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We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space
of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson
quark action. Performing a series of simulations for the number of flaNprs6—-360 with degenerate-mass
quarks, we find that wheN-=7 there is a line of a bulk first order phase transition between the confined phase
and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate
coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results
in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure,
depending on the number of flavors whose masses are lesd thanhich is the physical scale characterizing
the phase transition in the weak coupling region: WiNg®=17, there is only a trivial IR fixed point and
therefore the theory in the continuum limit is free. On the other hand, wherNk&=7, there is a nontrivial
IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark
confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the
continuum limit exist only foN<6.
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[. INTRODUCTION strong coupling limit, when the number of flavolg: is
greater than or equal to seven, quarks are deconfined and
The fundamental properties of QCD are quark confinechiral symmetry is restored at zero temperature, if the quark
ment, asymptotic freedom and spontaneous breakdown ohass is lighter than a critical value which is of or@er.
chiral symmetry. Among them, asymptotic freedom is lost In this work we extend the region of the gauge coupling

when the number of flavors exceedss16hus the question constant to weaker ones, and investigate the phase diagram
which naturally arises is what is the constraint on the numbepOr 'general pumber of flavorhl; at zefo temperaiure. We
gnalnly consider the case whelkg quark masses are degen-
erate. However, we also discuss the nondegenerate case.
We employ the simplest form of the action in this work,
one can apply perturbation theory to investigate the critica hat is, the Wllson_ quark action gnd the. standard one-
. ) laguette gauge action. At finite lattice spacings, the Wilson
number for it. However, because quark confinement an uark action is not chirally symmetric even at vanishing bare

spontaneous chiral symmetry breaking are due to nonpertufy,a ik mass due to the Wilson term which is added to a naive

bative effects, one has to apply a nonperturbative methogscretized Dirac action in order to lift the doublers. Because
throughout the investigation of the critical numbers for them.f the fact that the action does not hold chiral symmetry, the
We employ lattice QCD for the investigation in this work, phase diagram becomes complicated in general.
since lattice QCD is the only known theory of QCD whichis  As the phase diagram turns out to be complicated on the
constructed nonperturbatively. lattice, we first give a brief summary in terms of tBefunc-
Lattice QCD is a theory with fundamental parameters, theion in Sec. II. Further, the phase diagram for general number
gauge coupling constagtand quark masses,, defined on  of flavors when the theory would be chirally symmetric is
a lattice with a lattice spacing. The inverse of the lattice conjectured in Sec. Ill. This conjecture is based on our pro-
spacinga™! plays the role of an UV cutoff. In order to posal for the phase diagram for the lattice action we employ,
investigate the properties of the theory in the continuumand is given because it may help the reader to understand the
limit, one has to first clarify the phase structure of latticewhole structure of the phase diagram. After showing the
QCD at zero temperature for general number of flavors, an@irief summary in this way, the action we employ is given
then identify an UV fixed point and/or an IR fixed point of an with some basic notations in Sec. IV. Here some important
RG (renormalization grouptransformation. When the exis- facts related to chiral property of the quark are also dis-
tence of such fixed points is established, one is able to coreussed. Then the main part of the paper, our proposal for the
clude what kind of theory exists in the continuum limit. phase structure for the general number of flavors in the case
In our previous worl{1], it was shown that, even in the of the Wilson quark action, is summarized in Sec. V, before
giving the detailed numerical results which lead to our pro-
posal. We also comment on previous results obtained with
*Present address: Information and Mathematical Laboratory, Incthe staggered quark action. After giving numerical param-
Tokyo 171-0014, Japan. eters for our simulations in Sec. VI, numerical results in the

breakdown of chiral symmetry?
As asymptotic freedom is the feature at short distance
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strong coupling limit and at finite coupling constants are 4s® B&)
given in Secs. VII and VIII, respectively. All the investiga- N, <N’ N, <6
tions up to this point are limited to the degenerate quark g D=4 ¢

mass case. In Sec. IX, we extend the study to the nondeger
erate case to discuss implication for physics. We give a sum

mary in Sec. X. In an Appendix, we study the caseNf B&) B
=2 in the strong coupling limit. Preliminary results of our N'<N,<16 7<N,<16
study have been presented in R¢3]. o IN'=805] .

II. PHASE STRUCTURE IN TERMS OF BETA FUNCTION

The perturbative beta function of QCD willy- flavors of B B
massless quarks is universal up to two-loop order: N, 217 N, 217
~ 3 5 8 8
B(9)=—bog”—bg>+- -, oY)
where @ ®)
b.— 1 11— EN ?) FIG. 1. Renormalization group beta functiga) Conjecture by
0 1672 3 F Banks and Zak$4] assuming confinement in the strong coupling
limit for all Ng. (b) Our conjecture deduced from the results of
and lattice simulations.

1 38 lattice is required. Therefore, in our previous wddd, we
b,= ( 2— _NF)- () performed numerical simulations of QCD in the strong cou-
(1672)2 3 pling limit for variousNg, using the Wilson fermion formal-
ism for lattice quarks. We found that, whé&=7, quarks
The coefficientb, changes its sign &Xlr=16;. Hence, for  are deconfined and chiral symmetry is restored at zero tem-
Ng=17, asymptotic freedom is lost and the paipt O is an  perature even in the strong coupling limit, when the quark
IR fixed point. The theory governed by this IR fixed point is mass is lighter than a critical value.
a free theory and the quark is not confined. The second co- In some previous literatures, quark confinement in the
efficientb; changes its sign ai~8.05. This implies, if one strong coupling limit has been assumed explicitly or implic-
would take the two-loop form of the beta-function, that an IRitly. However, the arguments for the confinement in the
fixed point appears at finite coupling constant fos K¢ strong coupling limit are based on either the laigelimit
<16. Of course we cannot trust the two-loop form at finite[6], a meanfield approximation (d/expansion[7,8], or a
coupling constants. However, since the IR fixed point fromheavy quark mass expansi@9]. Because we are interested
the two-loop beta function locates in a weak coupling regionin the theory with dynamical quarks witN; kept 3, and
for N~ 16, it is plausible that the beta function has a non-effects of dynamical quarks become significant only when
trivial IR fixed point for N'<Ng=<16 with someN’'=<16. they are light, the results of these approximations cannot be
When such an IR fixed point exists, the coupling constanapplied. Actually, our numerical result g=o explicitly
cannot become arbitrarily large in the IR region. This impliesshows violation of quark confinement at small quark masses
that quarks are not confined. The long distance behavior ofthenNg=7.
the theory is governed by the nontrivial IR fixed point: Itisa  Here we extend the study to weaker couplings. Based on
theory with an anomalous dimension. the numerical results obtained on the lattisee the follow-
A pioneering study on thé&lr dependence of the QCD ing sections for detai)lscombined with the results of the
vacuum was made by Banks and Zaks in 1§82 Based on  perturbation theory, we conjecture Figbl for the Ng de-
the result of the quark confinement in a pure gauge theorpendence of the beta function: Whiir<6, the beta func-
[5], they assumed that the quark is confined and that the betin is negative for all values af. Quarks are confined and
function is negative in the strong coupling limit for &l . the chiral symmetry is spontaneously broken at zero tem-
Using the perturbative results mentioned above, they conjegerature.(Corresponding criticaNg is 2 for the caseN.
tured Fig. 1a) as the simplesNg dependence of the beta =2 [2]. See the discussion in the Appendin the other
function, and studied the phase structure of QCD based ohand, wherNg is equal or larger than 17, we conjecture that
this Ng dependence of the beta function. Because of an adhe beta function is positive for ad, in contrast to the con-
ditional nontrivial UV fixed point forNg>N’, their conjec-  jecture by Banks and Zaks shown in Figa)l The theory is
ture for the phase structure is complicated. trivial in this case. WheNg is between 7 and 16, the beta
In the argument of Banks and Zaks, the assumption ofunction changes sign from negative to positive with increas-
confinement and negative beta function in the strong couing g. Therefore, the theory has a nontrivial IR fixed point.
pling limit plays an essential role. However, there exist no Here we note that there are several related works which
proofs of confinement in QCD for generbll- even in the do not use lattice formulatiopl0—13. These works gave
strong coupling limit. A nonperturbative investigation on the interesting results for the quark confinement condition. How-
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l{vv B. Ng=17
0 (@ At zero temperature, there is a first-order phase transition
which separates a deconfined phase from the confined phase.
The transition occurs anS"°@ which is of the same order
mya confinement Np<6 of magnitude as the inverse of a typical correlation length
of gluon dynamics, such as the plaquette-plaquette correla-
tion length.
In the confined phase, the nature of the system is essen-
o tially same as that foNg<6: Whenmg> &1, dynamical
g=oo g=0 effects by quark loops can be neglected. In this case, the
system is equivalent to the quenched QCD. That isnigr
0 >¢71 the phase is the confined phase. When dynamical ef-
(b) , fects of quark loops change the phase from that in the
deconfinement . . .
quenched case, there will be a phase transition in general,
ma ? and this kind of the transition occurs i~ £ 2.
0 o Np =17 When the gauge coupling decreases towards zero, the
first order phase transition . . . . .
dimension-less correlation lengéia increases and diverges
at zero coupling constant in the confined phase. Therefore,
along the phase transition line, the dimension-less critical
quark mass should behave m§""°®a=Aa. Herea van-
ishes towardsg=0, and Aq~¢! is the physical scale
o IcR uv which characterizes the phase transition in the weak coupling
(c) mgi= A, region.
deconfinement The “?” mark in the weak coupling region means that we
? have performed numerical simulation for only the strong and
o4 first order phase transition 7<Np<16 intermediate coupling regions because of technical reason. In
this sense, our proposal for the strong and intermediate cou-
pling regions is based on our numerical results, while our
conjecture in the weak region is based on the assumption that
< L 70 the transition occurs anS @'~ ¢ 1,
§== In the upper region above the phase transition line quarks
FIG. 2. Phase diagram for a chirally symmetric cag@.Nr  are not confined. There is only an IR fixed pointgat 0.
<6, (b) N.=17, and(c) 7<Ng<16. That is, the theory in the continuum limit is free.

We would like to make a comment that there is an alter-
ever, the critical number for the confinement is at most sugnative possibility that the transition occurs atS"c®
gestive, because we need fully nonperturbative method ta 5-1 \yherea~! is the inverse of the lattice spacing. In the
investigate the problem. That is, the theory should be con

structed from the beginning nonperturbatively. In this re-a-1, Therefore, there is no essential difference between the

gards, lattice QCD is the only known theory constructed - critical _ -1 critical _ g—1
nonperturbatively. two possibilities whethemyg a - ormg &

In the usual argument of the decoupling theorem for
QCD, the effect of the particle whose mass is much heavier
than the QCD scale parametéiocp can be absorbed by
renormalization of physical quantities. Based on a similar

In this section, we present our conjecture for the phaseonsideration, one may argue that the particles whose masses
diagram of QCD, for the case when the theory is chiral sym-are much heavier than ocp are irrelevant for quark con-
metric. The conjecture is based on the phase diagram winement. This is the reason why we assume that the transi-
propose for the case of the Wilson fermion action, where theion occurs amgfiticaug*l_ However, whether a theory ex-
chiral symmetry is violated. The reason why we make thissts in a sense of constructive field theory is a different
kind of conjecture is that it may help the reader to understan@roblem. Therefore, we think that it is not possible to disre-
the phase diagram of the Wilson fermion action which isgard the alternative possibility @hS°3'~a=1 only from a
more complicated. The phase diagrams we conjecture in th@eoretical argument.

confinement

confinement

Strong and intermediate coupling regioss?® is of order

[lI. CONJECTURE FOR THE PHASE DIAGRAM
IN CHIRALLY SYMMETRIC CASE

g—mq plane are presented in Fig. 2. Nonetheless we think that the assumption that the transi-
tion occurs amg"° ~ £~ is more plausible than the as-
A. Np<6 sumptionm™°®~a~1. In the following we assume that
The phase diagram is simple. At zero temperature all théhe phase transition occurs atg"®'~¢ 1. This is our
region is in the confined phase. See Fip)2 conjecture.
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However, we also refer to the alternative possibility of with my being the bare fermion mass, leads to 16 poles in-
mSitical ~a=1 when it is appropriate to refer to. In this al- stead of one pole. This problem is called the species dou-
ternative case, the transition pointgat O is off the massless bling. To avoid this problem Wilson proposed to add a di-
point and therefore all finite massive quarks belong to themension 5 operator called the Wilson term
deconfined phase. N

It will be possible to see in future which ahg"®

N e
~a tormgicd~ £~ 1is realized by numerical simulations. a % (Gn0n+ 2= 20nGnF An-+ 1Gn). @)

C. 7<Ng<16 to the naive discretized action. Rescaling the fermion field by

The phase diagram at zero temperature shown in Fay. 2 9= V2K and making the action gauge invariant, we obtain
is similar to that in the case ™=17. The phase transition the Wilson fermion action
line locates aroundn,~ &1, due to the same reason as in
the case oNg=17. 3 - —

However, the flow of RG transformation is different. The Switson=a En: [nthn—K{¥n(1= ¥ )Un u¥ns s
g=0 point in this case is an UV fixed point, contrary to the
caseNg=17. _On the other hand, quarl_<_s are deco_nfined in +$n+/;(1+ yﬂ)uj]’“,r/,n}], 8
the upper region above the phase transition line as in the case
of Ng=17. Therefore there should be an IR fixed point atyhere
finite coupling constant. Otherwise gauge coupling would
become arbitrary large at large distance, and quarks would be

confined in the strong coupling limit contrary to the result of K= ; 9
i . , €)
the numerical simulation. 2(mpa+4)
IV. FUNDAMENTALS OF LATTICE QCD which is called the hopping parameter.
AND THE ACTION The full actionSis given by the sum of the gauge part
and the fermion parBy;ison,
Lattice QCD is defined on a hypercubic lattice in Spauge reen
4-dimensional Euclidean space with lattice spaang site Ng
?s denoted l?y a _vecton=(n_1,n2,n3,n4),. wheren; sAalre S=Syauget 2 Swilsons (10)
integers. A link with end points at the sitesandn+ w is f=1
specified by a pairr(, 1), wherex denotes a unit vector in )
the u direction. wheref is for flavors. B
The expectation value of an operato(U, ¢, ) is given
A. Action by

The gauge variabléJ, , which is an element of S@3) 1 o
gauge group is defined_ on the link,). The action for <(9>:Zf 11 dUn,MH dlpg)dﬂf)O(U,w,lﬂ)eXF(S),
gluons which we adopt is given by nu nf 1

. t t . . .
Syauge™ 5 > Tr(Un,UnsaoUninis Ynis) whereZ is the partition function

g nu#v
4

whereg is the gauge coupling constant. This action is called
the standard one-plaquette gauge action. We usually use, in-

stead of the bare gauge coupling cons@gng defined by with dU,, , being the Haar measure of &).

Z= f 11 dUMHf dyNdyDexps), (12)
n,u n,

B= (5) B. Fundamental parameters

9 In the case of degeneratg flavors, lattice QCD contains

two parameters: the gauge coupling const@nt6/g? and

The quark variable is a Grassmann number defined ofo pare quark mass or the hopping paraméterl/(mya
each site. It is well known that a naive discretization of the+4) In the nondegenerate case, we have, in gengl'pal

Dirac action independent bare mass@®pping parameters
3 In this work we consider mainly the case whéfge quark
a — . _ o .
e . . +maat , masses are degenerate, because it is simpler. However, tr_\e
Stermion=7 % (GnYpGn+ ™ Gn+ 7o) + Mo ; Gnln conjecture can be extended to nondegenerate cases. We will
(6) discuss this point in Sec. IX.
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C. Continuum limit confined and the chiral symmetry is spontaneously broken,

As mentioned in the Introduction. in order to see whatth€ Pion mass vanishes in the chiral limit where the quark

kind of theory in the continuum limit exists, one has to in- Mass vanishes at zero temperature.

vestigate the phase structure and identify UV fixed points, HOWEVer, in the deconfined phase at finite temperatures
and IR fixed points. the pion mass does not vanish in the chiral limit. It is almost

When theg=0 point is an UV fixed point, the theory equal to twice the lowest Matsubara frequeneiN,. This

governed by this fixed point is an asymptotically free theory.MPlies that the pion state is approximately a free two-quark
On the other hand, when tie=0 point is an IR fixed point, state. The pion mass is nearly equal to the scalar meson
the theory governed by this fixed point is a free theory. Wher{'@SS, and the rho meson mass to the axial vector meson
there is a IR fixed point at finite coupling constaptthe mass; they are all nearly equal to the twice the lowest Mat-

theory is a nontrivial theory with the long distance behaviorSUPara frequencyr/N;. Thus the chiral symmetry is also
determined by the IR fixed point. manifest within corrections due to finite lattice spacing.

In a previous study17] we found that, given the gauge
coupling constant and bare quark masses, the value of the
quark mass does not depend on whether the system is in the

At finite temperatures the linear extension in the time di-high or the low temperature phase when the gauge coupling
rectionN; is much smaller than those in the spatial directionsis not so strong8=5.5 forN-= 2. However, this property is
(Nx,Ny,N,). The temperaturg is given by 1N.a. For glu-  not guaranteed for smallgg. In general, the quark mass in
ons the periodic boundary condition is imposed, while forthe deconfined phase differs from that in the confined phase
quarks an antiperiodic boundary condition is imposed in thén the strong coupling region.
time direction.

Although we are interested in the phase structure of lattice
QCD at zero temperature, we investigate phase transitions on F. Quark mass atg=0
lattices at finite temperatures. Increasing the valullgfwe As mentioned earlier, the Wilson terfd) lifts the dou-
carefully examine thé\; dependence of the phase transition. yjers and retains only one pole aroung=0 in the free
If the transition isN, independent for sufficiently largl;,  case. On the other hand, there are other poles at different
then the transition is a bulk transitiojphase transition at yajues of the bare masses. They are remnants of the doublers.
zero temperatuje In Fig. 3(a) the quark mass defined by Ed.3) is plotted

versus the bare quark mass for the case of free Wilson quark.
At my=0 (1K=8) the quark mass behaves as expected: it
E. Quark mass and chiral symmetry monotonously increases withy. On the other hand, anh,

In the Wilson quark formalism, the flavor symmetry as =0 (1/K<8) the behavior of the quark mass is complicated:
well as C, P and T symmetries are exactly satisfied on a It d0€s not monotonously decrease with decreasmggbut
lattice with a finite lattice spacing. However, chiral symme-increases after some decrease and becomes zero at a finite
try is explicitly broken by the Wilson term even for the van- Negative value ofmg. Usually, the region of negative bare
ishing bare quark mass,=0 at finite lattice spacings. The quark mass is irrelevant for numerlqal calcglatlons of physi-
lack of chiral symmetry causes much conceptual and technf@l quantities. However, this region is also important for un-
cal difficulties in numerical simulations and physics interpre-derstanding the phase diagram. _ o
tation of data(See for more details RefL4] and references e @lso plot in Fig. &) the mass of the pion which is
cited there) qomposed of. two fr_ee quarks W|th penodm pou_ndary condi-

The chiral property of the Wilson fermion action was first tion fqr the time d|rect|0n'and with antiperiodic boundary
systematically investigated through Ward-Takahashi identi¢ondition. These results will be referred to later.
ties by Bochicchioet al. [15]. We also independently pro-

D. Finite temperatures

posed[16] to define the current quark mass by V. PHASE DIAGRAM
Here we propose, based on our numerical results which
2my(0|P| ) = —m_(O|A4| 7), (13 will be shown later and the perturbation theory, the phase

diagram in the B,K) plane for the Wilson quark action

whereP is the pseudoscalar density aAgd the fourth com-  coupled with the one-plaquette gauge action.
ponent of the local axial vector current. We use this defini-
tion of the current quark mass as the quark mass in this work.
In general we need multiplicative normalization factors for
the pseudoscalar density and the axial current. In this study, For Ng<6, the chiral lineK.(8) where the current quark
we absorb these renormalization factors into the definition ofn, vanishes exists in the confined phasee Fig. 4a)]. The
the quark mass, because this definition is sufficient for latevalue of K.(8) at =<« is 1/8, which corresponds to the
use. We note that the quark mass thus defined has an additivanishing bare quark mass,=0. As B is decreased, the
renormalization constant to the bare quark mass, because thalue ofK, increases up to 1/4 @&=0. If the action would
Wilson quark action does not hold chiral symmetry. be chiral symmetric, the chiral line should be a constant, 1/8,
With this definition of quark mass, when the quark isas in Sec. Ill. The lineK=0 corresponds to the case of

A. Ng<6
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3 ! I ' I ! I ! | ! | ! I T
| ﬁ =00 i 0.25
o | —¥—apbc N=8 i
--A--apbc N=4
[ —=—pbc N=8 i K
1 | — e -pbc N'=4 2mq —
0 ... PR [ S L e - 0 mq: oo
. 0 o0

@ B

1k ]
1 1 1 | | 1 N S 6 T > 0
0.25 F
[N, <eo]
confined
K 0.125
finite temperature
QCD phase transition
n. = oo
q
0 0 -
(b) /3

FIG. 4. The phase structure fdlz<6; (a) at zero temperature,
and(b) at finite temperatures. The chiral linfihassless quark limit
is shown by thick curves labeled byri;=0," and the finite tem-
perature QCD transition at a fixed finité, is shown by a shaded
curve.

—t 1 structure above thk, line. It is known that the system is not
6 8 10 12 14 singular on theK,. line in the high-temperature phage the

(b) 1/K right of the finite temperature transition lingl4]. The loca-

tion of the finite temperature transition line moves toward

larger B as N; is increased. In the limiN;=«, the finite

temperature transition line will shift t8=« so that only the

confined phase is realized at=0.

FIG. 3. (8 my at B=. (b) m, at B=c. Results with an anti-
periodic boundary conditiofapbg in thet direction and those with
the periodic boundary conditidipbc) are compared oN;=8 and 4
lattices.
infinitely heavy quarks. Quarks are confined for any value of B. When N is very large
the current quark mass for all values@t zero temperature We present the result for the caseMf=240 in Fig. 5.
(N{=0). The reason why we investigate the case where the number of

On a lattice with a fixed finiteN;, we have the finite flavor is so large as 240 is the following: We have first in-
temperature deconfining transition at finjs because the vestigated the case dflr=18 as a generic case fddy
temperaturel = 1/N;a becomes larger a8 increases in as- =17. However it has turned out that the phase diagram looks
ymptotically free theories. AK=0 (my=<), the first order complicated whenNg=18. So, to understand the phase
finite temperature phase transition of pure (3Ugauge structure forN=17, we have increased the number of fla-
theory locates a3.=5.69254(24) and 5.894(&1) for N,  vors like 18, 60, 120, 180, 240, and 300, and systematically
=4 and 6[18] and atB3.=6.0625 forN,=8 [19]. This finite  viewed the results of the quark mass and the pion mass for
temperature transition turns into a crossover transition at inall these numbers of flavors. Then we have found that when
termediate values df, and becomes stronger again towardsthe number of flavors is very large as 240, the phase diagram
the chiral limitK.. As K is increased, the finite temperature is simple as the chirally symmetric case discussed in Sec. Ill.
transition line crosses th, line at finite 8 [14]. We note  Therefore we first show the result for the caseNgf=240.
that, for understanding the whole phase structure which in- At finite N; where numerical simulations have been per-
cludes the region above th€, line (negative values of the formed, the finite temperature transition occurs as shown in
bare quark magsthe existence of the Aoki phase is impor- Fig. 5. As N, increases, the transition line moves towards
tant[20]. A schematic diagram of the phase structure for thidarger value of3. The envelop of those finite temperature
case is shown in Fig.(8). For simplicity, we omit the phase transition lines is the zero temperature phase transition line,
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N =240 e N =18 | | |
02 [ . o m:(N‘;g) o] 02 I deconfined phase
deconfined phase o K(N=8)
L mq=0 1+ B T mgge-g---.....9 :0-
PP o et R P R R O e B S R B SO
K g 5 5 . K confined phase
0.1 7 0.1 r 1
K ~e--m(N=4)=0
d N, larger o kN Ky Ny large ]
confined phase T = - m(N-8)=0 -
N,=4 '8 o K(N-8) N,=4 |38
0 1 1 | 1 0 L L O L
0 2 4 6 8 10 0 2 4 6 8 10
p (a) B
FIG. 5. Phase diagram fdi=240. Dark shadedgreen lines ' ' ' '
represent our conjecture for the bulk transition line in the liNit deconfined phase NF:12
=, Points connected by dashed lines are the measured point 02 r ., _
where quarks are massless. Light shaded lines are for the finit fined ph
temperature transition &;,=4 and 8.  contined phase
K --e--m (N =4)=0
o Kd(N‘:A) -
shown by the dark shaded curve in the figure. Note that, at 0.1 |+ ".01-9¢ ]
finite N, the system is not singular on the part of the dark ,_,,@Q(NKZB)ZO K, N, Targer
shaded line in the right hand side of the finite temperature F o K(N=8) !
transition line(i.e., in the high temperature phase “";‘u((;’x=::))=° N,=4 8
. . v =
The salient fact is that, at zero temperature, the massles ¢ L . ot -
0 2 4 6 8 10

line exists only in the deconfined phase and passes throug
from B=0 down to 8=, i.e., it is quite similar to the
chirally symmetric case dilg=17 shown in Fig. &b). Thus FIG. 6. The same as Fig. 5, but féa) Nr=18 and(b) N
the IR fixed point ag=0 governs the long distance behavior =12.

of the theory and therefore the theory is a free theory. )
When we increase the number of flavors fridp=6 to

17, the form of theB function changes from that in the upper
frame Ng<6) in Fig. 1b) to that in the lower frameNg
Atypical phase diagram fdde=17 looks like thatin Fig. <17) through that in the middle frame €Ng<16). We
6(a), where the case diz=18 is displayed. The massless safely assume that the form changes smoothly for varying
line in the deconfined phase which starts frgm  hits the  N.. That is, forNz=7 the IR fixed point should appear at
first-order phase transition aroun@=4, and goes under- very large coupling, and gradually the position of the IR
ground crossing the first-order phase transition line. fixed point moves towards thg=0 point. ForNg=16, the
The place where the crossing occurs moves towg#ds |R fixed point is expected to be close ¢e=0.
=0 as the number of flavors increases, and finally reaches We have been unable to identify numerically the position
the =0 axis whenNg=240. The massless line exists only of the IR fixed point. Technically it is not easy to do so. It
in the deconfined phase and it starts fr@@so (g=0). might be even one of the metastable states beyond the first-
Therefore the IR fixed point aj=0 governs the long dis- order phase transition line, i.e., under the first sheet of the
tance behavior of the theory. That is, the theory is free.  phase diagram.

C. Ng=17, but not so large

D. 7=Ng=<16 E. Previous studies using staggered quarks

The phase diagram foNg=12 is shown in Fig. @), We note that there are several works investigating the
which looks similar to that oNg=18. The salient fact is that critical number of flavors for quark confinement using the
the massless line exists only in the deconfined phase. That istaggered quarks. The staggered fermigogut-Susskind
there is no massless line in the confined phase. Therefore, fermion) [22] is a formulation of lattice fermions different
the continuum limit, the quark is not confined. from the Wilson fermion we adopt. Unlike the Wilson fer-

The difference from the case df:=17 is that theg=0 mion action(8), the staggered fermion action explicitly vio-
point is an UV fixed point in this case. Thus there should bdates the flavor symmetry due to flavor-mixing interactions at
an IR fixed point at finite coupling constant. If there would finite lattice spacings. However, because a part of flavor-
be no IR fixed point, we would encounter a contradiction thatchiral symmetry is preserved on the lattice, a numerical
on one side quarks are not confined, but on the other side thenalysis of chiral properties is easier than the Wilson fer-
gauge coupling constant becomes arbitrary large as the digaion. On the other hand, the staggered fermion action can
tance between quarks becomes large. describe quarks only wheNg is a multiple of 4. A trick to
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TABLE |. Simulation parameters fdd-=6 on lattices §x 10x N, (N;=4, 6, 8, 12X N, (N;=12) and

182X 24X N, (N;=18).

N, B K AT
4 0.0 0.2, 0.21, 0.22, 0.235, 0.24, 0.25 0.01-0.0025
0.1 0.2495 0.01
0.2 0.249, 0.24936 0.01
0.3 0.2485, 0.249 0.01
0.4 0.248 0.01
0.5 0.23, 0.235, 0.24, 0.245, 0.2475 0.01
1.0 0.2, 0.21, 0.22, 0.225, 0.23, 0.235,
0.237, 0.238, 0.24, 0.245 0.01-0.005
2.0 0.24 0.01
4.0 0.22 0.01
45 0.15, 0.16, 0.165, 0.166, 0.167, 0.168,
0.169, 0.17, 0.18, 0.19, 0.2143 0.01
6 0.0 0.2,0.21, 0.22 0.01
0.5 0.2475 0.01
1.0 0.245 0.01
2.0 0.24 0.01
4.0 0.22 0.01
45 0.16, 0.165, 0.167, 0.168, 0.17, 0.171,
0.1715, 0.1717, 0.1719, 0.172, 0.1725,
0.173, 0.174, 0.175, 0.18 0.01
8 0.5 0.2475 0.01
1.0 0.245 0.01
2.0 0.24 0.01
4.0 0.22 0.01
4.5 0.16, 0.167, 0.168, 0.17, 0.172, 0.1723,
0.1724, 0.1725, 0.173, 0.175, 0.18 0.01
55 0.1615 0.01
12 45 0.175 0.01
18 0.3 0.2485 0.01
0.4 0.248 0.01
0.5 0.2475 0.01
1.0 0.245 0.01
4.5 0.172, 0.1725, 0.173, 0.175, 0.2143 0.01

study the caseblz#4n is to modify by hand the power of sition is an outgrowth of the crossover transition between the
the fermionic determinant in the numerical path integrationstrong and weak coupling regions observed in purd3sU
This necessarily makes the action nonlocal which sometimegauge theory.
poses conceptually and technically difficult problems. Although their interpretation is in clear contrast with our
Evidences of strong first order transition are reported withproposal we note that their numerical results themselves are
staggered quarks foi-=4-18[23-2§. Chiral symmetry is consistent with our phase diagram shown in Fig. 6: As an
restored at the transition. Furthermore, the transition wadlustration, let us suppose that we perform simulations at,
shown to be a bulk phase transition for several cas@dgof say, K=0.14 in Fig. @b). For smallN; we have the finite
=8[24,27, 12[24] and 16[28]. temperature transition at finigg. This transition point moves
The most systematic study was done by the Columbidowards large as we increashl;, but, eventually, stops on
group in Ref.[27]. They studied the casd=8 at a fixed the dark shaded line whex, becomes larger than a critical
bare quark masm,a=0.015 on 18X N, lattices whereN,  value. In order to clarify the whole phase structure in the
=4-32. They found that the transition point shifts towardscase of staggered quarks and to discriminate different possi-
larger 8 as N, is increased from 4 to 8, but stays around bilities, it is indispensable to perform a more systematic
B.=4.73 for N;=8 and 16. They concluded that this is a study exploring a wider region of the parameter space of
bulk transition, and proposed an interpretation that this tranquark mass and gauge coupling constant.
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TABLE Il. The same as Table I, but foi=7.

PHYSICAL REVIEW D 69, 014507 (2004

N B K AT
4 0.0 0.2, 0.21, 0.22, 0.23, 0.235, 0.24, 0.245, 0.25, 0.01-0.005
0.2857, 0.3333
1.0 0.245 0.01
2.0 0.125, 0.1429, 0.1667, 0.2, 0.2083, 0.2174, 0.2273, 0.01
0.24, 0.25
3.0 0.235 0.01
4.0 0.125, 0.1429, 0.1667, 0.178, 0.185, 0.195, 0.2, 0.01
0.2226, 0.25
45 0.14, 0.15, 0.16, 0.161, 0.162, 0.163, 0.164, 0.165, 0.01
0.17, 0.18, 0.19, 0.2143, 0.25
5.0 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.01
0.1982, 0.21
5.5 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.161 0.01
6.0 0.08, 0.09, 0.1, 0.11,1Mm11,0.12, 0.125, 0.13,
0.14, 0.1429, 0.15, 0.1519, 0.152,
0.155, 0.16, 0.1667, 0.1724, 0.1786, 0.2, 0.25, 0.01
0.3333
6 0.0 0.2, 0.21, 0.22, 0.23, 0.24, 0.245, 0.25 0.01
2.0 0.193, 0.214, 0.24 0.01
4.0 0.163, 0.178, 0.195, 0.217 0.01
4.5 0.15, 0.16, 0.164, 0.165, 0.168, 0.1681, 0.1682, 0.01
0.169, 0.17, 0.18
5.0 0.12, 0.13, 0.14, 0.15, 0.16, 0.17 0.01
5.5 0.12, 0.13, 0.135, 0.138, 0.14, 0.15 0.01
8 0.0 0.25, 0.2857, 0.3333 0.01
2.0 0.1667, 0.2, 0.2083, 0.2174, 0.2273, 0.24, 0.25 0.01
4.5 0.15, 0.16, 0.164, 0.165, 0.168, 0.1683, 0.1684, 0.01
0.169, 0.18, 0.25
5.0 0.12, 0.13, 0.14, 0.15, 0.16, 0.17 0.01
55 0.1, 0.11, 0.12, 0.13, 0.135, 0.138, 0.14, 0.145, 0.01
0.15, 0.16
6.0 0.1, 0.11, 0.12, 0.13, 0.14, 0.145, 0.1476, 0.1519, 0.01
0.1667, 0.1724, 0.1786, 0.2, 0.25
18 0.0 0.245, 0.25 0.01-0.005
4.5 0.165, 0.1675, 0.1684, 0.17, 0.18, 0.19, 0.2143 0.01
5.5 0.135, 0.15, 0.162 0.01
6.0 0.1, 0.11, 0.12, 0.13, 0.14, 0.145, 0.1476, 0.1519 0.01

VI. PARAMETERS FOR NUMERICAL SIMULATIONS where the length of one trajectory is one molecular-dynamics
time. When the hadron spectrum is calculated, the lattice is
duplicated in the direction of lattice size 10 fd¢<8, which

we call thez direction. Statistical errors are estimated by the

We perform simulations on lattice$8 10X N, (N,=4, 6
or 8), 16x24xN, (N,=16) and 18x24xN, (N,=18).
We varyNg from 2 to 360, selecting some typical values of .
N . For eachN, we study the phase structure in the cou-Jack-knife method. _ _
pling parameter spacg8(K). Simulations foN-<6 are dis- We use the hybridR algorithm[21] for the generation of
cussed in14,29. We summarize simulation parameters for 9aUge conf|gura2t|ons. The algorl_thm has discretization er-
Ng=6 in Tables I-IX, where we list values &, 3, x and  TOrs _ofO(NF_Ar ) for the step sizeA  of a molecular dy-
Ar. (For readers who are interested in more details we willn@mic evolution. AsNg increases we have to decrease,
provide them on requetWVe adopt an antiperiodic boundary such asA7=0.0025 forNg =240, to reduce the errors. We
condition for quarks in thé direction and periodic boundary have checked that the errors in the physical observables we
conditions otherwise. In the cases where a thermalized stagiudy are sufficiently small with our choices afr for typi-
is achieved, typical statistics for hadronic measurements areal cases.
about 10—100 configurations sampled every 1-5 trajectories, It should be noted that, in QCD with dynamical quarks,
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TABLE lll. The same as Table I, but fadz=8, 10, 14, 17, 120, 180, and 360.
NF NI ﬁ K AT
8 4 0.0 0.22, 0.23, 0.24, 0.25 0.01
18 0.0 0.25 0.01
10 4 0.0 0.25 0.01
14 4 0.0 0.25 0.01
17 4 6.0 0.145, 0.1473, 0.15 0.01
8 6.0 0.1473 0.01
18 6.0 0.1473, 0.15 0.01
120 4 0.0 0.125, 0.1316, 0.1389, 0.1429, 0.1471 0.005-0.0025
180 4 0.0 0.122, 0.125, 0.1274, 0.1303, 0.1333, 0.1429 0.005-0.0025
360 4 0.0 0.125 0.00125
8 0.0 0.125 0.00125

there are no order parameters for quark confinement. Wharly for the quark mass.
discuss confinement by measuring the screening pion mass, The numerical calculations were performed on various
the screening quark mass, the values of the plaquette and tkemputers including the dedicated parallel computer QCD-
Polyakov loop. See Sec. VIl for details. In the following, we PAX and Fujitsu VPP500 at the University of Tsukuba, and
call the pion screening mass simply the pion mass, and simHITAC S820/80 at KEK.

TABLE IV. The same as Table |, but fod=12.

N, B K AT
4 0.0 0.18, 0.2, 0.205, 0.21, 0.215, 0.22, 0.23, 0.24, 0.25 0.01
2.0 0.15, 0.17, 0.185, 0.19, 0.195, 0.2, 0.21, 0.25 0.01
4.0 0.14, 0.15, 0.155, 0.16, 0.165, 0.17, 0.18, 0.2, 0.25 0.01
45 0.13, 0.14, 0.145, 0.15, 0.16, 0.1667, 0.17, 0.1786, 0.01
0.1852, 0.2, 0.25
5.0 0.11, 0.12, 0.13, 0.135, 0.14, 0.15, 0.16, 0.1667, 0.01
0.1724, 0.1786, 0.2, 0.25
6.0 0.1, 01111,0.125, 0.1429, 0.1667, 0.1724, 0.1786, 0.01
0.2, 0.25, 0.3333
10.0 0.13, 0.14, 0.15, 0.16 0.01
6 0.0 0.18, 0.2, 0.21, 0.215, 0.22, 0.23, 0.24, 0.25 0.01
2.0 0.15, 0.17, 0.185, 0.19, 0.195, 0.2, 0.21, 0.2156, 0.01
0.2253, 0.236
4.0 0.14, 0.145, 0.15, 0.155, 0.16, 0.165, 0.17, 0.18, 0.01
0.1949, 0.2028, 0.2114
4.5 0.13, 0.14, 0.145, 0.15, 0.155, 0.16, 0.17 0.01
5.0 0.11, 0.12, 0.13, 0.135, 0.14, 0.145, 0.15, 0.16 0.01
8 0.0 0.2, 0.205, 0.2083, 0.21, 0.215, 0.22, 0.2222, 0.225, 0.01-0.0025
0.23, 0.24, 0.25
2.0 0.15, 0.17, 0.185, 0.19, 0.195, 0.2, 0.21, 0.225, 0.01
0.25
45 0.13, 0.14, 0.15, 0.155, 0.16, 0.1667, 0.1786, 0.2, 0.01
0.25
6.0 0.1429, 0.1667, 0.2, 0.25 0.01
18 45 0.14, 0.15, 0.155, 0.16 0.01
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TABLE V. The same as Table |, but fod= 16.

PHYSICAL REVIEW D 69, 014507 (2004

N B K AT
4 0.0 0.18, 0.19, 0.2, 0.21, 0.22, 0.25 0.01
45 0.125, 0.135, 14, 0.1429, 0.145, 0.15,
0.1563, 0.1667,0.2, 0.25 0.01
6.0 0.125, 0.1429, 0.1493, 0.1667, 0.2, 0.25 0.01
10.0 01111,0.125, 0.1429, 0.1667, 0.2, 0.25 0.005-0.0025
100. 01111,0.125, 0.1429, 0.1667, 0.2, 0.25 0.005-0.0025
8 0.0 0.18, 0.19, 0.2, 0.21, 0.22, 0.25, 0.27 0.01
45 0.125, 0.1429, 0.145, 0.15, 0.155,
0.1563, 0.1667, 0.2, 0.25 0.01
6.0 0.125, 0.1429, 0.1493, 0.1667, 0.2, 0.25 0.01
10.0 01111,0.125, 0.1429, 0.1667, 0.2, 0.25 0.005
100. 01111,0.125, 0.1429, 0.1667, 0.2, 0.25 0.005
18 0.0 0.25 0.01
45 0.15 0.01
TABLE VI. The same as Table I, but fod=18.
N B K AT
4 0.0 0.17, 0.175, 0.18, 0.19, 0.195, 0.2, 0.205, 0.21, 0.02-0.005
0.215, 0.22, 0.235, 0.245, 0.25
2.0 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.25 0.01
4.0 0.13, 0.14, 0.15, 0.152, 0.154, 0.16, 0.1613, 0.1667, 0.01
0.17, 0.18, 0.2, 0.25
4.5 0.115, 0.125, 0.135, 0.14, 145, 0.15, 0.1613, 0.01
0.1667, 0.1724, 0.2, 0.2143, 0.25
6.0 0.1, 01111,0.125, 0.1429, 0.1613, 0.1667, 0.1724, 0.01
0.2, 0.25
10.0 0.13, 0.14, 0.15 0.01
8 0.0 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.25, 0.27 0.01
2.0 0.16, 0.17, 0.18, 0.19, 0.2, 0.21 0.01
4.0 0.13, 0.14, 0.15, 0.152, 0.154, 0.156, 0.158, 0.16, 0.01
0.17, 0.18
45 0.135, 0.14, 0.145, 0.15, 0.155, 0.1667, 0.2, 0.25 0.01
6.0 0.125, 0.1389, 0.1429, 0.1667, 0.2, 0.25 0.01
18 0.0 0.25 0.01
45 0.15, 0.2143 0.01
TABLE VII. The same as Table I, but fdd=60.
N, B K AT
4 0.0 0.08333, 0.09091, 0.1,1011,0.125, 0.1429, 0.01-0.00125
0.1538, 0.1613, 0.1667, 0.1724, 0.2, 0.25, 0.3333,
0.5,1.0
6.0 0.08333, 0.09091, 0.1,1011,0.125, 0.1333, 0.005
0.1429, 0.1493, 0.1538, 0.16, 0.1667, 0.2, 0.25
8 6.0 0.125, 0.1429, 0.1667, 0.2, 0.25 0.005
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TABLE VIII. The same as Table |, but fdl=240. ForN,= 16 the spatial lattice is 7& 24.

N B K AT

4 0.0 0.08333, 0.09091, 0.1,1011,0.122, 0.1234, 0.0025
0.125, 0.1333, 0.137, 0.1429, 0.1493, 0.1538,
0.1667, 0.2, 0.25

2.0 0.09091, 0.1, @111,0.125, 0.1359, 0.1429, 0.0025
0.1538, 0.1667, 0.2, 0.25
4.5 0.08333, 0.09091, 0.1,10.11,0.125, 0.1343, 0.0025
0.1429, 0.1538, 0.1667, 0.2, 0.25
6.0 0.08333, 0.09091, 0.1,1011,0.125, 0.1337, 0.0025-0.00125
0.1429, 0.1538, 0.1667, 0.2, 0.25
100. 0.08333, 0.09091, 0.1,1011,0.125, 0.1293, 0.0025-0.00125
0.1429, 0.1538, 0.1667, 0.2, 0.25
1000. 0.125 0.0025
8 0.0 0.08333, 0.09091, 0.1,1011,0.125, 0.129, 0.0025
0.1333, 0.137, 0.1429, 0.1538, 0.1667, 0.2, 0.25
4.5 0.08333, 0.09091, 0.1,10.11,0.125, 0.1316, 0.0025
0.1429, 0.1538, 0.1667, 0.2, 0.25
6.0 0.08333, 0.09091, 0.1,10.11,0.125, 0.1309, 0.0025
0.1429, 0.1538, 0.1667, 0.2, 0.25
100. 0.08333, 0.09091, 0.1,1011,0.125, 0.1264, 0.0025

0.1429, 0.1538, 0.1667, 0.2, 0.25

16 0.0 0.125, 0.129, 0.1333, 0.1429, 0.1538, 0.2 0.002-0.00125

tion atK =K4<K.. We confirmed that this transitidd, is a
bulk phase transitioiitransition at zero temperatyrby in-

We first study the strong coupling limg=0 (g==). In  creasing the value oN; up to N;=18 for Nc=7. When
a previous work{1] we have shown the following. When quarks are heavy(<Ky), both the plaquette and the Polya-
Ng<6, we have only one confined phase from the heavykov loop are small, andn,, satisfies the PCAC reIatiome
quark limit K=0 up to the chiral limitK,=0.25. On the «m,. Therefore quarks are confined and the chiral symme-
other hand, foN=7, we found a strong first order transi- try is spontaneously broken in this phase. We found that

VII. RESULTS OF NUMERICAL SIMULATIONS AT g=w

TABLE IX. The same as Table |, but fdi-=300. ForN,= 16 the spatial lattice is £6 24.

N, B K AT
4 0.0 0.08333, 0.09091, 0.1,1011, 0.143, 0.11786, 0.00125
0.1212, 0.125, 0.1429, 0.1493, 0.1538, 0.1667, 0.2,
0.25
4.5 0.08333, 0.09091, 0.1,1111,0.125, 0.1429, 0.00125
0.1538, 0.1667, 0.2, 0.25
6.0 0.08333, 0.09091, 0.1,1111,0.125, 0.1429, 0.00125
0.1493, 0.1538, 0.1667, 0.2, 0.25
100. 0.08333, 0.09091, 0.1,1011,0.125, 0.1429, 0.00125
0.1493, 0.1538, 0.1667, 0.2, 0.25
8 0.0 0.08333, 0.09091, 0.1,1011, 0.143, 0.1176, 0.0025-0.00125
0.1212, 0.125, 0.1429, 0.1667, 0.2, 0.25
4.5 0.08333, 0.09091, 0.1,1111,0.125, 0.1429, 0.0025
0.1538, 0.1667, 0.2, 0.25
6.0 0.08333, 0.09091, 0.1,1111,0.125, 0.1429, 0.00125
0.1538, 0.1667, 0.2, 0.25
16 0.0 0.1212, 0.1231, 0.125 0.002
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FIG. 7. Plaquettda) and Polyakov loogb) at 8=0 as a func-
tion of 1K for variousNg on N;=4 lattices. Lines are to guide the
eyes. In this figure, approximately vertical lines leaning to the right
mean that we have two state signals there.

FIG. 8. The plaquette g8=0 as a function of K for (a) Ng
=240 and(b) Np=300, atN;=4, 8 and 16. Lines are to guide the
eyes

in the confined phase is non-zero at the transition pgipt ~ —8 and 16. A similar result was reported fg =7 in [1].
i.e., the chiral limit does not belong to this phase. On the/& conclude that the transition is a bulk transition fog
other hand, when quarks are lighk¥K,), the plaquette =7 ) ) ) )
and the Polyakov loop are large. In this phase, remains Figure 9 shows the results af;, and 2n,, in the lattice
large in the chiral limit and is almost equal to twice the Units, at3=0 for various numbers of flavors. We clearly see
lowest Matsubara frequencyt/N,. This implies that the that at the exactly same hopping paraméterKy where the
pion state is an almost free two-quark state and, therefor@laquette makes a gap, the pion mass and the quark mass
quarks are not confined in this phase. The pion mass is nearf}s0 make gaps. When the quark is heaW<Kg), the
equal to the scalar meson mass, and the rho meson massREAC relation (%ecmg) is well satisfied. On the other
the axial vector meson mass. The chiral symmetry is alsé#iand, when the quark mass is smaller than the critical value,
manifest within corrections due to finite lattice spacing. the 1K dependence of the pion mass squangg and the

In this paper, we extend the study to lard&r. In Fig. 7,  quark massm, looks strange at first sight. However, when
we show the results of the plaquette and Polyakov loop abne compares this dependencenaf with that of the free
N,=4 for Nr=7-300. Clear first order transitions can be quark case shown in Fig(8, one easily notices that theKl/
seen at K larger than 1/0.254. We then study thé\,  dependence is essentially the same as that of the free quark.
dependence of the results, as shown in Fig. 8 for the casdfe quark mass vanishes aK# 7 -8 forNg=60, 240, and
Ng= 240 and 300. We find that, although the transition point300. This corresponds to the fact that the free quark mass
shows a slight shift to smaller/when we increashl, from  vanishes at ¥=8. The 1K dependence afn’ is also es-
4 to 8, the transition stays at the same pointNpE=8. For  sentially the same as that of the free quark case shown in Fig.
Ng=240, 1K4=8.1(1) atN;=4 and 1K4=7.8(2) atN, 3(b). We stress that the chiral limit where the quark mass
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FIG. 9. Results ofnfT and 2my at 8=0 for Ng= 18-300. 1
vanishes does not exist in the confined phase. 08T
We show a map of the phase transition pdittt K, at
B=0 in Fig. 10. 0.6 |
VIIl. RESULTS OF NUMERICAL SIMULATIONS 0.4 F Polyakov
AT FINITE g
We now extend the study to finit@ (g<<e°). Results of 0.2k
the plaquette and Polyakov loops@t 4.5 and 6.0 are plot- '
ted in Figs. 11 and 12, respectively, for varidds. We note

that at3=4.5, both the plaquette and Polyakov loop shows 0
singular behavior at some quark mass fgr<18, in con- 3 4 5 6 7 8 9 10 11 12
trast to the cases d=240. (b) 1/K

In order to understand the structure of the phase diagram FiG. 11. Results ofi@) plaquette andb) Polyakov loop for
for each number of flavors, from now on we discuss €dgh  variousN obtained a{3=4.5 onN,=4 lattices.
separately: We first intensively investigate the cabgs
=240 and 300, and then decrede, because we found that

the phase structure is quite simple fég=240. A. Ng=240 and 300

Figure 13 shows the results @f? and 2m, for Ng

4 T T T T T T T

3‘:\N 4818

5 %"N =16 deconfining phase
6 -
[
il !
gl ¢

confining phase

[ ]
<

=81
\]/ N=16
|

B=0.0 -

N=4]
N28 1

i
‘-

9 1
0 40 80
N

F

FIG. 10. The transition point Ky at 3=0 versusNg for N;
8 for Ng=300 is slightly

=4 andN;=8. For clarity, data aN;=
shifted to a largeNg in the figure.

120 160 200 240 280 320

=240 and 300, obtained at various values@bn the N;
=4 |attice. A very striking fact is that the shapemf, and
2m, as a function of K only slightly changes in the decon-
fined phase, when the value gfdecreases frore down 0.
Only the position of the local minimum cmf, at 1K=8,
which corresponds to the vanishing point wf,, slightly
shifts toward smaller K. The results foNg=240 and 300
are essentially the same, except for very small shifts of the
transition point and the minimum point @h?. We obtain
similar results also foN;=8 (see Fig. 14 That is, the mass-
less line in the deconfined phase runs through fi@#smre to
B=0. Thus we obtain the phase diagram shown in Fig. 5.
From the perturbation theory, te,=0 point atg=c is
a trivial IR fixed point for Ne=17. The phase diagram
shown in Fig. 5 suggests that there are no other fixed points
on them,=0 line at finite 8. In order to confirm this, we
investigate the direction of the renormalization grdigi)
flow along them,=0 line for Nz =240, using a Monte Carlo
renormalization groupMCRG) method.
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FIG. 13. mf, and 2n,, for (8) Ne=240 and(b) 300, obtained on

FIG. 12. The same as Fig. 11, but {8 6.0. ; )
N,=4 lattices at varioug.

We make a block transformation for a change of scale
factor 2, and gstimqte the quantAyB:B(Za)—ﬂ(a): We B. 240>N =17
generate configurations on afl Bittice on them,=0 points . .
at =0 and 6.0 and make twice blockings. We also generate NOw we decreasblr from 240. As discussed in Sec. VII,
configurations on a 4 lattice and make once a blocking. the deconfined phase transition poky decreases with de-
Then we calculatd 8 by matching the value of the plaquette creasingNg in the strong coupling limit3=0. However,
at each Step_ From a matching of our data, we Obmﬁ-l except for this shift of the bulk transition pOint, theK1/
~6.5 at3=0 and 10.5 a3=6.0. The value obtained from dependence ohf, andm, are quite similar in the deconfined
the two-loop perturbation theory i53=8.8 at3=6.0. The phase when we varig from 300 down to 17, as shown in
signs are the same and the magnitudes are comparable. Fig. 9. The results g8=6.0 and 4.5 shown in Fig. 15 indi-
It is known for the pure S(B) gauge theory that one has cate that the ¥ dependence ah? and m, are almost iden-
to make a more careful analysis using several types of Wiltical to each other, except for a small shift toward smaller
son loop with many blocking steps to extract a precise valud/K asNg is decreased. These facts imply that the structures
of AB. We reserve elaboration of this point and a fine tuningof the deconfined phase are essentially identical figm
of 1/K at eachg for future works. FoNg= 240, because the =17 to 300.
velocity of the RG flow is large, we will be able to obtain the  As we show below, a closer examination of the data
sign and an approximate value &f3 by a simple matching. shows that the massless quark line in the deconfined phase
This result implies that the direction of the RG flow on hits the phase transition line at finifg¢ when Ng is not so
the my=0 line at 3=0 and 6.0 is the same as that @t large asNg<60, while it runs through frong=c to =0
=00, This further suggests that there are no fixed points atvhenNg is very large such as 240 and 300.
finite B. All of the above imply that the theory is trivial for For Ng=18 we make simulations #&=0.0, 2.0, 4.0, 4.5,
Ng=240. and 6.0 orN;=4 and 8 lattices, as listed in Table VI. Results
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FIG. 14. The same as Fig. 13, but fisg =240 andN,=8. Rrr T 7 11171
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FIG. 15. Results ofnfT and 2n, for large Ng obtained onN;
=4 lattices at(a) 3=6.0 and(b) 3=4.5.

for m? andm, are shown in Figs. 16 and 17. We note that, at
B=4.5, them? and m, show characteristic behavior of
massless quarks aroundKt 6.5 in the deconfined phase,
both onN;=4 and 8 lattices. Such massless point exists also
at 3=6.0, but is absent g8=0.0 and 2.0.

At B=4.0 we carry out detailed simulations around the
transition point. On thé\,=4 lattice, the first order decon-
fining phase transition locates arounk=0.150 (1K
=6.67), and the massless quark point existKat0.158
(1/K=6.33) in the deconfined phase. When we incrddse
to 8, the phase transition point shifts ¥=0.154-0.156
(1/K=6.49-6.41) where we observe two-state signals last-
ing more than 450 trajectories. We confirm that the points
K=0.152 and 0.158 belong to the confined and deconfined
phase, respectively. In the deconfined phase the massless

o e — quark point exists ak=0.155 (1K=6.45). See Fig. 1(@).
3 5 6 8 From this we conclude that the massless quark line in the
(b) 1/K deconfined phase hits the first order bulk phase transition line

aroundB8=4.0. The phase structure ftd\r=18 is summa-

— . 2
FIG. 16. Ng=18: Results ofm7 and 2n, versus IK. (a) 8 fized in Fig. Ga).

=0.0 and(b) B=2.0.
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FIG. 17. Ng=18: Results ofn? and 2n, versus IK. (a) 8
=4.0, (b) B=4.5, and(c) B=6.0.
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N =7

FIG. 18. Ng=7: Results ofm’ and 2n, versus 1K. () 8
=0.0 and(b) B=2.0.

C.16=N=7

As stressed several times, the quark confinement is lost
for Ne=7 atB=0 (g=<). We now intensively simulate the
casesNg=7, 12 and 16 at several finite values 8f The
simulation parameters foNg=7, 12 and 16 are listed in
Tables Il, IV and V.

In Figs. 18 and 19mf, and 2m, at selected values ¢8
are plotted folNg=7. Results foNg=12 and 16 are simi-
lar, as shown in Figs. 20 and 21.

For Np=7, 12 and 16, we find that theKl/dependence
of m2 and 2m, in the deconfined phase are similar to those
shown in Fig. 15 foNg=17 at all the values oB. That is,
they are essentially the same as those of a free quark state
shown in Fig. 3. Carefully looking at the values mﬁr and
2m, at B=4.5 for both cases reveals that the massless line
hits the phase transition line arougd=4.5, at 1IK~6.1 for
Ne=7 and at IK~6.5 for Ng=12.

Together with the data of plaquette and Polyakov loop
(see Fig. 22 as a typical exampleve obtain the phase dia-
gram shown in Fig. @) for Nc=12. The phase diagrams for
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FIG. 19. Ng=7: Results ofm’ and 2n, versus IK. (a) g FIG. 20. Ne=12: Results ofm? and 2n, versus IK. (a) B
=4.5 and(b) 3=6.0. =2.0 and(b) B=4.5.

Ng=7 and 16 are similar. We find that the gross feature of
these phase diagrams is quite similar to the ddge=18  N_.=7. As far as the quark mass is below a critical value, the
shown in Fig. 6a). system is in the deconfined phase. Therefore, we expect that

We note again that wheNg=<16, the pointg=0 is an  our proposal for the relation of the phase structure and the
UV fixed point. This is in clear difference with the case of number of flavors remain unchanged for nondegenerate
Ng=17. cases, when we redefimd: as the number of flavors which

satisfies the conditionmy<<A,: If there exist more than
D. Ng<6 seven quarks whose masses are lighter than quarks
should not be confined. In nature quarks are confined, there-
fore the number of flavors whose masses are less than
should be equal or less than six. The sc&lgis numerically
calculable and will be obtained in the future.

This conclusion is based on our assumption that the de-
confining phase transition occursraf '@ ~ £~1. Now we
make a comment on the alternative possibility that the de-
confining phase transition occurs @mif""°® ~a =1, If this
would be correct, the number of flavors should be equal or

We now extend the discussion to the cases of nondegetess than six irrespective of their masses. Since six species of
erate quarks. In the case of degenerate masses, the glolgplarks have been discovered, this implies that there are no
structure of the phase diagram is the same at l@dg®r  more species of quarks.

As already reported in Refl], numerical results show
that, atB=0, the confined phase extends to the chiral limit.
Simulations at finite values g8 show that the phase struc-
ture is similar forNg=2-6[14]. (See Table | for run param-
eters forNg=6.) Thus we have the phase diagram shown in
Fig. 4.

IX. IMPLICATION FOR PHYSICS
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4 r m 4 L

- T i -
3T ] 0.4 |
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FIG. 22. Nge=12: Plaquette and Polyakov loop as functions of
6"" 1/K andN, at 8=4.5.
5[ NF=16 | . o
-6 On the other hand, when 2Ng=7, there is a nontrivial IR

- p=60 m 2] fixed point and therefore the theory is non-trivial with
4 Ir _ anomalous dimensions, however, without quark confinement.

i I Theories which satisfy both quark confinement and sponta-
3 Nied 1 neous chiral symmetry breaking in the continuum limit exist
5 [ ) only for Ne<6. If there exist more than seven quarks whose

masses are lighter thahy, quarks should not be confined.
In nature quarks are confined, therefore the number of flavors
whose masses are less thap should be equal or less than
six. The scale\ 4 is numerically calculable and will be ob-
tained in the future.
We have discussed that, only from a theoretical argument,
8 we cannot exclude an alternative possibility that the decon-
fining phase transition occurs atS""*® ~a~1. This corre-
sponds to the casky=-oc. If this would be correct, the total
number of flavors should be equal or less than six irrespec-
tive of their masses: Since six species of quarks have been
discovered, this implies that there are no more species of
X. CONCLUSIONS quarks. This conclusions is based on an additional assump-
tion that QCD only is responsible to quark confinement. If
We have investigated numerically the phase structure o§ome other interactions would also affect the quark confine-
QCD for the general number of flavors. Performing a seriesnent at some scald ., the number of quarks, whose
of simulations for degenerate quark mass cases employingiasses are smaller tha,.,,, should be six, in this case.
the one-plaquette gauge action and the standard Wilson \which of mgrtical — a1 or mgrtical — £~1 s realized can
quark action, we have found that whiir=7 there is aline  pe jnvestigated by numerical simulations in future.
of a first order phase transition between the confined phase
and a deconfined phase at a finite current quark mass in the
strong coupling region and the intermediate coupling region.
The massless quark line exists only in the deconfined phase. we thank Sinya Aoki and Akira Ukawa for valuable dis-
Based on these numerical results in the strong couplingussions. This work is in part supported by Grant-in-Aids of
limit and in the intermediate coupling region, together with Ministry of Education, Science and Cultufdlos. 626001
an assumption that the phase transition occure@'®®  and 0242008
~¢ 1 in the weak coupling region, wheré is a typical

S S S U B S

3 4 5 6
(b) 1/K

FIG. 21. Ng=16: Results ofm? and 2n, versus IK. (a) 8
=4.5 and(b) 8=6.0.
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correlation length of gluons, we propose the following phase APPENDIX: SU(2) QCD
structure. The phase structure crucially depends on the num-
ber of flavors,Ng, whose masses are less thAag~¢?! As an extension of the color $8) QCD case, we study

which is the physical scale which characterizes the phaseolor SU2) QCD in the strong coupling limit. We note that
transition: WhenNg=17, there is only a trivial IR fixed the SU2) beta function has a characteristics similar to the
point and therefore the theory in the continuum limit is free.SU(3) one: In the case of S@), the asymptotic freedom is
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TABLE X. Simulation parameters for S®) QCD at 8=0.0 0.6 | ; ; ; ; ; ; '
performed on 8x 10x N, lattices withN,=4 and 8. The number of i
configurations, sampled every 5 trajectories, are 10—22, except for L
the Ng=2 runs atk =0.25 which are not thermalized. 3

04 |
NF NI K AT F

2 0.25 0.01, 0.005

0.21, 0.22, 0.23, 0.24, 0.25 0.01 0.2
0.25 0.01 .

0.25 0.01 0

4
4
8
4 4 0.25 0.01
4
4

0.16, 0.17, 0.18, 0.19, 0.20,
0.21, 0.23, 0.25 0.01

lost whenNg=11 and the 2-loop result for the critichl is E
5, instead of 17 and 8, respectively, for @Y [1]. The 2 r
smaller numbers for criticdll are natural because the con- ;
fining force is weaker in S(2).

Adopting the standard plaguette gauge action and the Wil- 4 E
son quark action, we have performed a series of simulations E
in the strong coupling limit following the strategy of the
SU(3) case. Our simulation parameters are compiled in Table o |
X. E

First, performing a simulation fog=8 andN;=4, we 05 .
confirm that the deconfining transition occurs at ~ 1
K=0.2-0.21 and that the chiral limiK=K.=0.25 is in the
deconfined phase. Decreasihg gradually atk =K., we
find that the chiral limit remains in the deconfined phase
down to Np=3. When we further decreadé: to 2, the
number of the inversiolN;,, in CG iterations shows a rapid
increase with molecular-dynamics time and finally exceeds™ “°
10000 in clear contrast with small numbers @f10%) for
Ng=3. We conclude that the chiral limit is in the confined At finite coupling constants we may expect results similar
phase folNg=2. Figure 28a) shows our results of physical to those of SUB). Thus, we conjecture in parallel to the
quantities versudlg at K=K, . To study theN, dependence SU(3) case that, wheiNg=11, the theory is free. On the
of the transition, we simulate on ad;=8 lattice for the other hand, when E8N=3, the theory is nontrivial with
critical caseNg= 3. The stability of the result, shown in Fig. anomalous dimensions without quark confinement. A theory
23(b), confirms that the deconfining transition we observe iswhich satisfies both quark confinement and spontaneous chi-

FIG. 23. Results of physical quantities@t o andK =K for
SU(2) QCD. (a) The plaquette and Polyakov loop, afid mfr and

a bulk phase transition. ral symmetry breaking exists only fdig<2.
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