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Nonperturbative Faddeev-Popov formula and the infrared limit of QCD
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We show that an exact nonperturbative quantization of continuum gauge theory is provided by the Faddeev-
Popov formula in the Landau gaugé(d- A)def—d-D(A)]lexd —Sym(A)], restricted to the region where the
Faddeev-Popov operator is positived- D(A)>0 (Gribov region. Although there are Gribov copies inside
this region, they have no influence on expectation values. The starting point of the derivation is stochastic
quantization which determines the Euclidean probability distribuBgA) by a method that is free of the
Gribov critique. In the Landau-gauge limit the support RfA) shrinks down to the Gribov region with
Faddeev-Popov weight. The cutoff of the resulting functional integral on the boundary of the Gribov region
does not change tharm of the Dyson-Schwinge(DS) equations because fletd-D(A)] vanishes on the
boundary, so there is no boundary contribution. However this cutoff does preujgdementary conditions
that govern the choice of solution of the DS equations. In particular the “horizon condition,” though consistent
with the perturbative renormalization group, puts QCD into a nonperturbative phase. The infrared asymptotic
limit of the DS equations of QCD is obtained by neglecting the Yang-Mills acBogp . We sketch the
extension to a BRST-invariant formulation. In the infrared asymptotic limit, the BRST-invariant action be-
comes BRST exact, and defines a topological quantum field theory with an infinite mass gap. Confinement of
quarks is discussed briefly.
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[. INTRODUCTION miliar Faddeev-Popov weight, but restricted to the Gribov
region,}

Since the work of Griboy1], a nonperturbative formula-
tion of continuum gauge theory has appeared problematical P(A)=Nd&y(d-A)def—3d-D(A)]exd —Sym(A)].
due to the existence of Gribov copies. These are distinct but
gauge-equivalent configuration$?=9AM) that both satisfy
the gauge condition,d-AM=g-A®=0, where %A,  The Gribov region is, by definition, the region i space
=g‘1A”g+g‘1aﬂg is a local gauge transformation. The where A is transverse, and the Faddeev-Popov operator
difficulty arises when one wishes to quantizedauge fixing M(A)=-49-D(A) is positive,
namely by taking a single representative configuration on
each gauge orbit. It has been proven that this cannot be done Q={A:9-A=0;—9-D(A)>0}. (1.2
in a continuous way when space-time is compactifigf
Geometrically this reflects the intricacy gauge orbit space  The first factor 8, (a-A) in Eq. (1.1) is the restriction of

the space of configurations modulo local gauge transfor- 5(-A) to the region wheréV(A) is positive. Observables

matlonsg.. . (A) are required to be gauge-invaria@t(°A) = O(A) and,
There is, however, an approach that bypasses the difficu 5y Eq. (1.1), expectation-values are calculated from

ties of Gribov copies by operating directly & space. This

approach is stochastic quantization. For our purposes it is
most conveniently expressed by the time-independent <O(A)>:f dAO(A)P(A)
Fokker-Planck equatiorigiven below that determines the

Euclidean probability distributionP(A). The geometric

structure of the equation assures tHR¢A) is correctly =N J dA"O(A") exd — Sym (AN ]
weighted. Although one cannot solve the Fokker-Planck @

equation exactly for finite values of the gauge paramater x def — 9-D(A")], 1.3

one can transform it into a system of Dyson-Schwin@s)

equations for the correlation functions that may be solved————

nonperturba_tlvely, as has been done recef8ly However, _ IThe Yang-Mills action is given bySYM(A)=(1/4)fd4xFiV

Fhese quatlons are more cumbersome than the DS eq”at'%ﬁereFifaMAi— &VA;_i_gOfabcAzA?” and the gauge-covariant

in an action formalism. _ _ derivative by [D,(A)@]*=0,0+ gof*™*A2w®. The Faddeev-

~ In Secs. lI-1V, we find the exact solution of the time- ponoy operatom (A)=—a-D(A) is symmetric whenA is trans-

independent Fokker-Planck equation in the Landau-gauggerse, M(A)=—4-D(A)=—-D(A)-9=MT(A). Positivity of

limit a—0. The solution is remarkably simple. It is the fa- v (A) means all its nontrivial eigenvaluas(A) are positive. There
is a trivial null eigenvalue with constant eigenvectégo=0 that
are generators of global gauge transformations. In Appendix C we

*Electronic address: daniel.zwanziger@nyu.edu establish three simple properties of the Gribov region.
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whereA" is the transverse part & Two comments are in pressed as a single functional differential equation for the

order. partition function or generating functional of correlation
(i) Gribov regionQ) vs fundamental modular regioh.  functions,

Formula(1.3) is paradoxical because the Gribov regidris

not free of Gribov copieg4]. The history of this formula is _ f tr . tr _ tr tr

amusing. It was originally proposed by Gribov who conjec-Z(J) N QdA def —d-D(AT)Jext = Syu(AD +(J,AD].

tured in his seminal workl] that there are no Gribov copies (1.5

in ). The same formula was also derived from stochastic

quantization/5] by a method similar to the one presented in The functional DS equation faf(J) follows from the iden-

the present papébut using globally defined coordinates in- Uty

stead of coordinates defined only on a coordinate pataid

was interpr_eted to mean Fhat the Gribov reg((brjs free pf 0=N j dAr 5” (def — - D(AM) Jex] — Sy (A

Gribov copies. However, it was then provgH, with details a OA

provided in[6], that there are Gribov copies insi€le More-

over, numerical studigs—11] revealed that in general there

?:rgn?earbyerilr 'bgéf%f l/?/stf :ng;\;ﬁn gg;::gg;aetéogslgimeiac which states that the integral of a derivative vanishes when
q Y EQ-- 9 Y Ehere is no boundary contribution. There is in fact no bound-

formula .in favor of an integration over a region freeiof Gri- ary contribution, despite the cutoff on the boundafy, de-
bov copies, known as the fundamental modular region fined by the equation;(A")=0, because the Faddeev-
Popov determinent det d-D(A")]=TI,\,(A") vanisheson
-~ . . . . Q. Thus theform of the DS equation is the same as if the
<O(A)>_NJADA detM (AT O(A™)ex — Sym(AT)]. integral were extended to infinityl6]. Again this is most
(1.4) fortunate because it means that implementing the restriction
to the Gribov region causes no complication at all in the DS
equations.
The last formula is Certainly correct and appears to contradict A|th0ugh the restriction to the interior Of the Gribov ho_
Eg. (1.9. It was subsequently argued nevertheles3 that  rizon does not change the form of the DS equations, it does
the functional integra(1.3) is in fact dominated by configu- provide supplementary conditiorthat govern the choice of
rations on the common boundary @fandA. The derivation  sojution. In fact the properties that result from the restriction
given in Secs. II-1V shows that E(ﬂlS) is indeed correct. to Q, in particu|ar the pos|t|v|ty of the We|g|‘ﬁ)(A) and of
This is most fortunate because it is difficult to give an ex-the Faddeev-Popov operatdvl(A), dictate the natural
plicit description of A. In Appendix A we examine con- chojce of solution of the DS equation that has been imple-
cretely how the paradox is resolved. The lesson is that thghented previously, without necessarily invoking explicitly
normalizedpobability distributions oveA and() are equal  the cutoff atdQ, [3,17-23, and reviewed if24]. Another
in the sense that their moments of finite ordeare equal. property is the horizon condition [25]. This is an
These are the correlation functiof8(x1)A(Xz) **A(Xn)).  enhancemerft,compared to &2, of the ghost propagator
This is possible in an infinite-dimensional space, where th%(k) in the infrared, lim_ o[ k2G (k)] 1= 02 In Sec. VIl we
probability distribution may sit on a lower dimensional sub- show that the hori,zon zgndition is moét convehiently ex-

A ; . o S - pressed as a formula for the ghost-propagator renormaliza-
sion is consistent with the numerical investigation of “Gn-lﬁ, ~ i 9 propag
bov noise,” namely the effect on measured quantities ofiion constantZs. Although this formula flagrantly contra-

taking different Gribov copies. Indeed for the gluon propa-

gator in Landau gauge on reasonably large lattices, Gribov2 ) _ _ )
noise is quite small, of the same magnitude as the numerical Entropy favors population near the boundary, in a configuration
accuracy[13—15. The situation is quite different for a finite- SP3c€ W'f\‘hj high numbey of dimensions, because of the volume
dimensional integral, and the analogous problem for a finit&'ementr™ “dr. The boundaryX) of the Gribov region{) occurs

lattice is also discussed in Appendix A. Forma3) is also where the lowest nontrivial eigenvalue of the Faddeev-Popov op-
supported by a recent calculation in which the DS equatiorgat(.’rM(B) vanishes, so, for typical Conf'gurat'.orﬁson a large
uclidean volumeV, M(B) has a very small eigenvalue. More

for the gluon propagator was derived from the time- . . )
independent Fokker-Planck equation at finite gauge paranﬁ-remsely' compared to the Laplacian operatdi(B) has a high
. . ensity per unit volume of eigenvalug$é\,B) at A =0 [25]. This
etera. It was founq to agree with the DS eql_Jatlon for theenhances the ghost propaga®fx—y)=(M:(A)) in the infra-
gluon propagator in Faddeev-Popov theory in the Landayyq y
gauge limit, a—0, see particularly Eqgs(9.4), (10.13, 3The confinement criterion of Kugo and Ojirfiaé—2g yields the
(10.14, and(10.17 of [3]. o same condition in the Minkowskian theory. However, for gauge-
(it) The form of the DS equations is unchanged by thenoninvariant quantities, the relation of the present approach, with a
cutoff on the boundary of). The DS equations are a set of cutoff at the Euclidean Gribov horizon, to the Minkowskian theory
equations for the correlation functions remains to be clarified, perhaps along the lines of Appendix B. The
(A(X1)A(X2) " *A(X,)). We shall derive them for the distri- relation of numerical gauge fixing by minimization {Euclidean
bution (1.3) in Secs. V and VI. They are compactly ex- lattice gauge theory to the Minkowskian theory is also not clear.

+(3,AN]), (1.6
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dicts perturbation theory, it is nevertheless consistent WittwhereAizAi(x,t) depends on the artificial fifth time. Here
the perturbative renormalization group. The horizon condi-;% = 4(x,t) is Gaussian white noise defined by’ (x,t))
tion puts QCD into a nonperturbative phgsg. o =0 and (7°(x.t) UZ(XI)>=25(X—V) 5W53b5(t—t’)). If
In Sec. VIl we deduce the asymptotic infrared limit of N exd—S,,,(A)] were a normalizable probability distribu-
QCD by neglecting the terms in the DS equations that argion, which it is not, every normalized solution to E4.7)
subdominant in the infrared. It is found that the subdominantyquid relax to it as equilibrium distribution. However, the
terms an.d only the subdomingnt terms come frqm th Yangprocess defined by EL.7) or Eq.(1.9) does not provide a
Mills action Syy(A), so the infrared asymptotic limit of yestoring force in gauge orbit directions, so probability es-
QCD is obtained by settingyy(A)=0. This is a continuum  capes to infinity along the gauge orbits, and as a result
analog of the strong coupling limit of lattice gauge theory.p(a t) does not relax to a well-defined limiting distribution
The functional integral with exXp-Syy(A)] replaced by 1 i, P(At)=Nexd—S,u(A)] (although expectation-
converges because it is cutoff at the Gribov horizon. values of gauge-invariant observables formally do relax to an
In Appendix B we outline the local BRST-invariant for- aqyilibrium valug.
mulation of the present nonperturbative formulation. This as- 'p remedy is provided by the observati¢B0] that the

sures that the Slavnov-Taylor identities hold at the nonper; gngevin equation may be modified by the addition of an
turbative level. In the infrared asymptotic limit, obtained by ,finitesimal gauge transformatioB% ¢
1# 1

setting Syy(A)=0, the BRST-invariant action becomes

BRST exact, and defines a topological quantum field theory. IAR 5S
As shown in Sec. IX, this theory possess an infinite mass gap —r=e— DV + 7y, (1.10
in the physical sector. In Sec. X the extension to quarks is Jt SAL

sketched out. _ . . .
wherev® is at our disposal. This cannot alter the expectation

The starting point of our derivation will be stochastic . X " .
quantization of gauge fields. In the remainder of the Intro-Y2lue Of gauge-invariant quantities, for only a harmless in-

duction we give a brief review of this subject so the readefinitésimal gauge transformatidy, ,=D v has been intro-

may judge the well-foundedness of this approach at the norfiuced. In the language of the diffusion equation, we may say
perturbative level. that the additional drift forc&; , is tangent to the gauge

orbit. The modified Langevin equation is equivalent to the

modified Fokker-Planck equation
A. Review of stochastic quantization of gauge fields

Historically, stochastic quantization originatg29] with ds _ J' dx 4 oP K2 (x)P
the observation that the formal, unnormalizable Euclidean at SAL(x) | SAT(x) '
probability distribution Po(A)=Nexd—S/m(A)], with (1.11)
four-dimensional Euclidean Yang-Mills actio8y,(A), is 5Sym
the equilibrium distribution of the stochastic process defined KL(0)=— SAE(X) +DJ0(x).
o

by the equation

ap_f4 s (5P 5Sym

We will choosev®(x) to makeD?v°(x) globally restoring
—= +
=) ¥ eAr0 | sAT0 T aAR(x

) P) (1.7 along gauge orbit directions, so every normalized solution
P(A,t) relaxes to a unique equilibrium distribution
lim;_. P(A,t)=P(A).

for the time-dependent probability distributi¢t(A,t). This Stochastic quantization in the time-dependent formulation
equation is a continuum analogue of the diffusion equation imas been developed by a number of authors who have ex-
the presence of the drift forde; pressed the solution as a functional intedigdl] and demon-

strated the renormalizability of this approd@®,33. A sys-

tematic development is presented[84 -39, and reviewed
=0, (1.8)  in [40], that includes the four- and five-dimensional Dyson-

Schwinger equation for the quantum effective action, an ex-
) ) tension of the method to gravity, and gauge-invariant regu-
that is known as the Fokker-Planck equation. If thejarization by smoothing in the fifth time. Renormalizability
drift force is conservative, Ki=—dSyy/dA', then pas also been established by an elaboration of BRST tech-
exf—Sym(A)] is a time-independent solution. In Euclidean piques[41,42. Stochastic quantization may be and has been

quantum field theoryt is an artificial fifth time that corre-  exactly simulated numerically including on rather large lat-
sponds to the number of sweeps in a Monte Carlo simulationjces, of volume(48)*, [43—47.

and that will be eliminated shortly. The same stochastic pro-
cess may equivalently be represented by the Langevin equa-
tion

KiP

T

P 9 (0P
gt oA

B. Time-independent stochastic quantization

When the drift force is globally restoring?(A) may be
IAR 5Sy calculated directly without reference to the artificial fifth
R ’V'+,]t;, (1.9 time as the positive normalized solution of the time-

at A, independent Fokker-Planck equation

016002-3



DANIEL ZWANZIGER PHYSICAL REVIEW D 69, 016002 (2004

SP relative minima® with respect to local gauge transformations
HPEJ d*x SAZ(X) ( T AR (X) +K2P) =0, g(x) of the minimizing functionalF 5(g)=||9A|?, whereas
# # the fundamental modular regioh may be characterized as
the set ofabsoluteminima. The set of absolute minima is
2 (x)=— 5Sawv| L DE%e(x), (1.1p  free of Gribov copies, apart from the identification of gauge-
oA, (X) s equivalent points on the boundaf, and may be identified
with the gauge orbit space. In a lattice discretization the
and Euclidean expectation values are calculated ftgn  minimization problem is of spin-glass type, and one expects
=[dA O(A)P(A). We callH the “Fokker-Planck Hamil- many nearly degenerate local minima on a typical gauge
tonian.” (It is not the quantum mechanical Hamiltoniant  orbit, as is verified by numerical studies. Thuds a proper
has been proven direct)\8], without reference to the artifi- subset of2, ACQ, but A #(}.
cial time, that the expectation valug)), of a gauge-
invariant observable?(9A)=O(A), is independent ob.
Equation(1.12 determines a probability distributioR(A) C. Region of stable equilibrium of Ky
directly in A space that is correctly weighted at the nonper-
turbative level. The Gribov problem of globally correct — The gauge transformation “forceK o is not conservative,
gauge fixing by identifying gauge orbits is bypassed. By con-and cannot be written, like the first term, as the gradient of
trast, in the Hamiltonian formulation of gauge theory,some four-dimensional gauge-fixing action,K

gt.u

Gauss's law states that the wave functioddlA) is gauge- :a‘lDf‘fa-AC(x)a& — 8Syi/ 5A5(X), so we cannot write the
invariant and is thus a functional defined on the space o§olutionP(A) explicitly in general. However, we shall solve
gauge orbitg48]. Eq. (1.14 for P(A) exactly in the limita—O0. In this limit

To ensure thaKy , =D v is globally restoring, we intro-  p(a) gets concentrated in the regionsiéble equilibriunmof
duce a minimizing functiongK9], [50], and[4], and choose e forceK 4 —a D g.A
" w .

Kgt,. to be in the gauge-orbit direction of steepest descent. A pgqerti
convenient choice of minimizing functioflais the Hilbert
norm ||A|>= fd*x|A|2. For an infinitesimal variation in the
gauge-orbit directio’A ,= €D ,v, we have

on The region of stable equilibrium under the
gauge transformation fordéy ,=D ,d-A is the Gribov re-
gion Q. Proof Transversality is a sufficient condition for
equilibrium becausé- A=0 impliesK; ,=0. Itis also nec-
essary. Consider the flow under this foro&,=D ,d-A.
We have d|All?/at=2(A,.A,)=2(A,.D,3-A)=2(A,,
=—2e(d,A,,v), (113 d,9-A)=—2[d-Al*><0, which is negative unlesg-A=0.
We conclude that the region of equilibrium und&y;, which
so steepest descent among gauge orbit directions of the mirff@y be stable or unstable, is the set of transverse configura-
mizing functional is provided by =a~1g-A with a>0, and  tions. To find the region of stable equilibrium, observe that
the time-independent Fokker-Planck equation is now specidnder this flow, we have/dtd-A=d-A=3-D(A)d-A. We
fied to within a single gauge parameter, linearize this equation to first order i A, which means
taking ¢- D(A)—d-D(A")=—-M(A"), and we havel/itd

S|AIP=2(A, ,6A,)=2€(A, D, v)=2€A,,d,0)

5 SP -A=—M(A"4g-A. Thus the equilibrium is stable when all
Hp:j d4x AR ( ~ A + KZP) =0, eigenvalues oM (A") are positive, and it is unstable other-
u(X) w(X) wise. QED.
a g\ — ISywm —1pnac c
K2 (x)=— A +a D% A%(x), (1.14 Il. A WELL-DEFINED CHANGE OF VARIABLE
o

In order to solve the time-independent Fokker-Planck
(Symmetry and power-counting arguments also determinequation(1.14) in the limit a—0, we only need the solution
vé= a‘laxAiza‘la-Aa.) for smalla in a coordinate patcld/ in A space that includes
Having introduced the minimizing functional, we note the Gribov regionQ). In 4/, we make the change of variable
that the Gribov regio) may be characterized as the set of A—(B,g), defined by the gauge transformation

“More generally, we may take for the minimizing function SAt any minimum, this functional iga) stationary, andb) the
fd“xAZ(x) aﬂ,,Ai(x), wherea,,, is a constant positive symmetric matrix of second derivatives is non-negative. These two conditions
matrix. This defines a set of Lorentz-noncovariant but normalizabldix the properties that define the Gribov regida) transversality,
gauges that includes the Coulomb gauge as a limiting [&ide To d-A=0, and(b) positivity of the Faddeev-Popov operaterD (A)
include different instanton sectors, one may choose as a minimizingd. Property(a) follows from Eq.(1.13), which states that the first
functional|| A— A,||?, whereA, is a fixed configuration of the given variation of the minimizing functional iss|A|?=—2(w,d-A).
instanton number. An alternative minimizing functional suitable for Property (b) follows because the second variation #&||A||?=
the Higgs phase was proposed[#2]. —2[w,9-D(A)w].
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A,=A,(B,9)=B,=-g '9,g+g 'B,g, Ao

with 9-B=0 and M(B)>0, (2.0

whereB e (). Local gauge transformations are parametrized
by g(x) =exd t?¢*(x)] where, for eaclx, the #*(x) are coor-
dinates for the SU{) group® The notationA=A(B,qg) is
understood to stand foA=A(B,#), and we haveB u Alr
=A(B,0).

Gribov's critique of the Faddeev-Popov method is that
this change of variable is not well-defined for all transvdsse
and g. We shall show, however, that it is well-defined in a
coordinate patch/ that included). This is true, even though
there are Gribov copies withif, because the gauge orbits
intersect() transversely. The coordinate patthmust be
small enough in the directions that the gauge transforma-
tions g(#) that relate these Gribov copies are notdn

To verify that the gauge-orbits interse@ttransversely, it
is sufficient to show that the change of variabl@sl) is
invertible for infinitesimal angles®?(x) =¢€%(x) for all B FIG. 1. The coordinate patdi in A space is the clam-shaped
e Q. It follows that it is also invertible, and thus well- region viewed edge on. The Gribov regibhis represented by the
defined, on some finite coordinate patefthat includes).  thick horizontal line.

To first order ine, the change of variablg.l) is given by
A,=B,+D,(B)e. The divergence of this equation reads lll. CHANGE OF VARIABLE IN FOKKER-PLANCK
d-A=9-D(B)e=—M(B)e, which shows that- A depends EQUATION
linearly one. Note thatd- A is orthogonal to the trivial null To change variables in the Fokker-Planck equation, one
space ofM(B), consisting of constant functions, and we takes over to functional variables the standard formulas of
specify thate is also orthogonal to this null spaéeSince gifferential geometry. The mechanics of the calculation are
B e () by assumptionM (B) is a strictly positive operator on  sjmijlar to the computation of the Coulomb Hamiltonian by
the orthogonal space, and thus invertible, and we have  Christ and Led52], but there the change of variable was
—M~Y(B)d-A. We solve forB in the form B,=A,  done globally whereas here it is done only in a coordinate
+D,(B)M~*(B)d-A. To zeroth order inc we haveB=A  patch. We freely go back and forth from continuum to dis-
=A", whereAj=A,—3,(4*)"'9-A is the transverse part crete notation by the replacements’,(x) A" and
of A This gives the inversion formulasB,=A, [B2(x),6%(x)]<~u® In terms of A, the Fokker-Planck
+D,(ADM 1 (A" d-A and e= M (A")d-A, valid to  equation reads
first order ine or 9- A. Thus for eachA" € Q, the change of
variable(2.1) is invertible to first order in the small quantity 9 [P
d-A. QED _HPEﬁ‘S”(W_ KJ-P) =0, (3.1

Concerning the shape of the coordinate pdfchote that
as the configuratioB € )} approaches the boundas§) of
the Gribov region, the lowest nontrivial eigenvalugB) of
the Faddeev-Popov operatdf (B) approaches 0. Conse-
qguently the width in longitudinal o8 directions of the coor-
dinate patchi/ shrinks to zero as the boundas§) is ap-
proached. We may picture as a very high-dimensional these. the Fokker-
clam, shown in Fig. 1.

10

and  expectation values are given by(F)

= [TI;dA'F(A)P(A). The coordinate€\' are Cartesian, but
the coordinate transformatioh=A(B, 8)=A(u) is nonlin-
ear, and thei= (B, #) are curvilinear coordinates. In terms of
Planck equation reads

Nelel

JuP

9P
— K(B“)P) } =0, (3.2

HP L J
/G u”
®Here and below we use the notatién=t?A% andB,=tB% .
The t? are a set of anti-Hermitian traceless matrices that form the : :

. . n X ion-val r iven F
fundamental representation of the Lie algebra of BYJ([t?t"] ifdl'[ due“ pécl::t?:)op(u? u?l'she maefric tegnsir is Sii//én >by
=fab%C where the structure constarif®¢ are completely antisym- 7. a: ; - .
etric. PIEIE aMESYI™ g Al A = du(aA1/ gu) (9A/3uP) duf = du“G U,  with

"The constant angles, 6°=0 parametrize global SWY) transfor-  volume element/G = detau/dA. The covariant and contra-
mations. These atithin Q. However, we may safely ignore them Variant components of any Cartesian vector fiéld are
because they have finite volume that we normalize to unity. Thegiven byK,=(dA'/qu®)K; andK= (u?/dA")K;. .
spectrum ofM (B) is discrete by quantization in a finite Euclidean ~ We now calculate these quantities explicitly in functional
volume. form. FromA,=g 'Bg+g~'d,9, we obtain
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6A,=g *(oB,g+d,(599”H+[B,59g g, (3.3 JG=detl def —3,D ,(B)w(6)]
where =def—d,D ,(B)]Detw(0)
—daa =28 0 140f= w.dof=tPwidef (3.4 =detM(B)]] detw[6(x)], (3.10
w=dgg "=—50 =wgdd”=tw, (3.9 y
is the Maurer-Cartan form. It satisfieto=dgg 'Odgg ! which contains the Faddeev-Popov determinantvi{@). It
= wOw or, in terms of components, has been obtained by a purely local calculation at a fixed
point A=9B, without integrating globally over the gauge
Jop g group. The volume elemen{G is the product of de¥i(B)
J0° Mﬁ=f Tl wpl. (3.5  that depends only o, and the functional determinant

Detw(6)=II, detw[6(x)] that depends only ord. Here
We also havey ™~ ltag=R.,t°, where the real orthogonal ma- 1dete[#X)]I1,d¢*(x)} is the Haar measure of the SN
tricesRa,= Rap( ) = Ry 2 are in the adjoint representation of 98U9e group atx. It is common to write [Dg

the gauge group. From,=t?A,, andB,=tB,, we ob- —JD0Delw(d)]. o _
taing ge group " " " " We next find the inverse matri#A'/9u® by solving for

8B and 5¢*. From Eq.(3.6) we obtain
a_p—1 b bc, c a

ORu=Rap 9B, + D, (w067, 39 RoadAZ =[ 3B+ DO%(wS86)]. (3.11
where 6B, is purely transversed,6B,=0, and D° _ _ _
=D2%(B) is the gauge-covariant derivative with the connec- Ve take the divergence of this equation and 836B,=0
tion B;’j as argument. The last expression is the functional® obtain
form of SA'=(9A'/9u®) Su®. It gives the functional operator
that corresponds t@A'/du®, and we have for the metric
tensor

9,(RpadA%) = 3,D5%( w%,80%), (3.12
which gives the first inverse formula
4= f A A2 A2 56°=32[(9-D) 13, (RyadA%),  (3.13

where JZ(0)=(w 1&(0). The Faddeev-Popov operator
:f d*X[ 8B + D2 5,56%) ][ 8BS+ DO wS56)]. M(B)=—-4-D(B)=—D(B)-4 is symmetric and positive,

so its inverse is well defined. To avoid a proliferation of

3.7 indices, we write the last and similar equations in operator

» ) notation,
To calculateG = detdA/du, we start by writing the linear

transformation(3.6) as the product of two transformations, 560=J3(9-D) 13- (RSA). (3.14
SA%=R,, 5C%, and
Inserting this into Eq(3.11), we obtain the second inverse
8C8 = 5B% + D0 w56%). (3.9 formula

The matrixR,y, is orthogonal, so d&¥=1, and it is sufficient OB\=[6\,—Dy\(9- D)*lﬁ#](Ra‘A#). (3.195
to calculate the determinent of the linear transformation
(3.8. We do this in two steps. We first transform froﬁﬁ:i One sees thatB, is transverseg, 6B,=0. The last two
to its transverse partgp)f{'az pgﬂ(gc)a, and its diver- equations give the operators corresponding to the matrices
genceéLaEaMcSCZ, where pgﬂz 5W_3A((92)71(9M is the du“/dA'. From them we read off the continuum version of
. « . . | o
projector onto transverse vector fields. This linear transford/dA'=du®/dA;a/du® namely,
mation is independent of the variables- (B, #), so its de-
terminent is a constant, and will be ignored. The linear trans-

§ _x -1
=R| [0, —3d,(D-9)""D,]

formation from B and 80 to SC" and SL is given by oA,
(8C)\2=5BP + PY D% %56 D txe
© w=p 3.9 XﬁB)\ d,(D-3)"7J(0) 56/ (3.1

8L3=9,D0%wl56%), ~
where R is the transpose ofR. The (J6/66),
where we have used the transversalityaﬁfz. This linear  =JZ(6)(8/86%)=(w 1)2(6)(5/56%) are the angular mo-
transformation is a triangular matrix, and its determinant ismentum or Lie differential operators of the gauge group.
the product of the determinents of its diagonal submatricesThey satisfy the Lie algebra commutation relations of the
This gives local gauge group
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WAL=3)(9 'B\g+g 1,0)

P P)
I000] 57w 0] =2
86(x)* P 560(y)” =g~ %(d\(3yg9™ ") +[B,dyg9 ' ])g

=—8(x— y)fabCJV[H(x)]%f)y, (3.17 =g 'Dy\(B)(4,99 1)g
:gilD)\(B)(waa)\ea)g! (322
that follow from Eq.(3.5). - I
We need the curvilinear components of the drift forcewhere we have used d,gg™'=(dg/36,)g™'d,0
K,=Kym ,+a Kt where  Kyy ,(A)=—3S/5A, =w,d\ 0% andw is again the Maurer-Cartan form. In index

= DAFM(A) and ng D,d-A. We shall see that the one- and operator notation this reads

form or covariant&component ofKyy vanishes[because a

the actionSyy(9B)=Syy(B) is gauge invariaif while the HAY=RapDY (050, 0%) = A, =RDy (00, 0),
tangent-vector or contravariaBicomponent oK, vanishes (3.23
(becausé is tangent to the gauge orpifThus the Fokker-
Planck equatior(3.2) in curvilinear coordinatesi= (B, 6),
readsHP =0, where

H:HBB+HB,9+HQG+H00; (318) DM(A)(?)\A)\:RDM(B)D)\(B)((H&)\Q), (324)
By Eq. (3.16 we obtain

whereD, =D, (B). By the gauge transformation property of
the gauge covariant derivatii@(A) =D (9B), this gives

_ = K(B)
b e Gt ) o
~Hay= \/_aB“‘/— g %[ (8- 3,(D-9)7D,]
(3.19 5 5
S L)1 e
_HaBE\/_ﬁea JGG 95)( 9BP KYM,B XéBV 9u(D-9)77(6) 60)'
(3.295
1 9 J
_HWE_W\/E(G%)W_KSW))_ We perform an integration by parts and u&e,[d,,
N© ~9,(D-3)"'D,]/6B,=0 to obtain
We use the continuum version of the formida,, (OA! S S
=K 0B+ K% ,60% to obtain the one-form compo- f dAXthugAa:j d4X[Dx(B)(wr9>\0)]a[J(0)5—6} :
nents ofKy,, . We have a
(3.26
J d*xK3,, (A)&Aazf d*xD,F2 (9B) 5A? .
e m m w Thus the tangent-vector componentskof are given by
f d*XR;ID,F? ,(B) 5A3 Kg= (Kge"* Kgt") ={0.36(6)[DA(B) (w3, 6)]%}.
(3.27

I b b
_fd XDy u(B)LOB, From Eg. (3.16 we obtain the Laplacian operator

1Gal au\JGau®l aA guPl A 9/ duP in curvilinear coordi-

bc, c a
+D (waéﬁ )] nates,

Jd“ka (B)sB® ., (3.20

fd“l 55 Dy(9-D) 1o
X\/E (SB)\[ Y73 }\( ! ) /_L]
by Eg. (3.6), where we have performed an integration by
— bceb e
parts, and usedX,D,F,)*= (1/2)gof*°°F ;,,F} ,= 0. Thus + iJ(&)(ﬂ' D)~ *d
the one-form components &fy,, are given by 50 ®

Ky, o= (KV o K1 o) =[D\FR,(B).01. (320 /G

We use the continuum version oﬂ<gm((9/aAi)
—k(B) @ (0) a i i S S

=Kgra(d/dBY) + Ky, (9196%) to otitaln the contravariant or X g (D)~ 23(0) —|. (3.29
tangent-vector components Kf; , =D, d-A. We have 6B, # 66

8,,—39,(D-9)"'D,]
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Putting all terms together, the explicit expressions for the 1

terms in Eq.(3.19 are

detM(B) f d'x 55

x(a-D)—laM]x[aﬂv d,(D-9)7'D,]

«F (B, (3.29

X
5B,

_H80 B)\ detM(B)

4
detM(B) f d X5

)
X[ —dy+ Dx(a'D)‘lﬁz](Dﬂ)‘lJ(a)E,

(3.30
~Hoe= 5ot (0 fd“ — Detw(6)J(6)
X(9-D)~Ya,—d*(D-9)"'D,]

x| 5g~~DaFu(B) |, (3.30)
~H0o= 5t (0 fd“ — Detw(6)J(6)

5 1
X[ (9-D) X =d*)(D-9)"2(0) — 56~ 2P
X[w(t‘))&xﬁ]). (3.32

IV. SOLUTION IN LANDAU-GAUGE LIMIT

We shall solve the Fokker-Planck equatidi®=0 in the
limit a— 0. In this limit the drift force in the gauge-orbit or

¢-direction is dominant. This situation is reminiscent of the

Born-Oppenheimer method in molecular physics. Dhari-

ables equilibrate rapidly, like the electron positions in a mo

lecular wave function, and the dependence onBhariable
is determined by an average over thevariable, like the
nuclear variables.

We expect that the solution gets concentrated closé to
=0. We rescale variable accordingde-a*?®, and find that
Hgg is independent o& and unchanged, whereas

1
- 4
—Hgy= _'zdetM(B)fd detM(B)

X[—d,+Dy(9-D) 19%](D-9) xJI(a¥?®) %
4.1

and

fined byV=M"1(—*)M

PHYSICAL REVIEW D 69, 016002 (2004

1
— = Ay
Hos= g2 Detw(al?0) f d X550

X Detw(at?®)J(a'?0)(9-D) !

D\Fy.(B)

X[d,—d*(D-9)"D,] o
v 12 5B
(4.2
are of leading order "2 while

1

—H
00~ 3

1/2, 1/2,
m[d X—= Detw(a @)J(a 0)

x| (9-D) Y —=o%)(D-9) 13(a'?0)

X Dx[w(am@)ax@]) 4.3

60
is of leading order H.

The Fokker-Planck Hamiltonian has an expansiorain
given by H=a 'Hy+a Y?H;+H,+0(a'?). We seek a
solution of the form P=P,+a'?P;+aP,+---, which
gives

(a *Ho+a YHy+Ho+- ) (Po+at?Py+aP,+---)=0.
(4.9

To leading order we obtain

o
—H0P0=jd4x—((& D) Y{—=d*(D-9)7 !
o D-90 |Py=0 4
X5g D90 |Po= (4.9
or

J d*x — 0 0 —+MO |Py= 4.6

whereD=D(B), M=M(B). The operatoV=V(B) is de-
~1 It is symmetric and positive.
The last equation is solved by a Gaussia®in

Po(B,0)=Q(B)N(detX)?exd — (0,X0)/2]
=Q(B)N(detX)?exf — (6,X0)/(2a)],
4.7
where @,X68)=[d** 63(x)(X)3(x). Here X=X(B) is a
symmetric operator to be determined, avds fixed by

fDe N(detX)Y?exd —(6,X0)/(2a)]=1. (4.9

The upper limit on the) integration is actually finite, but this
gives a correction of order exp(l/a) that we neglect. The
solution(4.7) decreases rapidly 44| increases away from 0,
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as expected, with a Gaussian width~a'2. In the limit a y y 5
—0, the support of the solutioR(B, #) shrinks tod=0, and J DO Detw(a'?0)J(a'?®) 50"
is given by
1)
_ 0 1 120y 2 1
P(B,6)=8(6)Q(B). 4.9 = JD Detw(a*®)FJ(a'?0) 56 1=0
We now check that Eq(4.7) is actually the solution. (4.14

Equation(4.6) yields two equations fok, where the explicit form of is not needed The first equality

holds by the Lie group property that maké&a'?0) 5/ 50
anti-Hermitian ~ with  respect to Haar measure
(410 DO Detw(a?0).
tr(VX-=M)=0, [It is easy to verify that the equation

(0,XVX0)—(0,XM0)=0,

that hold identically for all®. The first equation yields /DO Detw(a'®) Hg,P=0
2XVX=XM+MX, or MY+YM=2V for Y=X"1. More-

over, when this equation is satisfied, the second equation e ,
automatically satisfied. To solve fof, we take matrix ele- aPProximation, and we have, to the order requirg()

ments in the basis provided by the eigenfunctions of the- €XP@)=1+t* 0 +(1/2) (t°6%)°. For the Maurer-Cartan
Faddeev-Popov  operator Mu,=A,u,, and obtain OrM (9g/d6°)g” *=t*wy we obtain, to the order required,
2 (U, VU) = (At A p) (Ur, Y ) OF o=+ (12)f27E97= 5%+ (a'%2)f27$@". The second
term is an antisymmetric matrix so for the Haar measure we
(U X100 = (U, Y U =20+ A )~ (U, VU get detw(a?®)=1+0(a), and for the matrixJ?, defined
by JSwi=55, we get J5(a'?0)= 5%+ (a42)f27P0”

=2f dt(uy,,expg(—Mt)Vexp(—Mt)u,). +0(a). This gives
0

faolds in the smalk limit. This is the same as the small angle

5
(4.11) j DO Detw(a¥®)J5(a'?0) s07F

This gives
[0

X‘1=Y=2f dtexp —Mt)V exp(—Mt)
0

al/2
5B+ 7 farber

é
+0(a)

5®B F-

The term in5/807 is an exact derivative becau$é”” is
antisymmetric, and gives vanishing contribution. The leading
term inF is of order 142, so the remainder is of order’?
and vanishes in the smalllimit. ]

We conclude that in Eq4.13), the only surviving term is
(4.12 Hgg, given in Eq.(3.29. It is independent o and®, and

L . . Eq. (4.13 simplifies to
and X=X(B) is indeed a positive operator, as is necessary

for the normalizability of the Gaussig#.7). HgeQ=0. (4.15
The coefficient functiorQ(B) in Eq. (4.7) is left undeter-

mined by the equatioi,P,=0. Since the leading term in From Eq.(3.29 we see that this equation is of the form

the HamiltonianH =1/aHy+--- leaves the solution indeter-

minate, we are in the case of degenerate perturbation theory, -[8,,—3,(D-9)"'D ]{i_ D.F,(B)

and the lowest order solution is determined by a higher order pr "’ 6B v

perturbation. To obtain an equation f@(B), we integrate

the exact equatiorl P=0 over®,

=2M‘1fwdtexq—Mt)(—ﬁz)exq—Mt)M‘l,
0

Q=0.

The left factor is orthogonal on to longitudinal fields, so it
may be written

f DO Detw(a'?®)HP=0, (4.13
8The fact that the integral oR® surgically kills theH ;5 andHg,

_ L terms is the payoff for using the curvilinear coordinatBs#). In a

where, we recallH =Hgg+Hg,+Hgg+Hyy. This kills the previous calculation by the autho3], the time-independent

Hy, term that is of order H, for, by Eq.(4.3), it is the o .er planck equation was solved using Cartesian coordindtes
integral of an exact derivative, and thus vanishes identicallyy,4 Al instead of(B, 6). This gave an additional contribution, not

JDO Det.w(é?M@) H00P=fD®5/5~:-=0. For the same  gygically killed by the corresponding integration oM2AP, that
reason it kills theH,s term that is of order B2  \as mistakenly neglected, and that was needed to cancel a spurious
/DO Detw(a*®) HyP=0. It also kills theHg, term that  term, calledK., in the effective drift force. FortunateliX, was

is of order 142 because, by Eqi(4.1), the integral neglected i3], so what was thought to be an approximate formula
/DO Detw(a?@)Hg,P is of the form there is in fact exact, and the calculation reported there is correct.
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6Sym(B)

L8 ,ADa)lDJﬂﬂgB 5B, }Q 0,

PHYSICAL REVIEW D 69, 016002 (2004

Z(J)= NleBdetM(B)exp[—SYM(B)+(J,B)],
(5.1)

where we have used the fact that functional differentiation

with respect to a transverse field is ordinary functional dif-
ferentiation with a transverse projector that comes from

SBY(Y)

— ptr
5BI(X)

A

(x—y) 8%, (4.16

Thus the equatioriggQ(B) =0, has the simple solution
Q(B)=Nexd —Sym(B)]. (4.17)

In continuum gauge theory, the Gribov regibnis convex,

as shown in Appendix C, and therefore it is connected, so the

normalization of the solutioid.17) is unique. We have ob-
tained the solution in the coordinate pateghin the limit a
—0,

P(B,0)=N&(6) exf — Syu(B)]. (4.18

We express the solutioR(B, #) in terms of the original
Cartesian coordinate8. The volume element is of course
JdA. To first order ind we haveA=B+D(B) 6, andd-A
=gd-D(B)#, so

5(0)=8(d-A)def —-D(A)]. (4.19

Inside the coordinate patéh, the solution reads
P(A)=N&(d-A)def —ad-D(A)]exd —Sym(A)].
(4.20

Its support lies on ¢-A=0, and it vanishes with
def—29-D(A)] on the boundaryQ of the Gribov region. We
extend it to all of A space by stipulating that it vanishes
outsidel{. For the diffusion equation with a drift force, the
equilibrium distribution is uniqu¢53].

V. DYSON-SCHWINGER EQUATION FOR PARTITION
FUNCTION

where we have written B=A", and (,B)

= [d*x J.(x)B%(x). Only the transverse part df contrib-
utes, and we also takkto be identically transversd=J".

(The extension of the present nonperturbative approach with
a cutoff at the Gribov horizon to an off-shell gauge condition
with a local and BRST-invariant action is sketched in Appen-
dix B.) The Faddeev-Popov determinent NEB) vanishes

on the boundaryX}, so the identity

P)
0= fndB 5B%(X) (detM(B)exf —Sym(B)+(J,B)])
(5.2

holds, without any contribution from boundary terms even
though the integral is cut off at the Gribov horizéf. It is
shown in Appendix C that the Gribov horizon surrounds the
origin at a finite distance in all directions.

To derive the functional DS equation f@i(J), we write
detM(B)=exd Tr In M(B)], and define the total action

3 (B)=Syn(B)—Trin M(B), (5.3
so Eq.(5.2) reads
=J dB(J,E(x)—g—;,@)(detM(B)
0 2(X)
xex —Sywm(B)+(J,B)]). (5.9

Although 2(B) is not local inB, we shall derive the same
DS equations as one gets from the usual local action of glu-
ons and ghosts. We have

82(B)

S5BE(X) T

ghu(X;B)

—[D,\Fyn(B)]*"(x) — (5.9

hu

by Eqg. (4.16, where “tr" means transverse parfX,]"
=X,—d,(5%)"*9,X,, and the ghost current is given by

To be of use, the nonperturbative Faddeev-Popov formula

(1.3) must be supplemented with a prescription for how the

functional integral, restricted to the Gribov regifn is to be
evaluated nonperturbatively. An earlier approdbH] is to
insert ad function 6[ \1(B)] that effects a cutoff at the Gri-
bov horizon. Thej function is given a suitable representation
as an integral over auxiliary fields with a local effective ac-
tion, and one integrates over &l without restriction and
over the auxiliary fields. A far simpler approalt6] rests on
the observation that the Gribov horizaf) is a nodal sur-

face of the integrand because the Faddeev-Popov determi-

nent deM(B)=II;_,\,(B) vanishes withn,(B), that is to
say, ond€). The DS equations, which are derived by a partial

integration, do not pick up a boundary term, and would have

the same form if the integral were extended to infinity. In this

approach we never have to know where the Gribov horizon

actually is.
The partition function for the distributiofi.3) is given by

SM(B)
8B (%)

_o[TrinM(B)]
~ eBR(x)

X(M~1)(y,z;B)

7

9

h (X

o

8 328%°+gof29BY(y) 9, ]
8B)(X)

Ml(B)>

z=y

=—gofab°f d*y Pl (x—y)d, (M~ )2

X(y,z,B) (5.6

z=y

Here and below, derivatives act on the left argument of
propagators. The identit{.4) reads
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=f dB(J%(x)+[D,F},(B)]"(X) + I, ,(X:B))
Q

X (detM(B)exd —Syw(B)+(J,B)]) (5.7

PHYSICAL REVIEW 39, 016002 (2004

o
ac(ﬁ)[gcb<x.y;a>2<a>]=5<x—y)5abZ<J>-
(5.13

Equations(5.8) and(5.13 and formula(5.9) provide a com-

and yields the functional DS equation for the partition func-plete system of functional DS equations for the partition

tion Z(J),

tr
(D FSM( 5J)) ()Z()=[Zgy,gn, () +I5012(J),
(5.9
where D}\F‘;M(él&l) is a cubic polynomial iné/8J. The

guantum ghost current in the presence of the sodiisg by
Eq. (5.6),

Igughp.(x ‘]) < gh,u X B)>J
=—gofab°f dy P, (Xx—y)3,G°%(y,Z;J)

z=y
(5.9

Here we have introduced the ghost propagator in the presyhere the new variablB2

ence of the sourcé,
G°(x,y; ) =((M™H°%(x,y;B));, (5.10

where(O); denotes the mean value 6{B) in the presence
of the source],

((’))J:Z‘l(J)NdeBdetM(B)O(B)

Xexd —Sym(B)+(3,B)]. (5.11)

To obtain a closed system of equations, we need a DSPx(I)=((Bx=(Bx)a)(By=(By)s))s= 9393,

equation for the ghost propagat@i®(x,y;J). It contains a
term proportional tan; 1(B), sowe must avoid integrating
by parts on B or introducing ghost sourcee Appendix B
Fortunately the functional DS equation f6f°(x,y;J) fol-
lows from the trivial identityl=M(B) M ~(B), that we
average withP(B)exd (J,B)],

6(x—y)5abZ(J)=JQDBMa°(B)

X(M~He%(B)P(B)exd (J,B)]

— ac( 6)
=M f B(M~1)$(B)P(B)
xXexd (J,B)], (5.12

where  M3%(8/8]) = — #*8°°—gof2*%(8/835)d,.  Here
P(B)=detM(B)exd —Sym(B)] is the probability distribu-

function Z(J) and the ghost propagatgf®(x,y:J).

VI. FUNCTIONAL DS EQUATION FOR GLUON
AND GHOST PROPAGATORS

We change the variable fro@(J) =expW(J) to the “free
energy” W(J). For the ghost propagator we obtain

Mac

53 6.9

2 G°P(x,y;d) = 8(x—y) &P
5J Y :

We again change variables by Legendre transformation from
the free energyW(J) to the quantum effective action

I‘(Bcl):‘JchI,x_\N(J)y (6.2
a,x(X) is defined by
W) 1 6ZQJ) a 6.3
G )= 5‘12()() 7 535(%) =(BL(x));. (6.3

It is identically transverseB , =By ,, and takes values in
Q) becauseB(J)=(B); is an average with a positive prob-
ability, N detM(B)exp@®,J), over the convex regiof). Inver-
sion of B=B(J) to obtainJ=J(B) is possible because
the gluon propagator in the presence of the sodrce

W 9By(J)

9,
(6.4)

is a positive matrix. The gluon propagator is expressed in
terms of the Legendre-transformed varialland I (B) by

(6.5

Here and below, we writB instead ofB.,. The gluon propa-
gator and its inverse are identically transverse,
H\D\,(x,y;B)=0. _ o

Under the Legendre transformation, derivatives transform
according to

i —(Dé)a =fd4pab B)
RO x(X)— YDxu(XY; )W.

(6.6)

tion, although the form of the DS equation for the ghostas one sees from E@6.4). In terms of the Legendre trans-
propgator is independent &(B). This gives the DS equa- formed variables, the DS equatiéd.1) for the ghost propa-

tion for the ghost propagator

gator reads
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Glx,y;B)= X

FIG. 2. The functional DS equatiof6.10 for the complete
ghost propagatag(x,y;B) in the presence of the sourBeThe thin
line is the tree-level term. The heavy line wiglithout) the arrow
is the complete ghoggluon) propagatorG(x,y;B) (D(x,y;B)) in

the presence of the sourBeThe circle is the complete ghost-ghost-

gluon vertex in the presence of the souRe

S(x—y) 62P=Mmac

B+D— )gcb(x y;B)
=M2%(B)G°"(x,y;B)

_ adc
gof deD (XZB)éB 22 d,

X G°°(x,y;B), (6.7)

where G¢°(x,y;B)=G"[x,y;J(B)] is the ghost propagator

expressed in terms of the sour& Finally, instead of

G*(x,y;B), we take as the new unknown variable the in-

verse ghost propagattﬂgﬁ(x,y;B) defined by
T ghaxy(B) =Gy, (B)

<—>f dyl'3n(x,y;B)G*(y,z;B)

= §(x—z) 5°C. (6.9

We substitute

gh UU( )

J
&_Bzgxy( ) gxu(B) gvy(B) (69)

into the previous DS equation, and multiply on the right by
the matrixI" g, ., to obtain the functional DS equation for the

inverse ghost propagator
TaP(x,y;B)=M?2(B)8(x—y)
+gofad°f dzdup$S(x,z;B)d,

ST i(u,y;B)

X G°(x,u; B) 5B%(2)

, (610

that is

PHYSICAL REVIEW D 69, 016002 (2004

ST {p(u,y;B)/5B%(2) is the complete ghost-ghost-gluon ver-
tex in the presence of the source.

We make the same changes of variable in the functional
DS equation(5.8) for Z(J)=exgW(J)]. We evaluat®

V\F

o
e 5)(x>exqwu>]

=exp[W(J)]{ax(&xBi—&KB%gofamB?Bi

+DC(x,X,B)) + . .. +gof2°C

B"+(S
S

X gof 4 BIBE + DY(x,x,B)]

(6.17

whereB, = 6W(J)/4J, and Dﬂp(x,y; B)= 5BV(X)/5J#(y)_.
The quantum gluon current in the presence of the soBrise
defined by

=ex W(J)J[V\F} (B) +Tg, g,,(X:B)],

Tou g XiB)=| Gof P8} .8, 818, — 28, 8,,)
XVbd'Ddc (X 7 B) _ggfabc]ccde
Z=X
xf dydzdwDYl(x,y;B)D{Y(x,z;B)
tr
X DN(x,w; B)F;?T"T(y,z,w;B)) . (6.12
Here
5°T(B
9"y, z,w;B)= ®) (6.13

5B,(y) 5B3(2) 5BY(w)

is the complete triple-gluon vertex in the presence of the
sourceB. This gives the functional DS equation fb(B),

ST(B)

W:_VA (x;B)—1¢

qu_gI,M(X; B),

(6.19

F3.(B)(x)— I

qu.ghu

where, by Eq(5.9),

T8, ghu (X B)=T0, o [X:3(B)]

= —gof?"* J d*y Py, (x—Y)9\G°(y,Z;B)
z=y

(6.195

is the quantum ghost current in the presence of the sddirce

represented diagrammatically in Fig. 2. Here—

In this section we writeVi°(A)=4,6%°+gf*°A} for the

gauge-covariant derivative instead fo(A) to avoid confusion
with the gluon propagatoP.
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A more explicit form of this equation is obtained by dif- (1) y.B)=  x
ferentiating with respect t82(u), which yields a functional
DS equation for the inverse gluon propagator,

—52F(B) =(—8,,(V\W)39+(V,V,)29—2g,facIFC )t

5Bi(X)5B?_(U) KTV VYN YA KVT 0 KT
X 8(x—u)+ (ghost loop
+(1 gluon loop + (tadpolg .
+(2 gluon loops, (6.16

where

(ghost IoopE—gofabC(fddeﬂKgbd(XyY:B)

5 dE( ,Z,B) tr
E ol -

X (gofabc( 5)\;L§KV+ 5K)\5 - 25)\V5K,u)

X G°(x,z;B)

+ VD% (x,y;B) DX, 2:B))"
xT¢9(y z.u;B), (6.18

poT

(tadpole =g5f2PfP9%(8) .8, + Sr 80— 26,0,
X 8(x—u)DI%(x,x;B))", (6.19

where superscript “tr” means projection onto transverse
parts on &,«x) and (u,7). The complete ghost-ghost-gluon  FIG. 3. The functional DS equatio(6.16) for the complete
vertex in the presence of the sou&e&l“ n(y,z;B)/6BY(u),  gluon propagatoD(x,y;B) in the presence of the sour@ The
reappears in Eq6.17), and the Comp|ete triple-gluon vertex thin line is the tree-level term. The heavy line witithout) the
I'¢9(y,z,u;B) in the presence of the sourgeis defined in ~ aTow is the complete ghosigluon propagator G(x,y;B)
Eq (6.13. We do not write out explicitly the two-loop term, (D(x,y;B)) in the presence of the sour@ The circles are com-
but all terms are expressed graphically in Fig. 3. plete 3- and 4-vertices in the presence of the soBice

The pair of equation$6.10 and (6.16) are a complete
system of functional DS equations for the quantum effective
action I'(B), and for the inverse ghost propagator occurs where the lowest nontrivial eigenvalue of the
Fgﬁ(x,y;B). These functional equations are converted toFaddeev-Popov operatdf (B) vanishes. Thus, for typical
equations for the coefficient functions by differentiating anconfigurationsB, the positive operatoM(B) has a very
arbitrary number of times with respect B) and then setting small eigenvalue and, in fact, it has a high density of eigen-

B=0. valuesp(\,B) at A=0, per unit Euclidean volum¢/, as
compared to the Laplacian operatf@5]. This makes the
VIl. HORIZON CONDITION AND RENORMALIZATION ghost propagator,G(x—y) 6*°=((M ~1)3’(x,y;B)), long

Solutions are subject to tteuipplementary conditiorthat range, so |r; rn'omenturzrlspac_ellt 1S enhancepao com-
both the ~gluon ~and ghost _inverse propagatorsP@red to 16, lim,_o[p°G(p)] "=0 [1,29]. This property
52F(B)/583(x) 5Bx(y) andT h(X y:B) be positive matri- will provide a nonperturbative formula for the ghost-
ces. Another supplementary condltlon results from the factpropagator renormalization constzﬁ}tthat moreover is con-
discussed in Appendix A, that in a space of high-dimensionsistent with the perturbative renormalization group.
entropy favors a high concentration of population very near The gluon and ghost propagators, with souBze0, are
the boundarydQ) of the bounded regioif). The boundary given in momentum space by
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Dw(x)=(2w)—4f d*D,,(k)exp(ik ), Z,=1; V=Vgi 0o=(Z:Z39 ‘e (7.7

holds. In terms of renormalized quantities, the DS equation
G(x)=(27-r)*4J' d*pG(p)explip-x), (7.1  for the ghost propagator reads

and the ghost-gluon vertex by Grl(p)=p?Zs— Ng%pﬂpv(Zw)"‘f d4k'f)R,M,,(k)

5Fgﬁ(x,z;B)

PO (X =Y.y =D =—gp X Gr(p—K) VRl (p—k)? K?,p?]. (7.9
)

B=0
_ To avoid infrared difficulties, the ghost propagator is usu-
=fab°(27r)‘8f d*pd*ql’ ,(p,q) ally renormalized at some finite renormalization mass
However, the horizon condition, liga o[ p?G(p)]~*=0, al-
Xexgip-(x—y)+ig-(y—2)]. lows us to renormalize gv=0. It tells us that in the DS

(7.2) equation(7.8), the first termp?Z;, must be cancelled by the
term of orderp? in the second term. This gives a renormal-

The DS equation for the ghost propagat(p), obtained ization condition ap=0, in the form of an equation fcts,
from Eq.(6.10 by settingB=0, reads

232N9§(27)74J d4k’puﬁV5R,p.v(k)

& 1(p)=p?— Ngoip,(2m) 4 f d*KkD,.,(K) <A

< B(p—KT (p—k.p). 73 X Gr(K)Vg(k?k?2,0), (7.9

All quantities are unrenormalized, and we have usedvhereA is an ultraviolet cutoff. We have sg=0 in the
fabefede= N 52€ for SU(N). integrand, and the integral is independent of the diredbion
Factorization of the external ghost momentum is a well-This statement of the horizon condition shows that it is fla-
known special property of the Landau gauge that makes igrantly nonperturbative because, in perturbation theory, the
less divergent than other gauges. To make it explicit, we notéeft-hand side is of order 1, but the right-hand side is of

~ : 2
that the ghost-ghost-gluon vertdx,(p,q) is a function of leading ordemgg. o
two linearly independent 4-vectors. It is also transverge, (1 he last equation gives the renormalization-group flow,

—q)MI:ﬂ(p,q)zo, because the transversality condition is

imposed on-shell, so it may be written JZ _ ~ ~
P y A S =NGA(p,pP,/p?)(2m) ~*A‘BR(M)BR(A)
T,(p.q)=—igoP",(K)p,V(P2K2,qD), (7.4

wherek=q—p. The scalar vertex functio'(p?,k?,q?) is
symmetricV(p?,k?,q%) = V(qg?,k?,p?) in consequence of the
symmetryG?“(x,z;B) = G°¥(z,x;B). The DS equation for the

va(AZ,AZ,O)f dk(s,,—k,k,)

=Ng3(4m) 2(3/2 A*Dr(A)GRr(A)VR(AZ,A20).

ghost propagator reads (7.10
G Yp)=p?*- Nggpﬂpy(Zw)“‘f d*kD,,,(k)G(p—k) As a check, we note that if we take the tree vallrgA)
=Ggr(A)=1/A?, andV(p? k3 qg?) =1, we obtain
X V[(p—k)%k?p?, (7.5
where the factorization of the two external ghost momenta 9Zs -2 2 4
s + ) .
p, andp, is now explicit. AGa = (4m (32Ngo+ O(go) (7.13

This equation is divergent and must be renormalized. In

perturbative renormalization theory, quantities renormalizerpq torm ofordegg is scheme-independent, and agrees with

according to the standard one-loop expression in Landau gauge. Thus the
horizon condition provides a normalization condition for the

Duv=Z3Dr,i G=Z3Gr; V=Z;'Vg; ghost propagator ap=0 that is in flagrant disagreement
with perturbation theory, but nevertheless satisfies the pertur-
9o=21(Z5Z3% " ‘gg, (7.6)  bative renormalization-group flow equation.
We substitute Eq(7.9) into the DS equatiori7.8) for the
and in Landau gauge the additional special property ghost propagator, and obtain
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o 5 al e have a reliable picture of the gluon and ghost propagators
Gr (P)=Ngrp,p,(27) f d*kDg, (k) including, in particular, the infrared region.

One may use the above expressions for the asymptotic

X{GR(k)VR(kz,kZ,O) propagators to estimate the convergence and magnitude of

- y o the various terms on the right-hand side of the DS equations,
—Gr(p—K)VR[(p—k)*,k%p?]}. (7.12  simply by counting powers of momentum. The dominant
terms in the infrared region are the ones that contain the most

This is a finite, renormalized DS equation for the ghosty st propator&(k) in the loop integrals. The infrared limit
propagator. It is invariant under the renormalization group in

the sense that it is form-invariant under the transformation%c the truncated DS equations are found to have the follow-
. L ) remarkable properties.
(7.6) and(7.7) of perturbative renormalization theory in Lan- 9 prop

dau gauge. This equaton, fom which the wee tafas o o€ LEC L % 8 o A e and
been eliminated by the horizon condition, gives the ghos{ 9

propagator an infrared anomalous dimensigpy, so it be- IS free of ultraviolet divergences. Technically, what is found

haves likesG(k)~ (x2)2¢/(k?)1*2 in the infrared. This is that when the_external momerkgare small c_ompared to

puts QCD into a nonperturbative phase. Aqcp, then the m_ternal loop momentaq scale like theke,

and the contribution when thie are large compared th,

may be neglected. As a result, when theare small, one

may replace the propagators and vertices in internal loops by

Recent solutions of the truncated coupled DS equationtheir infrared asymptotic form&2(k) andD?k), etc. The

for the gluon and ghost propagators yield ghost propagatori®op contributions that are dominant in the infrared are the

that are enhanced in the infrared, and gluon propagators thghes that contain the most ghost propagaf®(k).° The

are infrared suppress¢#, 17—23. Typical values for the in- 55y mptotic infrared limit of the DS equations is highly con-

frared asymptotic form of the gluon and ghost propagator%ergent in the ultraviolet becaus®®(k) is strongly sup-

[20] and[21] are pressed there. In fact the asymptotic gluon equation, given
below, is finite without renormalization, and the asymptotic
ghost equation is finite with the renormalization12. We
conclude that the DS equations possess an infrared

8.1) asymptotic limit that is well-defined, and decoupled from
propagators and vertices at finite momentum.

ag=(93—1201)/98<0.595, ap=—2ag, Whereap and (i) The terms that are dominant in the infrared limit come
ag are the infrared critical exponents of the ghost and gluonfrom the action —Trin M(B), whereas the subdominant
The gluon propagatob (k) is so strongly suppressed termls come from Yﬁmg-MnlzI actioByy (B). I;[):js instructive A

. L= . to classify terms that are dominant or subdominant on the
=0 that it vanishe® (0)= 0. With D(x—y)=(A(X)A(Y)), ty

. : right-hand side of the DS equations accordingly as they
this corresponds to suppression of the low-frequency mOdeériginate with the action—Trin M(B), or with the Yang-

_of A(X) in_t_he functional integral. The actual values of the Mills action, Syy(B). Because the ghost propagator is en-
infrared critical exponents do not depend too strongly on the,, .4 in the infrared while the gluon propagator is sup-

truncation schemg20]. The salient mfrar_ed fea}tures are eas'pressed, one finds that all subdominant terms and only the
ily understood. The cutoff of the functional integral at the

Gribov horizon is implemented in the DS equations by the
horizon condition. It states that the ghost propag&k) is

enhanced in the infrared or, equivalently, that the |nfrareqhe right-hand side are dominant, and both originate from the action

criticaj exponent of the ghost is positivag>0. The DS ~TrinM(B). The gluon-propagator equatici.16), with source
equations yieldap = —2ag, So enhancement of the ghost g_( (eads

causes suppression of the gluon in the infrared. This is the
expression in the DS equations of the proximity of the Gri-
bov horizon in infrared directions. - _

The results of calculation with the DS equations are in at +N92(27T)_df d?pG(p)+D (k)
least qualitative agreement with numerical evaluations of
gluon and ghost propagatof43,55—59, which, on suffi-
ciently large lattices, yield a gluon propagatbr(k) that _ _
turns over and decreases laslecrease$60—67 [possibly Xf dpG(p+k)(p+k),G(p)I',(p,p+k). (8.2
extrapolating toD(0)=0 at infinite lattice volumg with & 1 ree term, of ordek?, is subdominanant in the infrared com-
turnover pointkyay, that scales like a physical ma#8]. The  pared to Pa)~(k)~ (k?) *%7 The dominant term on the right-
Only eXplanation for this counterintuitive turnover is the hand side is the ghost loop that originates from the action
strong suppression of infrared components by the proximity-Trin M(B), whereas the subdominant terms—namely the tree
of the Gribov horizon in infrared directions. The agreementterm, the gluon loop, and the two-loop term—all originate from the
of DS and numerical calculations gives us confidence that w&ang-Mills actionSyy(B).

VIIl. EXACT INFRARED ASYMPTOTIC LIMIT OF QCD

DAY K) = 280/ (k2) 1+ 30~ (k2) 0187 (;,2) 1187

Ga% k) — MzaD/( k2) l+ag o (MZ)O.SQQ( k2) 1.595’

1% or the ghost-propagator equatith3) or (7.12), both terms on

B,.(=(3,,K2—k,k,)+(gluon loops

=(8,,k?—k,k,)+(gluon loopg+Ng?(2m) ¢
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An enormous simplification is apparent here, because the
last equation allows an exact elimination of the asymptotic

functional gluon propagatdp2’(x,y;B). The one remaining
unknown is the inverse ghost propagalQy, «(B).

When supplemented by the horizon conditi@n9), Eqgs.
(8.3) and(8.4) are a finite system when expressed in terms of
FIG. 4. The functional DS equatio(8.4) for the complete in- renormalized quantities. Indeed, wifh = 1, renormalization

frared asymptotic gluon propagati(x,y:B) in the presence of the of the exact functional asymptotic equations is accomplished

sourceB. There is no tree term nor any gluon loop, but only the Py writing
ghost loop. The heavy line with the arrow is the complete infrared

Das,-1(x, y; B) = X y

asymptotic ghost propagatdtx,y;B) in the presence of the source B= Z%/ZBR; f(B) = fR(BR);
B. The functional DS equatiori8.6) for the complete infrared
asymptotic ghost propagaté(x,y;B) in the presence of the source Co(x.v'B)=2ZI1T XV Bo):
B iS as in F|g 2. gh( vyl ) 3 gh,R( 1y1 R)y
. . ) . 2(2 712 =14 .
subdominant terms disappear if one s8{g(B)=0 in the 90=(4343") "Or;
derivation of the DS equations given in Secs. V and VI. A o
Because the solutions of the truncated DS equations are G(B)=2Z3Gr(BR);
consistent with numerical evaluations of the gluon and ghost
propagators, the effects of truncation should not be too dras- @W(X'y; B)=23@R,My(x,y; Bpr). (8.5

tic. We therefore expect that propertié$ and (ii) of the

truncated DS equations hold also for the solutions of the ,n making these substitutions, the functional equation for
exact, untruncated, DS equations, that is, that there exists 3he ghost propagator reads

exact infrared asymptotic limit of the DS equations that is
obtained by settingyy(B)=0. This implies that the cutoff
at the Gribov horizon suffices to make the functional integral
over B converge, even though dxpS,\,(B)] is replaced by

T80 (X,YiBR) = (— 3*5*Z5— gaf*BE, ,,) S(x—Y)

1. _l_ngadcf dzd@%’fﬂy(x,z;BR)a#
We now write in functional form the exact infrared
asymptotic DS equationéwvithout truncation that are ob- X 51%% (U,y:Bg)
tained by settingSyy(B)=0. We designate the generating xgﬁj(x,u;BR) ) ’Re = , (8.6
functionals where the coefficient functions are given their 6BR,,(2)

asymptotic forms byl'(B) and I'y(x,y;B). The infrared - o
asymptotic gluon and ghost inverse propagators are desid\lher623 is given in Eq.(7.9), and the ren_orm_allzed infrared
nated (b);yl(B)=(92f(B)/<?BxaBy and @);yl(B) asymptotic functional gluon propagator is given by

=T gnxy(B). The functional DS equatiof6.10 for the ghost

propagator is unchanged in form, as represented in Fig. 2, (@§l)i%(X,y;BR)= _ngabc( J' dzdw#GEed(x,u;BR)

[20(x,y;B)=(— 25%—gof2**Bd,) S(x—y)

~ tr
X G&¥(x,2;Bg) 6Fg?gh(u,z;BR)>
RXZBR) — (o9 7+ —

+gofad°f dzduD(x,2;B)3,G° (x,u;B) 6BR ()

(8.7)

(8.3  When Eq.(8.6) is expanded in a functional power series in
B, Z5 appears only in the equation of ordé8)C that deter-
In the infrared asymptotic limit, only the ghost loop contrib- mines the ghost propagator with soue 0. This equation
utes to the functional DS equation for the gluon propagatofs finite as in the preceding section. All the higher order
(6.16, which reads equations are independent 2§ and finite. Equations8.6)
and(8.7) are a complete system of functional DS equations,
~1ag o . Abd e . diagrammed in Figs. 4 and 2, that are free of divergences,
(D7) 43(%,Y;B) =~ gof JdZdU‘?ug (x,u;B) and that define the asymptotic infrared theory. The gluon
propagator may be eliminated exactly from E8}.7), and the
5fgﬁ(u,z;B) ” asymptotic infrared theory is defined by the functional in-

XQCS(X,Z;B)W) . (84 verse ghost propagatdﬂithyR(x,y;BR).

With Z5 given in Eq.(7.9), these equations are invariant
and is diagrammed in Fig. 4. under the finite renormalization-group transformations

STb(u,y;B)
B2
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Br=25B; Tr(Br)=TH(BR); e [ iy s ea = [ g4
RT3 PR RVZR RVZR S= | d*xs(d,CcA,)=| dx(—d,cD,c+d,\A,),
(8.13

and the infrared asymptotic correlators satisfy the Slavnov-
1/2 . Taylor identities.

gh r(X,Y;Br)=25'T gh r(X,Y;BRr);

Gr(Br) :,zsg,R(B,R); IX. MASS GAP

{)W(X y:Bg)= 232“)& (X YiBR). (8.9 The actionS that describes the infrared asyAmptotic theory

is not only BRST invariant, it is BRST exacg=sX, and
The quantltngD (k)G (k)= gOD(k)GZ(k) isinvariant un-  defines a topological quantum field theory. To see what its
der the renormalization$7.6) and (7.7). Consequently a properties may be, recall th&tdescribes the asymptotic in-
scheme-independent running coupling constant, characteri§ared limit, in which external momentawere small com-
tic of the Landau gauge, may be defingl?] by aj,,(k)  pared toAgcp, SO it is the limit Agep—co. If QCD is a
E(4W)*lggD(k)G2(k)(k2)3, The asymptotic infrared theory with a mass gap of ordérycp, then physical corre-
theory is characterized, in addition to the infrared criticallation lengths should vanish in the asymptotic thedry,
exponentsag and ap, by a@;(0)~8.915N, for color ~A5é0—>0-
SU(N) [20].1 To show this, consider a gauge-invariant correlator, for
The limit, in which the Yang-Mills actiorS,y,(B) is sys- example

tematically neglected, is a continuum analogue of the lattice

— 2 2
strong-coupling limit. Indeed if one rescales the gauge con- C(x)=(Fx(A)F5(A))
nection by the change of variabk’=gyA, the effective A
action, from which the DS equations were derived, reads =N dAdcdﬁifo(A)Fg(A)exq—S), 9.9

Q

2(A)==TrinM(A)+ Sm(A) with x#0, where Lorentz indices are suppresset(x)
=—TrinM'(A)+(gd) " IS,y(A), (89 —Fu(X)F3,(x), and the connected part is understood.
Since the act|on is topological, we may make any transfor-
whereM’(A’) andS,,(A’) are independent af,. Neglect ~Mmation that commutes with, without changing expectation
of Sy (A) |s the same as settirgy 2_0 or, after renormal- values. As an example, consider the change of variable cor-

ization, gz 2=0. The asymptotic infrared limit is described "€SPonding to a coordinate transformatiofi=x,,(x) of A
by the effective action andc, leavingc andA unchanged,

A

S=—TrinM(A). (8.10 ALX") ==z AX); /(X)) =c(x);

ox'*
If one extends the nonperturbative formulation to a T)=T(x); N (X)=\(X). 9.2)
BRST-invariant theory, as outlined in Appendix B, the '
BRST-invariant local action reads (The result is the same @ andX\ are also transformedThe

infinitesimal form of this change of variable, witt #=x*
- f d*X[S(9,6A,) + Sym(A)], g1y &9, isgivenby
AM(X)—>A/’L(X)=A#(X)+5AM(X)
where the BRST operator acts according to ZAM(XHE”f?AAM(X)JH?MEXAx(X),
sA,=D,c; sc=—c% sC=\; s\=0. (8.12 c(X)—c'(X)=c(X)+ dc(x) =c+c(X)+ EMdy (),
The asymptotic infrared limit is described by the local ©3

BRST-invariant action c(X)—c' (X)=c(x), AX)—N'(X)=\(X).
Upon making this change of variable in the functional inte-

1A scheme-independent running coupling constant may be degral' we obtain
fined in the Coulomb gaug@9] by acoy(k)=(47) Y 12N/(1IN

—2N;)1k¥V(k), with N; quarks in the fundamental representation, C(x)= NJ ,dAdCdTZd)\ Fi(A’)Fé(A’)
whereV(|k|)=g3 limy, ..D i(k,K,). By contrast withe s {k) that @

is finite atk=0, it appears thatc,,(k) diverges like 12 at small xexg —S(A’,¢’ T\, (9.9
k, in a realization of infrared slavery that features a string tension,

V(r)~ocoul at larger [70] and[71]. whereA’=A+ 5A, and
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é(A',c',EA):f d*X[—d,CD ,(A")c +d,\A,].
(9.9

The integration inA space is cut off at the Gribov horizon
dQ)' corresponding toM(A’). Integration over the ghost

fields gives demM(A’) which vanishes on the bounda#y)’.
One may change the cutoff to the Gribov horiz# corre-
sponding toM(A) because the error is only of ordéf.

Moreover, F2(A’)F3(A’) is the coordinate transform of

F2(A)F2(A), which we write as

Fi(A’)F%(A'>=[1+mﬂ(ag)]Fi(A)Fé(A),( )
9.6

whereL (9¢) is a numerical matrix that is linear i#), ,, and
acts on the tensorial indices BE(A) F2(A), and we have

c:(x):[1+g%aﬁL(ag)]NJQdAdcdﬁiji(A)Fg(A)

xexf—S(A’,c’' T\)]. (9.7)

One may verify that the operator commutes with the coor-

dinate transformatiors A'=D(A’)c’, so
‘S(A',c',ax)zf d*xs(9,CA,)=S(A,c,C,\) + 56X,
9.9

where 5X=fd4x(9M?6AM. Thus the variation of is alsos
exact, and we have

C(x):[1+gkaﬁL(ag)]NJQdAdcdfdm:ﬁ(A)Fg(A)

X (1—séX)exd — S(A,c,C,\)]
=[1+ & h+L(IOKFLAAFFA)(L-5X)). (9.9
Gauge-invariant operators asenvariant,

(FAAFH(A)soX)=(s[FZ(A)F5(A)8X])=0,
(9.10
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operators, and so far we have discussed only the correlators
of elementary fields. To establish that the mass gap in the
nonasymptotic theory is finite, one should check that the cor-
relators of local gauge-invariant operators in the limit of

large separation are also given by the infrared asymptotic

theory defined bys.

X. QUARKS

So far we have neglected quarks, but they may be in-
cluded in the time-independent Fokker-Planck equaft®in
The derivation of the nonperturbative Faddeev-Popov for-
mula, including quarks, proceeds as in Secs. -1V, by

changing quark variables according =g ¥ and ¢
=W¥,. The result is that the quark actionSy,

= [ d*u( v.D .+ M) gets added to the gluon acti@nor

S According to the latest DS calculations that include

=3 flavors of dynamical quarks, the quark-loop term in the
DS equation for gluons is subdominant in the infraf&d].
Provided that the effects of truncation are not too drastic, the
quark contribution will also be subdominant in the infrared
limit of the exact functional DS equation for the gluon
propagator. In this case the inclusion of quarks does not dis-

turb the simplicity of the gluon sector described 8y

If the intrinsic mass of the quarks is finite, then the quark
sector does not appear in the asymptotic infrared limit. If the
instrinsic mass of the quarks is zero, the pion is a massless
Goldstone boson associated with spontaneous breaking of
chiral symmetry. However, even in this case, in ff@n-
cated DS equation for the quark propagator given[#2],
the infrared limit of the quark propagator doest decouple
from the degrees of freedom associated with finite momen-
tum (in contrast to the gluonThis is to be expected because
the parameters that characterize the dynamics of massless

quarks,(¢) andf ., are finite multiples ofA ocp, but the
infrared asymptotic limit corresponds tbgcp— <. Never-
theless one may ask if chiral symmetry is broken in the
asymptotic infrared theory. The chiral-symmetry breaking
parameter is given byyy)=m(p(0,A)), wherep(\,A) is
density of eigenvaluek, per unit volume, of the Dirac op-
erator i y-D(A) in the configurationA. In the infrared
asymptotic limit, the expectation valug(\,A)) is evalu-

which vanishes because it is the expectation value of adted in the theory defined by the actiSnOne would expect

sexact observable. This gives C(X)=[1+ &9,

that it gives(y)=oo, since this corresponds ocp=°.

+L(9€)]C(x), soC(x) is invariant under arbitrary coordi- Thus in the theory defined i, the average density of levels

nate transformation. Thus it is a number independent &f

vanishes forx=o, so C(x)=0 for x#0. The argument

holds for a generic gauge-invariant correlator.

per unit volume{p(0,A)) of the Dirac operatoiy-D(A)
should be infinite ah=0.
The infrared asymptotic theory is far simpler than full

We have shown that the correlation lend¥of gauge-  QCD and provides a valuable model in which the character-
invariant observables vanishes in the gauge-invariant , physjstic features of the confining phase, as described in the Lan-
cal sector of asymptotic theory defined 8yIn other words, dau gauge, are revealed. To understand confinement in the
the mass gap is infinitayl = 1/R=, in the physical sector asymptotic theory, note that while the infrared components
of the asymptotic theory. It is tempting to conclude from thisof A(x) are severely suppressed by the cutoff at the Gribov
that there is a finite mass gap in the physical sector of théorizon, its short-wavelength components fluctuate widely
exact nonasymptotic theory, otherwise we would have obbecause the factor expS,(A)] is replaced by 1. Indeed,
tained nonzero correlators in the infrared limit. However,the infrared asymptotic gluon propaga®@?{k), Eq. (8.1),
local gauge-invariant observables lik#(x) are composite is strongly enhanced in the ultraviolet. This suggests a pic-
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ture of confinement in the infrared asymptotic theory in  (vii) There exists a local BRST-invariant extension of the
which the short-wavelength fluctuations Af(x) in color  present nonperturbative formulation, sketched out in Appen-
directions cause the decoherence of any field that carries dix B. This ensures that the Slavnov-Taylor identities hold in
color charge. Indeed transport of a color veajr) along a the nonperturbative theory. The asymptotic infrared limit of
path z,(7) is described byP exp@.fA,zdY). In a highly ~ QCD, valid at distances large compared td\ d¢p, is de-
random fieIdAZ(x), superposition of different paths is inco- scribed by the BRST-exact actioB= fd“xs(aMFAM), that
herent, so a field that bears a color charge does not propaefines a topological quantum field theory with an infinite
gate. In full QCD in Landau gauge, the dominant fluctuationsmass gap.

of A(x) responsible for confinement should be on the length  (viii) The extension of the nonperturbative formulation to

scaIeAQéD. Th|s_ picture of confinement is quite _d|fferent include the quark actiofid*xy(y,D,,+m)y is immediate.

from the scenario in Coulomb gauge, where confinement ofhe presence of quarks does not disturb the asymptotic in-

color charge is attributed to a realization of infrared slaveryfrared limit of the gluon sector.

by an instantaneous, long-range color-Coulomb potential (ix) The asymptotic infrared theory provides a simple

[73,70,71. model in the Landau gauge in which the characteristic fea-
tures of confinement may be understood. A picture of con-
finement of color charge emerges, in which the highly ran-

XI. CONCLUSION dom fluctuations of the gluon field cause the superposition

We briefly review the salient features of the nonperturbafrom the transport of color charge along different paths to
tive continuum Euclidean formulation of QCD developed interfere incoherently, so the fields that bear a color charge

here. do not propagate.
(i) In Landau gauge one may integrate the Faddeev-Popov
weight over the Gribov regiof instead of over the funda- ACKNOWLEDGMENTS
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(iii) The restriction to the Gribov region providespple- APPENDIX A: RESOLUTION OF PARADOX
mentary conditionshat govern the choice of solution of the
DS equations. Two conditions are the positivity of the gluon At first sight it is surprising that expectation-values taken
and ghost propagators. Another is therizon condition over the fundamental modular regidnand the Gribov re-
which is the statement that the ghost propagd®k) is gionQ are equal. In this appendix we show how this paradox
more singular than k7 in the infrared, lim_o[k?G(k)]~! is resolved.
=0. This fixes the ghost-propagator renormalization constant

Z5 to the value(7.9). Although Eq.(7.9) is in flagrant dis- 1. Argument of Semenov-Tyan-Shanskii and Franke
agreement with the perturbative expressionZegr neverthe- The proof by Semenov-Tyan-Shanskii and FrapKethat
less it is consistent with the perturbative renormalizationthe Gribov region() and the fundamental modular regidn
group. are different, substantiated by instances giver{@h was
(iv) Implementation of the horizon condition in the DS long considered to disprove E(L.3). We review the argu-
equations puts QCD into a nonperturbative phase. ment of[4]. Let g(t) =exptw) be a one-parameter subgroup

(v) Recent solutions of the truncated DS equations posef the local gauge group with generater=w(x). To be
sess an asymptotic infrared limit that is obtained by systemdefinite, we normalizev to (w,w)=V, whereV is the Eu-
atically neglecting the terms in the DS equations that come|idean volume. Let AM(t,w,B)Eg(t)—lgﬂg(t)
from the Yang-Mills action Syu(A), but keeping the +g(t)~%g,9(t) be the gauge-transform d8, underg(t)
Faddeev-Popov determinant and the cutoff at the Gribov ho= exptw), so A(0,0,B)=B, and letFg(t,») be the Hilbert
rizon. If the effects of truncation are not too drastic, this a|SOSquare norm oA(t,w,B), regarded as a function vfand w
gives an exact asymptotic infrared limit of QCD that is afor fixed B,
continuum analogue of the strong-coupling limit in lattice
gauge theory. This is possible because convergence & the
integration without the Yang-Mills factor ekpSyu(A)]
may be assured by the cutoff at the Gribov horizon.

(vi) The asymptotic infrared limit of QCD is defined by The fundamental modular regioh is the set of8 such that
the functional DS equatior(8.6) and(8.7). The gluon propa-  F(0,0) is an absolute minimunf; g(0,0)<Fg(t, ) for all
gator may be eliminated exactly from E(B.7), and the , andt. The Gribov regionQ is the set ofB for which
asymptotic infrared theory is completely characterized by the=,(0,w) is a relative minimunF(0,0)<Fg(t,w) for all @
functional inverse ghost propagatﬁgh(x,y;B). and sufficiently smalt.

FB(t,w)=||A(t,w,B)||2=f d*x|A,(t,0,B)|% (AL)
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We differentiateFg(t,w) with respect tot, and useA,  ages over these sets are equal in the thermodynamic limit.

=D, (A)o=D 0, Here we implicitly suppose a lattice discretization and con-
figurations that are sampled from the Wilson ensemble. In
Fé(t,w)=2(Dluw,A#)=2(o"#w,A#)=—Z(w,o",uA#), the thermodynamic limit, the probability may get concen-
trated on a subset that consists of a boundary or part of a
Fa(t,0)=2(d,,D,0)=—-2(w,d,D, o), boundary. The boundaries df and () may approach each
(A2) other in the thermodynamic limit fotypical configurations
Fg(t,0)=2(d,w,D,0Xw), on the boundary. IfF5'(0,wq) is large, andFg(0,wq) is
small, then there is a local minimum ne&&rwhich could be
Fg'(t,0)=2[d,0,(D, 0Xw)Xw], the absolute minimum on the gauge orbit. If the distance to

the absolute minimum vanishes in the thermodynamic limit
where XXY=[X,Y] is the commutator in the Lie algebra. for a typical configuration, then the argument4f does not
These formulas show that the interior 6f consists of all  disprove Eq.(1.3).
transverse configuratior3 ¢-B=0, such that all nontrivial We normalizew, to (wg,wo) =V, whereV is the volume
eigenvalues ofM(B)=—-4,D,(B) are strictly positive, of Euclidean space. We estimate quantities using this normal-
An(B)>0. Moreover, forB on the boundaryQ), M(B) has ization, and we shall verify that the conclusions do not de-
at least one nontrivial eigenvalue that vanishegB)=0. pend on the normalization ab,. With this normalization,
We specialize to the S@) group, so the commutatof  we estimate thaiy(x)=0(1). SinceFj’(0,0,) is the in-
XY is the_ ordinary 3-vector cross product. The vector tripletegral of a positive local density over a volurile we esti-
product gives mate thatF g’ (0,0) =O(V) for a typical configuratior on
F' (tw)=2[d,0,(0- DMC!)CU_CUZDMC!))] the Gribov horizon. On the other hand, the density that ap-

n

pears inFg(0,wg) has no definite sign. For a typical con-

=2(d,0,0- 5ﬂww)+2[w,aﬂ(w2Dﬂw)] figuration, sampled from the Wilson ensemble, we make the
crudest statistical estimate namely random density, so
=2(0d,0,0-d,0)+2[0,d,(0*)D,0] Fi(0,00)=0(VY?. This is small compared t6}' (0,w).
+2(w,029,D o) We seek a nearby minimum on the gauge orbit throBgh
oHTR For simplicity we assume that all nontrivial eigenvalues of
:(1/2)[&M(w2),0 (wz)]—l—Z[w-&Mw,o" (0?)] M(B) are strictly positive, apart from the zero eigenvalue

) belonging towg, which is the only dangerous direction. We
+2(0%0-9,D,0) write F(t)=Fg(t,w), and we have

=(32)[0u(0%),3,(@D)] +2(0%,0- 7,D,0), F()=F(0)+(L3)F"(0)t*+(LA4)F" (0)t4, (AS5)

(A3)
with neglect of higher order terms. The minimum is found at
where the dot is contraction on color indices. F’(t.) =0, which givest,= —3F"(0)/F"’(0), and one has
Let B be a point on the Gribov horizo#(), soB is trans-
verse J,B,=0, and the Faddeev-Popov operator [F”(0)]*
—4d,D ,(B) is non-negative, but with at least one nontrivial F(te) =F(0)—(9/8) F7 (0 (AB)

null eigenvalueg,D ,(B) wo=0, for somew,. By Eq.(A2),

we haveFg(0,wq) =Fg(0,00)=0. ForB on 4, it follows  This is lower tharF(0), in agreement with the argument of
that in generaF(0,w) is nota local minimum on the gauge [4]. This expression is independent of the normalization of
orbit through B because, in generalFg(0,w0)#0, SO  «,, as one sees from EqA2), so our estimate for this
Fg(t,0o) —Fg(0,wp) changes sign at=0. By continuity  quantity is independent of the normalization of. By the
this implies that nearby points inside the Gribov regidn above estimates, the second term is of ordet3*/ (V)3
cannot be absolute minima, even though they are relative-v~1, |t is small compared to the first terrf(0)=||B||?,

minima. They are Gribov copies inside. This is the argu-  which is of orderV. The configuration at the nearby mini-

ment of[4], and examples for whickRg (0,wo) # 0 are given  mum is

in [6].
But let us evaluate the fourth derivative &t 0, in the B.(X,te) =B, (X)+1tc[D,(B)wo](X)
directionwg. With d,D ,(B) wo=0, we have from Eq(A3), 3F7(0)
=B,(X)— F,,,,—(O)[DM(B)wo](X), (A7)

Fi'(0,00)=(3/2) J d*x[ 9, (w§)]°. (A4)
which is again independent of the normalization«gf. Ac-
This is the integral of a positive density, and we expect thatording to the above estimates, the second term is of order
Fg'(0,wg) is large and positive V™2 Thus in the thermodynamic limit of lattice gauge
The relevant question for comparing the expectation valtheory,V—oe, the nearby minimum approaches the pdint
ues over{) and over A is not whether these regions on the Gribov horizon. In actuality, the problem of minimiz-
coincide—they do not—but whether the normalized averdng the functionaF 5(g) =||°A| on the lattice is a problem of
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spin-glass type, so one expects many, nearly degenerat§.exg—S\(U)], whereS,,(U) is the Wilson action, ant is
relative minima, and the one found here is not necessarily thg configuration in the lattice Gribov regig However, on a
absolute minimum. Nevertheless the point remains &t finjte lattice the distinction between the fundamental modular
does not disprove the equality of expectation values\on yegionA and the Gribov regiof) can surely not be ignored.
and(} in the thermodynamic limit. The resolution of this paradox would appear to be that in
lattice gauge theory the Gribov regiéhis made of discon-
) ) g nected piece§); . In each piece, the solution is indeed given
from numerical simulations by Q;(U)=N; exd —Sy(U)], for U e Q;, where the normal-
We now consider the fact that in numerical gauge-fixingizations N; are left indeterminate by the method of Secs.
to Landau gauge in lattice gauge theory, there are many local—IV. Presumably, the average with the lattice Faddeev-
minima (i.e., Gribov copies inside the Gribov regiafl) on  Popov weight over all the disconnected piedes of the
a typical gauge orbit7—11. Their number grows with the Gribov region, with the correct normalizatioN; in each

!attice size as is characteristic of a spin-glass. In this.sﬂme piece, will agree with same integral over the fundamental
is very large compared td. However, the number of dimen- modular regionA.

sions of configuration space is high, and our geometrical
i_ntuition from 3-space may be m.islead.ing. Indeed,_ onalat-  AppENDIX B: BRST-INVARIANT FORMULATION
tice of Euclidean volumé/, the dimensiorD of configura-
tion space isD=fV, wheref is the number of degrees of New issues arise when the nonperturbative approach is
freedom per lattice site, and the dimensirof configura- extended to a theory with a local BRST-invariant action.
tion space diverges with the Euclidean voluie
In continuum gauge theor¥ and(} are both convex and
bounded in every directiof#]. By simple entropy consider- 1. Off-shell transversality condition

ations, the population in a bounded region of a high- g gptain a local action, on must take the transversality
dimensional space gets concentrated on the boundary. Fepndition “off-shell.” The off-shell partition function is
example, inside a sphere of radié&sin a D-dimensional  given by

space, the radial density is given by~ dr, and forr<R is

highly concentrated near the boundarygR. To take the

simplest example, consider two spher@s configuration Z(‘]'L)EL)DADA detM(A)

space, the first of radiusR, and the second of radiuR

+cV 2 Inthe spirit of the previous estimates, these would Xexg —Sym(A)+i(N,d-A)+i(IJ,A)+i(L,N)],
be the radii of A and Q. The ratio of the radii R (B1)
+cV~ Y3 /R approaches unity, in the limi¥—oc, so allnth
moments{r") for finite n, of the two spheres become equal.
On the other hand the ratio of their volumes is given bywhere)\ is the Nakanishi-Lautrup Lagrange multiplier field
[(R+.CV 1/.2)/R]D:[(R+CV. Y)IR]", where D:f\{ IS that enforces the gauge condition A=0, and L is its
the dimension of configuration space. For |ar/g2me ratio of source. This reduces to E€.1) for L=0. It is not immedi-
the volumes of the_two _sphgges IS thus @id(“/R), Wh'_Ch ately obvious what regiofi) to integrate over becaugeis
diverges exponentially lik&~“. In this example the ratio of

, ! - not transverse fot #0, soM(A)=—4d-D(A) is not a sym-
the volumes of the two spheres diverges Withbut allfinite  qric operator. One must also take the Gribov horiaéin

moments of the two spheres become equal. In field theornyg shei when the gauge condition is off-shell. If we effect
the nth moments of the distribution are tiepoint functions o\ integration, the last integral becomes

(A(X1)"-*A(x,). So again, the fact that there are many Gri-
bov copies insidg) does not disprove that averages calcu-
lated overA or () are equal.

2. Many Gribov copies inside the Gribov region

Z(J,L)=f DAdetM(A)8(a-A+L)
3. Gauge theory on a finite lattice e

For a finite lattice the paradox becomes acute. Stochastic X exd —Sym(A)+i(J,A)]. (B2
guantization may also be defined in lattice gauge thebby.
As in the continuum theory, a drift forc;ze‘lKgt tangent to
the gauge orbit may be chosen in the direction of steepe§dnly configurationsA of the formA=B—d(4%) 'L are rel-
descent of a suitable minimizing function, and is globally evant, whereB is transverse. We regard the partition function
resoring. It appears that one may solve the lattice FokkerZ(J,L) as a formal power series in the soulceBoth the
Planck equation in the limia—0 on a finite lattice, by the lowest nontrivial eigenvalue\;[B—d(#?) L] of the
method used in Secs. -1V, for it depends only on generaFaddeev-Popov operatdv)[B—d(d%) L], and the points
geometrical properties that are common to lattice and conBy(L) where it vanishes, may be calculated by formal per-
tinuum gauge theories. If so, one would again be led to théurbation theory as a power serieslinHereB(0) is a point
conclusion that the weight inside the Gribov region ison the on-shell horizon. In this way we may take the Gribov
given by the lattice analogue of Eq4.17, namely horizond} off-shell.
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2. Faddeev-Popov ghosts
One may make the action local by writing

detM(B)=f DcDcexdc,M(B)c], (B3)
wherec andc are anticommuting ghost and antighost fields.
Grassmannian sourceg,andz, are then introduced, so this
gets replaced by

fDcDFexp{[EM(B)c]ﬂL(ﬁc)Jr(E,y;)}

=detM(B)exd 7,M " 1(B) 7]. (B4)

This expression does not vanish on the bound&ryFor by
an eigenfunction expansion ®f ~1(B), we obtain for the
last expression

1_ 1
H )\neXF{E )\_ Tn7n
n n Ap
(BS)

1+ )\_nZn 7n

Il

:1;[ (Nnt 707n)-

It does not contain as a factar(B) that vanishes o).

PHYSICAL REVIEW D 69, 016002 (2004

sources For this reason, and by use of the off-shell Gribov
horizon, it should be possible to extend the nonperturbative
approach to the theory defined by the familiar BRST-
invariant local action(8.11), integrated over the off-shell
Gribov region.

APPENDIX C: PROPERTIES OF THE GRIBOV REGION

We note three properties of the Gribov regi@ndefined
in Eq. (1.2). (i) Q contains the origiA=0. (ii) It is bounded
in every direction.(iii) It is convex. We give the one-line
proofs of these properti¢Z4]. They follow from the expres-
sion M(A)=Mgy+M,(A), where M3%(A)=—45%°, and
M3(A)=— gofabcA,ti&M , WhereA is transverse. Property)
is obvious sinceM = — 925%° is strictly positive. To estab-
lish (i), note thatM(A) has zero trace, since it is traceless
on color indicesf2?2=0. Thus, for any givem\, there exists
a statew for which the expectation value &f ;(A) is nega-
tive, E=(w,M1(A) w)<0. Moreover,M4(A) is linear inA,
M,(NA)=AM4(A), so upon replacing\ by NA, where\ is
a positive number, we have o(M(ANA)w)=(w,Myw)
+No,M{(A)o]=(w,Mqw)+NE. By taking\ sufficiently
large and positive, the expectation value is negative
[w,M(NA)w]<0. This establishegi). To establish convex-

For this reason, we did not use Faddeev-Popov ghost fieldty, we must show thaM (aA;+ BA,) is a strictly positive
and their sources in the derivation of the DS equations iroperator wherM (A;) and M(A,) are both strictly positive
Secs. V and VI. Neverthelesge obtained the same DS equa- operators, for all positivexr and B, with a+ 8=1. This is
tions, including the ghost propagators, that we would haveimmediate becaus®;(A) depends linearly o\, and we

obtained if we had introduced the ghost fields and theirhaveM (aA;+ BAy)=aM(A;)+ BM(A,). QED
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