there are three distinct time scalés: 1/
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<T<m/F (this time regime exists for the dipole such that Pomeranchuk effect for the propagation of the fast particle in
the initial transverse motion of its components is nonrelativ.the media. There the effect also appears when the coherence
istic), mM/F<T<E/F, T>E/F. For the first regiméwe shall  length is much larger than the free mean g&h However,
call it the very small dipole regimehe radiation reaction is as we discuss below, the classical approximation may be not
strongly suppressed by interference. The interference alsapplicable to the situation whép</I for the dipole. This is
decreases a number of emitted photons. For the second rése case that occurs in statistical mechanics, when the coher-
gime the decrease in radiation reaction, relative to the sum afnce length is larger than free mean path. Then there is a
radiation reactions of two independent particles, depends onumber of the important effects that arise only beyond the
the Lorentz invariant parameter=FE/m3. For y<1 the  quasiclassical approximati¢@1]. In this paper we shall only
interference quickly decreases starting frdm-m/F. For  study what one obtains sticking to the quasiclassical approxi-
x>1 the interference starts to decrease only starting fronmation. The results may be considered as a starting point for
the larger timeT* ~(E/F?)¥2. In the latter case the dipole future study.
affects especially change the photon spectrum. The relevant The paper is organized in the following way. In Sec. Il we
photons first are concentrated near the end point of the speshall consider the small classical dipole but will derive its
trum, and not in the middle, as for a single charged particleradiation reaction using relativistic quantum mechanics, and
The maximum of the radiation reaction spectral curve movesheck that the classical approach corresponds to the recoiless
towards saturation at frequencies- 0.4E. limit of quasiclassical theory. We shall review the results for
The interference radically changes the frequency distribua single particle, then consider the case of the radiation of the
tion of the number of radiated photons. Instead of an unarbitrary dipole, and then derive the radiation reaction in the
bounded increase at small frequencies, it now goes to zero &nall and very small dipole limits. In Sec. Il we shall briefly
w—0 and has a maximum at finite frequency of the order ofreview the classical wave-function method of Ref8,10]
the maximum of the radiation reaction. and extend it to the case of the arbitrary dipole. Next we
Finally in the third regime, the interference does not in-shall assume that the dipole is sméil the plane transverse
fluence the radiation reaction, but still cuts off the soft pho-to the direction of its center of mass motjcend derive the
tons withw<1/T. The photon distributions will have a finite general formula for the radiation reaction of such a small
maximum atw~ 2/T. dipole. In Secs. IV and V we shall use the above formulas to
Our results, derived in the approximation of the constanstudy the radiation reaction in two important limiting cases.
external field, can be translated to the model-independerf Sec. IV we shall study the frequency distribution of the
language of the propagation of the dipole through the arbifadiation and the time dependence of the total radiated en-
trary external media. Indeed, the Lorentz-invariant paramete@rgy for the limit of very small times when the dipole’s own
x=FE/m3is really a ratio of two parameters: the parameterfield was not generated yet. We shall call this regime the very
| .=E/m?, which is (up to a numerical coefficient, unimpor- small dipole regime. This regime can be also characterized as
tant her¢ a coherence length, arig=m/F, which is the the regime when the particle deflection angle due to the ex-
field regeneration lengtfor time between successful inter- ternal field is less that the radiation angle. In Sec. V we shall
actions with the external f|e]dThu5 the parametey actu- consider the scale of times when the dlpole is still small, but
ally measures a number of collisions once the dipole propaits field has already been generated. The particle deflection
gates through the coherence length. In particular the cologngle is much larger than the radiation angle. We shall study
transparency and quantum diffusion considered in Refsthe frequency distribution of the photons and the radiation
[16,17,19 correspond to the case<1. The regime of the reaction also in this case. We shall see that the radiation
very small dipole corresponds to the caBsm/F, i.e., in  reaction depends on the parameter FE/m°. [Recall that
model-independent language, to the case when the propag&' the single fast moving charged particle, the radiation re-
tion time is less than a tim& required to meet an external action qualitatively depends on this parameter, which is Lor-
field photon. In other words is analogous to the mean free entz invariant:y=/(F ,,p")?/m° [1].] In Sec. VI we shall
path in the media language. Then it is clear that in this restudy the total back force acting on the dipole for very small
gime the radiation is always suppressed, independent of tHénes and its influence on both the transverse and the longi-
parametery. However, the later time evolution depends ontudinal evolution of the dipole. In Sec. VII we shall make
the parametery. If y<1 (which corresponds to the case Some qualitative comments on the influence of the quantum
considered in Refs[16,17,19), the coherence length is hature of the dipole motion on the radiation reaction, in par-
much less tharig, the radiation suppression ends, as weticular on the possibility to go beyond the quasiclassical ap-
shall see, al ~m/F, and apart from the small time interval proximation. Our results, the directions for the future work,
in the beginning~E/m?<m/F, one can use for the study of and pos_sible implications for QCD will be summarized in the
the radiation reaction and the spectra of the emitted photorfgonclusion.
a quasiclassical approximation. However, in the opposite
case,x>1, we have the situation of multiple collisions dur- 1. RADIATION REACTION OF THE FAST RELATIVISTIC
ing the coherence length. In this case, we were able to de- DIPOLE
velop a quasiclassical theory of the radiation emission taking
recoil into account. Our results show the suppression of the
radiation reaction and the photon emission up to the time Let us start by briefly recalling the basic quasiclassical
T*>Te. This looks quite similar to the Landau- formalism for radiation of photons by relativistic charged

A. Radiation of the single scalar particle
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particles without taking recoil into accouft]. The results The wave functiong2.5) cannot be substituted directly into
are the same as those obtained by using classical electromaf@)e matrix element(2.3), due to the appearance of the
netism theory1,9], but we shall use from the beginning not quickly oscillating factors
the wave but the photon formalism. This will easily be ex-
tended in the next section to the case when we need to take
recoil into account and the classical electromagnetism theory _
will be inapplicable. expi[S(r,ps,t) = S(r,p; ) ]}/%
The matrix element of the interaction between the electro-

magnetic field and the scalar particle is given by
for —0. In order to avoid this difficulty we have to use the

representation

S(l)=—iqf d*X A, (X)I4(x), (2.2

whereJ ,(x) is the current density operator in the external _ . _

field, ¢i(r.t)=f d®p Bp(r,t) Spp,.» 2.7
Jr=0]* (P*D)— (P*D*)D. (2.2

Th torP® is th lized ¢ tor i where ¢, is the quasiclassical wave function of the particle
€ operatom™ IS the generalized momentum operator Ny, yhe external field possessingtat» the asymptotics
the external field. Consequently, the matrix element for the

emission of the photon with the frequeney wave vectok,
and polarization vectoe is given by

. Td & 27 1 2,2 B
Mﬁ——|qf0 tf r j\/ﬁqsf(r,t)(e-P)

xexdi(wt—K-r)]ei(r,t). 2.3

- 1 . -
dp(r,t)— \/Eexp[i(p-r—Et)].
p

Sppo is the scattering matrix of the particle in the external

field considered. If we neglect the recoil and substitute the
Here ¢; is the initial ande; is the final state wave functions, representatiori2.7) for the final state wave function into the
normalized by the condition matrix element(2.3), we shall recover the classical ampli-

tude for the radiation of the electromagnetic waves, and the

classical expression for the energy loss during a time interval

f d3 d*(r)p(r)=1. (2.4 T (see, e.g., Ref§7,9] for details:
The operatoP is
28 o [T [Tardvie. oo
P=p—qA, dWCF?(d k)j0 JO dtdt'[e-v(t)][e*-v(t")]
p=—al/dx; is the momentumg is the charge of the particle, xexgiw(t—t')]—ik-[r(t)—r(t")]. (2.9

andA(F,t) is the vector potentiak; andE; are the energies
of the initial and the final states.

We shall use the quasiclassical wave functions of the scaafter averaging over the photon polarization vectors we ob-
lar particle in the external field: tain

- [ D i
o(r,t)= mexy{%S(r,p,t)). (2.5

Here S(r,p,t) is the action of the particle with the momen-
tum 5 calculated along the classical trajectory of the particle
passing through the point with the coordinatat the timet

and having the momenturﬁ att=0. D is the Van Vleck
determinant:

_ZLS_)TT T (t) et \T—T 1.
dW,=q 2772d kfo J;) dtdt'((v(t)-v(t")]—[n-v(t)]

x[n-v(t)Dexdiot—t" ) —iwn-[rt)—rt)]],
(2.9

where k=wn. Note thatn-uv(t)=v-V:=a/dt. Hence the

2S(rp)| 1 ——= . . o
Y :E,/5(r_r(t))_ (2.9  termsin the latter equation containingin the preexponen-

D= —
arap tial factor can be integrated by parts:
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1 T(T - - - - -
dWﬁ=q2—2d3kU f dtdt'[v(t)-v(t")—1]exdiw(t—t")—iwn-[r(t)—r(t")]]
2 0Jo
4 (7T - o I -
+5f sif[wT+n-r(T)]/2}codw(T—2s)+n-[r(T)—2r(s)]}/2
0

2 .
——2[1—c03wT+wn-r(T)]. (2.10
w

It is straightforward to see, however, that the last two lines in(Bd.0 correspond to terms decreasing or bounded Wijth
while the expression in the first line increases Withrhus the two last lines can be omitted if we are interested in large time

intervalsT>1/w. Indeed, we can integrate E@®.10 over the photon direction and obtain

sinw|r(t)=r(t")|]
Ir()—r(t")|

dw, I=q23w do foTdt dt'[v(t)-v(t")—1]codw(t—t"))
¢ ™ 0Jo

Tco§ wS— wr(s)]—cog ws+ wr(s)]
_f r(s)
fT cog w(T—s)—w|r(T)—r(s)|]—cog ws+ w|r(T)—r(s)|]
Ir(T)—r(s)|

2(1 sifw[T+r(T)]}—sifoT—r(T)] (2,19

C w? r(T)

w2

It is easy to see that the last three lines in Eg11) are suppressed similar to &/7) relative to the double integral in the first
line, and thus can safely discarded if we are interested in the frequencies and time inééf¥alls In order to know
numerically how large these terms are, we shall, however, keep them.

Finally, since we are usually interested in the energy losses in units of time, we can differentig@el Bapver timeT and
obtain

dwy_ 4 B e Selr(M—rl]
7= wdw f dt[v(T)-v(t)—1]codw(T—t)) T 0]
ZCos{wT wrf(T)]—cogd T+ wr(T)]
w r(T)
2(Td co§ ws— w|r(T)—r(T—s)|]-cod ws+ w|r(T)—r(T—s)|]
0 d/T IF(T)—r(T—9)|
d 2 sifw[T+r(T)]}—sifwT—r(T)]
‘d_T;(l r(T) ) 212

Below we shall use the first line in the latter equation andThe latter equation, if the limits of integration are infinite,
check that the last three lines can be neglected: can be easily brought into the standard form of the classical
electromagnetic theorj4,9].

B. Radiation of the relativistic dipole: General theory

dw
a7 ¢ —wdw f dtfu(T)-v(t) - 1] Let us now consider the radiation reaction of the relativ-
istic dipole in the case we can neglect recoll, iesE. For
sinf | F(T)— F(t)l] simplicity we co_nsider the symmetric dipolez whose center of
X codw(T—t)) _ _ . (2.13  mass moves with the speed-c in the direction orthogonal
[r(T)—r(1)] to the direction of the constant external field, and which was
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created at timé =0 in the pointr(0)=0. We shall denote Here k=wn. Using, as for the single particlen-v(t)
the components of the dipole &andA (particle and anti-  =;.V:=g/4t, we can carry out the integration by parts and
particle. Let us assume that the particles of the dipole havegptain:
after its creation, the same initial energy, and the ortho-
gonal component of the velocityy;. Note that ifuy, is the
velocity in the transverse plane in the center of mass
(c.m) reference frame, moving with the dipole, theg, dw q? T, ar -,
=(m/E)uq,, meaning that in any case,<m/E. In our m:rﬂzwﬁ) dtfo dt’expilw(t—t")][vp(t) - vp(t")
kinematics the two components of the dipole will have the
same velocity component in the direction of c.m. motion and
the opposite sign components in the transverse
plane. . . .. .
The amplitude of the radiation of the photon with polar- —[vp(t)-va(t’)—1]expik-[rp(t) —ra(t")]
ization vectore, wave vectok, and frequency will be the
difference(due to the different charges of the dipole compo-
nentg of the amplitudes of the photon emission of the par-
ticle a_nd the antiparticle components _of_the dip_ole. Using the The |atter equation gives us the formula for the radiation
equations of the preceding section it is straightforward tQuf the arbitrary relativistic dipole. Note that it is a sum of two
write terms that correspond to the radiation of the single particle
and two terms that correspond to the interference between
the particle and the antiparticle.

2T 1 T N oo . . .
M= —i 1 [ f te. oot iTwt—K-Fo(t _ The terr_nAW arises from the integration by paitsf. the
=N JEE Jo dt{e-ve(expile fe(D] single particl¢ and is equal to

—e-va(t)expi[wt—K-ra(H)]}. (2.14

—1]expik-[rp(t) = rp(t')]+(P—A)

+(P—A)+AW(w,T). (2.1

2 T
) R Avv(w,T)=doq—w2(3f si{w(T—s)+wn-[rp(T)
Hererp(t) andr(t) are the radius vectors of the particle Ax? wJo
and antiparticle components of the dipole. The energy radia-
tion loss during the time from creation of the dipole at time - 2 (T .
t=0 until time T with the photons radiated in the frequency _rP(S)]}J“(PHA)) - ;f ds(sinfw(T—s)

0
rangedw and the solid angle rang#p is
+on-[Fp(T) =T A(S) ]} +sin{w(T—5)

9° T T
dW=—w?do dwf dtf dt’expiw(t—t")
472 0 0

+on-[TA(T)=rp(s)])—(P—A)

2 1— N [re(T)—ra(T 2.1
X (8- 0 p(t)expi[K-Tp(t)]} — 6 Ua(t)expi[K- Fa(1)] LAt eosen-re(M-raM]y.  (2.18
x{e* - vp(t’)exp—i[K-rp(t')]}

— & oAt exp—i[K-Ta(t)]. (2.15 We can integrate over the angle variadizand obtain

Summing over the polarizations of the photon we obtain ~ dwW g

2 7 T . .
= j dtJ dt'cog w(t—t")J[vp(t) - vp(t")—1]
0 0

do
aw @ (T (T o SiFp() —rp(t)] | e
%=4—772w2f0dtfodt {expil w(t—t")]}{vp(t) - vp(t') i —ran] PR lve vAt) 1]
~[R-up(D]I[R-vp(t)Thexpi (K- [Fp(t) = To(t')]) ST o e, (219

. . . IFe() =Tt
+(P—A) = (0p(t)-0a(t")—[N-0p(t)][N-0A(t)])

X expi{k-[Ip(t) = Fa(t) ]} + (P—A)). (2.16  Here the term\G corresponds to the integral &fw:

022003-5



B. BLOK PHYSICAL REVIEW D 69, 022003 (2004

so 2@ deS(cos{w(T—s)—wle(T>—Fp<s>|]_cos{w(T—usle(T)—Fp<s>|])1
7 [ Jo w|rp(T)=rp(s)] w|rp(T)=rp(s)]
+(AHP)_(cos{w(T—§>—w|FE<T>—FA<s>|]_cos{w(T—fww|F.3<T>—FA<s>|])
o|rp(T)—ra(s)| w|rp(T)=ra(s)|
1 sinw|rp(T)—rA(S)|
- A<—>P)——(1— . - . 2.2
A R s 220

In order to get the radiation reaction it is enough to differen-If we can neglect the initial transverse velocity, the latter
tiate the above equations ovér The latter equations de- condition becomes
scribe the radiation of an arbitrary relativistic dipole, inte-

grated over the angles, for the time interffalNow we can T<m/F. (2.29
move to our goal—to consider the case of the small relativ-
istic dipole. |

m/F<T<E/F

C. Radiation of the small relativistic dipole

Consider the small quasiclassical relativistic dipole, i.e.the dipole is still small, but the cones do not overlap, and the
v>v¢, Wherev is the center of mass velocity and is the  interference must decrease drastically. There is also the self-
transverse component of the velocity, Can be both relativ- consistency condition: since>1/E, we must have
istic and nonrelativistic For sufficiently small times one can

estimate mE>F (2.26
v(T)~vo+FT/E. (2.21)  for the possibility of considering the very small dipole, with
. _ overlapping cones, quasiclassicaly. We need the weaker con-
HereF is the external field, dition
F=E+uxH, (2.22 E>>F, (2.27)
E is an electric field, andd is a magnetic field. Conse- for the possibility to consider the small quasiclassical dipole.
quently, one considers a dipole as small if If the latter conditions are not fulfilled, we must take into
account the interference of the dressing by the external field
FT<E. (2.23 and the generation of the self-field by bare particles. This is
beyond the scope of this resear@ithough it could be that
For larger time scales, our analysis is qualitatively true even in the latter case, since
the self-dressing usually generates quickly oscillating terms
FT=E, that can be singled out

We conclude that the classical dipole has two reginiBs:

the components of the dipole behave as independent particlesvery small dipole, when the radiation cones of the particle
and there is no interference. Let us study the interferencand the antiparticle overlap strongly,<m/F, and (2) a
pattern in the small dipole. Let us assume that the conditiosmall dipole in the sense that it still moves along #exis,
(2.23 is satisfied. Then the photons are radiated into théut the cones of the radiation do not overlap, and the inter-
small cone around the axis (we choose the axis in the ference decreases. Note that these two cases correspond to
direction of the propagation of the dipoleof orderm/E at  two possible relations between the depletion angle of the
T~1/E;, whereE; is the initial energy of each of the com- single charged particle in the external field and the radiation
ponents of the dipole. Later the radiated photons are concemngle. The very small dipole corresponds to the case when
trated in two cones around the directions of the componentthe latter angle is much larger than the former and the small
of the dipole. It is clear that there exist, even if the conditiondipole corresponds to the case when the former is larger than
(2.23 is satisfied, two distinct possibilities: the two radiation the latter. Note also that for a relativistic dipole in the c.m. of
cones, generated by the dipole components, overlap, and thtie dipole, transverse motion medttseenv,~m/E) we have
they stop to overlap. Since the cone angle for the ultrarelaenly the small dipole regime.
tivistic particle is 6~m/E;, we see that the condition for Suppose we have the very small dipole. Let us analyze the
overlapping is interference pattern. Consider the exponents in RdL7).

The exponents in the terms that contain only the particle or

vot+ FT/E<m/E. (2.24 only the antiparticle radiation are
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w{cosh[z(T)—z(t)]+sinOLy(T)—y(t)]}. stead of integrating, substitute giby its characteristic value

) m/E. [d(T) is the scale of the dipole, i.e., the separation
Here 6 is the angle between the photon wave vector anthetween the charges, which in our kinematics is purely trans-
direction of thez axis, and verse] Then the integral over the anglg gives the Bessel

2T)=2(0)~0,T-1),  Y(T)=y(O)~v(T-1). function
It is clear that the corresponding integrals will be saturated 1 (2= . 1)
by t~T, and the first term will be dominant since k1 ﬁfo exi singwd(T)m/E]d¢=Jo| gd(T)m .
Consider now the exponents in the interference terms in Eq. (2.29
(2.17. These exponents have the form for the chosen kine-
matics

With the same accuracy we can substitute @a&)—2z(T)]
w{cos[z(T)—z(t)]+sinosin()[y(t) +y(T)]}. with cosé[z(t)—z(T)]+sindsin Hy(t)—y(T)], i.e., after tak-
ing into account the interference term, the exponent in the
Here ¢ is the azimutal angle. In the first approximation we interference term will be the same as in the direct terms.
can sety(t)~y(T)=d(T)/2 in the latter equation, and in- Then for very small dipoles we can rewrite H.17) as

dw  4g?

T . R sinrp(T)—rp(t)
dwdT=7f0dtcos{w<T—t>][vp<T>-vp<t>—1} e ] 2

IFe(T) = Tp(D)] ll_J"(Emd(T))

In addition, there is contribution from the terms that correspond to integration by parts, where it is enough to do the same
approximation:

. (2.29

dG g2 (Td cogws)—o|r(T)=r(T—s)|-cofws+w|r(T)~r(T-s)[]f ® d 2 sined(T)
——=——] = - - 1-Jo| =md(T) | |+ = — ———.
dTde 7 w)odT IF(T)—r(T—s)| | E dT 42 T
(2.30
|
" 2
Hered(s) is the time derivative of the dipole moment, i.e., dw _4q

T > >
=—|[ dtco T—t T)-vp(t)—1
the relative velocity of the particle and antiparticle: dodT = Jo $o(T-0]lvp(T)-vp(t) 1]

y sinrp(T) —rp(t)]

[1-Jo(wb(T)d(T))],

. A[rp(S)—Tra(S rp(T)—rp(t
d(s)= [rp(s)—ral )]_ (2.3 Ire(T)—rp(t)]
s (2.32
where
The latter equation gives the radiation energy loss rate for the
very small relativistic dipole between times 0 ahdemitted O(T)=vo+ FT/IE=vy(T). (2.33

in the particular interval of photon frequencies.

Note that our inte_rfe_rence_ a_nalysis could be_ made in terM&ice for the classical dipoled(T) ~vy(T) T~ve,T
not (_)f th_e characteristic radiation angles, but in terms of.th.eJr FT?/(2E), we see that interference is suppressed as
longitudinal and transverse momenta. Our characteristic
anglesm/E correspond to the characteristic transverse mo-
mentum of the emitted photorts~me/E. In particular, if 1-Jo ﬂ[vgtTE+ 3v, F T2+ F2T3/(2E?)]|.
we consider photons whose energy is a finite parEothe E
characteristic transverse momentum will dpe- m.

Consider now the next regimg/F>T>m/F. Thisisthe Sincev,<m/E (due to the relativistic law of the velocity
case of the small, but not very small dipole. In this case wesummation and T>m/F, the third term in the argument of
can still consider the trajectory of each of the particles aghe Bessel function will be dominant, i.e., the interference
almost a straight line. We can follow the above derivation ofdecreases ak((w/E)(F2T%/E)), and quickly becomes neg-

the interference terms, but in this case, although 8t#l1, ligible. Finally note that for very small frequencies one al-
we need to take a8 the anglev,/v~v~vq+FT/E. We  ways has interference.

then get an equation similar to E@.29, but with a different Note also that the argument of the Bessel function can be
argument for the Bessel function: represented as
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dd?(7) O(T)=m/E  T<m/F,
xb(7), b(r)=m ,
dr
i.e., as a Lorentz invariar(see also the discussion belpw O(T)~v(T)~m/E+FT/E, E/F>T>m/F.
Here 7 is the proper time in the reference frame of the c.m. (2.40

of the dipole.

Finally, since the integrands in Eq®.29 and(2.32 are
concentrated neaf=s, we can expand them in a Taylor In order to obtain the full radiation reaction we must inte-
series neas=T. Consider first the differenc&(T)—r(s) in grate the latter formulas oves. We thus obtained the clas-

the argument of the exponents. sical radiation reaction of the dipole using simple wave me-

For a small dipole it is possible to use the approximationghanics. In parallel we understood the nature of the
[9,10] interference in the transverse plane, which we shall use in the

quantum case.
I;(T):U(O)[l—U?(T)/ZU(O)Z]-FI;t(T) (2.39
and Ill. RADIATION REACTION FOR THE RELATIVISTIC
) DIPOLE: RECOIL EFFECTS
v(T)=qF/E. (2.39 A. Single particle

In the preceding section we studied, using the relativistic
gquantum mechanics method, the classical radiation from the
classical dipole. Let us now move to quantum effects. There

In this approximation up to the terms of order/E,

v(T)~ve~qF/E, are two types of quantum effedi8]. First, there are effects
. - - due to the quantum character of the particle motion in the
i.e., the vectors anddv/dT are orthogonal. Also external field. This effect is characterized by the parameter
42 F/E? [9]. Second, there are quantum effects specifically due
Jv_ — w20(T) to the motion of the quantum dipol&6,17,19. We will not
dT? 0 ' take these effects into account. Third, there are recoil effects,
that arise if we takds; # E; into account. The general theory
wo=qF/E. of such effects was first derived in R¢¥]. Recently a new
approach was derived by Akhiezer and Shylgd0]. Let us
Then briefly review the idea of Ref.9]. We return to the deriva-
R R tion of the matrix element of the radiation of photoi2s3).
Ir(T)—r(s)| We still use the representatig2.7) for the quasiclassical
5 5 > I > wave functions, but when we substitute them into the matrix
= \/U (M(T=9)T1=wp(T—9)7]"+ wp(T—5)/4 element(2.3) we take into account that the corresponding
o (T)(T—9)[ 1+ wB(T—5)2124]. (236 integral overp is saturaFed not a§=5j, as we assumed
when we neglected recoil, but pt- p;+k, where as usu¥
Then we have in the standard wégef. [9]): is the wave vector of the emitted photon. Then it is possible
o to prove that the generalized acti6r S;— (wt—K-r) satis-
vp(Mup(t)—1=—[1—0A(T)+(T—1t)%wd/2]. fies the generalized Hamilton-Jacobi equation
(2.37
IS Vi A_ )2 2
In the same approximation 5~ (VS—aA-k)"+m®. (3.0

d(T)-d(s)=4[v(T)*~(T-S)wev(T)].  (2.39
Solving this equation and substituting the solution into the
Thus we have our final result for the radiation of the smallmatrix element2.3), where we use the representati@?)

dipole: for the wave functionp; , one obtains the quasiclassical ma-
) 2 9 5 trix element of the photon radiation where the recoil is taken
aw _ ﬂdet 1707 (M + 0p(T-1)/2 into account:
dodT 7 0 T—t
Xsiw(1—v)(T—t)]+wd(T—1)324 M= _iqfdtf @2 B
' 0 o VE;
X[1=Jo(wd(T)d(T))]. (2.39

X é.J(t)exp( [ ?[wt—lz- F(t)]”. (3.2
f

Here
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Here we can seE;=E;— . 2 E TrT
The corresponding radiation reaction will be the same as dWﬁ:qz—2 E—d"*kf f dtdt’
that for the single particle in the preceding section, except for (e 0J0

the rescaling of the frequency

x[e-v(t)][e* -J(t’)]exp(EE)
f

wﬁwg X{iw(t—t")—ik-[r(t)—r(t")]}. (3.3
f After averaging over the photon polarizations and integrating

by parts we obtain, as in the preceding section, the equation

for the radiation reaction of the single particle including the

in the exponent and the general multiplEr/E;s : recoil effects:

Sin (E/Eq)o|r(T)—r(t)[]
Ir(T)=r(b)]
2 CO§(E/Ef)(wT—wr(T))]—Cco§(E/Ef)(wT+ wr(T))]

dW_ ,4 T - E
ﬁ—wq ;dw fodt[v(T)m(t)—l]CO E—fw(T—t)

NEEE (T
L2 Td cog(E/Ef)(wS)—w|r(T)—r(T—s)|]—cod E/Ef)[ @S+ w|r(T)—r(T—s)|]

(E/IEf)w Jo dT IF(T)—r(T—s)|

d 2 ( SINE/Ef) o[ T+ (T)]—siN(E/E;)(wT— wr(T))]> (3.4

dT [(E/E) 0]? r(T) ' '

|
All other formulas from the Sec. Il A are transformed in the dw  4q¢2 [T E - R
same wayw is rescaled except in the measure, and the gen-y_57 ~ 7f dtcog = w(T—1) [[ve(T)-vp(1)
eral multiplier is addedE/E; . Note that the terms that arise 0 f
from integration by partgboundary effectsare suppressed sin|F (T)—r (t)” E
now, even stronger, asTE/(E— ). —1]— P - P 1—J0(—w0(T)d(T)”,
We keep the terms due to integration by parts so that we [rp(T)—rp(t)] [ Es
shall be able to check explicitly that they are small in our (3.6
analysis of Eq(3.4). For convienience, let us write the latter
equation without the back reaction term, that is, the resulfyhere the functiond(T) is given by Eq.(2.40. Since the
that will be used in the calculations: main contibution still comes frora~T, we obtain
dw .4 g de g1 E . dw 4quTdtl—v2(T)+wgszl2 [E .
ﬁ—q ;w w o t[v( )'U(t)— ]CO E_fw( —t) m_— w? o s smE—f(a)[( v)
i STy =1 E
XSlr{(Elgf)w“(_)T) r(t)l]:| (35) X(S)]+wg(s)3/24)H1—J0<E—w0(T)d(T))}
Ir(M)—r(t)] f

(3.7
The recoil effects lead to the qualitative change of the spec-
trum of the single particle. The maximum of the radiation One can obtain the full radiation reaction by integrating the
reaction will be shifted taw,,~0.4E for largey, and willbe ~ @bove equation over all frequencies.
virtually y independent. For the opposite limit of smglthe
maximum will remain at the classical value ofE y. IV. RADIATION REACTION
FOR THE VERY SMALL DIPOLE

B. Recoil effects in the dipole radiation Let us analyze the above equations for different regimes

It is clear from the previous sections that taking recoil intodiscussed in Sec. Ill. We consider in this section the case of
account will mean just rescaling in the preceding section. the very small dipole: W<T<m/F. First, let us check
Consequently, we obtain what time scales contribute to E@®.39 in this case. For the
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linear term in the argument of the cosine in E2.39 to be  to the radiation reaction of the free charged particle moving

dominant we need with a constant velocity. The latter is of course a nonphysical
2 phenomendsee discussion in the Appendi¥ And must be

(1-v)>w5s /24 subtracted. We start with an integral

or
S 4q2fdtjtd u r{ = (l1-0)e)| 1
m m m - =—— s=ssin —(w[(1-v)(s
s<2\6—=—(E/F)=2\3 —~3.5_. do mJo Jo 2 Es
m

Heres=T—t, Since the latter condition is satisfied for the _‘JO(E_f‘UEd(T) } (4.9)

very small dipole for the entire integration region shwe

can neglect the cubic terms in the arguments of the cosine a$ote that the latter integral, as is well known from the clas-
well as the nonleading terms in the preexponentials. The insical theory[1], is proportional toF?, i.e., to the square of
tegrals overs in Eq. (2.39 can be taken explicitly. As ex- the acceleration.

plained in Appendix A, in this case we can discard the terms The latter integral can be taken eplicitly under the as-
in Eq. (2.39 proportional to 1-v?, as well as the terms sumption that the interference multiplier weakly depends on
originating from the integration by parts. The reason is thatime T in the limit of integration, and thus can be taken
up to the terms suppressedra¥ E? these terms correspond outside of the integrand. We obtain

dw , q?[2{1-code'(1+v)T]-w(l+v)TsiNe’(1+v)T]}
= wRe—

do ™ o'3(1+v)3

_ 2{1—c05{w'(1_”m_w(l_U)TSir[w’(l_v)T]}> L_Jo(EEwgd(T)”' “2
w'3(1—v)3 f

The corresponding spectral curve for the single particle The latter equation can be differentiated Thand then
(without taking into account radiatigpnis depicted in graph integrated ovemw to obtain the total radiation reaction of the
(a) of the Fig. 1. The spectral curve for the same energy andery small dipole:
field, but for the dipole, whose transverse motion velocity is
v<1 and the interference is taken into account is depicted
in the graph(b) of Fig. 1. We see a drastic decrease of the )
radiation for all frequencies. We also see that increasing the d_E: q—TzEwaJ

a

o0

d ; in(xb
X X)3sm(x )

factor vy (i.e., decreasing the mass for a given engiggpds daT o x*(1+
the maximum to be shifted further to the end point of the
spectrum[graph (c) of Fig. 1]. Indeed, the classical maxi- _ 2
mum of radiation is at b*xcogb*x) /b
—[sin(xa) —a*x coga*x)/a][1—Jo(xmdT))]
4.4
1 g2 (4.9
W~ T 4.3
m Herea=ET(1-v), b=ET(1+v). The latter intergal, con-

trary to the single-particle cageee Appendix A cannot be
taken explicitly. In order to estimate this integral, it is worth-

and for sufficiently big energies is beyond the end point. Thi§yhjle to get rid of oscillating terms using the representation
is the case when the recoil effects are most important. Note

that atT~m/F the classical radiation maximum of Eq.
(4.3 reacheswy—the classical radiation maximum for the 1

O.SJ pZexp —p)
0

small (but not very smajltime regime. (1+x)° -
We see that the effects of interference are the largest if the
transverse motion is nonrelativistic. Fog.~1 the interfer-
ence effects are smdlee graphc) of Fig. 1]. and Eqgs(B7) and (B8) from Appendix B. We obtain
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dE dE
do dm
0.5 0.004
0.4 0.0039
0.003
0.3 0.0025
0.002
0.2 0.0015
01 0.001
0.0005
T I0 el o0 Top Photen energy S0 a0 E0 8o opProton energy
(a) (b)
£ i«
0.08
S I O)
0.07
0.06 0.4
0.05 0.3
0.04 '
0.03 0.2
0.02 ol
0.01 :

photon energy
200 40 60 80 T00
(c) (d)

FIG. 1. The spectral distribution curves for the radiated ené#dw (normalized byg?/r) for the the very small dipole regimd(
<m/F). For all graphsE=100 GeV, the fieldF =100 GeVf, T=0.1 GeV !. (a) The spectral distribution of a single particke=0.99,
m=14 GeV. (b) The dipole,v =0.99, the center of mass transverse velogigy=0.2. (c) The dipole,v =0.999,v4,=0.2. (d) The dipole,
v=0.99,v4=0.9.

Ty Photon energy

dE o (= E/m<T/d(T)~1h,. (4.7)
ﬁzo.s—f peexp(—p)[G1(p,.b,md(T))
™ J)o
—G,(p.b.md(T))]. 4.5 In other words, the interference decreases the dipole radia-

tion by an order of magnitude if it is nonrelativistic in its

The corresponding time dependence is given in gié@plof ~ C-M. reference frame, while the interference influences the
the Fig. 1. We put this graph along the radiation reactiorfotél radiation reaction only slightly if the dipole transverse
curve for the single particlggraph(a) of Fig. 2]. The radia- Motion is relativistic {o~1). o =

tion reaction decreases drastically due to interference. Fi- It is worthwhile to describe qualitatively the position of
nally, note that forT~m/F the radiation reaction foy—c  the radiation maximum and the structure of the spectral
behaves like 3, while like \/; for y—0. curve for differenty. First, considery<<1. In this case we

2 . . . .
Numerically, it is easy to see that the condition for theS€€ that al ~E/m”<m/F the maximum of radiation will be

interference to decrease the total radiation reaction signifif€ar the end point of the spectrum. The radiation itself will

cantly is that the radiation maximum must occur for the fre-P€ negligible. For larger times the total radiation slowly in-
quencies where the interference is still strong, i.e., the frecréases, while the radiation maximum moves-y, where
quencyw, is such that it reaches at times-m/F. Then the curve smoothly trans-

forms itself into the curve for the small dipole that is studied

wmE/(E— owmmd(T)<1. (4.6) in the next section. The radiation maximum no longer
moves. Afterwards the radiation reaction quickly increases,
It is easy to see that this condition is equivalent to while the interference diminishes. The reason why the radia-
radiation reaction “ radia[i—oureac[ion
A JdE dE FIG. 2. Radiation reaction of
dT 0.0003) Ty the single particlga) and for di-
0.8 000095 pole (b) as a function of a

=m?T/2E for the very small time

0.6 0.0002 ; i
regime T<m/F. For the picture

0.4 0.00015 m?/2E=1 GeV, E=100 GeV, F
- 0.0001 =100 Ge\f. The radiation eac-
0 00005 tion dE/dT is normalized by
- - - - > g2/ 7. For the dipolevy,=0.2.

(a) (b) 2 2 ; 8 STl
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0.1 .09

£.01Y9

0.0 £.009

Ophoton energy %OO ohcton energy

@) 70 40 &0 90 0 (b) 20 40 €0 80

FIG. 3. The spectral curve for the spectral distribution of the number of the radiated plidiotie (normalized byg?/ ) versus the
photon energyw. (a) Photon number for a single particle. The velocity=0.99, E=100 GeV, m=14 GeV, fieldF=100 GeV, T
=0.1 GeV L. (b) The dipole with the same parameters and c.m. transverse velggiy0.2.

tion is still suppressed at timesm/F for the nonrelativistic  limits by infinity and discard the terms due to integration by
transverse motion is that the suppression factor in the maxparts. We immediately obtain for spectral density
mum is 1— Jo(v otXm) -

For the opposite casg>1 the situation quite different. dE 2g°m? [1(= 1 0®(a)

There is a complete suppression of radiation and the radia-  §Tg,, ﬁ Eﬂ)(zL ®(u)du+ 3 7a

tion maximum remains near the end point well into the small

dipole regime(see the next sectipn X[1—Jo(e’ 6(T)d(T))], (5.1
The results for the radiation reaction are in correspon-

dence with the situation with the total number of the photonswhere

Without interferencésee grapha) in Fig. 3] the total num-

ber of radiated photons remains finite, and has a maximum. a=(wlwy)?®,  wy=wy(E/m)3, (5.2

Including the interference cuts off the soft photons and de-

creases the total number of photons drastidalbe grapttb) o' =wE/(E—w). (5.3

of Fig. 3]. The maximum in the distribution of the number of

radiated photons, as seen from the figure, is parametricallifunction® is the standard Airy functioisee Appendix B
located at the same frequencies as that of radiation reactiomhis result is the single-particle answer times the interference
i.e., most of radiated photons are hard photons. multiplier.

In this discussion we did not take into account the impor-  Let us first consider the case gk 1. The corresponding
tant effects of Sudakov form factors and wave-functiongraphs are depicted in Fig. 4. Figur@yicorresponds to time
renormalization that generally tend to cancel out. For thel~m/F, while the graph in Fig. &) to time T~E/F. We
number of photons we expect these factors to be more imsee that for the first graph the interference is very strong,
portant than for the energy. Consequently, our discussion ig/hile for the second case it is only slight. For comparison we

just a conjecture that needs further calculation. also present the analogous graph for a single charged particle
[graph(a) in Fig. 4.
V. SMALL DIPOLE The opposite limiting casg>1 is depicted in Fig. 5. We

see that folT~m/F the interference decreases the radiation
In the preceding section we discussed the case of verseaction dramatically, fof ~E/F the decrease is only slight
small dipoles, corresponding f6<m/F. The goal of this (if fact we see a very slight incregseMost interesting, we
section will be to consider the opposite limiting case see that interference remains important numerically even at
>m/F. In the latter case we can substitute the integrationl ~(E/F?)Y3 where we see that it decreases the maximum

A E aE E

dTdx dTdx dTdx

0,006 0.003 0.007)

0.005 0.0025 0.009
0.004f 0.002 p-005
0.004
0.003 0.0015)
0,003
. 0.001
0.002 .00

0.001 0.0005 0.001

T 1 ale D0l o6 o Pyl vele

’1- x value
(a) (b) ()

0.2 0.4 06 08

FIG. 4. Spectral curve as a functionof w/E. We choose here =100 GeV¥, E=100 GeV,v=0.8, y=0.04.[All graphs in this and
the next figure depicti E/(dTdw), normalized byg?/\r.] (8 The spectral curve for a single charged parti¢h. Spectral curve for the
dipole in a small time regimel=m/F =25 GeV 1. (c) Spectral curve for the dipole in a small time regirie; m/F =100 GeV ..
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A B dE
;o dTdx dT dx
0.2
3
2.5 &
2 0.15
1.5 o
1 FIG. 5. Spectral curves as a
- 0.03 function ofx=w/E, as in the pre-
T— vious figure. We choose heré
N A b 0 0F o€ 0% =100 GeV, E=100 GeV, v
(a) ®) =0.999, y=111.6. (a) Single
charged particle(b) The dipole in
A A the small time regimeT=m/F
2 4E F de =0.045 GeV'L. (c) The dipole in
T ITdx the small time regime, T
) =(E/F?)¥=0.21 GeVl (d)
The dipole in the small time re-
1.5 3 gime, T=E/F=100 GeV ™.

0.5

x value
0.2 0.4 0.6 0.8 1)-

© ' ' ' ' (d)

by the order of 1.5 and clearly significantly decreases th&he radiation reaction is the function of two parameters: the
total radiation reactior(the spectral curve is still “dipole relativistic invarianty and relativistic invarianb(7), which
like” ). Moreover, the interference leads to a further shift ofis equal to
the radiation maximum to the end point of the spectrum.
Let us now consider the total radiation reaction. Integrat- dd?(7)
' b(7)=E&(T)d(T)=m (5.7

ing Eq. (5.1) we obtain dr
5 for the small dipole and
dE_2q ZFd X o5f°°<p ®'(u)/
aT - M o e 02, PwE e b(r)=md(7) (5.8
X[1—=Jo(XEd(T)6(T))], (5.4) for the very small dipole. The radiation reaction can be writ-
ten as
where the functiord(T) is given by Eq.(2.40 above. The E
expression in the case without interference differs slightly ﬁ=F(X,c(r)), (5.9
from that for the single particle, since we did not do the usual
integration by parts: where
23 c(7)=b(n)x. (5.10
u= R (5.5 . . .
X Here 7 is the proper time in the c.m. reference frame of the
dipole.

In order to understand qualitatively the influence of the di- !N order to understand qualita.tiv.ely the influence of the
pole interference let us change the integration variable to diPole interference consider two limitg<1 andy>1. For

Then x<1 we can use Eq(5.6). For the timeT>m/F we can
estimate,
dE  30°%x* [~ u? ° dd*(T)/dT~F?T3/E,
d_T: m J dUW 0 SJ q)(S)dS
Vm 0 (I+xu™) ! and the argument of the Bessel function in Eg16) is just

uHT/Ty)3, whereTe=m/F. We then puty=0 in the de-
+<I>’(u)’u)[1—J0(u3’2XEd(T) 6(T))]. (5.6  nominator in the latter equation and obtain
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0.0054 dE

onomiﬁ A e L .
dT dT FIG. 6. Radiation reaction of
0.000125 \/\N\ﬁ 0.004 the dipole as a function of
0 0001 T(GeV)™ ! for the small time re-
' 0.003 gime E/F=T=m/F. The radia-
0.000075 tion reactiondE/dT is normalized
0.002 by q¥Jm. (@ x=0.04, E
=100 GeV,F=100 GeV. (b) x
0.000025 0.001 =111.4, E=100 GeV, F

=100 GeV, T*~0.22 GeV 1.

0.00005

P T
0.5 1 T.5 2
(b) 0.5 1 1.5 > 1

(a)

F2E2 Note that fory>1E/F>T*>Tr=m/F. Thus the argu-
G(T/Tg), (5.11 mentx of the Bessel function is multiplied by a number less
than 1. Consequently, as it is clear from the second graph in

where the first term corresponds to the classical PomeranF-Ig' 6, the radiation reaction remains negligible up To

chuk effect, and the functio®(T/T¢) is defined b ~T*. Afterwards, it increases rapidly, and at-E/F be-
' F y comes approximately time independent and a sum of radia-

tion reactions of the components of the dipole. In both cases

G(s)= L,unz( O.SJW[db(u) the qualitative dependence on the paramgtésr the dipole
2\/& 0 u is the same as that for the single particle.

dE/dT= 2
=3

It is worthwhile, as in the preceding section, to follow the
+q>’(u)/u]>[1—Jo(u3/2(T/TF)3)]_ (5.12 position of the maximum of radiation. For smallwe saw
that it does not change, and the interference in this regime is
small. The interesting case is the case of lgyg&Ve see that
Itis clear that forT>T,, G(T)—1. The radiation reaction yp toT~T* the spectrum is shifted to the end point. This is
in this case is depicted in the first graph in Fig. 6, where wap contrast with the single particle, where, as it seen from the
see the sharp increase of the radiation reactidinal-. We iyt graph in Fig. 5(see also Refd.9,10])) the spectrum is
see that it becomes weakly time dependent numerically aioncentrated neas,,~0.4E. The strong interference in the
T~E/F. maximum is the reason for the suppression of the total back-
For the opposite casg>1 the main contribution in the yeaction. Wherm=T*, the maximum, as it is clear from the
integral of Eq.(5.6) comes from thei—0. In this case we figures above, starts to move to the position of the maximum
can put the argument in the Airy functions to zero, and usgy the single particle, i.e., O where it comes byT
®'(0)~—0.5. We then obtain ~E/F, and the radiation reaction quickly increases.
> 5 oar, Consider now the number of radiated photons in ¢fe
dE/dT=— q"m°x""®"(0) F(TIT*) (5.13 approximation of the perturbation theory. It is clear that this
T ' ' number is drastically decreased by interference. We see in
Fig. 7(a) the number of emitted photons without the interfer-
where ence, while in Fig. ) the number of emitted photons is
shown with the interference taken into account. We see that
the interference qualitatively changes the spectrum: instead
of being infinite in the limit of soft photons«{— 0), now the
(5.19 spectrum has no infrared singularity for soft frequencies. In-
stead a number of radiated photonsD at w—0 and has a

F(TIT*)= fooxll3/(1+ X)3[1— Jo(X(T/T* )3)]1
0

i.e., T*=(E/IF%)13 finite maximum at finite frequency. Moreover, it is clear that
a AN
2.5 dx dx
0.025
2 0.02 FIG. 7. Number of radiated
Ls photons in the small dipole regime
: 0.015 as a function of frequencynor-
. malized byg?/\/7). (a) No inter-
0.01 ference.(b) Interference is taken
into account.
0.5 0.009
X X
- 0.2 0.4 0.6 0.8 1
(@) 0.2 0.4 0.6 0.8 1 (b)
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up to a numerical coefficient of the order one, the position ofSince the photons are radiated almost parallel to the direction
this maximum will be the same as the frequency that correef the dipole, the corresponding backreaction force is di-
sponds to the maximum of the radiation reaction. In particurected in the direction opposite to the direction of the dipole
lar, for the ultrarelativistic dipoley>1 the relevant fre- and leads to the decrease of its center of mass velocity.
guency will shift to the end point of the spectrum. The There is an additional backreaction force that slows the
photons will take almost the entire energy of the radiatingexpansion of the dipole in the orthogonal direction. For the
electron in a single radiation event for the time interVal  very small time regime this force is evidently
<T<E/F. For y~1 one radiating event will take-1/2 of ~ ~sir?6(dE/dT)/p;, where §~m/E is the radiation cone
the initial energy of the electron. angle, andp;~vqm is the transverse momentum. Conse-
An even more interesting effect will take place for higher quently the orthogonal component of the backreaction force
timesT~E/F (andy>1). Since the soft photons will be cut is
by the dipole effects, the number of photons will have a

maximum for finite frequencies. Numerical analysis shows g% F2m3T3u, i s )
that in this case Fy(T)~ P —E2 +O(T*, T°log(m-T/E)).
6.4
wn~2[T. (5.19 ©4
The influence of this force on the wave packet radius begins

This means that there are two distinct groups of radiatingnly from the terms of~T®, i.e., for very smallT the ex-
events for largd radiation of large numbers of soft photons pansion due to quantum diffusion and external field is domi-
with frequencies given by E@5.15 and the radiating events nant.
where the dipole loses approximately half of its energy each
time, this half being carried by a photon. VII. THE QUANTUM DIPOLE

VI. BACKREACTION AND EVOLUTION In the latter analysis we did not _take into account the
OF THE VERY SMALL DIPOLE quantum character qf the dipole motion. In fa_ct, there is an
additional effect that influences the motion of dipole, and this
We can answer now how the backreaction influences thes the non-Coulombic photon exchange between the compo-
evolution of the very small dipole, and where the energy lossents of dipole. This effect is significant if the distance be-
goes due to radiation: to the relative motion of the particlesween the components of the dipole is less them ahd
in the center of mass or to the loss of the total energy of théeads to so-called quantum diffusion: the distance between
center of mass motion. Our results show, that for the singlehe components of the dipole increases not linearly or qua-
particle and for very small times the backreaction force bedratically as in the usual relativistic quantum mechanics, but
haves according to EqA7) in Appendix A. For the dipole in the diffusion way, i.e., as- T [16] (a simple qualitative
the backreaction force behaves in much less singular fashioexplanation of this phenomena is contained in R&f]).

Note that for very small times one can write Moreover, the dipole motion along the coherence length may
stop being quasiclassical, as assumed throughout this paper
q?a® (= [16].
dE/dT= —zf dssin(s) It is easy to see that the effect is important for the ul-
m(1-v)"Jo trarelativistic dipole withy>1. Indeed, the diffusion is im-
—sc09S) [*[1—Jo(2008) |/[S(s+2)3]. portant until the distance between the components of the

dipole is ~1/m, where 1 is the scale of bound state in
(6.) QED. In order to take into account the external field we need

) ) ) ) to write the wave functions in the external field, taking into
Here as in the previous sectioms=ET(1-v). Equation  account quantum non-Coulombic photon exchanges. This is
(6.1) can be used to obtain the first several terms in thgeyond the scope of the current paper. Here we shall try to

expansion of the backreaction force for smill build a qualitative model to indicate the influence of the
s 22 2 ) quantum effects. In order to estimate the field influence on
q T"m°Fuy 3mTw the diffusion let us note that the diffusion law,
dE/dT= ————2[1->
27E 2 4E
) 2T
+O(T%log(m?T/E)). (6.2 d"(M =+ (7.0

Recall thatv is the transverse velocity in the c.m. frame. can be obtained from the equation
The backreaction force for the dipole is smaller than that
for the single particle, logarithmic terms are present only yIE= (1), (7.2
starting fromT®, and its leading term is proportional .
The condition for the applicability of the expansit®2) is  where 5 is the random external force such that

T<min(E/m?,m/F). (6.3 () p(t"))y=Es(t—t"). (7.3
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In order to include the external field, we generalize this equascale when quasiclassically, radiation suppression stops and

tion in an obvious way: the radiated energy quickly increases as we saw in Sec. IV.
) ) This result is consistent with the conclusion above, that in
y(t)+y/E=»5(T)+FI/E. (7.4 the time interval when the quantum effects in the dipole mo-

) ) ) ) tion are important, there is still a suppression of the radiation

This equation can be easily solved with the result reaction(the charge transparencyThe origin of the diffi-

A P 22,4 3 culty is clear. The parametgr=I1./I¢, wherel .~E/m? is
d*(M) =4{y*(T))=2T/E+2F*T5/E+O(T") (7.9 the coherence length, while~m/F is the field regeneration
and length, in other words the average distance the dipole must
travel before colliding with the external field photon. It is
(y(T))=FTIE?, (vy(T))= F/E?. (7.6)  clear that the external field does not break coherence. Thus
o _ we are in the situation when we have multiple coherence-
We see that quantum diffusion changes the velocity and thgonserving collisions along the coherence length. In this situ-
distance between charges. The average velocity is smalition it is well known(see, e.g., Ref21]) that the classical
F/E?, and constant. Diffusion is important until the distance gpproximation is, generally speaking, not applicable. The
between dipole components isni/i.e., 2ZT/E~1/m?, or quasiclassical approximation corresponds to neglecting the
coherence conservation and thus can lead to the wrong re-
T~(E/m)(2/m). (7.7 sults. Further analysis along the lines of Hefl] is thereforeg

Note that fory>1 this time is>m/F. Also note that for all needed.

reasonable times<E/F the first term in Eq(7.5) is domi-
nant. VIIl. CONCLUSION

Consider now the interference in the case of dlffu5|on._We We have studied the backreaction and its influence on the
n.e.e_d to average the product 39)1(’?1 There are two possi- ¢, 1ution of the relativistic dipole in the arbitrary strong ex-
b|||t|e§. If the angle b(_atvx{een the d|r_ect|on of a component 0fternal field using the quasiclassical approximation. We have
the dipole and z axis is much bigger tham'E, we USe 5 en into account the quantum recoil effects in radiation, but
siné~vy. Then we need to average,d(T))=dd(T)"/dT _not quantum effects in the motion of the dipole, i.e., quantum
=2/E, and we get as the argument of the Bessel functionifsion, We found that the dipole motion is governed by
2x=2wlE (o'[E if we also take into account recoil effefts 5 jnvariant parameters; one of them describes the longitu-
The interference multiplier will be dinal motion and is equal tg =EF/m3; another describes

1-3,(2%). (7.8 the motion in the transverse plane and is equal to

If the angle is m/E, we shall get the argument b(7)=md(r) if T<m/F,

om(d(T))/E~20mFT/E3. We must choose the larger of dd?(7)

two arguments. It is easy to see that the first argument will be _ 7. =TS

larger up to timesT~E?/(mF)=(E/F)(E/m), i.e., for all b(r)=m dr it B/F>T=>m/F.

times where the dipole notion has meaning. Thus, in our

simple model, in the diffusion regime, which lasts parametri-It is quite possible that there exists a single formula ipr
cally longer, asy increases, the interference depends on timelthough we were not able to obtain it.

only weakly. We have studied the pattern of charge transparency in the

For smally the diffusion law holds only for very small external field. We have found that the interference effects can
times <m/F. Thus the largest influence seems to occur forbe taken into account by the use of the general interference
x=1, when the interference multiplier may significantly multiplier 1—Jo(xb( 7)), wherex=w/(E— w). For arbitrary
change the radiation. times the radiation reaction is given by Hg.39.

We have developed above a simple phenomenological We have seen that there are three different time scales.
model, indicating the effects connected with the quantunfirst, is the very small dipole regimd@,<m/F. This time
character of the dipole motion. Unfortunately, at the momenscale exists if the dipole transverse veloaity<1. In this
we can, on the basis of this model, only indicate that theyregime the radiation reaction is strongly suppressed by inter-
may be very important for largg and that they lead to the ference, leading to the strong decrease of the backreaction,
suppression of the dipole radiation, as in the quasiclassicale., the fast moving dipole does not lose its energy. In this
dipole. case we were able to calculate analytically the backreaction

The reason for the difficulties we encounter is the inad-force analytically for both the entire regime, and for very
equacy of the classical approximation. It is possible to estismall times[Eq. (6.2)]. For larger time scale€/F>T
mate the area of reliability of the quasiclassical approxima=m/F the influence of interference on backreaction depends
tion: we must demand that the transverse velocity acquired ion the value of the parametgr=EF/m?3. If y<1, the ra-
the classical approximation due to the action of the externadliation reaction quickly increases starting frdm m/F, and
field is larger than the velocity due to quantum diffusion. by the timeT~E/F it is a sum of radiation reaction of the
Quite remarkably this gives us the conditibe=T*, i.e., the  components of the dipolesee grapha) in Fig. 6]. However,
guantum diffusion effects are important for largaup to the  for the opposite casg>1, the radiation reaction starts to
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increase only from the time$~T* =(E/F?)? and then as a small perturbation. The region of the quantum diffusion
once again goes quickly to the sum of the radiation reactions small (sincel.<I¢) and charge transparencye., radia-
of the components. tion suppressioncontinues up tor ~m/F, well beyond the

For the third regimel>E/F the components of the di- quantum diffusion range. However, onge=1, we are in a
pole can be considered as independent particles. For each e@dmpletely different situation. In the quasiclassical approach
the regimes we obtained the analytical expressions for botive have here the situation is quite similar to the Landau-
the spectral distribution of the radiation and the total backPomeranchuk effect in the single particle dynamics of the
force. The results are qualitatively shown in Figs. 1-7. fast particle moving through the amorphous media. The ra-

The results for the radiation reaction are in the correspondiation reaction continues to be suppressed even after the
dence with the influence of the interference on the number ofield regeneration time, thus extending parametrically the
radiated photons and on the scattering cross sections. Theslkarge transparency interval to timies T* . However, as it
physical quantities are qualitatively influenced by interfer-was noted in the preceeding section, the areaeff* must
ence up to times-E/F. Without interference the number of be studied beyond the quasiclassical approximation, since we
photons is maximuntinfinite) at «—0. As a result of the must take into account multiple coherent collisions. We ex-
interference the number of photons goes to zero when pect that the radiation will still be strongly suppressed in this
—0. The photon-number distribution has maximumegit  time interval, but further analysis is needed to make qualita-
~~Ild(T) for the very small dipole regime, i.e., for the ul- tive statements, and to compare the results with those from
trarelativistic dipole the maximum of the number of radiatedthe quasiclassical approach.
photons shifts to the end point of the spectrum. The main possible drawback of our paper is the validity of

For larger times(small dipole regimgthe maximum in  the quasiclassical approximation. Bge 1 the quasiclassical
the number of the radiated photons is finite and parametriapproximation works for all times larger thah,~E/m?
cally lies at the same frequencies as the maximum of thesTg. For y=1 for the dipole one may expect significant
radiation reaction- Ey for y<1, 0.4 for y>1. Moreover, corrections to the quasiclassical approximation for all times
we have seen that for>1 the radiated particles carry1/2  in light of the results of Ref[16] (see also the preceding
of the dipole energy for arbitrary timee>E/F, when the section. Nevertheless, quasiclassical analysis is still impor-
particles move as independent ones. There are two distintant as a first step for understanding the radiation patterns in
maxima and two groups of photons. One group is responthis regime of parameters.
sible for the energy loss, and its spectral curve maximum is Our work certainly leaves a number of questions open.
at o~ 0.4E for large x. Another group is the soft photons, First, there is the question about the influence of the quantum
responsible for the total number of photons emitiaad they  effects in the dipole motion on the radiation reaction. This is
may give the main contribution to the cross sectjoiitiese  important for the study of the quantum dipole. We have seen
photons in the regime under discussion are the soft photonthat such effects for the dipole may be much more important
with the maximum of the spectral curve locatedeat 2/T  than those for a single particle, and may require analysis

for large y. beyond the quasiclassical approximation due to the coherent
It is also interesting to summarize the behavior of themultiple scattering.
radiation spectrum for differeny. For y<1, the relevant Second, it will be interesting to study further the depen-

maximum lies near the end pointTi<E/m?, but the radia- dence of the number of the radiated photonsxorin par-
tion is strongly suppressed. However, if it occurs, the dipoldicular taking the multiple photon radiation into account. Our
will be immediately destroyed, since the photon takes all ofresults suggest that, since the electrons are created in pairs,
its energy. Then it moves tBy by the timem/F, and only i.e., as a dipole, the infrared photons are always cut off, and
afterwards does the radiation begin to increase. the evolution continues by a series of radiative events, such
In the opposite casg>1 the maximum is near the end that in each of these events the electron loses approximately
point until T~T*, and only then begins to move to satura- half of its energy. This is true at leasty®1, i.e., the dipole
tion, 0.4, which corresponds to the single particle maxi- iS ultrarelativistic or the field is very strong. This is opposite
mum. ForT<T* the radiation is suppressed, but if occurs it of the scenario when the fast electron loses its energy by
destroys the dipoléhe photon carries its entire enejgfFor  radiating soft photons, with a small energy loss in each of the
times T>E/F the radiation reaction is a sum of the compo- radiating events. This result can be important for carrying out
nent radiation events, and at each radiation event on averadfge next-to-leading order logarithmic calculations. The re-
half of the electron energy is taken by the photon. sults of this paper imply, roughly, that such a dipole moves
We have seen that our results, although they were obuntil times T* without radiation, then after the transition
tained for the simple model of the constant transverse fieldperiod(up to T~E/F), starts to radiate, losing at each event
can be reformulated in a model-independent way. The pa=1/2 of its energy.
rametery=|./I¢ is the ratio of the coherence and the field Moreover, the numerical analysis shows that for large
generation length. The very small dipole regime correspondémes there are two parallel processes for the ultrarelativistic
to the situation when the dipole travels a distance less tha#lipole. First, it emits soft photons. The maximum of the
|r. There exists a charge transparency in this region indephoton number distribution for largg, as the numerical
pendently ofy. However, for large times the parameter —analysis of Eq(4.1) shows, lies at
starts to play an important role. }f<1 (this is the situation
considered in Ref$16,17,19) one can see the external field w~2[T, T>E/F. (8.0
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These photon numbers make significant contributions to ACKNOWLEDGMENTS
cross sections. But the energy loss of the dipole occurs via a

series of different events, wher0.4€ is lost in each g\(ept, _useful discussions and reading the manuscript. This research
an:]l the relevant photons are hard for the ultrarelativistic d'Was supported in part by the fund for promotion research in
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It will be interesting to see if the different regimes of Technion, number 090965.
radiation discussed in this paper are connected with the rppeNDIX A° RADIATION REACTION FOR A SINGLE
theory of the production of the*-e~ pairs by fast particles QUANTUM PARTICLE FOR SMALL TIMES
in the external field discussed in RE2R8]. Finally, it will be (SMALL DEFLECTION ANGLES )
interesting to study the implications of our results for QCD.
In particular, our results are clearly relevant to the studies of Although the article is devoted to the radiation reaction of
the color transparency phenomena, first discussed in Ref8.dipole, in this section we shall discuss the radiation reac-
[16,17,19. As it was noted in the Introduction for the case of tion _of a single particle for small times, taking into acco_unt
the deep inelastic scattering on the longitudinal photons, th&COll effects. Although such a problem may look unphysical,
charge transparency is directly translated into color transpars—'”ce charged parycles are greated by pairs, exactl_y the same
ency[20]. Our results give qualitative bounds on the colorprObIem appears if the particle goes through the line of the

transparency for the arbitrary external fields, and indicate th%l(;lssti?:g: i;;egnviglleé?sgjs?: d Iing'f;g]é E a-me Lri)fl;[E]I_)s/
direction of the research one needs to extend the color tranﬁowever we were not able to fin)(/:i the quantum case in the
parency for the case of the arbitrary external field. ' q

. o . literature.
It will be especially interesting to extend our results to the

. - ) . We start from Eq.(2.10 for total energy radiated by a
gluon color dipole radiation, since then the shift of the Spec'single particle during the time interval Using the approxi-

trum to the end point will mean that the dipole loses all its\\ation of Egs.(2.39 and (2.39 we see that the radiation
energy by a single radiative event for a small time. It will reaction is the sum of three terms: the term proportional to
also imply that the color dipole loses its energy by a series 0f _ ;2 the term proportionaby?, and the term due to the
events in each of which the gluon looses half of its energyintegration by parts. Note that all cubic terms in the argu-
Note, however, that the extension to the color dipole is Nonments are negligible and thus can be omitted. The terms that
trivial since the mass of the gluon is zero, and we need thgrise due to the integration by parts do not depend on the
additional regularization. Moreover, the definition of the external field, up to the terms additionally suppressed as
QCD dipole is slightly different then the one in this paper. In m?/E2, and are the same as that for the free particle. So only

this paper the dipole is a system of two oppositely chargéghe term proportional te? remains. It is straightforward to
particles with interfernce, and the QCD dipole is only aq

guantum dipole, i.e., the times considered are always less
than the time interval that corresponds to the coherence dw 5 Q? (T (T 1 L
length. For such a case, as we saw above there may be sig- EI%EJ’O fo dsds ﬁld(COS@(S—S )
nificant corrections to the quasiclassical approximation that

The author thanks Professor L. Frankfurt for numerous

need further study. Nevertheless our results imply that the X cog w(s—s')]exp{i[wv(s—s’)cosh]}. (A1)
recoil effects may be very important also for the color dipole,
i.e., for the small deep inelastic scattering. The latter triple integral can be easily taken. We obtain
|
dWw 9 2{1-cofw(1+v)T]-w(1+v)Tsifw(1+v)T]}
do~ “Pum W2(1+0)°

2 — w(l-— —w(l- iMw(l—
+wg%2{1 cog w(1l—v)T] (1-v)TsiNw(1 v)T]}. (A2)

w?(1-v)3
This is the classical formula. The recaoil is taken by first rewriting

do wdw

Then we need to rescale in the right-hand sidér.h.s) of Eq. (A2), except in the producbdw, as discussed in the text:

w— o' =wE/(E-w). (A3)
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We obtain:

dw , 0 2{1-codo'(1+v)T]-w'(1+v)TsiMw (1+v)T]}
do  “um® ©'3(1+0)°

2{1-co§w'(1-v)T]-0'(1-v)Tsifw'(1-v)T]}
® .

w'3(1-v)3

2
w3~ (Ad)

The typical spectral curve is depicted in the first graph of Fid.lrithe figure we also added the contribution of the term
proportional to (+v?).]

It is straightforward to integrate the latter equation owefrom 0 to E [for this we change the integration variableyto
= w/(E— w)]. After trivial integration we obtain

dE q? . . .
—=———0w3([(1-v)?%(1+v)?){—b+Ci(b)[b cosb—sin(b)+ b?sin(b)/2— bicog b)/2]
daT m(1—v)?
+Si(b)[cog b) — b sinb—b?cog b)/2— b3sin(b)/2]})+ 7b( — 1/2+ b?/4)sinb+ 7 ( — 1/2+ b?/4)cosh
—{—a+Ci(a)[acosa—sin(a)+ a’sin(a)/2—a®coga)/2]

+ Si(a)[ coga) —a sina—a’cog a)/2—a’sin(a)/2] + wa( — 1/2+ a%/4)sina+ 7(— 1/2+ a?/4)cosa}.  (A5)

Here ing with constant velocity and finite mass, i.e., a particle that
) does not emit any radiation field. In fact this situation is
a=(1-v)ET~m°T/(2E), b=(1+v)ET~2ET. usual in quantum mechanics and quantum field theory. In-

(A6) deed, when we calculate the transition rate due to photon

Th . : i . . radiation in standard perturbation theory between stationary

e corresponding typical radiation reaction curve is de- S

picted in Fig. 2. states we encounter the multiplier
Expanding the latter equation in powersTinwe see that

the backreaction force for small times is very small:
SIP(Ef—E;— o) T/T(E;— E;— w). (A8)
m2F2T3

dE q?
dT 67 E

[log(m?T/2E)+ y+ 1]+ O(T%),
For infinite T this term gives a delta functiod(E;— E;
(A7) — w), ensuring the law of the energy conservation. However,
where y~0.55 is the Euler constant. This force is directed " finite T and nonfinittAE=E;—E;—w this will be a
against the direction of the particle. function of T decreasing as a function df for fixed AE.

The latter equation works for the whole range of This decrease, as it is well known, just expresses the energy
<m/F if y>1. ForT~m/F, xy<1, the parametea~1/y  uncertainty principle. If we consider the system for a finite
>1, and we have to use the whole equatidb) in the limit ~ time, the energy cannot be measured unambiguousfyT
a>1. For y>1 the expansion parametar-m?T/E~1/x =f. The discarded terms in the radiation reaction have ex-
and is still small forT~m/F. Then the backreaction force is actly the same origin and the same character. They decrease
for this time scale: for large T as 1T or faster and thus disappear at infinite

altogether. They exhibit the ambiguity in the measurement of
m® b o QPMP the electromagnetic field of the free particle due to the finite
-~ 6mEF log(E/m®) = mlogllx. time of our process. In practice this leads to the finite width
of spectral lines for finite times. It is interesting to study
We see that the backreaction is strongly suppressed for singtbese terms in more detail in connection with the Landau-
particles in the ultrarelativistic case. Pierels inequalitie§29]. However, it is clear from the above

Finally, let us make a comment on the discarded termshat these terms must be discarded if we are interested in the
proportional to (+v?), and those originating from integra- radiation in external field. In other words, all quantum cal-
tion by parts. It may be strange from first sight that theseculations must contain renormalization, meaning that a free
terms really exist, since they are nonzero for a particle movparticle does not radiate.

Fb.r
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APPENDIX B:
SOME USEFUL INTEGRALS AND THEIR PROPERTIES

Here we shall collect some useful integrals and

asymptotic expansions, as given in R¢2—-25. We shall

PHYSICAL REVIEW D 69, 022003 (2004

We define the integral sinus and cosinus as

also collect the definitions of several special functions that
differ in the literature by normalization constants. We use the

following integrals, directly expressible through Airy func-

tions:
= [ dsssinast <) Lnia, @)
— s ssin(as+s°)=— ——Ai(a),
Jmto da
fmd ! in(as+s%)/ fxd Ai(z)
s—sin(as+s°®)/s=— zAi(z).
0 \/; a
(B2)
Here Ai(z) is an Airy function[22,23:
© 1 )
jds—coias+33/3)=A|(a). (B3)
=

Note that the Airy function decreases-agxp(—z>?)/z* for
the positivez— oo,
We use integral of the Airy function:
f 2>~ 1Ai(2)dz=3UP DI (@/3) I ((a+1)/3).
0
(B4)

Si(x) = fOXS":((X), (B5)
Ci(x)=—f:C0i{X), (B6)

While studying the dipole radiation we used some formulas
for the integrals of Bessel functiof26]. We use

Gy(p,a,b)= f:exp( —px)sin(bx)Jy(ax)/x=arcsin2b/r),

(B7)

Gl(p,a,b)=fowexp(—px)cos(bx)Jo(ax)

1
= * \(r?/4—Db?).
Vp?+(b+a)% Vp?+(b—a)?
(B8)
Here

r=1(b+a)?+p?+\p’+(b—a)2 (BY)
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