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Lattice calculation of gluon screening masses
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We studySU(3) gluon electric and magnetic masses at finite temperatures using quenched lattice QCD on
a 20233236 lattice. We focus on temperature regions betweenT5Tc and 6Tc , which are realized in BNL
Relativistic Heavy Ion Collider and CERN Large Hadron Collider experiments. Stochastic quantization with a
gauge-fixing term is employed to calculate gluon propagators. The temperature dependence of the electric mass
is found to be consistent with the hard-thermal-loop perturbation, and the magnetic mass has finite values in the
temperature region of interest. Both screening masses have little gauge parameter dependence. The behavior of
the gluon propagators is very different in confinement or deconfinement physics. The short distance magnetic
part behaves like a confined propagator even in the deconfinement phase. A simulation with a larger lattice,
32234836, shows that the magnetic mass has a stronger finite size effect than the electric mass.
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I. INTRODUCTION

One of the most interesting features of QCD~quantum
chromodynamics! is the transition from the confinement t
the deconfinement phase. In this new state of QCD, qu
and gluons confined in the hadron at zero temperature m
freely when the system reaches a sufficiently high temp
ture. The quark-gluon plasma~QGP! was realized at high
temperature in the early universe, and is expected to be
duced in heavy-ion collision experiments at the CERN Su
Proton Synchrotron~SPS!, BNL Relativistic Heavy Ion Col-
lider ~RHIC!, and CERN Large Hadron Collider~LHC!.
Thus it is an urgent task to accumulate theoretical knowle
about the QGP.

The massless gluon in the QGP medium is changed in
dressed massive gluon after quantum corrections.
screening effect is characterized by a mass pole of the pr
gator and is closely related to thermal QCD phenomenolo
One example is a screened heavy-quark potential, whic
frequently discussed in relation toJ/c or Y suppression. For
calculations of jet quenching, which might be a fingerprint
a QGP, a model including the electric and magnetic mas
has been proposed@1#. A nonperturbative quantitative stud
in the vicinity of Tc and up to several timesTc is of great
importance for understanding QGP physics.

The thermal field theory@2–4# is the most basic metho
of studying the QGP and has provided many informat
observations. At zero temperature, many calculations ba
on perturbative QCD have described experimental results@5#
and there is no doubt that QCD is a theory of strong int
action. It is natural to employ the perturbative approach
thermal QCD. Because of asymptotic freedom at high te
perature, the coupling constant is expected to become s
enough to carry out the perturbations. In such a high ene
state, quarks and gluons must behave as an ideal gas; ye
simple consideration is spoiled by an infrared divergence@6#,
which is known to bear a hierarchy on the energy scale in
QGP system@3,4#. One usually defines 1/T as a perturbative
0556-2821/2004/69~1!/014506~11!/$22.50 69 0145
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length scale, and furthermore 1/gT must be introduced as a
electric~Debye! scale, whose influence appears as a Yukaw
type potential rather than a Coulomb-like one, and 1/g2T as
a magnetic scale. In QCD, the magnetic mass, which can
be accessed perturbatively, acts as a cutoff factor in the
frared problem and consequently becomes an essential
ment of thermal QCD.

The QCD coupling constant strength near the critical te
peratureTc is still of the order of 1. Therefore perturbatio
theory is not applicable. However, these regions are curre
being investigated with great interest in much theoretical a
experimental research. After hard-thermal-loop~HTL! re-
summation was consistently formulated by Braaten a
Pisarski, there were several improvements@7,8# for unsolved
problems. Comparison of this method with lattice numeri
data has been reported; one-loop HTL calculations of the
energy of a QGP are in good agreement with the lattice
merical result@9,10#. However, a recent two-loop HTL cal
culation indicates that it does not yet have adequate con
gence@11#. As another approach, 3D reduction theory h
also been widely studied and has yielded some promis
arguments@12#, but this method, which is defined only fo
the high temperature limit, cannot be applied to confineme
deconfinement physics.

For reliable phenomenological analyses of high ene
heavy-ion collisions, it is important to obtain information o
the magnetic and electric masses of gluons nonpertu
tively; a numerical study of lattice QCD as a first-principl
calculation should play an important role here.

There have been many lattice studies of finite-tempera
QCD, but only a few calculations of the electric and ma
netic screening masses can be found in the literature@13#,
other than for the case of colorSU(2) @14,15#. The electric
mass has been estimated from the Polyakov loop correla
functions to obtain the screened heavy-quark–antiquark
tential @16–18#.

The main aim of our study is to obtain reliableSU(3)
electric and magnetic masses through large-scale la
©2004 The American Physical Society06-1
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NAKAMURA, SAITO, AND SAKAI PHYSICAL REVIEW D 69, 014506 ~2004!
QCD simulations and to reveal their temperature depende
@19#. We also compare our numerical data with the pred
tions of leading order perturbation~LOP!, HTL resumma-
tion, and other analyses.

Since our mass extraction is based on measuring a g
dependent gluon propagator, it is important to check
gauge invariance of both screening masses@20#. This test is
essential particularly for the magnetic mass, because it h
poor definition in the frame of the perturbation.

Gluons are essential ingredients in QCD dynamics,
QCD undergoes a phase transition from the confinemen
the deconfinement phase when the temperature incre
Therefore, we expect gluon propagators to show differ
behavior in each phase, and their study provides informa
on confinement/deconfinement dynamics@21#.

We measure gluon propagators, which depend on
gauge used, and therefore a gauge-fixing procedure is in
pensable. However, gauge fixing on the lattice is diffic
practically and conceptually. Usually, gauge fixing is carr
out by the iterative technique@22#, and it is very time con-
suming. The conceptual difficulty is that the gauge is n
uniquely fixed; this is known as the Gribov copy proble
@23#. In order to overcome these difficulties, we adopt her
stochastic quantization with Zwanziger’s gauge-fixing te
@24–26#, instead of the path integral method.

In this paper, we extend our previous results from 22

33236 lattice simulations@19# to the level that presen
computer power can reach; we add more detailed values
the electric and magnetic masses and results at higher
perature from the larger-lattice 32234836 simulation. We
also give a detailed description of the algorithm employed
this study. In Sec. II, we describe the stochastic gauge qu
tization together with the Gribov copy problem. The defin
tions of the gluon propagator and electric and magn
masses are given. A large part of Sec. III is devoted to
simulation results on the small lattice 20233236. First we
describe all input parameters of the simulation and the
tistics needed to measure reliable gluon propagators. T
we show the gluon behavior and the electric and magn
masses extracted from it. The gauge dependence check
temperature dependence for both screening masses are
given. Finally, we compare the numerical data with the p
turbative argument, add the higher temperature result,
comment on the finite-volume effect. Section IV gives t
conclusions.

The main part of the calculation was carried out on
SX-5~NEC! vector-parallel computer of RCNP~CMC!,
Osaka University. We used a parallel queue with 4, 8, and
CPUs and required about six months to complete this wo

II. STOCHASTIC GAUGE FIXING ON LATTICES
AND GLUON PROPAGATORS

A. Lattice gauge action

The lattice regularization scheme of QCD is the gau
invariant Euclidean theory which enables us to perform
nonperturbative calculation based on the Monte Carlo
01450
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merical technique@27#. The simplest standard Wilson gaug
action of lattice QCD can be defined from continuum QC
as

Sg5b( S 12
1

3
Re Tr@Un~x!Um~x1 n̂ !

3Un
†~x1m̂ !Um

† ~x!# D , b5
2Nc

g2
. ~1!

Here a link variable,Um(x), stands for theSU(3) color
gauge field:

Um~x!5eigamAm(x), ~2!

wheream is the lattice spacing, i.e., the lattice cutoff, andAm
represents the gauge potential of the gluon. In this study,
adopt the quenched lattice simulation~pure gauge QCD!
without a dynamical quark effect, using Eq.~1!.

B. Gauge fixing and Gribov copy on lattices

We are interested in a direct calculation of the glu
propagator, and the extraction of electric and magne
screening masses from it. Therefore we must fix the gaug
the gluon fields on the lattice, where the gauge transform
tion is given by

Um~x!→v†~x!Um~x!v~x1m̂ !. ~3!

v stands for a gauge rotation matrixPSU(3) on the lattice.
In this study, we focus on a Lorentz-type gauge, which

defined in the continuum as

]mAm~x!50, ~4!

while in the discrete lattice theory

Da~x![ (
m51

4

2 Im Tr ta$Um~x!2Um~x2m̂ !%50. ~5!

Here ta is the SU(N) generator with the relation Tr@ tatb#
5 1

2 dab. The above condition~5! is equivalent to

dvI 50,

I[(
x,m

Re Trv†~x!Um~x!v~x1m̂ !. ~6!

Wilson @28# and Mandula and Ogilvie@22# suggested the
following condition for the gauge-fixing method on the la
tice:

maxvI . ~7!

The continuum version of Eq.~7! was discussed in Refs.@29#
and @30#.

The conditions~6! and~7! are not equivalent to each othe
since there may be local maxima or minima ofI which sat-
isfy Eq. ~6!. The gauge-fixing configuration cannot b
uniquely fixed; this is called the ‘‘Gribov copy’’@23# and is
6-2
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LATTICE CALCULATION OF GLUON SCREENING MASSES PHYSICAL REVIEW D69, 014506 ~2004!
illustrated in Fig. 1. If we study this problem using a nume
cal lattice simulation based on the iterative procedure, i
very difficult to find a true maximum.

C. Stochastic gauge fixing

Our approach to the gauge-fixing procedure is to use
stochastic gauge quantization instead of the Monte C
path integral. The stochastic quantization is based on
Langevin equation which introduces virtual time in additi
to the Euclidean coordinate. Zwanziger introduced a gau
fixing term as

dAm
a

dt
52

dS

dAm
a

1
1

a
Dm

ab~A!]nAn
b1hm

a , ~8!

whereDm
ab(A) is a covariant derivative,t stands for Lange-

vin time, andh is a Gaussian noise term. The second term
the right-hand side is a gauge-fixing term.a is a gauge pa-
rameter;a50 corresponds to the Lorentz gauge anda51 to
the Feynman gauge.

Mizutani and Nakamura@26# developed the lattice versio
of the stochastic gauge fixing. The link variables are rota
through the following gauge transformation depending
the virtual time:

Um~x,t1Dt!5v†~x,t!ei f m
a taUm~x,t!v~x1m̂,t!. ~9!

Here f stands for the force

f m
a 52

]S

]Am
a

Dt1haADt, ~10!

and the gauge rotation matrix is given by

v5eibDataDt/a. ~11!

If v5I , Eq. ~9! is a lattice Langevin process. Gauge ro
tion, Eq.~9!, with Eq. ~11!, leads to the gauge-fixing term a
Dt→0. Equation ~9! means that the gauge rotation a
Langevin step are executed alternately, as illustrated
Fig. 2.

FIG. 1. Gribov @23# pointed out that a gauge is not unique
fixed for non-Abelian theories, which is called the Gribov co
problem. This does not appear in the perturbative frame.
existence of the Gribov copy has been confirmed in several w
@31–33#.
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In this stochastic quantization with Lorentz-type gau
fixing, Da fluctuates around the gauge-fixing planeDa50.
For example, when we takea51.0 andDt50.01, Da on
4338 with b56.0 behaves as shown in Fig. 3. We confir
that Da fluctuates aroundDa50 which indicates that good
gauge fixing is achieved.

There are two reasons for using the stochastic gau
fixing method in this study. One is a practical issue. Wh
we use the standard Wilson-Mandula gauge-fixing meth
@22#, the iterative procedure is applied to accepted ga
configurations for each Monte Carlo step in Fig. 2. Then
number of iterations is unpredictable, particularly for lar
lattices. On the other hand, in algorithm~9!, we simulta-

e
ks

FIG. 2. The figure illustrates the gauge-fixing procedure by
Wilson-Mandula-Ogilvie iterative method and by stochastic gau
fixing. Gray arrows indicate the gauge rotation for each algorith
In the first algorithm, Monte Carlo update steps are performed w
out restriction on the]mAm50 plane. When a gauge-fixed configu
ration is needed, the gauge configuration is rotated to the ga
fixed plane,]mAm50, by iteration@22#. On the other hand, in the
case of Langevin gauge fixing, configurations are updated by fl
tuation around]mAm50.

FIG. 3. These data are produced on the lattice 4338 with Dt
50.01 ~Langevin step interval! and a51.0 ~gauge parameter! at
b56.0. The solid line means the average of(x,a$D

a(x)%2, while
the dashed line is the value ofD1(1). Da fluctuates aroundDa50
and gauge configurations are sufficiently fixed on the]mAm50
plane.
6-3
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NAKAMURA, SAITO, AND SAKAI PHYSICAL REVIEW D 69, 014506 ~2004!
neously repeat the steps of update and gauge rotation in
2 and are free from the convergence problem of gauge fix
Therefore we can estimate the CPU time precisely. Mo
over, this algorithm, in which the gauge parametera can be
changed at will, is advantageous when testing gauge inv
ance.

A conceptual problem is the Gribov ambiguity@23#. The
algorithm has a noteworthy feature, i.e., the second term
Eq. ~8! gives rise to a configuration such that

d

dt (
x

D2H ,0 in V,

.0 out of V.
~12!

HereV stands for the Gribov region,

Gribov region:V[$Am
a ~x!u]mAm

a ~x!50,2]mDm
ab.0%.

~13!

That is, the stochastic gauge-fixing term is attractive~repul-
sive! inside ~outside! the Gribov region@24,25# if we start
from the trivial configuration$Am50%. Although our algo-
rithm may not completely eliminate copies, we conclude t
it is a more effective method.

Since the update algorithm described here is not as po
lar as the Metropolis or pseudo-heat-bath method, we s
the autocorrelation of the Polyakov linesL(t)L(t1nt) in
Fig. 4 together with that of the pseudo-heat-bath.

D. Definition of gluon propagators

We define the gauge fieldAm(x) in terms of the link vari-
ables as

Am~x!52(
a

taIm Tr taUm~x!. ~14!

We calculate massless gluon correlation functions with fin
momentum,

Gmn~px ,py ,pt ,z!5^Tr Am~px ,py ,pt ,z!

3An~2px ,2py ,2pt,0!&. ~15!

TABLE I. We estimate a lattice cutoff and its temperature sc
by using mainly theQCD_TARO fit function @34,35#. We adoptTc

;256 @36#.

b a21

~GeV!
T ~MeV! T/Tc b a21

~GeV!
T

MeV!
T/Tc

5.8 1.33 222 0.86 6.4 3.52 586 2.29
5.90 1.62 270 1.05 6.5 4.12 690 2.69
5.95 1.77 295 1.15 6.6 4.60 767 2.99
6.0 2.04 340 1.32 6.7 5.24 874 3.41
6.05 2.09 349 1.36 6.8 5.96 994 3.88
6.1 2.27 378 1.47 6.9 6.76 1128 4.40
6.2 2.64 447 1.74 7.0 7.64 1274 4.97
6.3 3.05 509 1.99 7.1 8.61 1436 5.61
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In our study, to avoid a mixture of the longitudinal an
transverse modes, we adopt the transverse conditionspi•Ai
50 and measure the partially Fourier transformed propa
tor including one momentumpx52p/Nx or py52p/Ny
@31#. We will obtain the gluon mass using a lattice energ
momentum relation. This is different from other calculatio
@13,14#, where the mass extraction from zero momentu
propagator was studied.

In thermal perturbative QCD@2–4#, the electric mass is
defined from the temporal part of the gluon polarization te
sorPmn , while its spatial part is considered as the magne
mass. Thus we can construct an electric propagator usi
temporal one:

Ge~p,z!;
1

2 FGttS 2p

Nx
,0,0,zD1GttS 0,

2p

Ny
,0,zD G . ~16!

In the same way, a magnetic propagator is defined by sp
components:

Gm~p,z!;
1

2 FGxxS 0,
2p

Ny
,0,zD1GyyS 2p

Nx
,0,0,zD G . ~17!

Because the screening mass is given as a pole of the
nominator of the momentum space propagator 1/(p21m2),
Ge(z) and Gm(z) are expected to behave as exponen
damping functions in thez direction on distancesZ>1/T
with the masses

Ge(m)~z!;e2Ee(m)(p)z. ~18!

III. RESULTS

A. Simulation parameters

We use mainly the lattice of sizeNxNyNzNt5202332
36 which satisfies the conditionNx>3Nt . On this lattice
the long range area corresponds toz>1/T and thus reliable
information for screening physics may be produced.

e

FIG. 4. Autocorrelation of the Polyakov loops for the Langev
algorithm with stochastic gauge fixing (Dt50.03) and the pseudo
heat-bath update algorithm as a function of the iteration steps.
calculation is done atb56.1 on the 8334 lattice.
6-4
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LATTICE CALCULATION OF GLUON SCREENING MASSES PHYSICAL REVIEW D69, 014506 ~2004!
We summarize lattice cutoff values and the correspond
temperature in Table I. Varyingb, i.e., the lattice coupling
constant, we change the temperatureT51/Nta. The pure
gauge lattice withNt56 has criticalbc;5.89, and we adop
Tc;256 @36# as the critical temperature. To estimate the l
tice cutoff value, we employ the results in Refs.@34,35#.

In addition, we prepare a lattice of the size 32234836 in
order to investigate the finite-size effect of screening mas
and to obtain them at higher temperature.

B. Necessary statistics to obtain reliable gluon propagators

We observe a large fluctuation of the gauge propagat
particularly at long distances, i.e., we suffer from a lo
autocorrelation time. We show in Fig. 5 the typical behav
of gluon propagatorsG(z) as a function of the Langevin
step. In order to analyze the gluon propagator and mea
the screening masses we require 0.2–0.43106 steps as the
typical number of simulation data.

C. Gluon propagators

Although the gluon propagator itself is gauge depende
it gives us some insights into the gluon dynamics of
confinement/deconfinement physics.

The electric propagator is shown in Fig. 6,1 where the free
massless propagator is also shown by the dashed line.
ons at short distances, i.e.,z,651/T, have very similar be-
havior to the free propagator. However, at long distanc
gluon propagators decrease more rapidly than the free
This indicates that the electric screening mass does not
ish at all temperatures.

Comparing the data below and aboveTc , we find that the
dynamics of the gluon is completely different in the confin

1In the following, all the propagators are normalized atz50,
namely they are divided byGe(m)(z50) to compare each other.

FIG. 5. Typical gluon propagator behavior as a function
Langevin steps on the lattice 20233236. We find that fluctuations
of Gxx(12) are much larger than those ofGxx(6). In order to in-
vestigate the screening effect, the long range contribution shoul
adopted. Consequently, we need a large number of statistics.
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ment and deconfinement regions. The electric gluon mas
the confinement region becomes heavier; the electric gluo
completely screened in the confinement regions. This w
first observed in Ref.@21#. Consequently, we cannot emplo
the assumption Eq.~18!. On the contrary, the propagator i
the deconfinement regions decreases exponentially eve
long distances with a finite mass.

Similar behavior is seen in the magnetic parts in Fig.
although the long distance magnetic gluons have large er
here, all magnetic gluons are found to be massive at l
distances in the confinement/deconfinement phase, and

f

be

FIG. 6. The electric propagator in the confinement~circles! and
deconfinement~other symbols! regions withPx(y)52p/Nx(y) . All
propagators are found to become massive compared with the
propagator~long dashed line!. In the confinement regions, th
propagator at long distances behaves like a very massive pa
and vanishes, whereas the propagator beyondTc has a finite mass.

FIG. 7. The magnetic gluon propagator in the confinem
~circles! and deconfinement~other symbols! regions with Px(y)

52p/Nx(y) . Although the magnetic gluon propagators in this figu
have large errors at long distances, they seem to have similar
havior to the electric part, except for the short distance behavio
the deconfinement regions.
6-5
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NAKAMURA, SAITO, AND SAKAI PHYSICAL REVIEW D 69, 014506 ~2004!
effective mass in the confinement phase is heavier. We no
that the short distance behavior of magnetic gluons in
deconfinement regions looks unconventional. The magn
gluon propagators follow a convex curve at short distan
while the electric ones do not. The magnetic gluons beh
as if they had an imaginary screening mass or negative s
tral function, which may be the reason why the magne
mass is not screened, at least in LOP calculation.

As clearly seen in Fig. 7 and as we discuss below,
effective mass of the magnetic mass isz dependent. We take
a value aroundz51/T as the electric case, since it is a re
evant quantity at finite-temperature screening.

Gluons are essential ingredients of QCD but they are c
fined belowTc . As shown in Fig. 8, their propagator is con
vex upward at several regions. This is possible only when
spectral function isnot positive definite. This peculiar behav
ior was first observed in Ref.@22# and confirmed in Ref.
@37#. The feature does not contradict the fundamental po
late of quantum field theories, because gluons in the confi
ment region are not physically observable particles. Inste
this is a glimpse of the confinement mechanism in the in
red region which is still far from our understanding. Gribov
conjecture for the gluon propagator

G~p!;
Z

p21b4/p2
, ~19!

vanishes atp250, and its Fourier transformation to the c
ordinate space is not convex downward,2

G̃~ t !;
Z

r
ert cosfcos~rt sinf1f!, ~20!

2We thank E. Seiler and D. Zwanziger for helpful discussions
this point.

FIG. 8. Transverse gluon propagator,GT(t) with p
5((2p/Nx),0,0), on 483364 atb56.8 ~confinement phase!. Solid
line represents the free propagator@21#.
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wherer[(upW u41b4)1/4 andf[ 1
2 tan21(b2/pW 2). The upward

convex shape of the gluon propagators in the deconfinem
region may provide us with hints about the glue dynamic

Below the critical temperatureTc , we obtain a similar
result even for electric gluons at short distances. This se
natural since the perturbative argument in the confinem
regions is generally not suitable and the confining correlat
function would also give a the negative spectral function

D. Mass as a pole

To obtain the screening mass from the propagators,
following formula is used:

Ge(m);cosh@Ee(m)~p!~z2Nz/2!#. ~21!

We employ data forz>1/T(5Nta), because the screenin
effect occurs at sufficiently long distances. All fittings a
done fromz56 to Nz/2, andx2/NDF;O(1), where NDF
indicates the number of degrees of freedom.

To obtain the final result atDt50, we must extrapolate
the data with respect to the Langevin step width. The Run
Kutta algorithm is applied to reduce the finite Langevin st
Dt dependence@38#. We perform simulations for a set o
parameters withDt50.03–0.05. Table II and Fig. 9 repre
sentE(p) measured here versusDt. The slight dependence
of Dt enables us to use a linear function when fitting da
We finally obtain the mass fromE(p) by the following lat-
tice energy-momentum relation@14#:3

sinh2
Ea

2
5sinh2

ma

2
1(

i 51

3

sin2
pia

2
. ~22!

E. Gauge invariance

The screening mass is physical and expected to be ga
invariant. However, since the gluon propagators defined

n
3We ‘‘assume’’ this relation to extract the mass.

TABLE II. This shows the typical example of the Langevin ste
dependence at T/Tc52.69. For all simulations for Dt
50.03–0.05, approximately 0.2–0.43106 steps ~measurements!
are used after eliminating about 3000–5000 steps as thermaliza
‘‘ pÞ0’’ means including the momentumPx(y)52p/Nx(y) . We ex-
trapolate these data toDt50 and then obtainmea(pm50)
50.470(38) andmma(pm50)50.199(52) using the lattice energy
momentum relation.

Dt Number of steps mma(pÞ0) mea(pÞ0)

0.05 275 000 0.400~08! 0.544~22!

0.045 240 000 0.364~12! 0.527~21!

0.04 380 000 0.381~11! 0.508~21!

0.035 280 000 0.369~08! 0.551~24!

0.0325 300 000 0.336~09! 0.565~28!

0.03 320 000 0.367~14! 0.551~24!

0.00 0.369~46! 0.561~40!
6-6



to
a
n
rly
w
d
en
g
e

ni

IC
g-
ne
io
at

s

lts

3

e

s

s

of
ic

ning
slight.

etic

sent

na
.
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Eqs. ~16! and ~17! are gauge dependent, it is important
check whether the screening masses obtained here are g
invariant or not. In addition, since the magnetic mass can
be defined by a perturbative calculation, it is particula
important to check its gauge dependence. In Fig. 10,
show the gauge parametera dependence of the electric an
magnetic masses. The gauge dependence of both scre
masses is found to be very slight, namely, the result stron
suggests that they are gauge invariant and physical obs
ables.

F. Temperature dependence

We study the temperature dependence of the scree
mass in the rangeT/Tc51 –6, which would be realized in
high energy heavy-ion collision experiments such as RH
or LHC @39#. Table III and Fig. 11 show electric and ma
netic masses as a function of the temperature. The mag
part definitely has nonzero mass in this temperature reg
As T increases, bothme(m) /T decrease monotonically, and
almost all temperatures, the magnetic mass is less than
electric one, except very nearTc where the electric mas
decreases very quickly asT approachesTc .

G. Comparison with LOP and HTL resummation results

We perform a fitting analysis for our numerical resu
using the following ansatz:

me

T
5Ceg~T!,

mm

T
5Cmg2~T!, ~23!

whoseg dependence is predicted by the perturbative and
reduction analysis@3,4# and we assumeCe andCm are free
parameters. In the following discussion, the data abovT
;1.5Tc are used. Here we use the running couplings

g2~m!5
1

2b0log~m/L! S 12
b1

2b0

log~2logm/L!

log~m/L! D , ~24!

FIG. 9. Dt dependence of masses is slight. To obtain a fi
value atDt50, we use the linear function for the extrapolation
01450
uge
ot

e

ing
ly
rv-

ng

tic
n.

the

D

and we setm52pT, which is the Matsubara frequency a
the renormalization point andL51.03Tc @9# as the QCD
mass scale.b0 andb1 are the first two universal coefficient
of the renormalization group,

b0511Nc/48p2, b15~34/3!@Nc /~16p2!#2. ~25!

As a result, we obtain

Ce51.63~3!, x2/NDF50.715,

Cm50.482~31!, x2/NDF50.979. ~26!

The scalings expected in Eq.~23! for electric and magnetic
masses are found to work well. However, the magnitude
Ce is larger thanCe

LOP51. On the other hand, for magnet

FIG. 10. Gauge dependence for electric and magnetic scree
masses. Gauge dependence of both screening masses is very

FIG. 11. Temperature dependence of electric and magn
screening masses. The dotted line is fitted by the assumptionmg

;g2T. For the electric mass, the dashed and solid lines repre
LOP and HTL resummation results, respectively.

l
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TABLE III. Temperature dependence of the electric and magnetic masses which are extrapolated
Langevin stepDt50.

T/Tc me /T mm /T T/Tc me /T mm /T

1.05 1.506~438! 2.802~054! 2.69 2.820~228! 1.194~312!
1.15 2.694~288! 2.484~258! 2.99 2.892~234! 1.590~318!
1.32 3.348~408! 2.406~246! 3.41 2.190~450! 0.960~168!
1.36 2.904~336! 1.986~296! 3.88 2.292~222! 0.852~318!
1.47 3.138~342! 1.866~222! 4.40 2.598~168! 1.134~414!
1.74 2.700~426! 1.620~300! 4.97 2.310~084! 0.804~638!
1.99 2.898~498! 1.608~270! 5.61 2.106~390! 0.486~336!
2.29 2.484~234! 0.990~264!
rg

oo

f
e
a
a

pa

-

ui
u-

l
ur

ie
-
he
s

se
th
r
in
d
c

d.
th

f
nd
ature

tly
can
ffect

e

he
ra-

ge

e
sults
e
he

that

h-

the
s in

be
he

ure-
e
etic

e
data
mass, a self-consistent inclusion technique in Ref.@40# gives
mg50.568g2T, which is close to our fitting result.

The HTL resummation technique applying the free ene
of the hot gluon plasma has been widely discussed@9,10#.
Rebhan gave a formula for the electric mass in the one-l
HTL perturbation theory@41# and for the case ofSU(3),

me
25me,0

2 F11
3g

2p

me

me,0
S log

2me

mm
2

1

2D1O~g2!G , me,05gT.

~27!

Here we assume the magnetic mass to be of the order og2.
Substituting our fitted value formm , we can solve the abov
equation iteratively. In Fig. 11, we show this HTL resumm
tion together with the LOP result. The HTL result gives
better description than the naive perturbation, upon com
ing with our numerical experiment.

The electric mass was obtained also using a heavyqq̄
potential from theSU(3) Polyakov loop correlator at finite
temperature in Refs.@17,18#. Our results here are inconsis
tent with theirs, since the mass extraction from the heavyqq̄
potential cannot be consistently performed due to ambig
of its fitting assumption. In addition, a 3D reduction arg
ment @12# has shown thatme /gT goes down whenT in-
creases, but even atT;1000LMS the electric mass is stil
about 3me,0 . This observation agrees qualitatively with o
analysis.

H. Higher T and finite-size effect

Although the main result in this paper is based on stud
for the small lattice size 20233236 as discussed in the pre
vious section, we additionally perform the simulation on t
large lattice 32234836 to go to higher temperature region
and to check the finite-size effect of the screening mas
However, as the lattice size increases, the behavior of
long distance gluon cannot be controlled because of a la
fluctuation. A typical result on the large lattice is shown
Fig. 12. Even after 0.3–0.43106 measurements, we coul
not determine the electric gluon propagator at long distan
(z>16), while the magnetic gluon is properly correlate4

Nevertheless, provided that we adopt only the data for

4Magnetic propagator determination is also difficult nearTc .
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intermediate regions abovez56 until the disappearance o
the propagator, we obtain similar results for the electric a
magnetic masses as seen in Fig. 12 in the same temper
regions.

Using the criterion describing above, we may consisten
obtain both screening masses on the large lattice, and
argue that the magnetic mass has a stronger finite-size e
than the electric one.E(p) appearing in Eq.~17! are shown
in Table IV atT/Tc58.99 and 16.12. The momenta for th
small and large lattices arepx52p/Nx;0.314 and px
52p/Nx;0.196, respectively; namely, the result on t
small lattice implies that the magnetic mass at high tempe
ture (T/Tc.5) seems to be going to zero, while on the lar
lattice it remains finite.5

Although it is very difficult to measure the long distanc
gluon propagators, we can add the higher temperature re
(T/Tc58.99,16.12) summarized in Table V. In Fig. 13 w
again fit the data including these new points. The fit for t
large lattice data by Eq.~23! hence results in

Ce51.69~4!, x2/NDF50.66,

Cm50.549~16!, x2/NDF51.27. ~28!

These results are shown in Fig. 13. It should be noticed
Ce is the same value as given in Eq.~26!, while Cm ;10%
larger on the large lattice and is very close tomg
50.568g2T calculated by the self-consistent inclusion tec
nique in Ref.@40#.

IV. CONCLUSIONS

We have measured the gluon propagators and obtained
electric and magnetic masses by lattice QCD simulation
the quenched approximation forSU(3) betweenT5Tc and
6Tc . Features of the QGP in this temperature region will
extensively studied theoretically and experimentally in t
near future.

Our screening mass studies are the first reliable meas
ment in SU(3) lattice calculations. We mainly investigat
the temperature dependence for the electric and magn

5Note that the data forb57.5 and 8.0 for the small lattice ar
considered to be preliminary and indeed we do not use these
for our main studies by the previous section.
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masses which do not vanish on 20233236 lattices. In all
temperature regions we find that the electric massme is al-
ways larger than the magnetic onemm , except near the criti-
cal temperature point. As the temperature goes down tow
Tc , me /T drops down quickly, whilemm /T is still going up.
Consequently, using data aboveT/Tc;1.5 we conclude tha
the scalingsme;gT andmm;g2T work well. Furthermore,
a HTL resummation calculation has recently been develo
and compared with nonperturbative lattice simulations.
have also compared our numerical results with LOP a
HTL resummation and find a good improvement of the H
electric mass. These comparison studies ofSU(3) screening
masses qualitatively seem to agree with the case ofSU(2)
@14#.

The electric masses obtained here are not consistent
those obtained by heavyqq̄ potential calculations from an
SU(3) Polyakov loop correlator at finite temperature
Refs.@17,18#. In Ref.@18#, the authors did extensive analys
with three different temporal extents and two different gau
actions, obtaining a very reliable potential as a function
the temperature. They observe that the potential aboveTc
cannot be described properly by the leading order pertu

FIG. 12. Typical electric and magnetic propagators on the la
lattice 32234836 ~open!, and the data for 20233236 ~band be-
tween dotted lines with error! are reproduced by using the values
Table III. Both calculations give very similar values for the elect
and magnetic parts.

TABLE IV. Data extracted from the small and large lattices
the same coupling regionsb57.5 andb58.0.

b Dt mma(pÞ0) mea(pÞ0)

Small lattice size 20233236

7.5 0.05 0.301~15! 0.455~09!

8.0 0.04 0.311~09! 0.457~14!

Large lattice size 32234836

7.5 0.05 0.231~03! 0.433~08!

8.0 0.04 0.214~04! 0.406~14!
01450
rd

d
e
d

ith

e
f
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tion calculation up to a fewTc : They exclude the two-gluon
exchange as the dominant screening mechanism, and su
that some kind of one-gluon exchange may describe the
tential effectively as a result of the complex interaction, a
that at about (1.5–3)Tc a mixture of one- and two-gluon
exchange may explain the behavior. Therefore, due to
ambiguity of the fitting assumptions, it is not clear wheth
we can compare our screening masses directly with th
obtained by the potential calculation.

In order to investigate the nature of the QGP, especia
the excitation modes in the plasma, Datta and Gupta rece
calculated glueball masses at finite temperature and mad
interesting observation. They measured the screening ma
of A1

11 ~scalar! and A2
22 ~glueball!, which allow two- and

three-gluon exchange, and their ratio;1.7 is near 3/2. The
A2

22 mass is twice that obtained by Kaczmareket al., and
shows similar temperature dependence. There are now
eral nonperturbative methods to study the QGP: our dir
measurement of the gluon propagators, glueball scree
masses, and Polyakov line correlators. These anal
strongly suggest that the QGP aboveTc is far from a free gas
and has a nontrivial structure. Much more detailed analy
in future are highly desirable.

The screening mass on the lattice is extracted from
gauge dependent propagator, and the magnetic mass i
well defined in perturbation theory. We have nonperturb
tively confirmed the gauge invariance of both screen
masses. In Ref.@20# it was reported that theSU(2) magnetic
propagator exhibits a complicated gauge dependent struc

e

TABLE V. Simulation parameters and screening masses for
large lattice 32234836. Lattice scales are estimated from Re
@34,35#.

b a21 ~GeV! T ~MeV! T/Tc mm /T me /T

7.0 7.64 1274 4.97 1.128~78! 2.556~156!
7.5 13.8 2303 8.99 1.014~54! 2.178~144!
8.0 24.7 4127 16.12 0.984~60! 2.256~120!

FIG. 13. The temperature dependence including higher temp
ture points on the large lattice 32234836.
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at low momentum. Therefore, since the gauge depende
for the screening masses is investigated within Lorentz-t
gauge fixing based on stochastic gauge quantization in
study, we plan to extend our analysis to a simulation w
Coulomb-type gauge fixing.

We have seen a qualitative difference of the gluon dyna
ics between the confinement and deconfinement phase
direct propagator measurement. The electric and magn
gluons in the confinement phase indicate a very massive
ticle behavior, while after the phase transition, they hav
finite mass. In addition, in the deconfinement phase,
magnetic gluon at short distances seems to be still in
confinement phase. This may be related to the difficulty
the perturbative argument for spatial gluon components
the fact that a magnetic Wilson loop gives a nonzero spa
string tension even at high temperatures@42,43#.

The magnetic mass has been the subject of many dis
sions. Perturbatively, it is difficult to handle. To our know
edge, there is no complete perturbative calculation whic
free from any assumption or model. The naive expectatio
that it vanishes, but it is necessary to have a finite value
cutoff factor in the infrared regime. On the other hand,
finite spatial string tension even atT.Tc indicates ‘‘confine-
ment’’ in the magnetic sector.

Our screening gluon magnetic propagators indeed s
nontrivial behavior. At very short distances, this may be c
sistent with massless behavior, but at finite distance we c
not fit them by a simple ansatz. The behavior is dista
dependent. Confinement is a long range property, and
propagators there drop. Therefore it will be a very interest
task in future to investigate the magnetic propagators at v
long distance.

We calculated the gluon propagators on the larger lat
32234836 and observed a large error and strange beha
-

e
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at long distances. Nevertheless, the screening masses
estimated, and we find that the magnetic mass is sensitiv
the lattice size effect. Thus on a too small lattice we can
deal with the magnetic mass consistently. Moreover,
simulations even at higher temperaturesT/Tc;9 and 16
show that nonperturbative results are far from LOP. T
observation is compatible with that of Refs.@12,14#.

For quantization with gauge fixing, stochastic gauge fi
ing was adopted. We think the stochastic gauge fixing
better features to reduce some of the difficulties of nonp
turbative gauge fixing. It is consequently possible to do
practical simulation of gluon screenings effectively. How
ever, we also see that the gluon propagators have large
tuations and unexpected behavior at long distances and
need further calculations.

The color screening data we obtained here are usefu
formation for QGP phenomenology, for instance, jet quen
ing or the heavy-quark potential. We plan to study theqq̄ as
well as theqq potential relating a baryon bound state, a no
perturbative QCD vertex calculation, quark propagators, e
using stochastic gauge fixing, which will help us to und
stand the QGP.
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