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Nonperturbative Faddeev-Popov formula and the infrared limit of QCD
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Physics Department, New York University, New York, New York 10003, USA

~Received 19 April 2003; published 29 January 2004!

We show that an exact nonperturbative quantization of continuum gauge theory is provided by the Faddeev-
Popov formula in the Landau gauge,d(]•A)det@2]•D(A)#exp@2SYM(A)#, restricted to the region where the
Faddeev-Popov operator is positive2]•D(A).0 ~Gribov region!. Although there are Gribov copies inside
this region, they have no influence on expectation values. The starting point of the derivation is stochastic
quantization which determines the Euclidean probability distributionP(A) by a method that is free of the
Gribov critique. In the Landau-gauge limit the support ofP(A) shrinks down to the Gribov region with
Faddeev-Popov weight. The cutoff of the resulting functional integral on the boundary of the Gribov region
does not change theform of the Dyson-Schwinger~DS! equations because det@2]•D(A)# vanishes on the
boundary, so there is no boundary contribution. However this cutoff does providesupplementary conditions
that govern the choice of solution of the DS equations. In particular the ‘‘horizon condition,’’ though consistent
with the perturbative renormalization group, puts QCD into a nonperturbative phase. The infrared asymptotic
limit of the DS equations of QCD is obtained by neglecting the Yang-Mills actionSYM . We sketch the
extension to a BRST-invariant formulation. In the infrared asymptotic limit, the BRST-invariant action be-
comes BRST exact, and defines a topological quantum field theory with an infinite mass gap. Confinement of
quarks is discussed briefly.

DOI: 10.1103/PhysRevD.69.016002 PACS number~s!: 11.15.2q, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

Since the work of Gribov@1#, a nonperturbative formula
tion of continuum gauge theory has appeared problema
due to the existence of Gribov copies. These are distinct
gauge-equivalent configurationsA(2)5gA(1) that both satisfy
the gauge condition, ]•A(1)5]•A(2)50, where gAm
5g21Amg1g21]mg is a local gauge transformation. Th
difficulty arises when one wishes to quantize bygauge fixing
namely by taking a single representative configuration
each gauge orbit. It has been proven that this cannot be d
in a continuous way when space-time is compactified@2#.
Geometrically this reflects the intricacy ofgauge orbit space,
the space of configurationsA modulo local gauge transfor
mationsg.

There is, however, an approach that bypasses the diffi
ties of Gribov copies by operating directly inA space. This
approach is stochastic quantization. For our purposes
most conveniently expressed by the time-independ
Fokker-Planck equation~given below! that determines the
Euclidean probability distributionP(A). The geometric
structure of the equation assures thatP(A) is correctly
weighted. Although one cannot solve the Fokker-Plan
equation exactly for finite values of the gauge parametea,
one can transform it into a system of Dyson-Schwinger~DS!
equations for the correlation functions that may be solv
nonperturbatively, as has been done recently@3#. However,
these equations are more cumbersome than the DS equa
in an action formalism.

In Secs. II–IV, we find the exact solution of the tim
independent Fokker-Planck equation in the Landau-ga
limit a→0. The solution is remarkably simple. It is the f
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miliar Faddeev-Popov weight, but restricted to the Grib
regionV,1

P~A!5NdV~]•A!det@2]•D~A!#exp@2SYM~A!#.
~1.1!

The Gribov regionV is, by definition, the region inA space
where A is transverse, and the Faddeev-Popov opera
M (A)[2]•D(A) is positive,

V[$A:]•A50;2]•D~A!.0%. ~1.2!

The first factordV(]•A) in Eq. ~1.1! is the restriction of
d(]•A) to the region whereM (A) is positive. Observables
O(A) are required to be gauge-invariant,O(gA)5O(A) and,
by Eq. ~1.1!, expectation-values are calculated from

^O~A!&5E dAO~A!P~A!

5NE
V

dAtrO~Atr!exp@2SYM~Atr!#

3det@2]•D~Atr!#, ~1.3!

1The Yang-Mills action is given bySYM(A)5(1/4)*d4xFmn
2

where Fmn
a 5]mAn

a2]nAm
a 1g0f abcAm

b An
c , and the gauge-covarian

derivative by @Dm(A)v#a[]mva1g0f abcAm
b vc. The Faddeev-

Popov operatorM (A)[2]•D(A) is symmetric whenA is trans-
verse, M (A)52]•D(A)52D(A)•]5M†(A). Positivity of
M (A) means all its nontrivial eigenvaluesln(A) are positive. There
is a trivial null eigenvalue with constant eigenvectors]mv50 that
are generators of global gauge transformations. In Appendix C
establish three simple properties of the Gribov region.
©2004 The American Physical Society02-1
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whereAtr is the transverse part ofA. Two comments are in
order.

~i! Gribov regionV vs fundamental modular regionL.
Formula~1.3! is paradoxical because the Gribov regionV is
not free of Gribov copies@4#. The history of this formula is
amusing. It was originally proposed by Gribov who conje
tured in his seminal work@1# that there are no Gribov copie
in V. The same formula was also derived from stocha
quantization@5# by a method similar to the one presented
the present paper~but using globally defined coordinates in
stead of coordinates defined only on a coordinate patch!, and
was interpreted to mean that the Gribov regionV is free of
Gribov copies. However, it was then proven@4#, with details
provided in@6#, that there are Gribov copies insideV. More-
over, numerical studies@7–11# revealed that in general ther
are many Gribov copies of a given configuration insideV.
Consequently Eq.~1.3! was generally abandoned as an ex
formula in favor of an integration over a region free of G
bov copies, known as the fundamental modular regionL,

^O~A!&5NE
L

DAtr detM ~Atr!O~Atr!exp@2SYM~Atr!#.

~1.4!

The last formula is certainly correct and appears to contra
Eq. ~1.3!. It was subsequently argued nevertheless@12# that
the functional integral~1.3! is in fact dominated by configu
rations on the common boundary ofV andL. The derivation
given in Secs. II–IV shows that Eq.~1.3! is indeed correct.
This is most fortunate because it is difficult to give an e
plicit description of L. In Appendix A we examine con
cretely how the paradox is resolved. The lesson is that
normalizedpobability distributions overL and V are equal
in the sense that their moments of finite ordern are equal.
These are the correlation functions^A(x1)A(x2)¯A(xn)&.
This is possible in an infinite-dimensional space, where
probability distribution may sit on a lower dimensional su
space such as a boundary or part of a boundary. This con
sion is consistent with the numerical investigation of ‘‘G
bov noise,’’ namely the effect on measured quantities
taking different Gribov copies. Indeed for the gluon prop
gator in Landau gauge on reasonably large lattices, Gri
noise is quite small, of the same magnitude as the nume
accuracy@13–15#. The situation is quite different for a finite
dimensional integral, and the analogous problem for a fin
lattice is also discussed in Appendix A. Formula~1.3! is also
supported by a recent calculation in which the DS equa
for the gluon propagator was derived from the tim
independent Fokker-Planck equation at finite gauge par
eter a. It was found to agree with the DS equation for t
gluon propagator in Faddeev-Popov theory in the Lan
gauge limit, a→0, see particularly Eqs.~9.4!, ~10.13!,
~10.14!, and~10.17! of @3#.

~ii ! The form of the DS equations is unchanged by
cutoff on the boundary ofV. The DS equations are a set
equations for the correlation function
^A(x1)A(x2)¯A(xn)&. We shall derive them for the distri
bution ~1.3! in Secs. V and VI. They are compactly e
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pressed as a single functional differential equation for
partition function or generating functional of correlatio
functions,

Z~J!5NE
V

dAtr det@2]•D~Atr!#exp@2SYM~Atr!1~J,Atr!#.

~1.5!

The functional DS equation forZ(J) follows from the iden-
tity

05NE
V

dAtr
d

dAtr „det@2]•D~Atr!#exp@2SYM~Atr!

1~J,Atr!#…, ~1.6!

which states that the integral of a derivative vanishes w
there is no boundary contribution. There is in fact no boun
ary contribution, despite the cutoff on the boundary]V, de-
fined by the equationl1(Atr)50, because the Faddeev
Popov determinent det@2]•D(Atr)#5)nln(Atr) vanisheson
]V. Thus theform of the DS equation is the same as if th
integral were extended to infinity@16#. Again this is most
fortunate because it means that implementing the restric
to the Gribov region causes no complication at all in the
equations.

Although the restriction to the interior of the Gribov ho
rizon does not change the form of the DS equations, it d
provide supplementary conditionsthat govern the choice o
solution. In fact the properties that result from the restricti
to V, in particular the positivity of the weightP(A) and of
the Faddeev-Popov operatorM (A), dictate the natural
choice of solution of the DS equation that has been imp
mented previously, without necessarily invoking explicit
the cutoff at]V, @3,17–23#, and reviewed in@24#. Another
property is the horizon condition @25#. This is an
enhancement,2 compared to 1/k2, of the ghost propagato
G̃(k) in the infrared, limk→0@k2G̃(k)#2150.3 In Sec. VII we
show that the horizon condition is most conveniently e
pressed as a formula for the ghost-propagator renorma
tion constantZ̃3 . Although this formula flagrantly contra

2Entropy favors population near the boundary, in a configurati
space with a high numberN of dimensions, because of the volum
elementr N21dr. The boundary]V of the Gribov regionV occurs
where the lowest nontrivial eigenvalue of the Faddeev-Popov
erator M (B) vanishes, so, for typical configurationsB on a large
Euclidean volumeV, M (B) has a very small eigenvalue. Mor
precisely, compared to the Laplacian operator,M (B) has a high
density per unit volume of eigenvaluesr(l,B) at l50 @25#. This
enhances the ghost propagatorG(x2y)5^Mxy

21(A)& in the infra-
red.

3The confinement criterion of Kugo and Ojima@26–28# yields the
same condition in the Minkowskian theory. However, for gaug
noninvariant quantities, the relation of the present approach, wi
cutoff at the Euclidean Gribov horizon, to the Minkowskian theo
remains to be clarified, perhaps along the lines of Appendix B. T
relation of numerical gauge fixing by minimization in~Euclidean!
lattice gauge theory to the Minkowskian theory is also not clea
2-2
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dicts perturbation theory, it is nevertheless consistent w
the perturbative renormalization group. The horizon con
tion puts QCD into a nonperturbative phase.

In Sec. VIII we deduce the asymptotic infrared limit o
QCD by neglecting the terms in the DS equations that
subdominant in the infrared. It is found that the subdomin
terms and only the subdominant terms come from the Ya
Mills action SYM(A), so the infrared asymptotic limit o
QCD is obtained by settingSYM(A)50. This is a continuum
analog of the strong coupling limit of lattice gauge theo
The functional integral with exp@2SYM(A)# replaced by 1
converges because it is cutoff at the Gribov horizon.

In Appendix B we outline the local BRST-invariant fo
mulation of the present nonperturbative formulation. This
sures that the Slavnov-Taylor identities hold at the nonp
turbative level. In the infrared asymptotic limit, obtained
setting SYM(A)50, the BRST-invariant action become
BRST exact, and defines a topological quantum field the
As shown in Sec. IX, this theory possess an infinite mass
in the physical sector. In Sec. X the extension to quark
sketched out.

The starting point of our derivation will be stochast
quantization of gauge fields. In the remainder of the Int
duction we give a brief review of this subject so the rea
may judge the well-foundedness of this approach at the n
perturbative level.

A. Review of stochastic quantization of gauge fields

Historically, stochastic quantization originated@29# with
the observation that the formal, unnormalizable Euclide
probability distribution P0(A)5N exp@2SYM(A)#, with
four-dimensional Euclidean Yang-Mills actionSYM(A), is
the equilibrium distribution of the stochastic process defin
by the equation

]P

]t
5E d4x

d

dAm
a ~x! S dP

dAm
a ~x!

1
dSYM

dAm
a ~x!

PD ~1.7!

for the time-dependent probability distributionP(A,t). This
equation is a continuum analogue of the diffusion equation
the presence of the drift forceKi ,

]P

]t
5

]

]Ai S ]P

]Ai2Ki PD50, ~1.8!

that is known as the Fokker-Planck equation. If t
drift force is conservative, Ki52]SYM /]Ai , then
exp@2SYM(A)# is a time-independent solution. In Euclidea
quantum field theory,t is an artificial fifth time that corre-
sponds to the number of sweeps in a Monte Carlo simulat
and that will be eliminated shortly. The same stochastic p
cess may equivalently be represented by the Langevin e
tion

]Am
a

]t
52

dSYM

dAm
a 1hm

a , ~1.9!
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whereAm
a 5Am

a (x,t) depends on the artificial fifth time. Her
hm

a 5hm
a (x,t) is Gaussian white noise defined by^hm

a (x,t)&
50 and ^hn

b(x,t)hm
a (x,t)&52d(x2y)dmndabd(t2t8)&. If

N exp@2SYM(A)# were a normalizable probability distribu
tion, which it is not, every normalized solution to Eq.~1.7!
would relax to it as equilibrium distribution. However, th
process defined by Eq.~1.7! or Eq. ~1.9! does not provide a
restoring force in gauge orbit directions, so probability e
capes to infinity along the gauge orbits, and as a re
P(A,t) does not relax to a well-defined limiting distributio
limt→` P(A,t)ÞN exp@2SYM(A)# ~although expectation-
values of gauge-invariant observables formally do relax to
equilibrium value!.

A remedy is provided by the observation@30# that the
Langevin equation may be modified by the addition of
infinitesimal gauge transformation,Dm

acvc,

]Am
a

]t
52

dS

dAm
a 1Dm

acvc1hm
a , ~1.10!

wherevc is at our disposal. This cannot alter the expectat
value of gauge-invariant quantities, for only a harmless
finitesimal gauge transformationKgt,m5Dmv has been intro-
duced. In the language of the diffusion equation, we may
that the additional drift forceKgt,m is tangent to the gauge
orbit. The modified Langevin equation is equivalent to t
modified Fokker-Planck equation

]P

]t
5E d4x

d

dAm
a ~x! S dP

dAm
a ~x!

2Km
a ~x!PD ,

~1.11!

Km
a ~x![2

dSYM

dAm
a ~x!

1Dm
acvc~x!.

We will choosevc(x) to makeDm
acvc(x) globally restoring

along gauge orbit directions, so every normalized solut
P(A,t) relaxes to a unique equilibrium distributio
limt→` P(A,t)5P(A).

Stochastic quantization in the time-dependent formulat
has been developed by a number of authors who have
pressed the solution as a functional integral@31# and demon-
strated the renormalizability of this approach@32,33#. A sys-
tematic development is presented in@34–39#, and reviewed
in @40#, that includes the four- and five-dimensional Dyso
Schwinger equation for the quantum effective action, an
tension of the method to gravity, and gauge-invariant re
larization by smoothing in the fifth time. Renormalizabilit
has also been established by an elaboration of BRST t
niques@41,42#. Stochastic quantization may be and has be
exactly simulated numerically including on rather large l
tices, of volume~48!4, @43–47#.

B. Time-independent stochastic quantization

When the drift force is globally restoring,P(A) may be
calculated directly without reference to the artificial fif
time as the positive normalized solution of the tim
independent Fokker-Planck equation
2-3
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HP[E d4x
d

dAm
a ~x! S 2

dP

dAm
a ~x!

1Km
a PD 50,

Km
a ~x![2

dSYM

dAm
a ~x!

1Dm
acvc~x!, ~1.12!

and Euclidean expectation values are calculated from^O&
5*dA O(A)P(A). We call H the ‘‘Fokker-Planck Hamil-
tonian.’’ ~It is not the quantum mechanical Hamiltonian.! It
has been proven directly@3#, without reference to the artifi
cial time, that the expectation valuêO&v of a gauge-
invariant observableO(gA)5O(A), is independent ofv.
Equation~1.12! determines a probability distributionP(A)
directly in A space that is correctly weighted at the nonp
turbative level. The Gribov problem of globally corre
gauge fixing by identifying gauge orbits is bypassed. By c
trast, in the Hamiltonian formulation of gauge theo
Gauss’s law states that the wave functionalC~A! is gauge-
invariant and is thus a functional defined on the space
gauge orbits@48#.

To ensure thatKgt,m5Dmv is globally restoring, we intro-
duce a minimizing functional@49#, @50#, and@4#, and choose
Kgt,m to be in the gauge-orbit direction of steepest descen
convenient choice of minimizing functional4 is the Hilbert
norm iAi25*d4xuAu2. For an infinitesimal variation in the
gauge-orbit directiondAm5eDmv, we have

diAi252~Am ,dAm!52e~Am ,Dmv !52e~Am ,]mv !

522e~]mAm ,v !, ~1.13!

so steepest descent among gauge orbit directions of the m
mizing functional is provided byv5a21]•A with a.0, and
the time-independent Fokker-Planck equation is now sp
fied to within a single gauge parameter,

HP5E d4x
d

dAm
a ~x! S 2

dP

dAm
a ~x!

1Km
a PD 50,

Km
a ~x![2

dSYM

dAm
a ~x!

1a21Dm
ac]•Ac~x!, ~1.14!

~Symmetry and power-counting arguments also determ
va5a21]lAl

a5a21]•Aa.)
Having introduced the minimizing functional, we no

that the Gribov regionV may be characterized as the set

4More generally, we may take for the minimizing functio
*d4xAm

a (x)amnAn
a(x), whereamn is a constant positive symmetri

matrix. This defines a set of Lorentz-noncovariant but normaliza
gauges that includes the Coulomb gauge as a limiting case@51#. To
include different instanton sectors, one may choose as a minimi
functionaliA2Ani2, whereAn is a fixed configuration of the given
instanton number. An alternative minimizing functional suitable
the Higgs phase was proposed in@42#.
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relative minima5 with respect to local gauge transformatio
g(x) of the minimizing functionalFA(g)[igAi2, whereas
the fundamental modular regionL may be characterized a
the set ofabsoluteminima. The set of absolute minima i
free of Gribov copies, apart from the identification of gaug
equivalent points on the boundary]L, and may be identified
with the gauge orbit space. In a lattice discretization
minimization problem is of spin-glass type, and one expe
many nearly degenerate local minima on a typical gau
orbit, as is verified by numerical studies. ThusL is a proper
subset ofV, L,V, but LÞV.

C. Region of stable equilibrium of Kgt

The gauge transformation ‘‘force’’Kgt is not conservative,
and cannot be written, like the first term, as the gradient
some four-dimensional gauge-fixing action,Kgt,m

5a21Dm
ac]•Ac(x)Þ2dSgf /dAm

a (x), so we cannot write the
solutionP(A) explicitly in general. However, we shall solv
Eq. ~1.14! for P(A) exactly in the limita→0. In this limit
P(A) gets concentrated in the region ofstable equilibriumof
the forceKgt,m5a21Dm]•A.

Assertion: The region of stable equilibrium under th
gauge transformation forceKgt,m5Dm]•A is the Gribov re-
gion V. Proof: Transversality is a sufficient condition fo
equilibrium because]•A50 impliesKgt,m50. It is also nec-
essary. Consider the flow under this force,Ȧm5Dm]•A.
We have ]iAi2/]t52(Am ,Ȧm)52(Am ,Dm]•A)52(Am ,
]m]•A)522i]•Ai2<0, which is negative unless]•A50.
We conclude that the region of equilibrium underKgt , which
may be stable or unstable, is the set of transverse config
tions. To find the region of stable equilibrium, observe th
under this flow, we have]/]t]•A5]•Ȧ5]•D(A)]•A. We
linearize this equation to first order in]•A, which means
taking ]•D(A)→]•D(Atr)[2M (Atr), and we have]/]t]
•A52M (Atr)]•A. Thus the equilibrium is stable when a
eigenvalues ofM (Atr) are positive, and it is unstable othe
wise. QED.

II. A WELL-DEFINED CHANGE OF VARIABLE

In order to solve the time-independent Fokker-Plan
equation~1.14! in the limit a→0, we only need the solution
for small a in a coordinate patchU in A space that includes
the Gribov regionV. In U, we make the change of variabl
A→(B,g), defined by the gauge transformation

le

g

r

5At any minimum, this functional is~a! stationary, and~b! the
matrix of second derivatives is non-negative. These two conditi
fix the properties that define the Gribov region:~a! transversality,
]•A50, and~b! positivity of the Faddeev-Popov operator2D(A)
•]. Property~a! follows from Eq.~1.13!, which states that the firs
variation of the minimizing functional isdiAi2522(v,]•A).
Property ~b! follows because the second variation isd2iAi25
22@v,]•D(A)v#.
2-4
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Am5Am~B,g!5gBm52g21]mg1g21Bmg,

with ]•B50 and M ~B!.0, ~2.1!

whereBPV. Local gauge transformations are parametriz
by g(x)5exp@taua(x)# where, for eachx, theua(x) are coor-
dinates for the SU(N) group.6 The notationA5A(B,g) is
understood to stand forA5A(B,u), and we haveB
5A(B,0).

Gribov’s critique of the Faddeev-Popov method is th
this change of variable is not well-defined for all transversB
and g. We shall show, however, that it is well-defined in
coordinate patchU that includesV. This is true, even though
there are Gribov copies withinV, because the gauge orbi
intersectV transversely. The coordinate patchU must be
small enough in theu directions that the gauge transform
tions g(u) that relate these Gribov copies are not inU.

To verify that the gauge-orbits intersectV transversely, it
is sufficient to show that the change of variables~2.1! is
invertible for infinitesimal anglesua(x)5ea(x) for all B
PV. It follows that it is also invertible, and thus wel
defined, on some finite coordinate patchU that includesV.

To first order ine, the change of variable~2.1! is given by
Am5Bm1Dm(B)e. The divergence of this equation rea
]•A5]•D(B)e52M (B)e, which shows that]•A depends
linearly one. Note that]•A is orthogonal to the trivial null
space ofM (B), consisting of constant functions, and w
specify thate is also orthogonal to this null space.7 Since
BPV by assumption,M (B) is a strictly positive operator on
the orthogonal space, and thus invertible, and we havee5
2M 21(B)]•A. We solve for B in the form Bm5Am
1Dm(B)M 21(B)]•A. To zeroth order ine we haveB5A
5Atr, whereAm

tr[Am2]m(]2)21]•A is the transverse par
of A. This gives the inversion formulasBm5Am
1Dm(Atr)M 21(Atr)]•A and e52M 21(Atr)]•A, valid to
first order ine or ]•A. Thus for eachAtrPV, the change of
variable~2.1! is invertible to first order in the small quantit
]•A. QED

Concerning the shape of the coordinate patchU, note that
as the configurationBPV approaches the boundary]V of
the Gribov region, the lowest nontrivial eigenvaluel1(B) of
the Faddeev-Popov operatorM (B) approaches 0. Conse
quently the width in longitudinal oru directions of the coor-
dinate patchU shrinks to zero as the boundary]V is ap-
proached. We may pictureU as a very high-dimensiona
clam, shown in Fig. 1.

6Here and below we use the notationAm[taAm
a and Bm[taBm

a .
The ta are a set of anti-Hermitian traceless matrices that form
fundamental representation of the Lie algebra of SU(N), @ ta,tb#
5 f abctc, where the structure constantsf abc are completely antisym-
metric.

7The constant angles]mua50 parametrize global SU(N) transfor-
mations. These actwithin V. However, we may safely ignore them
because they have finite volume that we normalize to unity. T
spectrum ofM (B) is discrete by quantization in a finite Euclidea
volume.
01600
d

t

III. CHANGE OF VARIABLE IN FOKKER-PLANCK
EQUATION

To change variables in the Fokker-Planck equation, o
takes over to functional variables the standard formulas
differential geometry. The mechanics of the calculation
similar to the computation of the Coulomb Hamiltonian b
Christ and Lee@52#, but there the change of variable wa
done globally whereas here it is done only in a coordin
patch. We freely go back and forth from continuum to d
crete notation by the replacementsAm

a (x)↔Ai and
@Bm

a (x),ua(x)#↔ua. In terms of Ai , the Fokker-Planck
equation reads

2HP[
]

]Ai d i j S ]P

]Aj2K j PD50, ~3.1!

and expectation values are given by ^F&
5*) idAiF(A)P(A). The coordinatesAi are Cartesian, bu
the coordinate transformationA5A(B,u)5A(u) is nonlin-
ear, and theu5(B,u) are curvilinear coordinates. In terms o
these, the Fokker-Planck equation reads

2HP5
1

AG

]

]ua FAGGabS ]P

]ub2Kb
~u!PD G50, ~3.2!

and expectation-values are given by ^F&
5*)aduaAGF(u)P(u). The metric tensor is given by
dAidAi5dua(]Ai /]ua)(]Ai /]ub)dub5duaGabdub, with
volume elementAG5det]u/]A. The covariant and contra
variant components of any Cartesian vector fieldKi are
given byKa5(]Ai /]ua)Ki andKa5(]ua/]Ai)Ki .

We now calculate these quantities explicitly in function
form. FromAm5g21Bg1g21]mg, we obtain

e

e

Alo

AtrU
Ω

FIG. 1. The coordinate patchU in A space is the clam-shape
region viewed edge on. The Gribov regionV is represented by the
thick horizontal line.
2-5
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dAm5g21
„dBmg1]m~dgg21!1@B,dgg21#…g, ~3.3!

where

v[dgg215
]g

]ub g21dub5vbdub5tavb
adub ~3.4!

is the Maurer-Cartan form. It satisfiesdv5dgg21∧ dgg21

5v ∧ v or, in terms of components,

]vb
c

]ua 2
]va

c

]ub 5 f cab@va
a ,vb

b #. ~3.5!

We also haveg21tag5Rabt
b, where the real orthogonal ma

tricesRab5Rab(u)5Rba
21 are in the adjoint representation o

the gauge group. FromAm5taAm , andBm5taBm , we ob-
tain

dAm
a 5Rab

21@dBm
b 1Dm

bc~va
c dua!#, ~3.6!

where dBm is purely transverse,]mdBm50, and Dm
ac

[Dm
ac(B) is the gauge-covariant derivative with the conne

tion Bm
a as argument. The last expression is the functio

form of dAi5(]Ai /]ua)dua. It gives the functional operato
that corresponds to]Ai /]ua, and we have for the metric
tensor

ds25E d4xdAm
a dAm

a

5E d4x@dBm
b 1Dm

bc~va
c dua!#@dBm

b 1Dm
bc~va

c dua!#.

~3.7!

To calculateAG5det]A/]u, we start by writing the linear
transformation~3.6! as the product of two transformation
dAm

a 5Rab
21dCm

a , and

dCm
a 5dBm

b 1Dm
bc~va

c dua!. ~3.8!

The matrixRab is orthogonal, so detR51, and it is sufficient
to calculate the determinent of the linear transformat
~3.8!. We do this in two steps. We first transform fromdCm

a

to its transverse part (dC)l
tr,a[Plm

tr (dC)m
a , and its diver-

gencedLa[]mdCm
a , where Plm

tr [dlm2]l(]2)21]m is the
projector onto transverse vector fields. This linear trans
mation is independent of the variablesu5(B,u), so its de-
terminent is a constant, and will be ignored. The linear tra
formation fromdB anddu to dCtr anddL is given by

~dC!l
tr,a5dBm

b 1Plm
tr Dm

bc~va
c dua!

~3.9!
dLa5]mDm

bc~va
c dua!,

where we have used the transversality ofdBm
b . This linear

transformation is a triangular matrix, and its determinan
the product of the determinents of its diagonal submatric
This gives
01600
-
l

n

r-

-

s
s.

AG5detI det@2]mDm~B!v~u!#

5det@2]mDm~B!#Detv~u!

5detM ~B!)
x

detv@u~x!#, ~3.10!

which contains the Faddeev-Popov determinant detM(B). It
has been obtained by a purely local calculation at a fix
point A5gB, without integrating globally over the gaug
group. The volume elementAG is the product of detM(B)
that depends only onB, and the functional determinan
Detv(u)[)x detv@u(x)# that depends only onu. Here
$detv@u(x)#)adua(x)% is the Haar measure of the SU(N)
gauge group at x. It is common to write *Dg
5*Du Det@v(u)#.

We next find the inverse matrix]Ai /]ua by solving for
dBm

b anddua. From Eq.~3.6! we obtain

RbadAm
a 5@dBm

b 1Dm
bc~va

c dua!#. ~3.11!

We take the divergence of this equation and use]mdBm50
to obtain

]m~RbadAm
a !5]mDm

bc~va
c dua!, ~3.12!

which gives the first inverse formula

dua5Jc
a@~]•D !21#cb]m~RbadAm

a !, ~3.13!

where Jc
a(u)[(v21)c

a(u). The Faddeev-Popov operato
M (B)[2]•D(B)52D(B)•] is symmetric and positive
so its inverse is well defined. To avoid a proliferation
indices, we write the last and similar equations in opera
notation,

du5J~]•D !21]•~RdA!. ~3.14!

Inserting this into Eq.~3.11!, we obtain the second invers
formula

dBl5@dlm2Dl~]•D !21]m#~RdAm!. ~3.15!

One sees thatdBl is transverse,]ldBl50. The last two
equations give the operators corresponding to the matr
]ua/]Ai . From them we read off the continuum version
]/]Ai5]ua/]Ai]/]ua namely,

d

dAm
5R̃S @dml2]m~D•]!21Dl#

3
d

dBl
2]m~D•]!21J~u!

d

du D , ~3.16!

where R̃ is the transpose of R. The (Jd/du)b

5Jb
a(u)(d/dua)[(v21)b

a(u)(d/dua) are the angular mo-
mentum or Lie differential operators of the gauge grou
They satisfy the Lie algebra commutation relations of t
local gauge group
2-6
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FJa
a@u~x!#

d

du~x!a ,Jb
b@u~y!#

d

du~y!bG
52d~x2y! f abcJc

g@u~x!#
d

du~x!g , ~3.17!

that follow from Eq.~3.5!.
We need the curvilinear components of the drift for

Km5KYM, m1a21Kgt,m where KYM, m(A)52dS/dAm
5DlFlm(A) andKgt,m5Dm]•A. We shall see that the one
form or covariantu-component ofKYM vanishes@because
the actionSYM(gB)5SYM(B) is gauge invariant#, while the
tangent-vector or contravariantB-component ofKgt vanishes
~becauseKgt is tangent to the gauge orbit!. Thus the Fokker-
Planck equation~3.2! in curvilinear coordinatesu5(B,u),
readsHP50, where

H5HBB1HBu1HuG1Huu , ~3.18!

2HBB[
1

AG

]

]Ba AGG~BB!
ab S ]

]Bb2KYM, b
~B! D ,

2HBu[
1

AG

]

]Ba AGG~Bu!
ab ]

]ub ,

~3.19!

2HuB[
1

AG

]

]ua AGG~uB!
ab S ]

]Bb2KYM, b
~B! D ,

2Huu[
1

AG

]

]ua AGS G~uu!
ab ]

]ub2Kgt,~u!
a D .

We use the continuum version of the formulaKYM, idAi

5KYM, a
(B) dBa1KYM, a

(u) dua to obtain the one-form compo
nents ofKYM . We have

E d4xKYM, m
a ~A!dAm

a 5E d4xDlFlm
a ~gB!dAm

a

5E d4xRab
21DlFlm

b ~B!dAm
a

5E d4xDlFlm
b ~B!@dBm

b

1Dm
bc~va

c dua!#

5E d4xDlFlm
b ~B!dBm

b , ~3.20!

by Eq. ~3.6!, where we have performed an integration
parts, and used (DmDlFlm)a5(1/2)g0f abcFml

b Flm
c 50. Thus

the one-form components ofKYM are given by

KYM, a5~KYM, a
~B! ,KYM, a

~u! !5@DlFlm
b ~B!,0#. ~3.21!

We use the continuum version ofKgt,i(]/]Ai)
5Kgt,a

(B) (]/]Ba)1Kgt,a
(u) (]/]ua) to obtain the contravariant o

tangent-vector components ofKgt,m5Dm]•A. We have
01600
]lAl5]l~g21Blg1g21]lg!

5g21~]l~]lgg21!1@B,]lgg21# !g

5g21Dl~B!~]lgg21!g

5g21Dl~B!~va]lua!g, ~3.22!

where we have used ]lgg215(]g/]ua)g21]lua

5va]lua, andv is again the Maurer-Cartan form. In inde
and operator notation this reads

]lAl
a5R̃abDl

bc~va
c ]lua!↔]lAl5R̃Dl~v]lu!,

~3.23!

whereDl[Dl(B). By the gauge transformation property o
the gauge covariant derivativeD(A)5D(gB), this gives

Dm~A!]lAl5R̃Dm~B!Dl~B!~v]lu!, ~3.24!

By Eq. ~3.16! we obtain

E d4xKgt,m
a d

dAm
a 5E d4xDm~B!Dl~B!~v]lu!

3S @dmn2]m~D•]!21Dn#

3
d

dBn
2]m~D•]!21J~u!

d

du D .

~3.25!

We perform an integration by parts and useDm@dmn

2]m(D•])21Dn#d/dBn50 to obtain

E d4xKgt,m
a d

dAm
a 5E d4x@Dl~B!~v]lu!#aFJ~u!

d

duG
a

.

~3.26!

Thus the tangent-vector components ofKgt are given by

Kgt
a 5~Kgt

~B!,a ,Kgt
~u!,a!5$0,Jb

b~u!@Dl~B!~v]lu!#b%.

~3.27!

From Eq. ~3.16! we obtain the Laplacian operato
1/AG]/]uaAG]ua/]Ai]ub/]Ai]/]ub in curvilinear coordi-
nates,

E d4x
1

AG
S d

dBl
@dlm2Dl~]•D !21]m#

1
d

du
J̃~u!~]•D !21]mD

3AGS @dmn2]m~D•]!21Dn#

3
d

dBn
2]m~D•]!21J~u!

d

du D . ~3.28!
2-7
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Putting all terms together, the explicit expressions for
terms in Eq.~3.19! are

2HBB5
1

detM ~B!
E d4x

d

dBl
detM ~B!@dlm2Dl

3~]•D !21]m#3@dmn2]m~D•]!21Dn#

3F d

dBn
2DkFkn~B!G , ~3.29!

2HBu5
1

detM ~B!
E d4x

d

dBl
detM ~B!

3@2]l1Dl~]•D !21]2#~D•]!21J~u!
d

du
,

~3.30!

2HuB5
1

Detv~u!
E d4x

d

du
Detv~u!J̃~u!

3~]•D !21@]n2]2~D•]!21Dn#

3F d

dBn
2DlFlm~B!G , ~3.31!

2Huu5
1

Detv~u!
E d4x

d

du
Detv~u!J̃~u!

3S ~]•D !21~2]2!~D•]!21J~u!
d

du
2

1

a
Dl

3@v~u!]lu# D . ~3.32!

IV. SOLUTION IN LANDAU-GAUGE LIMIT

We shall solve the Fokker-Planck equationHP50 in the
limit a→0. In this limit the drift force in the gauge-orbit o
u-direction is dominant. This situation is reminiscent of t
Born-Oppenheimer method in molecular physics. Theu vari-
ables equilibrate rapidly, like the electron positions in a m
lecular wave function, and the dependence on theB variable
is determined by an average over theu variable, like the
nuclear variables.

We expect that the solution gets concentrated closeu
50. We rescale variable according tou5a1/2Q, and find that
HBB is independent ofa and unchanged, whereas

2HBu5
1

a1/2

1

detM ~B!
E d4x

d

dBl
detM ~B!

3@2]l1Dl~]•D !21]2#~D•]!213J~a1/2Q!
d

dQ

~4.1!

and
01600
e

-

2HuB5
1

a1/2

1

Detv~a1/2Q!
E d4x

d

dQ

3Detv~a1/2Q!J̃~a1/2Q!~]•D !21

3@]n2]2~D•]!21Dn#F d

dBn
2DlFlm~B!G

~4.2!

are of leading order 1/a1/2, while

2Huu5
1

a

1

Detv~a1/2Q!
E d4x

d

dQ
Detv~a1/2Q!J̃~a1/2Q!

3S ~]•D !21~2]2!~D•]!21J~a1/2Q!

3
d

dQ
2Dl@v~a1/2Q!]lQ# D ~4.3!

is of leading order 1/a.
The Fokker-Planck Hamiltonian has an expansion ina

given by H5a21H01a21/2H11H21O(a1/2). We seek a
solution of the form P5P01a1/2P11aP21¯ , which
gives

~a21H01a21/2H11H21¯ !~P01a1/2P11aP21¯ !50.

~4.4!

To leading order we obtain

2H0P05E d4x
d

dQ S ~]•D !21~2]2!~D•]!21

3
d

dQ
2D•]Q D P050 ~4.5!

or

E d4x
d

dQ S V
d

dQ
1MQ D P050, ~4.6!

whereD[D(B), M[M (B). The operatorV5V(B) is de-
fined byV[M 21(2]2)M 21. It is symmetric and positive.

The last equation is solved by a Gaussian inQ,

P0~B,Q!5Q~B!N~detX!1/2exp@2~Q,XQ!/2#

5Q~B!N~detX!1/2exp@2~u,Xu!/~2a!#,

~4.7!

where (u,Xu)[*d4x ua(x)(Xu)a(x). Here X5X(B) is a
symmetric operator to be determined, andN is fixed by

E Du N~detX!1/2exp@2~u,Xu!/~2a!#51. ~4.8!

The upper limit on theu integration is actually finite, but this
gives a correction of order exp(21/a) that we neglect. The
solution~4.7! decreases rapidly asuuu increases away from 0
2-8
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as expected, with a Gaussian widthuuu;a1/2. In the limit a
→0, the support of the solutionP(B,u) shrinks tou50, and
is given by

P~B,u!5d~u!Q~B!. ~4.9!

We now check that Eq.~4.7! is actually the solution.
Equation~4.6! yields two equations forX,

~Q,XVXQ!2~Q,XMQ!50,
~4.10!

tr~VX2M !50,

that hold identically for allQ. The first equation yields
2XVX5XM1MX, or MY1Y M52V for Y[X21. More-
over, when this equation is satisfied, the second equatio
automatically satisfied. To solve forY, we take matrix ele-
ments in the basis provided by the eigenfunctions of
Faddeev-Popov operator Mun5lnun , and obtain
2(um ,Vun)5(lm1ln)(um ,Yun) or

~um ,X21un!5~um ,Yun!52~lm1ln!21~um ,Vun!

52E
0

`

dt~um ,exp~2Mt !V exp~2Mt !un!.

~4.11!

This gives

X215Y52E
0

`

dt exp~2Mt !V exp~2Mt !

52M 21E
0

`

dt exp~2Mt !~2]2!exp~2Mt !M 21,

~4.12!

and X5X(B) is indeed a positive operator, as is necess
for the normalizability of the Gaussian~4.7!.

The coefficient functionQ(B) in Eq. ~4.7! is left undeter-
mined by the equationH0P050. Since the leading term in
the HamiltonianH51/aH01¯ leaves the solution indeter
minate, we are in the case of degenerate perturbation the
and the lowest order solution is determined by a higher or
perturbation. To obtain an equation forQ(B), we integrate
the exact equationHP50 overQ,

E DQ Detv~a1/2Q!HP50, ~4.13!

where, we recall,H5HBB1HBu1HuB1Huu . This kills the
Huu term that is of order 1/a, for, by Eq. ~4.3!, it is the
integral of an exact derivative, and thus vanishes identica
*DQ Detv(a1/2Q) HuuP5*DQd/dQ¯50. For the same
reason it kills the HuB term that is of order 1/a1/2,
*DQ Detv(a1/2Q) HuBP50. It also kills theHBu term that
is of order 1/a1/2 because, by Eq.~4.1!, the integral
*DQ Detv(a1/2Q)HBuP is of the form
01600
is

e

y

ry,
er

y,

E DQ Detv~a1/2Q!J~a1/2Q!
d

dQ
F

52E DQ Detv~a1/2Q!FJ~a1/2Q!
d

dQ
150,

~4.14!

where the explicit form ofF is not needed.8 The first equality
holds by the Lie group property that makesJ(a1/2Q)d/dQ
anti-Hermitian with respect to Haar measu
*DQ Detv(a1/2Q).

@It is easy to verify that the equation

*DQ Detv~a1/2Q! HBuP50

holds in the small-a limit. This is the same as the small ang
approximation, and we have, to the order required,g(u)
5exp(u)511ta ua1(1/2)(taua)2. For the Maurer-Cartan
form (]g/]ub)g215tavb

a we obtain, to the order required
vb

a5dab1(1/2)f agbug5dab1(a1/2/2) f agbQg. The second
term is an antisymmetric matrix so for the Haar measure
get detv(a1/2Q)511O(a), and for the matrixJa

b , defined
by Ja

bvb
c 5da

c , we get Ja
b(a1/2Q)5dab1(a1/2/2) f agbQg

1O(a). This gives

E DQ Detv~a1/2Q!Ja
b~a1/2Q!

d

dQb F

5E DQF S dab1
a1/2

2
f agbQgD d

dQb 1O~a!GF.

The term ind/dQb is an exact derivative becausef agb is
antisymmetric, and gives vanishing contribution. The lead
term inF is of order 1/a1/2, so the remainder is of ordera1/2

and vanishes in the smalla limit.#
We conclude that in Eq.~4.13!, the only surviving term is

HBB , given in Eq.~3.29!. It is independent ofa andQ, and
Eq. ~4.13! simplifies to

HBBQ50. ~4.15!

From Eq.~3.29! we see that this equation is of the form

¯@dmn2]m~D•]!21Dn#F d

dBn
2DkFkn~B!GQ50.

The left factor is orthogonal onn to longitudinal fields, so it
may be written

8The fact that the integral onDQ surgically kills theHuB andHBu

terms is the payoff for using the curvilinear coordinates~B, u!. In a
previous calculation by the author@3#, the time-independen
Fokker-Planck equation was solved using Cartesian coordinateAtr

andAlo instead of~B, u!. This gave an additional contribution, no
surgically killed by the corresponding integration overDAlo, that
was mistakenly neglected, and that was needed to cancel a spu
term, calledK2 , in the effective drift force. FortunatelyK2 was
neglected in@3#, so what was thought to be an approximate formu
there is in fact exact, and the calculation reported there is corre
2-9
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¯@dmn2]m~D•]!21Dn#Pnl
tr F d

dBl
1

dSYM~B!

dBl
GQ50,

where we have used the fact that functional differentiat
with respect to a transverse field is ordinary functional d
ferentiation with a transverse projector that comes from

dBm
b ~y!

dBl
a~x!

5Plm
tr ~x2y!dab. ~4.16!

Thus the equation,HBBQ(B)50, has the simple solution

Q~B!5N exp@2SYM~B!#. ~4.17!

In continuum gauge theory, the Gribov regionV is convex,
as shown in Appendix C, and therefore it is connected, so
normalization of the solution~4.17! is unique. We have ob
tained the solution in the coordinate patchU, in the limit a
→0,

P~B,u!5Nd~u! exp@2SYM~B!#. ~4.18!

We express the solutionP(B,u) in terms of the original
Cartesian coordinatesA. The volume element is of cours
*dA. To first order inu we haveA5B1D(B)u, and]•A
5]•D(B)u, so

d~u!5d~]•A!det@2]•D~A!#. ~4.19!

Inside the coordinate patchU, the solution reads

P~A!5Nd~]•A!det@2]•D~A!#exp@2SYM~A!#.
~4.20!

Its support lies on ]•A50, and it vanishes with
det@2]•D(A)# on the boundary]V of the Gribov region. We
extend it to all ofA space by stipulating that it vanishe
outsideU. For the diffusion equation with a drift force, th
equilibrium distribution is unique@53#.

V. DYSON-SCHWINGER EQUATION FOR PARTITION
FUNCTION

To be of use, the nonperturbative Faddeev-Popov form
~1.3! must be supplemented with a prescription for how
functional integral, restricted to the Gribov regionV, is to be
evaluated nonperturbatively. An earlier approach@54# is to
insert au function u@l1(B)# that effects a cutoff at the Gri
bov horizon. Theu function is given a suitable representatio
as an integral over auxiliary fields with a local effective a
tion, and one integrates over allB without restriction and
over the auxiliary fields. A far simpler approach@16# rests on
the observation that the Gribov horizon]V is a nodal sur-
face of the integrand because the Faddeev-Popov dete
nent detM(B)5)n51

` ln(B) vanishes withl1(B), that is to
say, on]V. The DS equations, which are derived by a par
integration, do not pick up a boundary term, and would ha
the same form if the integral were extended to infinity. In th
approach we never have to know where the Gribov hori
actually is.

The partition function for the distribution~1.3! is given by
01600
n
-

e

la
e

-

i-

l
e

n

Z~J!5NE
V

dB detM ~B!exp@2SYM~B!1~J,B!#,

~5.1!

where we have written B[Atr, and (J,B)
[*d4x Jm

a (x)Bm
a (x). Only the transverse part ofJ contrib-

utes, and we also takeJ to be identically transverse,J5Jtr.
~The extension of the present nonperturbative approach
a cutoff at the Gribov horizon to an off-shell gauge conditi
with a local and BRST-invariant action is sketched in Appe
dix B.! The Faddeev-Popov determinent detM(B) vanishes
on the boundary]V, so the identity

05E
V

dB
d

dBm
b ~x!

~detM ~B!exp@2SYM~B!1~J,B!# !

~5.2!

holds, without any contribution from boundary terms eve
though the integral is cut off at the Gribov horizon]V. It is
shown in Appendix C that the Gribov horizon surrounds t
origin at a finite distance in all directions.

To derive the functional DS equation forZ(J), we write
detM(B)5exp@Tr ln M(B)#, and define the total action

S~B![SYM~B!2Tr ln M ~B!, ~5.3!

so Eq.~5.2! reads

05E
V

dBS Jm
b ~x!2

dS~B!

dBm
b ~x! D ~detM ~B!

3exp@2SYM~B!1~J,B!# !. ~5.4!

Although S(B) is not local inB, we shall derive the same
DS equations as one gets from the usual local action of
ons and ghosts. We have

dS~B!

dBm
b ~x!

52@DlFlm~B!#b,tr~x!2Igh,m
b ~x;B! ~5.5!

by Eq. ~4.16!, where ‘‘tr’’ means transverse part,@Xm# tr

[Xm2]m(]2)21]nXn , and the ghost current is given by

Igh,m
b ~x;B![

d@Tr ln M ~B!#

dBm
b ~x!

5TrS dM ~B!

dBm
b ~x!

M 21~B! D
52E d4y

d@]2dac1g0f adcBl
d~y!]l#

dBm
b ~x!

3~M 21!ca~y,z;B!U
z5y

52g0f abcE d4yPml
tr ~x2y!]l~M 21!ca

3~y,z;B!U
z5y

. ~5.6!

Here and below, derivatives act on the left argument
propagators. The identity~5.4! reads
2-10
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05E
V

dB~Jm
b ~x!1@DlFlm

b ~B!# tr~x!1Igh,m
b ~x;B!!

3~detM ~B!exp@2SYM~B!1~J,B!# ! ~5.7!

and yields the functional DS equation for the partition fun
tion Z(J),

2XDlFlm
b S d

dJD Ctr

~x!Z~J!5@Iqu,gh,m
b ~x;J!1Jm

b ~x!#Z~J!,

~5.8!

where DlFlm
b (d/dJ) is a cubic polynomial ind/dJ. The

quantum ghost current in the presence of the sourceJ is, by
Eq. ~5.6!,

Iqu.gh,m
b ~x;J![^Igh,m

b ~x;B!&J

52g0f abcE d4yPml
tr ~x2y!]lGca~y,z;J!U

z5y

.

~5.9!

Here we have introduced the ghost propagator in the p
ence of the sourceJ,

Gca~x,y;J![^~M 21!ca~x,y;B!&J , ~5.10!

where^O&J denotes the mean value ofO(B) in the presence
of the sourceJ,

^O&J5Z21~J!NE
V

dB detM ~B!O~B!

3exp@2SYM~B!1~J,B!#. ~5.11!

To obtain a closed system of equations, we need a
equation for the ghost propagatorGab(x,y;J). It contains a
term proportional tol1

21(B), so we must avoid integrating
by parts on B or introducing ghost sources~see Appendix B!.
Fortunately the functional DS equation forGab(x,y;J) fol-
lows from the trivial identityI 5M (B) M 21(B), that we
average withP(B)exp@(J,B)#,

d~x2y!dabZ~J!5E
V

DBMac~B!

3~M 21!xy
cb~B!P~B!exp@~J,B!#

5MacS d

dJD E
V

DB~M 21!xy
cb~B!P~B!

3exp@~J,B!#, ~5.12!

where Mac(d/dJ)52]2dac2g0f abc(d/dJm
b )]m . Here

P(B)5detM(B)exp@2SYM(B)# is the probability distribu-
tion, although the form of the DS equation for the gho
propgator is independent ofP(B). This gives the DS equa
tion for the ghost propagator
01600
-

s-

S

t

MacS d

dJD @Gcb~x,y;J!Z~J!#5d~x2y!dabZ~J!.

~5.13!

Equations~5.8! and~5.13! and formula~5.9! provide a com-
plete system of functional DS equations for the partiti
function Z(J) and the ghost propagatorGcb(x,y;J).

VI. FUNCTIONAL DS EQUATION FOR GLUON
AND GHOST PROPAGATORS

We change the variable fromZ(J)5expW(J) to the ‘‘free
energy’’ W(J). For the ghost propagator we obtain

MacS dW

dJ
1

d

dJDGcb~x,y;J!5d~x2y!dab. ~6.1!

We again change variables by Legendre transformation f
the free energyW(J) to the quantum effective action

G~Bcl!5JxBcl,x2W~J!, ~6.2!

where the new variableBcl,m
a (x) is defined by

Bcl,m
a ~x;J![

dW~J!

dJm
a ~x!

5
1

Z

dZ~J!

dJm
a ~x!

5^Bm
a ~x!&J . ~6.3!

It is identically transverse,Bcl,m5Bcl,m
tr , and takes values in

V becauseBcl(J)5^B&J is an average with a positive prob
ability, N detM(B)exp(B,J), over the convex regionV. Inver-
sion of Bcl5Bcl(J) to obtainJ5J(Bcl) is possible because
the gluon propagator in the presence of the sourceJ,

Dxy~J![^~Bx2^Bx&J!~By2^By&J!&J5
]2W

]Jx]Jy
5

]By~J!

]Jx
,

~6.4!

is a positive matrix. The gluon propagator is expressed
terms of the Legendre-transformed variablesB andG(B) by

Dxy
21~B!5

]2G~B!

]Bx]By
. ~6.5!

Here and below, we writeB instead ofBcl . The gluon propa-
gator and its inverse are identically transvers
]lDlm(x,y;B)50.

Under the Legendre transformation, derivatives transfo
according to

d

dJl
a~x!

5S D d

dBD
l

a

~x![E d4yDlm
ab ~x,y;B!

d

dBm
b ~y!

,

~6.6!

as one sees from Eq.~6.4!. In terms of the Legendre trans
formed variables, the DS equation~6.1! for the ghost propa-
gator reads
2-11
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d~x2y!dab5MacS B1D d

dBDGcb~x,y;B!

5Mac~B!Gcb~x,y;B!

2g0f adcE dzDmn
de~x,z;B!

d

dBn
e~z!

]m

3Gcb~x,y;B!, ~6.7!

where Gcb(x,y;B)[Gcb@x,y;J(B)# is the ghost propagato
expressed in terms of the sourceB. Finally, instead of
Gab(x,y;B), we take as the new unknown variable the
verse ghost propagatorGgh

ab(x,y;B) defined by

Ggh,xy~B![Gxy
21~B!

↔E dyGgh
ab~x,y;B!Gbc~y,z;B!

5d~x2z!dac. ~6.8!

We substitute

]

]Bz
Gxy~B!52Gxu~B!

]Ggh,uv~B!

]Bz
Gvy~B! ~6.9!

into the previous DS equation, and multiply on the right
the matrixGgh,yw to obtain the functional DS equation for th
inverse ghost propagator

Ggh
ab~x,y;B!5Mab~B!d~x2y!

1g0f adcE dzduDmn
de~x,z;B!]m

3Gc f~x,u;B!
dGgh

f b~u,y;B!

dBn
e~z!

, ~6.10!

that is represented diagrammatically in Fig. 2. He

G-1(x, y; B) = x y

K(2)x y+

FIG. 2. The functional DS equation~6.10! for the complete
ghost propagatorG(x,y;B) in the presence of the sourceB. The thin
line is the tree-level term. The heavy line with~without! the arrow
is the complete ghost~gluon! propagatorG(x,y;B) (D(x,y;B)) in
the presence of the sourceB. The circle is the complete ghost-ghos
gluon vertex in the presence of the sourceB.
01600
-

dGgh
f b(u,y;B)/dBn

e(z) is the complete ghost-ghost-gluon ve
tex in the presence of the source.

We make the same changes of variable in the functio
DS equation~5.8! for Z(J)5exp@W(J)#. We evaluate9

¹lFlk
a S d

dJD ~x!exp@W~J!#

5exp@W~J!#F]l~]lBk
a2]kBl

a1g0f abcBl
bBk

c

1Dlk
bc~x,x,B!!1 . . . 1g0f abcS Bl

b1
d

dJl
bD

3g0f cde@Bl
dBk

e1Dlk
de~x,x,B!#G

5exp@W~J!#@¹lFlk
a ~B!1Iqu.gl,m

b ~x;B!#, ~6.11!

whereBm5dW(J)/dJm and Dmn(x,y;B)5dBn(x)/dJm(y).
The quantum gluon current in the presence of the sourceB is
defined by

Iqu.gl,k
b ~x;B![S g0f abc~dlmdnk1dlkdmn22dlndkm!

3¹l
bdDmn

dc ~x,z;B!U
z5x

2g0
2f abcf cde

3E dydzdwDlr
b f ~x,y;B!Dls

dg~x,z;B!

3Dkt
eh~x,w;B!Grst

f gh~y,z,w;B! D tr

. ~6.12!

Here

Grst
f gh~y,z,w;B![

d3G~B!

dBr
f ~y!dBs

g~z!dBt
h~w!

~6.13!

is the complete triple-gluon vertex in the presence of
sourceB. This gives the functional DS equation forG(B),

dG~B!

dBm
a ~x!

52¹lFlm
a ~B!~x!2Iqu.gh,m

b ~x;B!2Iqu.gl,m
b ~x;B!,

~6.14!

where, by Eq.~5.9!,

Iqu.gh,m
b ~x;B![Iqu.gh,m

b @x;J~B!#

52g0f abcE d4yPml
tr ~x2y!]lGca~y,z;B!U

z5y

~6.15!

is the quantum ghost current in the presence of the sourcB.

9In this section we write¹m
ac(A)5]mdac1g0f abcAm

b for the
gauge-covariant derivative instead ofDm

ac(A) to avoid confusion
with the gluon propagatorD.
2-12
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A more explicit form of this equation is obtained by di
ferentiating with respect toBt

g(u), which yields a functional
DS equation for the inverse gluon propagator,

d2G~B!

dBk
a~x!dBt

g~u!
5~2dkt~¹l¹l!ag1~¹k¹t!

ag22g0f acgFkt
c ! tr

3d~x2u!1~ghost loop!

1~1 gluon loop!1~ tadpole!

1~2 gluon loops!, ~6.16!

where

~ghost loop![2g0f abcS E dydz]kGbd~x,y;B!

3Gce~x,z;B!
dGgh

de~y,z;B!

dbt
g~u!

D tr

, ~6.17!

~1 gluon loop![E dydz

3~g0f abc~dlmdkn1dkldmn22dlndkm!

1¹l
bdDmr

de~x,y;B!Dns
c f ~x,z;B!! tr

3Grst
e f g~y,z,u;B!, ~6.18!

~ tadpole![g0
2f abcf bgd~~dlmdkn1dkldmn22dlndkm!

3d~x2u!Dmn
dc ~x,x;B!! tr, ~6.19!

where superscript ‘‘tr’’ means projection onto transver
parts on (x,k) and (u,t). The complete ghost-ghost-gluo
vertex in the presence of the sourceB, dGgh

de(y,z;B)/dBt
g(u),

reappears in Eq.~6.17!, and the complete triple-gluon verte
Grst

e f g(y,z,u;B) in the presence of the sourceB is defined in
Eq. ~6.13!. We do not write out explicitly the two-loop term
but all terms are expressed graphically in Fig. 3.

The pair of equations~6.10! and ~6.16! are a complete
system of functional DS equations for the quantum effect
action G(B), and for the inverse ghost propagat
Ggh

ab(x,y;B). These functional equations are converted
equations for the coefficient functions by differentiating
arbitrary number of times with respect toB, and then setting
B50.

VII. HORIZON CONDITION AND RENORMALIZATION

Solutions are subject to thesupplementary conditionsthat
both the gluon and ghost inverse propagat
d2G(B)/dBk

a(x)dBl
b(y) and Ggh

ab(x,y;B) be positive matri-
ces. Another supplementary condition results from the f
discussed in Appendix A, that in a space of high-dimensi
entropy favors a high concentration of population very n
the boundary]V of the bounded regionV. The boundary
01600
e

o

s

t,
,
r

occurs where the lowest nontrivial eigenvalue of t
Faddeev-Popov operatorM (B) vanishes. Thus, for typica
configurationsB, the positive operatorM (B) has a very
small eigenvalue and, in fact, it has a high density of eig
valuesr(l,B) at l50, per unit Euclidean volumeV, as
compared to the Laplacian operator@25#. This makes the
ghost propagator,G(x2y)dab5^(M 21)ab(x,y;B)&, long
range, so in momentum space it is enhanced atp50 com-

pared to 1/p2, limp→0@p2G̃(p)#2150 @1,25#. This property
will provide a nonperturbative formula for the ghos

propagator renormalization constantZ̃3 that moreover is con-
sistent with the perturbative renormalization group.

The gluon and ghost propagators, with sourceB50, are
given in momentum space by

D(-1)(x, y; B) = 

K(2)x y

x y

x y

x y

x yyyy

K(2)x y

+

+

+

+

+

FIG. 3. The functional DS equation~6.16! for the complete
gluon propagatorD(x,y;B) in the presence of the sourceB. The
thin line is the tree-level term. The heavy line with~without! the
arrow is the complete ghost~gluon! propagator G(x,y;B)
(D(x,y;B)) in the presence of the sourceB. The circles are com-
plete 3- and 4-vertices in the presence of the sourceB.
2-13



e

ell
s
o

(

is

nt

. I
liz

ion

u-

l-

a-
the
of

,

ith
the

he
t

rtur-

DANIEL ZWANZIGER PHYSICAL REVIEW D 69, 016002 ~2004!
Dmn~x!5~2p!24E d4kD̃mn~k!exp~ ik•x!,

G~x!5~2p!24E d4pG̃~p!exp~ ip•x!, ~7.1!

and the ghost-gluon vertex by

f abcGm~x2y,y2z![
dGgh

ac~x,z;B!

dBm
b ~y!

U
B50

5 f abc~2p!28E d4pd4qG̃m~p,q!

3exp@ ip•~x2y!1 iq•~y2z!#.

~7.2!

The DS equation for the ghost propagatorG̃(p), obtained
from Eq. ~6.10! by settingB50, reads

G̃21~p!5p22Ng0ipm~2p!24E d4kD̃mn~k!

3G̃~p2k!G̃n~p2k,p!. ~7.3!

All quantities are unrenormalized, and we have us
f abcf cde5Ndae for SU~N!.

Factorization of the external ghost momentum is a w
known special property of the Landau gauge that make
less divergent than other gauges. To make it explicit, we n

that the ghost-ghost-gluon vertexG̃m(p,q) is a function of
two linearly independent 4-vectors. It is also transverse,p

2q)mG̃m(p,q)50, because the transversality condition
imposed on-shell, so it may be written

G̃m~p,q!52 ig0Pmn
tr ~k!pnV~p2,k2,q2!, ~7.4!

wherek[q2p. The scalar vertex functionV(p2,k2,q2) is
symmetricV(p2,k2,q2)5V(q2,k2,p2) in consequence of the
symmetryGac(x,z;B)5Gca(z,x;B). The DS equation for the
ghost propagator reads

G̃21~p!5p22Ng0
2pmpn~2p!24E d4kD̃mn~k!G̃~p2k!

3V@~p2k!2,k2,p2#, ~7.5!

where the factorization of the two external ghost mome
pm andpn is now explicit.

This equation is divergent and must be renormalized
perturbative renormalization theory, quantities renorma
according to

Dmn5Z3DR,mn ; G5Z̃3GR ; V5Z̃1
21VR ;

g05Z̃1~ Z̃3Z3
1/2!21gR , ~7.6!

and in Landau gauge the additional special property
01600
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Z̃151; V5VR ; g05~ Z̃3Z3
1/2!21gR ~7.7!

holds. In terms of renormalized quantities, the DS equat
for the ghost propagator reads

G̃R
21~p!5p2Z̃32NgR

2pmpn~2p!24E d4kD̃R,mn~k!

3G̃R~p2k!VR@~p2k!2,k2,p2#. ~7.8!

To avoid infrared difficulties, the ghost propagator is us
ally renormalized at some finite renormalization massm.
However, the horizon condition, limp2→0@p2G(p)#2150, al-
lows us to renormalize atp50. It tells us that in the DS
equation~7.8!, the first term,p2Z̃3 , must be cancelled by the
term of orderp2 in the second term. This gives a renorma
ization condition atp50, in the form of an equation forZ̃3 ,

Z̃35NgR
2~2p!24E

uku,L
d4kp̂mp̂nD̃R,mn~k!

3G̃R~k!VR~k2k2,0!, ~7.9!

where L is an ultraviolet cutoff. We have setp50 in the
integrand, and the integral is independent of the directionp̂.
This statement of the horizon condition shows that it is fl
grantly nonperturbative because, in perturbation theory,
left-hand side is of order 1, but the right-hand side is
leading ordergR

2.
The last equation gives the renormalization-group flow

L
]Z̃3

]L
5NgR

2~pmpn /p2!~2p!24L4D̃R~L!G̃R~L!

3VR~L2,L2,0!E d3k̂~dmn2 k̂mk̂n!

5NgR
2~4p!22~3/2!L4D̃R~L!G̃R~L!VR~L2,L2,0!.

~7.10!

As a check, we note that if we take the tree valuesD̃R(L)
5G̃R(L)51/L2, andV(p2,k2,q2)51, we obtain

L
]Z̃3

]L
5~4p!22~3/2!Ng0

21O~g0
4!. ~7.11!

The term of orderg0
2 is scheme-independent, and agrees w

the standard one-loop expression in Landau gauge. Thus
horizon condition provides a normalization condition for t
ghost propagator atp50 that is in flagrant disagreemen
with perturbation theory, but nevertheless satisfies the pe
bative renormalization-group flow equation.

We substitute Eq.~7.9! into the DS equation~7.8! for the
ghost propagator, and obtain
2-14
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G̃R
21~p!5NgR

2pmpn~2p!24E d4kD̃R,mn~k!

3$G̃R~k!VR~k2,k2,0!

2G̃R~p2k!VR@~p2k!2,k2,p2#%. ~7.12!

This is a finite, renormalized DS equation for the gho
propagator. It is invariant under the renormalization group
the sense that it is form-invariant under the transformati
~7.6! and~7.7! of perturbative renormalization theory in Lan
dau gauge. This equation, from which the tree termk2 has
been eliminated by the horizon condition, gives the gh
propagator an infrared anomalous dimensionaG , so it be-
haves likesG(k);(m2)aG/(k2)11aG in the infrared. This
puts QCD into a nonperturbative phase.

VIII. EXACT INFRARED ASYMPTOTIC LIMIT OF QCD

Recent solutions of the truncated coupled DS equati
for the gluon and ghost propagators yield ghost propaga
that are enhanced in the infrared, and gluon propagators
are infrared suppressed@3,17–23#. Typical values for the in-
frared asymptotic form of the gluon and ghost propagat
@20# and @21# are

Das~k!5m2aD/~k2!11aD'~k2!0.187/~m2!1.187,

Gas~k!5m2aD/~k2!11aG'~m2!0.595/~k2!1.595,
~8.1!

aG5(932A1201)/98'0.595, aD522aG , where aD and
aG are the infrared critical exponents of the ghost and glu
The gluon propagatorD̃(k) is so strongly suppressed atk

50 that it vanishesD̃(0)50. With D(x2y)5^A(x)A(y)&,
this corresponds to suppression of the low-frequency mo
of A(x) in the functional integral. The actual values of th
infrared critical exponents do not depend too strongly on
truncation scheme@20#. The salient infrared features are ea
ily understood. The cutoff of the functional integral at th
Gribov horizon is implemented in the DS equations by
horizon condition. It states that the ghost propagatorG(k) is
enhanced in the infrared or, equivalently, that the infra
critical exponent of the ghost is positive,aG.0. The DS
equations yieldaD522aG , so enhancement of the gho
causes suppression of the gluon in the infrared. This is
expression in the DS equations of the proximity of the G
bov horizon in infrared directions.

The results of calculation with the DS equations are in
least qualitative agreement with numerical evaluations
gluon and ghost propagators@13,55–59#, which, on suffi-
ciently large lattices, yield a gluon propagatorD(k) that
turns over and decreases ask decreases@60–67# @possibly
extrapolating toD(0)50 at infinite lattice volume#, with a
turnover pointkmax that scales like a physical mass@68#. The
only explanation for this counterintuitive turnover is th
strong suppression of infrared components by the proxim
of the Gribov horizon in infrared directions. The agreeme
of DS and numerical calculations gives us confidence that
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have a reliable picture of the gluon and ghost propaga
including, in particular, the infrared region.

One may use the above expressions for the asymp
propagators to estimate the convergence and magnitud
the various terms on the right-hand side of the DS equatio
simply by counting powers of momentum. The domina
terms in the infrared region are the ones that contain the m
ghost propatorsG(k) in the loop integrals. The infrared limi
of the truncated DS equations are found to have the follo
ing remarkable properties.

~i! The infrared limit of the DS equations decouples fro
the degrees of freedom associated with finite momentum
is free of ultraviolet divergences. Technically, what is fou
is that when the external momentake are small compared to
LQCD, then the internal loop momentaki scale like theke ,
and the contribution when theki are large compared toke

may be neglected. As a result, when theke are small, one
may replace the propagators and vertices in internal loop
their infrared asymptotic formsGas(k) andDas(k), etc. The
loop contributions that are dominant in the infrared are

ones that contain the most ghost propagatorsG̃(k).10 The
asymptotic infrared limit of the DS equations is highly co
vergent in the ultraviolet becauseGas(k) is strongly sup-
pressed there. In fact the asymptotic gluon equation, gi
below, is finite without renormalization, and the asympto
ghost equation is finite with the renormalization~7.12!. We
conclude that the DS equations possess an infra
asymptotic limit that is well-defined, and decoupled fro
propagators and vertices at finite momentum.

~ii ! The terms that are dominant in the infrared limit com
from the action 2Tr ln M(B), whereas the subdominan
terms come from Yang-Mills actionSYM(B). It is instructive
to classify terms that are dominant or subdominant on
right-hand side of the DS equations accordingly as th
originate with the action,2Tr ln M(B), or with the Yang-
Mills action, SYM(B). Because the ghost propagator is e
hanced in the infrared while the gluon propagator is s
pressed, one finds that all subdominant terms and only

10For the ghost-propagator equation~7.3! or ~7.12!, both terms on
the right-hand side are dominant, and both originate from the ac
2Tr ln M(B). The gluon-propagator equation~6.16!, with source
B50, reads

D̃mn
21~k!5~dmnk

22kmkn!1~gluon loops!

1Ng2~2p!2dE ddpG̃(p)1D̃mn
21~k!

5~dmnk22kmkn!1~gluon loops!1Ng2~2p!2d

3E ddpG̃~p1k!~p1k!mG̃~p!Gn~p,p1k!. ~8.2!

The tree term, of orderk2, is subdominanant in the infrared com
pared to (Das)21(k);(k2)20.187. The dominant term on the right
hand side is the ghost loop that originates from the act
2Tr ln M(B), whereas the subdominant terms—namely the t
term, the gluon loop, and the two-loop term—all originate from t
Yang-Mills actionSYM(B).
2-15
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subdominant terms disappear if one setsSYM(B)50 in the
derivation of the DS equations given in Secs. V and VI.

Because the solutions of the truncated DS equations
consistent with numerical evaluations of the gluon and gh
propagators, the effects of truncation should not be too d
tic. We therefore expect that properties~i! and ~ii ! of the
truncated DS equations hold also for the solutions of
exact, untruncated, DS equations, that is, that there exist
exact infrared asymptotic limit of the DS equations that
obtained by settingSYM(B)50. This implies that the cutoff
at the Gribov horizon suffices to make the functional integ
overB converge, even though exp@2SYM(B)# is replaced by
1.

We now write in functional form the exact infrare
asymptotic DS equations~without truncation! that are ob-
tained by settingSYM(B)50. We designate the generatin
functionals where the coefficient functions are given th
asymptotic forms byĜ(B) and Ĝgh(x,y;B). The infrared
asymptotic gluon and ghost inverse propagators are de
nated (D̂)xy

21(B)5]2Ĝ(B)/]Bx]By and (Ĝ)xy
21(B)

5Ĝgh,xy(B). The functional DS equation~6.10! for the ghost
propagator is unchanged in form, as represented in Fig.

Ĝgh
ab~x,y;B!5~2]2dab2g0f acbBm

c ]m!d~x2y!

1g0f adcE dzduD̂mn
de~x,z;B!]mĜc f~x,u;B!

3
dĜgh

f b~u,y;B!

dBn
e~z!

. ~8.3!

In the infrared asymptotic limit, only the ghost loop contri
utes to the functional DS equation for the gluon propaga
~6.16!, which reads

~D̂21!mn
ag~x,y;B!52g0f abcS E dzdu]mĜbd~x,u;B!

3Ĝce~x,z;B!
dĜgh

de~u,z;B!

dBn
g~y!

D tr

, ~8.4!

and is diagrammed in Fig. 4.

Das,-1(x, y; B) = K(2)x y

FIG. 4. The functional DS equation~8.4! for the complete in-

frared asymptotic gluon propagatorD̂(x,y;B) in the presence of the
sourceB. There is no tree term nor any gluon loop, but only t
ghost loop. The heavy line with the arrow is the complete infra

asymptotic ghost propagatorĜ(x,y;B) in the presence of the sourc
B. The functional DS equation~8.6! for the complete infrared

asymptotic ghost propagatorĜ(x,y;B) in the presence of the sourc
B is as in Fig. 2.
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An enormous simplification is apparent here, because
last equation allows an exact elimination of the asympto
functional gluon propagatorD̂mn

ab(x,y;B). The one remaining

unknown is the inverse ghost propagatorĜgh,xy(B).
When supplemented by the horizon condition~7.9!, Eqs.

~8.3! and~8.4! are a finite system when expressed in terms
renormalized quantities. Indeed, withZ̃151, renormalization
of the exact functional asymptotic equations is accomplis
by writing

B5Z3
1/2BR ; Ĝ~B!5ĜR~BR!;

Ĝgh~x,y;B!5Z̃3
21Ĝgh,R~x,y;BR!;

g05~ Z̃3Z3
1/2!21gR ;

Ĝ~B!5Z̃3ĜR~BR!;

D̂mn~x,y;B!5Z3D̂R,mn~x,y;BR!. ~8.5!

Upon making these substitutions, the functional equation
the ghost propagator reads

Ĝgh,R
ab ~x,y;BR!5~2]2dabZ̃32gRf abcBR,m

c ]m!d~x2y!

1gRf adcE dzduD̂R,mn
de ~x,z;BR!]m

3ĜR
c f~x,u;BR!

dĜgh,R
f b ~u,y;BR!

dBR,n
e ~z!

, ~8.6!

whereZ̃3 is given in Eq.~7.9!, and the renormalized infrare
asymptotic functional gluon propagator is given by

~D̂R
21!mn

ag~x,y;BR!52gRf abcS E dzdu]mĜR
bd~x,u;BR!

3ĜR
ce~x,z;BR!

dĜR,gh
de ~u,z;BR!

dBR,n
g ~y!

D tr

.

~8.7!

When Eq.~8.6! is expanded in a functional power series
B, Z̃3 appears only in the equation of order (B)0 that deter-
mines the ghost propagator with sourceB50. This equation
is finite as in the preceding section. All the higher ord
equations are independent ofZ̃3 and finite. Equations~8.6!
and~8.7! are a complete system of functional DS equatio
diagrammed in Figs. 4 and 2, that are free of divergenc
and that define the asymptotic infrared theory. The glu
propagator may be eliminated exactly from Eq.~8.7!, and the
asymptotic infrared theory is defined by the functional

verse ghost propagatorĜgh,R(x,y;BR).
With Z̃3 given in Eq.~7.9!, these equations are invarian

under the finite renormalization-group transformations

d

2-16
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BR5z3
1/2BR8 ; ĜR~BR!5ĜR8 ~BR8 !;

Ĝgh,R~x,y;BR!5 ẑ3
21Ĝgh,R8 ~x,y;BR!;

gR5~ z̃3z3
1/2!21gR8 ;

ĜR~BR!5 z̃3ĜR8 ~BR8 !;

D̂mn~x,y;BR!5z3D̂R,mn8 ~x,y;BR8 !. ~8.8!

The quantitygR
2DR(k)GR

2(k)5g0
2D(k)G2(k) is invariant un-

der the renormalizations~7.6! and ~7.7!. Consequently a
scheme-independent running coupling constant, charact
tic of the Landau gauge, may be defined@17# by a land(k)
[(4p)21g0

2D(k)G2(k)(k2)3. The asymptotic infrared
theory is characterized, in addition to the infrared critic
exponentsaG and aD , by a land(0)'8.915/N, for color
SU(N) @20#.11

The limit, in which the Yang-Mills actionSYM(B) is sys-
tematically neglected, is a continuum analogue of the lat
strong-coupling limit. Indeed if one rescales the gauge c
nection by the change of variableA8[g0A, the effective
action, from which the DS equations were derived, reads

S~A!52Tr ln M ~A!1SYM~A!

52Tr ln M 8~A8!1~g0
2!21SYM8 ~A8!, ~8.9!

whereM 8(A8) andSYM8 (A8) are independent ofg0 . Neglect
of SYM(A) is the same as settingg0

2250 or, after renormal-
ization, gR

2250. The asymptotic infrared limit is describe
by the effective action

Ŝ52Tr ln M ~A!. ~8.10!

If one extends the nonperturbative formulation to
BRST-invariant theory, as outlined in Appendix B, th
BRST-invariant local action reads

S5E d4x@s~]mc̄Am!1SYM~A!#, ~8.11!

where the BRST operator acts according to

sAm5Dmc; sc52c2; sc̄5l; sl50. ~8.12!

The asymptotic infrared limit is described by the loc
BRST-invariant action

11A scheme-independent running coupling constant may be
fined in the Coulomb gauge@69# by aCoul(k)5(4p)21@12N/(11N

22Nf)#k2Ṽ(k), with Nf quarks in the fundamental representatio

whereṼ(uku)[g0
2 limk4→`D44(k,k4). By contrast witha land(k) that

is finite atk50, it appears thataCoul(k) diverges like 1/k2 at small
k, in a realization of infrared slavery that features a string tens
V(r );sCoulr at larger @70# and @71#.
01600
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Ŝ[E d4xs~]mc̄Am!5E d4x~2]mc̄Dmc1]mlAm!,

~8.13!

and the infrared asymptotic correlators satisfy the Slavn
Taylor identities.

IX. MASS GAP

The actionŜ that describes the infrared asymptotic theo
is not only BRST invariant, it is BRST exact,Ŝ5sX, and
defines a topological quantum field theory. To see what
properties may be, recall thatŜ describes the asymptotic in
frared limit, in which external momentak were small com-
pared toLQCD, so it is the limit LQCD→`. If QCD is a
theory with a mass gap of orderLQCD, then physical corre-
lation lengths should vanish in the asymptotic theory,R
;LQCD

21 →0.
To show this, consider a gauge-invariant correlator,

example

C~x!5^Fx
2~A!F0

2~A!&

5NE
V

dAdcdc̄dlFx
2~A!F0

2~A!exp~2Ŝ!, ~9.1!

with xÞ0, where Lorentz indices are suppressedF2(x)
→Fkl

a (x)Fmn
a (x), and the connected part is understoo

Since the action is topological, we may make any trans
mation that commutes withs, without changing expectation
values. As an example, consider the change of variable
responding to a coordinate transformationxm8 5xm8 (x) of A
andc, leaving c̄ andl unchanged,

Am8 ~x8!5
]xl

]x8m Al~x!; c8~x8!5c~x!;

c̄8~x!5 c̄~x!; l8~x!5l~x!. ~9.2!

~The result is the same ifc̄ andl are also transformed.! The
infinitesimal form of this change of variable, withx8m5xm

2jm(x), is given by

Am~x!→Am8 ~x!5Am~x!1dAm~x!

5Am~x!1jl]lAm~x!1]mjlAl~x!,

c~x!→c8~x!5c~x!1dc~x!5c1c~x!1jl]lc~x!,
~9.3!

c̄~x!→ c̄8~x!5 c̄~x!, l~x!→l8~x!5l~x!.

Upon making this change of variable in the functional in
gral, we obtain

C~x!5NE
V8

dAdcdc̄dlFx
2~A8!F0

2~A8!

3exp@2Ŝ~A8,c8,c̄,l!#, ~9.4!

whereA8[A1dA, and

e-

,

,
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Ŝ~A8,c8,c̄,l!5E d4x@2]mc̄Dm~A8!c81]mlAm8 #.

~9.5!

The integration inA space is cut off at the Gribov horizo
]V8 corresponding toM (A8). Integration over the ghos
fields gives detM(A8) which vanishes on the boundary]V8.
One may change the cutoff to the Gribov horizon]V corre-
sponding toM (A) because the error is only of orderj2.
Moreover, Fx

2(A8)F0
2(A8) is the coordinate transform o

Fx
2(A)F0

2(A), which we write as

Fx
2~A8!F0

2~A8!5@11jl]l1L~]j!#Fx
2~A!F0

2~A!,
~9.6!

whereL(]j) is a numerical matrix that is linear in]ljm and
acts on the tensorial indices ofFx

2(A) F0
2(A), and we have

C~x!5@11jl]l1L~]j!#NE
V

dAdcdc̄dlFx
2~A!F0

2~A!

3exp@2Ŝ~A8,c8,c̄,l!#. ~9.7!

One may verify that thes operator commutes with the coo
dinate transformation,sA85D(A8)c8, so

Ŝ~A8,c8,c̄,l!5E d4xs~]mc̄Am8 !5Ŝ~A,c,c̄,l!1sdX,

~9.8!

wheredX5*d4x]mc̄dAm . Thus the variation ofŜ is alsos
exact, and we have

C~x!5@11jl]l1L~]j!#NE
V

dAdcdc̄dlFx
2~A!F0

2~A!

3~12sdX!exp@2Ŝ~A,c,c̄,l!#

5@11jl]l1L~]j!#^Fx
2~A!F0

2~A!~12sdX!&. ~9.9!

Gauge-invariant operators ares invariant,

^Fx
2~A!F0

2~A!sdX&5^s@Fx
2~A!F0

2~A!dX#&50,
~9.10!

which vanishes because it is the expectation value of
s-exact observable. This gives C(x)5@11jl]l

1L(]j)#C(x), so C(x) is invariant under arbitrary coordi
nate transformation. Thus it is a number independent ofx. It
vanishes forx5`, so C(x)50 for xÞ0. The argument
holds for a generic gauge-invariant correlator.

We have shown that the correlation lengthR of gauge-
invariant observables vanishes in the gauge-invariant , ph
cal sector of asymptotic theory defined byŜ. In other words,
the mass gap is infinite,M51/R5`, in the physical sector
of the asymptotic theory. It is tempting to conclude from th
that there is a finite mass gap in the physical sector of
exact nonasymptotic theory, otherwise we would have
tained nonzero correlators in the infrared limit. Howev
local gauge-invariant observables likeF2(x) are composite
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operators, and so far we have discussed only the correla
of elementary fields. To establish that the mass gap in
nonasymptotic theory is finite, one should check that the c
relators of local gauge-invariant operators in the limit
large separation are also given by the infrared asympt
theory defined byŜ.

X. QUARKS

So far we have neglected quarks, but they may be
cluded in the time-independent Fokker-Planck equation@3#.
The derivation of the nonperturbative Faddeev-Popov f
mula, including quarks, proceeds as in Secs. II–IV,
changing quark variables according toc5g21C and c̄

5C̄g . The result is that the quark actionSqu

5* d4xc̄(gmDm1M )c gets added to the gluon actionS or
S. According to the latest DS calculations that includeNf
53 flavors of dynamical quarks, the quark-loop term in t
DS equation for gluons is subdominant in the infrared@72#.
Provided that the effects of truncation are not too drastic,
quark contribution will also be subdominant in the infrar
limit of the exact functional DS equation for the gluo
propagator. In this case the inclusion of quarks does not
turb the simplicity of the gluon sector described byŜ.

If the intrinsic mass of the quarks is finite, then the qua
sector does not appear in the asymptotic infrared limit. If
instrinsic mass of the quarks is zero, the pion is a mass
Goldstone boson associated with spontaneous breakin
chiral symmetry. However, even in this case, in the~trun-
cated! DS equation for the quark propagator given in@72#,
the infrared limit of the quark propagator doesnot decouple
from the degrees of freedom associated with finite mom
tum ~in contrast to the gluon!. This is to be expected becaus
the parameters that characterize the dynamics of mas
quarks,^c̄c& and f p , are finite multiples ofLQCD, but the
infrared asymptotic limit corresponds toLQCD→`. Never-
theless one may ask if chiral symmetry is broken in t
asymptotic infrared theory. The chiral-symmetry breaki
parameter is given bŷc̄c&5p^r(0,A)&, wherer(l,A) is
density of eigenvaluesl, per unit volume, of the Dirac op
erator ig•D(A) in the configurationA. In the infrared
asymptotic limit, the expectation valuêr(l,A)& is evalu-
ated in the theory defined by the actionŜ. One would expect
that it gives^c̄c&5`, since this corresponds toLQCD5`.
Thus in the theory defined byŜ, the average density of level
per unit volume^r(0,A)& of the Dirac operatorig•D(A)
should be infinite atl50.

The infrared asymptotic theory is far simpler than fu
QCD and provides a valuable model in which the charac
istic features of the confining phase, as described in the L
dau gauge, are revealed. To understand confinement in
asymptotic theory, note that while the infrared compone
of A(x) are severely suppressed by the cutoff at the Grib
horizon, its short-wavelength components fluctuate wid
because the factor exp@2SYM(A)# is replaced by 1. Indeed
the infrared asymptotic gluon propagatorDas(k), Eq. ~8.1!,
is strongly enhanced in the ultraviolet. This suggests a p
2-18
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ture of confinement in the infrared asymptotic theory
which the short-wavelength fluctuations ofAa(x) in color
directions cause the decoherence of any field that carri
color charge. Indeed transport of a color vectorq(t) along a
path zm(t) is described byP exp(g0*Amżmdt). In a highly
random fieldAm

b (x), superposition of different paths is inco
herent, so a field that bears a color charge does not pr
gate. In full QCD in Landau gauge, the dominant fluctuatio
of A(x) responsible for confinement should be on the len
scaleLQCD

21 . This picture of confinement is quite differen
from the scenario in Coulomb gauge, where confinemen
color charge is attributed to a realization of infrared slav
by an instantaneous, long-range color-Coulomb poten
@73,70,71#.

XI. CONCLUSION

We briefly review the salient features of the nonpertur
tive continuum Euclidean formulation of QCD develop
here.

~i! In Landau gauge one may integrate the Faddeev-Po
weight over the Gribov regionV instead of over the funda
mental modular regionL.

~ii ! The form of the Dyson-Schwinger equations is u
changed by the cutoff of the functional integral on t
boundary]V of the Gribov region because the Faddee
Popov determinant vanishes there. This simplicity makes
DS equations the method of choice for nonperturbative
culations in QCD.

~iii ! The restriction to the Gribov region providessupple-
mentary conditionsthat govern the choice of solution of th
DS equations. Two conditions are the positivity of the glu
and ghost propagators. Another is thehorizon condition
which is the statement that the ghost propagatorG(k) is
more singular than 1/k2 in the infrared, limk→0@k2G(k)#21

50. This fixes the ghost-propagator renormalization cons
Z̃3 to the value~7.9!. Although Eq.~7.9! is in flagrant dis-
agreement with the perturbative expression forZ̃3 , neverthe-
less it is consistent with the perturbative renormalizat
group.

~iv! Implementation of the horizon condition in the D
equations puts QCD into a nonperturbative phase.

~v! Recent solutions of the truncated DS equations p
sess an asymptotic infrared limit that is obtained by syste
atically neglecting the terms in the DS equations that co
from the Yang-Mills action SYM(A), but keeping the
Faddeev-Popov determinant and the cutoff at the Gribov
rizon. If the effects of truncation are not too drastic, this a
gives an exact asymptotic infrared limit of QCD that is
continuum analogue of the strong-coupling limit in latti
gauge theory. This is possible because convergence of tA
integration without the Yang-Mills factor exp@2SYM(A)#
may be assured by the cutoff at the Gribov horizon.

~vi! The asymptotic infrared limit of QCD is defined b
the functional DS equations~8.6! and~8.7!. The gluon propa-
gator may be eliminated exactly from Eq.~8.7!, and the
asymptotic infrared theory is completely characterized by
functional inverse ghost propagatorĜgh(x,y;B).
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~vii ! There exists a local BRST-invariant extension of t
present nonperturbative formulation, sketched out in App
dix B. This ensures that the Slavnov-Taylor identities hold
the nonperturbative theory. The asymptotic infrared limit
QCD, valid at distances large compared to 1/LQCD, is de-
scribed by the BRST-exact action,Ŝ5*d4xs(]mc̄Am), that
defines a topological quantum field theory with an infin
mass gap.

~viii ! The extension of the nonperturbative formulation
include the quark action*d4xc̄(gmDm1m)c is immediate.
The presence of quarks does not disturb the asymptotic
frared limit of the gluon sector.

~ix! The asymptotic infrared theory provides a simp
model in the Landau gauge in which the characteristic f
tures of confinement may be understood. A picture of c
finement of color charge emerges, in which the highly ra
dom fluctuations of the gluon fieldA cause the superpositio
from the transport of color charge along different paths
interfere incoherently, so the fields that bear a color cha
do not propagate.
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APPENDIX A: RESOLUTION OF PARADOX

At first sight it is surprising that expectation-values tak
over the fundamental modular regionL and the Gribov re-
gion V are equal. In this appendix we show how this parad
is resolved.

1. Argument of Semenov-Tyan-Shanskii and Franke

The proof by Semenov-Tyan-Shanskii and Franke@4# that
the Gribov regionV and the fundamental modular regionL
are different, substantiated by instances given in@6#, was
long considered to disprove Eq.~1.3!. We review the argu-
ment of@4#. Let g(t)5exp(tv) be a one-parameter subgrou
of the local gauge group with generatorv5v(x). To be
definite, we normalizev to (v,v)5V, whereV is the Eu-
clidean volume. Let Am(t,v,B)[g(t)21Bmg(t)
1g(t)21]mg(t) be the gauge-transform ofBm under g(t)
5exp(tv), soA(0,v,B)5B, and letFB(t,v) be the Hilbert
square norm ofA(t,v,B), regarded as a function oft andv
for fixed B,

FB~ t,v!5iA~ t,v,B!i25E d4xuAm~ t,v,B!u2. ~A1!

The fundamental modular regionL is the set ofB such that
FB(0,v) is an absolute minimum,FB(0,v)<FB(t,v) for all
v and t. The Gribov regionV is the set ofB for which
FB(0,v) is a relative minimumFB(0,v)<FB(t,v) for all v
and sufficiently smallt.
2-19
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We differentiateFB(t,v) with respect tot, and useAm8
5Dm(A)v[Dmv,

FB8 ~ t,v!52~Dmv,Am!52~]mv,Am!522~v,]mAm!,

FB9 ~ t,v!52~]mv,Dmv!522~v,]mDmv!,
~A2!

FB-~ t,v!52~]mv,Dmv3v!,

FB-8~ t,v!52@]mv,~Dmv3v!3v#,

whereX3Y5@X,Y# is the commutator in the Lie algebra
These formulas show that the interior ofV consists of all
transverse configurationsB, ]•B50, such that all nontrivial
eigenvalues ofM (B)52]mDm(B) are strictly positive,
ln(B).0. Moreover, forB on the boundary]V, M (B) has
at least one nontrivial eigenvalue that vanishes,l1(B)50.

We specialize to the SU~2! group, so the commutatorX
3Y is the ordinary 3-vector cross product. The vector trip
product gives

FB-8~ t,v!52@]mv,~v•Dmvv2v2Dmv!#

52~]mv,v•]mvv!12@v,]m~v2Dmv!#

52~v•]mv,v•]mv!12@v,]m~v2!Dmv#

12~v,v2]mDmv!

5~1/2!@]m~v2!,]m~v2!#12@v•]mv,]m~v2!#

12~v2,v•]mDmv!

5~3/2!@]m~v2!,]m~v2!#12~v2,v•]mDmv!,

~A3!

where the dot is contraction on color indices.
Let B be a point on the Gribov horizon]V, soB is trans-

verse ]mBm50, and the Faddeev-Popov operat
2]mDm(B) is non-negative, but with at least one nontrivi
null eigenvalue,]mDm(B)v050, for somev0 . By Eq. ~A2!,
we haveFB8 (0,v0)5FB9 (0,v0)50. For B on ]V, it follows
that in generalFB(0,v) is not a local minimum on the gaug
orbit through B because, in general,FB-(0,v0)Þ0, so
FB(t,v0)2FB(0,v0) changes sign att50. By continuity
this implies that nearby points inside the Gribov regionV
cannot be absolute minima, even though they are rela
minima. They are Gribov copies insideV. This is the argu-
ment of@4#, and examples for whichFB-(0,v0)Þ0 are given
in @6#.

But let us evaluate the fourth derivative att50, in the
directionv0 . With ]mDm(B)v050, we have from Eq.~A3!,

FB-8~0,v0!5~3/2!E d4x@]m~v0
2!#2. ~A4!

This is the integral of a positive density, and we expect t
FB-8(0,v0) is large and positive.

The relevant question for comparing the expectation v
ues over V and over L is not whether these region
coincide—they do not—but whether the normalized av
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ages over these sets are equal in the thermodynamic l
Here we implicitly suppose a lattice discretization and co
figurations that are sampled from the Wilson ensemble
the thermodynamic limit, the probability may get conce
trated on a subset that consists of a boundary or part
boundary. The boundaries ofL and V may approach each
other in the thermodynamic limit fortypical configurations
on the boundary. IfFB-8(0,v0) is large, andFB-(0,v0) is
small, then there is a local minimum nearB, which could be
the absolute minimum on the gauge orbit. If the distance
the absolute minimum vanishes in the thermodynamic li
for a typical configuration, then the argument of@4# does not
disprove Eq.~1.3!.

We normalizev0 to (v0 ,v0)5V, whereV is the volume
of Euclidean space. We estimate quantities using this norm
ization, and we shall verify that the conclusions do not d
pend on the normalization ofv0 . With this normalization,
we estimate thatv0(x)5O(1). SinceFB-8(0,v0) is the in-
tegral of a positive local density over a volumeV, we esti-
mate thatFB-8(0,v0)5O(V) for a typical configurationB on
the Gribov horizon. On the other hand, the density that
pears inFB-(0,v0) has no definite sign. For a typical con
figuration, sampled from the Wilson ensemble, we make
crudest statistical estimate namely random density,
FB-(0,v0)5O(V1/2). This is small compared toFB-8(0,v0).
We seek a nearby minimum on the gauge orbit throughB.
For simplicity we assume that all nontrivial eigenvalues
M (B) are strictly positive, apart from the zero eigenval
belonging tov0 , which is the only dangerous direction. W
write F(t)[FB(t,v0), and we have

F~ t !5F~0!1~1/3!!F-~0!t31~1/4!!F-8~0!t4, ~A5!

with neglect of higher order terms. The minimum is found
F8(tcr)50, which givestcr523F-(0)/F-8(0), and one has

F~ tcr!5F~0!2~9/8!
@F-~0!#4

@F-8~0!#3 . ~A6!

This is lower thanF(0), in agreement with the argument o
@4#. This expression is independent of the normalization
v0 , as one sees from Eq.~A2!, so our estimate for this
quantity is independent of the normalization ofv0 . By the
above estimates, the second term is of order (V1/2)4/(V)3

5V21. It is small compared to the first term,F(0)5iBi2,
which is of orderV. The configuration at the nearby min
mum is

Bm~x,tcr!5Bm~x!1tcr@Dm~B!v0#~x!

5Bm~x!2
3F-~0!

F-8~0!
@Dm~B!v0#~x!, ~A7!

which is again independent of the normalization ofv0 . Ac-
cording to the above estimates, the second term is of o
V21/2. Thus in the thermodynamic limit of lattice gaug
theory,V→`, the nearby minimum approaches the pointB
on the Gribov horizon. In actuality, the problem of minimi
ing the functionalFA(g)5igAi on the lattice is a problem o
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spin-glass type, so one expects many, nearly degene
relative minima, and the one found here is not necessarily
absolute minimum. Nevertheless the point remains that@4#
does not disprove the equality of expectation values onL
andV in the thermodynamic limit.

2. Many Gribov copies inside the Gribov region
from numerical simulations

We now consider the fact that in numerical gauge-fixi
to Landau gauge in lattice gauge theory, there are many l
minima ~i.e., Gribov copies inside the Gribov region,V! on
a typical gauge orbit@7–11#. Their number grows with the
lattice size as is characteristic of a spin-glass. In this sensV
is very large compared toL. However, the number of dimen
sions of configuration space is high, and our geometr
intuition from 3-space may be misleading. Indeed, on a
tice of Euclidean volumeV, the dimensionD of configura-
tion space isD5 f V, where f is the number of degrees o
freedom per lattice site, and the dimensionD of configura-
tion space diverges with the Euclidean volumeV.

In continuum gauge theoryL andV are both convex and
bounded in every direction@4#. By simple entropy consider
ations, the population in a bounded region of a hig
dimensional space gets concentrated on the boundary.
example, inside a sphere of radiusR in a D-dimensional
space, the radial density is given byr D21dr, and forr<R is
highly concentrated near the boundaryr 5R. To take the
simplest example, consider two spheres~in configuration
space!, the first of radiusR, and the second of radiusR
1cV21/2. In the spirit of the previous estimates, these wo
be the radii of L and V. The ratio of the radii (R
1cV21/2)/R approaches unity, in the limitV→`, so allnth
moments,̂ r n& for finite n, of the two spheres become equ
On the other hand the ratio of their volumes is given
@(R1cV21/2)/R#D5@(R1cV21/2)/R# f V, where D5 f V is
the dimension of configuration space. For largeV the ratio of
the volumes of the two spheres is thus exp(afV1/2/R), which
diverges exponentially likeV1/2. In this example the ratio o
the volumes of the two spheres diverges withV, but allfinite
moments of the two spheres become equal. In field the
thenth moments of the distribution are then-point functions
^A(x1)¯A(xn). So again, the fact that there are many G
bov copies insideV does not disprove that averages calc
lated overL or V are equal.

3. Gauge theory on a finite lattice

For a finite lattice the paradox becomes acute. Stocha
quantization may also be defined in lattice gauge theory@10#.
As in the continuum theory, a drift forcea21Kgt tangent to
the gauge orbit may be chosen in the direction of stee
descent of a suitable minimizing function, and is globa
resoring. It appears that one may solve the lattice Fok
Planck equation in the limita→0 on a finite lattice, by the
method used in Secs. II–IV, for it depends only on gene
geometrical properties that are common to lattice and c
tinuum gauge theories. If so, one would again be led to
conclusion that the weight inside the Gribov region
given by the lattice analogue of Eq.~4.17!, namely
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N exp@2SW(U)#, whereSW(U) is the Wilson action, andU is
a configuration in the lattice Gribov regionV. However, on a
finite lattice the distinction between the fundamental modu
regionL and the Gribov regionV can surely not be ignored
The resolution of this paradox would appear to be that
lattice gauge theory the Gribov regionV is made of discon-
nected piecesV i . In each piece, the solution is indeed give
by Qi(U)5Ni exp@2SW(U)#, for UPV i , where the normal-
izations Ni are left indeterminate by the method of Sec
II–IV. Presumably, the average with the lattice Fadde
Popov weight over all the disconnected piecesV i of the
Gribov region, with the correct normalizationNi in each
piece, will agree with same integral over the fundamen
modular regionL.

APPENDIX B: BRST-INVARIANT FORMULATION

New issues arise when the nonperturbative approac
extended to a theory with a local BRST-invariant action.

1. Off-shell transversality condition

To obtain a local action, on must take the transversa
condition ‘‘off-shell.’’ The off-shell partition function is
given by

Z~J,L ![E
V

DADl detM ~A!

3exp@2SYM~A!1 i ~l,]•A!1 i ~J,A!1 i ~L,l!#,

~B1!

wherel is the Nakanishi-Lautrup Lagrange multiplier fie
that enforces the gauge condition]•A50, and L is its
source. This reduces to Eq.~5.1! for L50. It is not immedi-
ately obvious what regionV to integrate over becauseA is
not transverse forLÞ0, soM (A)52]•D(A) is not a sym-
metric operator. One must also take the Gribov horizon]V
off-shell when the gauge condition is off-shell. If we effe
the l integration, the last integral becomes

Z~J,L !5E
V

DA detM ~A!d~]•A1L !

3exp@2SYM~A!1 i ~J,A!#. ~B2!

Only configurationsA of the formA5B2](]2)21L are rel-
evant, whereB is transverse. We regard the partition functio
Z(J,L) as a formal power series in the sourceL. Both the
lowest nontrivial eigenvaluel1@B2](]2)21L# of the
Faddeev-Popov operator,M @B2](]2)21L#, and the points
B0(L) where it vanishes, may be calculated by formal p
turbation theory as a power series inL. HereB0(0) is a point
on the on-shell horizon. In this way we may take the Grib
horizon]V off-shell.
2-21
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2. Faddeev-Popov ghosts

One may make the action local by writing

detM ~B!5E DcDc̄ exp@ c̄,M ~B!c#, ~B3!

wherec and c̄ are anticommuting ghost and antighost field
Grassmannian sources,h andh̄, are then introduced, so thi
gets replaced by

E DcDc̄ exp$@ c̄,M ~B!c#1~ h̄,c!1~ c̄,h!%

5detM ~B!exp@h̄,M 21~B!h#. ~B4!

This expression does not vanish on the boundary]V. For by
an eigenfunction expansion ofM 21(B), we obtain for the
last expression

)
n

ln expF(
n

1

ln
h̄nhnG5)

n
ln)

n
S 11

1

ln
h̄nhnD

5)
n

~ln1h̄nhn!. ~B5!

It does not contain as a factorl1(B) that vanishes on]V.
For this reason, we did not use Faddeev-Popov ghost fi
and their sources in the derivation of the DS equations
Secs. V and VI. Neverthelesswe obtained the same DS equ
tions, including the ghost propagators, that we would ha
obtained if we had introduced the ghost fields and th
hn
,

ld

l-
n

um

01600
.

ds
n

e
r

sources. For this reason, and by use of the off-shell Grib
horizon, it should be possible to extend the nonperturba
approach to the theory defined by the familiar BRS
invariant local action~8.11!, integrated over the off-shel
Gribov region.

APPENDIX C: PROPERTIES OF THE GRIBOV REGION

We note three properties of the Gribov regionV defined
in Eq. ~1.2!. ~i! V contains the originA50. ~ii ! It is bounded
in every direction.~iii ! It is convex. We give the one-line
proofs of these properties@74#. They follow from the expres-
sion M (A)5M01M1(A), where M0

ac(A)52]2dac, and
M1

ac(A)52g0f abcAm
b ]m , whereA is transverse. Property~i!

is obvious sinceM052]2dac is strictly positive. To estab-
lish ~ii !, note thatM1(A) has zero trace, since it is tracele
on color indicesf aba50. Thus, for any givenA, there exists
a statev for which the expectation value ofM1(A) is nega-
tive, E[(v,M1(A)v),0. Moreover,M1(A) is linear inA,
M1(lA)5lM1(A), so upon replacingA by lA, wherel is
a positive number, we have (v,M (lA)v)5(v,M0v)
1l@v,M1(A)v#5(v,M0v)1lE. By takingl sufficiently
large and positive, the expectation value is negat
@v,M (lA)v#,0. This establishes~ii !. To establish convex-
ity, we must show thatM (aA11bA2) is a strictly positive
operator whenM (A1) and M (A2) are both strictly positive
operators, for all positivea and b, with a1b51. This is
immediate becauseM1(A) depends linearly onA, and we
haveM (aA11bA2)5aM (A1)1bM (A2). QED
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