PHYSICAL REVIEW D 69, 014503 (2004

Vortex structures in pure SU(3) lattice gauge theory
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The structures of confining vortices which underlie p8ig(3) Yang-Mills theory are studied by means of
lattice gauge theory. Vortices axd monopoles are defined as dynamical degrees of freedom @stigauge
theory which emerges by center gauge fixing and by subsequent center projection. It is observed for the first
time for the case 0B U(3) that these degrees of freedom are sensible in the continuum limit: the planar vortex
density and the monopole density properly scales with the lattice spacing. By contrast to earlier findings
concerning the gauge grogJ(2), the efective vortex theory only reproduces 62% of the full string tension.
On the other hand, however, the removal of the vortices from the lattice configurations yields ensembles with
vanishing string tensionSU(3) vortex matter which originates from Laplacian center gauge fixing is also
discussed. Although these vortices recover the full string tension, they lack a direct interpretation as physical
degrees of freedom in the continuum limit.
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[. INTRODUCTION the case of a&SU(2) gauge theory if the maximal center
gauge(MCG) is adopted4-7].

Since QCD was recognized as the theory of strong inter- Of particular interest is the case of tf®U(3) gauge
actions by means of high energy scattering experiments, thgroup because of its relevance to the theory of strong inter-
question arose as to whether QCD also explains the absenastions. In the present paper, a thorough study of the confin-
of quarks in the particle spectrum. After extensive numericaing vortices is performed for the gauge gro8pJ(3). For
simulations had become feasible with modern computers, ithe first time the planar vortex density as well as the density
became clear that the pure gluonic theory already bears witf the Z; monopoles are reported to properly extrapolate to
ness to quark confinement: the static quark antiquark poterthe continuum limit in the case of MCG. In sharp contrast to
tial rises linearly for large distances due to the formation of ahe case ofSU(2), the vortices fail to recover the string
color-electric flux tubé1]. Moreover, the low-energy model, tension to its full extent. We will see below, however, that
in which a fluctuating bosonic string plays the role of thethere is still a close relation of the MCG vortices to confine-
effective degree of freedom, predicts a characteristic@f-  ment: removing the vortices yields a model theory with van-
rection to the potential at large distances. This picture reishing string tension. These findings will be contrasted to
cently received viable support from lattice simulations whichthose obtained in the Laplacian center galgeG).
verified the dependence of this term on the number of dimen- The techniques for extracting static quark potentials as
sions at a quantitative levEl]. A major challenge of modern well as the numerical setup are explained in Sec. Il. Details
quantum field theory is the question: Why does the colorof the definition and construction of the vortex matter are
electric flux tube form? given in Sec. lll. To what extent the vortex matter is able to

Over the recent past, lattice gauge simulations haveeproduce theSU(3) string tension is studied in Sec. IV.
strengthened the idea that topological degrees of freedonThereby, new high-precision data for the casesaf(2) are
which are characteristic for the non-Abelian nature, are relpresented. These data serve as a “contrast agent” for the
evant for confinement. Among those, color-magnetic monofindings for theSU(3) case. In Sec. V, the properties of
poles and center vortices are under intense discugiora  vortices andZ; monopoles are discussed in the continuum
most recent review see R¢B]). Here, we will focus on the limit. Conclusions are left to the final section.
vortex picture of confinement.

The central idea is to simplify pure Yang-Mills theory
under the retention of its confining capability, hoping to filter
out degrees of freedom which meet two critefia:the de- Focal points are the study of the relevance of the vortices
grees of freedom are sensible in the continuum limit of lat-for the SU(3) string tension and of the properties of the
tice gauge theory, an(i) they are closely related to confine- vortex matter emerging in the continuum limit. For these
ment of pure Yang-Mills theory. purposes, a careful determination of the physical value of the

Gauge fixing and projection techniques have proven to bgattice spacing is mandatory. This is the subject of the present
convenient for these purposes. Center gauges have been dection.
signed to maximize the importance of center degrees of free-
dom, and the projectio® U(N)—Z, was proposed for the
simplification proces$4,5]. Vortices andZy monopoles ap-
pear as the dynamical degrees of freedom ofZkegauge Results of the simulation of pur8U(N) gauge lattice
theory. Indeed, criteriéi) and(ii) were seen to be satisfied in gauge theory will be presented below fd=2 and 3, re-

Il. THE STATIC QUARK POTENTIAL

A. Numerical setting
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spectively. The dynamical degrees of freedom are the unitary
matricesU ,(x) e SU(N). Configurations{U ,(x)} will be 5(3)(t)=i>k; , Pik(x), (7)
generated according to the Wilson action T

whereP;(x) (2) is the plaguette calculated from the spatial

S=5 > %tr[ PMV(X)+PLV(X)]’ (1) links. In addition, we de]‘jrle threeﬁdifferent embeddings of
X<y the SU(2) matrix ap+ira, a§+a2=1 into the group
N : SU(3), i.e.,

P00 =U,(0U,(x+ ) UL(x+»)Ul(x), @ L .
whereP ,,(x) is the plaquette. The update is performed us- 1 .
ing the éreutz heat-bath algoritHi8] for the case oSU(2). vii=| 0 a0+§3 G218 |,
Updating the diagonaBU(2) subgroups as proposed by 0 —ap—ia; ap—as
Cabibbo and Marinafi9] is performed in the case &U(3). )
Each ten heat-bath sweep is accompanied by four micro- aptas 0 a—iay
canonical reflections in order to reduce autocorrelations. v = 0 1 0 , (8)

Measurements were taken after twenty such blocks of
sweeps. Most of the data are taken on*alL =16 lattice. In

the case of th&U(2) gauge group, lattices with=24 were
also studied.

—a,—ia; 0 ag—aj

agta; a,—ia; 0

The static quark antiquark potentM(r) will be extracted V@=| —a—ia; ap—az 0]. C)
from planar, rectangular Wilson loop8(R, T) of extension 0 0 1
RXT, i.e.,

Let us now consider a particular spatial likk(x). Substi-
(W(R,T))cexp{ —V(r)aT}, r:==Ra, T:large, (3) tuting U’ :==VHU,(x), we locally maximize the actioss
with respect toV(Y). Subsequently, we repladd’ by U”

wherea is the lattice spacing. =V®@U’ and maximize with respect tv(®, and setting
U”=v®Uy”, V& is chosen to maximiz&s,. Finally, we
B. Overlap enhancement define
In order to extract the physical signal from noisy Wilson I,(x)=V® V@ v y,(x). (10)

loops, so-called overlap enhancement has been proven to be

an important tool[10-12. For the case ofSU(2),! we  We then visit the next link on the lattice. One sweep has been

closely follow the procedure in Refl2] and define the performed when all spatial links of the lattice have been

cooledspatial links by visited. The advantage of the present procedure is that the
maximization ofS3) with respect to one of th8U(2) sub-

_ t oy groups can be implemented very efficiently.
Hi(x)_PNEK VUil Uy(x+), 1=1,2.3, (4) In order to achieve a good overlap with the groundstate,

the above procedure for determining the lidkg(x) is ap-

wherek runs from—3 ... 3 andk=i is excluded from the plied recursively, and the Wilson loop expectation value

sum.Py is the projector onto the “closes8U(N) element. (W(R,T)) is calculated from the configurationdl ,(x)}

In the case ofSU(2) and forM=ay+i7a, 7 being the rather than the ensemblfd ,(x)}. The average o8 over

Pauli matrices, the effect of the operaf®s is the time sh_ces divided by the total number of spatial links

serves as litmus paper for the overlap. It turned out that ten

sweeps are enough to yield more than 0.99 ground state

PoM = overlap. Good overlap is also signaled by the quantity

1 R
—Q(a0+ira). (5)
Vai+a?

Details concerningP; can be found in Ref{12]. Temporal
links are unchanged, i.e.,

—In(W(R,T)), (11)

which already shows a linear behaviorTifor T=3. This is
illustrated for the case of §U(3) gauge groupl*=16%
andB=5.9. The final results are obtained from 100 indepen-
dent measurements. The symbols in Fig. 1, left panel, repre-
sent the lattice data of quantitl); the lines are linear fits in

T, i.e,

Io(X)=Ug(x). (6)

Since the projectior?y, N=3 is “expensive” from a nu-
merical point of view, we used a different method to define
the cooled spatial linkdl;(x), i=1,2,3. Let us define the —IN(W(R,T))=yT+ 6. (12)
action of the spatial links of a given time slitdy
The coefficientsy can be interpreted ag(r)a. The latter
quantity is shown in Fig. 1, right pan&ymbols. The line is
For the case 08U(3), anovel method will be proposed below. a fit according to the function
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units of the lattice spacing, i.ec= o-a?. This method for the
calculation of the string tension was used, e.g., in RE3].

V(r)ya=cR—

R

For the present example, we find

ture, i.e.,ca’(8="5.9)=0.073[14,15 (also see Fig. 2

sensible one in the continuum limi— 0, it is crucial to

+V0, r=

C. The scaling relation

0.4

Ra,

oa?(B=5.9=0.07010.0005,
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FIG. 1. (Color online Linear-
ity of the function—In(W(R,T)) in
T for several values ofR (left
pane). The static quark antiquark
potential for SU(3), 16 lattice
and 8=5.9 (right pane).

Ill. THE VORTEX TEXTURE

13

Concerning the criteri@) and(ii) of Sec. | one first notes
that the properties of thBU(2) vortices extrapolate properly
where the parametercan interpreted as the string tension in to the continuum limi{6] if the MCG is used. Moreover, the

MCG vortex theory correctly reproduces the deconfinement
temperatur¢16]. The phase transition acquires a geometrical

picture: is appears as a vortex depercolation phase transition
[16,17] which already points towards a weak vortex interac-

(14)

tion (also see Ref[18]). Second, it was observed that this

geometrical picture correctly reproduces the finite size scal-
which is in agreement with the value reported in the litera-ing of the 3D Ising universality clagd9]. This shows that at

interact weakly.

least for temperatures close to deconfinement, MCG vortices

It turns out that the nonlocality induced by gauge fixing is
_ ' . ' crucial for property(i) above: it was analytically shown that
In order to mark a dimensionful quantity as a physicallyif unfixed lattice configurations are projected onto vortex

configurations, the complete static quark poterfiatiuding

express this quantity in units of a physical reference scalehe Coulomb termis obtained[20]. At the same time, the

Throughout this paper, the string tensionwill serve this

purpose.

SU(3) gauge group are shown in Table II.

e.g., in Ref[14].

4

L=16, b=2.2

o L=16,b=2.3
> L=16,b=2.4

L=16, b=2.5
L=24,b=2.2
L=24,b=2.3

+ L=24,b=24

L=24,b=2.5

2.5 3

3.5

properties of this vortex matter strongly depend on the size

of the lattice spacing. Thus, these vortices lack an interpre-
It is time consuming but straightforward to determine thetation in the continuum limit. In these respects the nonlocal-
dependence afa?(8) on 8. The results for the gauge group ity of the approach to the vortex matter is an advantage. On
SU(2) are summarized in Table I. Those for the case of ahe other hand, however, this nonlocality generically makes
it difficult to access the vortex matter in practical simula-
These values are in good agreement with those reportetions: using a variational gauge condition as, e.g., in the case
of MCG [5], the definition of the vortices is ambiguous as a
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FIG. 2. (Color online The
static quark antiquark potential for
the SU(2) gauge group (left
pane) and for the case of the
SU(3) gauge grougright pane).
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TABLE |. String tensiono in units of the lattice spacing for the case of th&U(2) gauge group.

16 24 16 24 16 24 16 24

B 2.2 2.2 2.3 2.3 2.4 2.4 2.5 2.5

o0a® 0262 0.241) 0.1463) 0.1452) 0.07527) 0.07545) 0.03913) 0.03731)

result of the inability to localize the global maximum of a In order to obtain the ideal center configurations, we mini-
nonlinear functional. At least for small lattice sizes, the so-mize the functional
called Gribov ambiguity might have a significant influence
on physical observabld®1,27. 0 @ .

Marked progress concerning the Gribov problem was XE (U, (0)=Z,()]'U,(x)=Z,(x)] — min (17)
made with the construction of the Laplacian gau@3: the i
nonlocality of the gauge fixing is preserved while the maxi-
mization is replaced by an eigenvector problem, which cal
be handled by present-day algorithms. The Laplacian versio
of the MCG was firstly proposed for&U(2) gauge group in
Ref.[24] and generalized to th8U(3) case in Ref[25]. A
further improvement was reported in REZ9]. Vortex matter 1 1
of the LCG is unambiguously defined and recovers the Rzﬁz‘, D‘iNtr[UfL’(x)ZL(x)] (18
asymptotic string tension for both gauge grouptl(2) and I Xom
SU(3). In thecase of aSU(2) gauge theory, it was, how-
ever, observed that the LCG vortices are produced in larg
abundance, implying that they lie dengeevertheless in a
controlled way in the continuum limit[7]. This indicates a
rather strong interaction of LCG vortices, which might ren-
der it difficult to mimic LCG vortex matter in a low-energy
effective model.

The present section briefly reviews details of the center
gauge fixing procedures and the vortex projection techniques U (%) = il - i
with an emphasis on the case $8(3). N UL OO =wexplie,  Z,(x)=extiom),

0.z,

with respect t)(x) andZ,(x). The selection of(x) im-
lies the choice of a gauge. We will call this gauigieal
enter gaug€lCG) throughout this paper. The conditi¢h7)

directly implies that the overlap, i.e.,

}Es maximized.N, is the number of links of the lattice, and
—1<Rs=1. R=1 means that the link configuratigk ,(x) }
can be entirely expressed in terms of center elements after a
suitable gauge has been chosen.

The maximization oR with respect to the center elements
Z,(x) can be performed locally: with

; 2
A. The ideal center vortex cluster - QDm:Wma (19)
In order to reveal degrees of freedom which are relevant

for confinement, we are looking for configuratiof, (x)},
Z,,(x) € Zy which best represent the full link configurations
{U,L(X)}, U,(x) e SU(N). TherebyZy represents the center

of the groupSU(N), i.e., R= Ni > ucog o' — oh).
1

wherel ={x,u} specifies the link, one finds

' 19 The optimal choice is obtained by choosing Eg. (19)] in

such a way thato'm is closest top'. This mapping,
wherem is an integer. There is an optimal choice of the
gauge for which the overlap of the center configurations with SUN)—Zy: US(X)HZ”(X):Z[US(X)], (20
the full ones is maximal. Let us denote the gauge trans-
formed links by is called center projection. Inserting,(x) from Eq. (20)

into Eq. (18), the overlapR must then be maximized with

Us()=00)U,x) 0 (x+u), Q(x)eSUN). 6 respect to the gauge transformations, €¥(x).
16

. 2 N
= — ——<m=
w(X)=exp i N mi, 2<m

. . . . . . B. Center gauges
TABLE II. String tensiono in units of the lattice spacing for gaug

the case of th&U(3) gauge group. Since the mapping20) by no means depends smoothly
on Q(x), an iteration over-relaxation algorithm which itera-
L 12 16 16 16 16 16 tively determine<Z ,(x) and((x) from Eq.(18) can hardly

work. State of the art would be to determine the desired
quantitiesZ ,(x), 1(x) by the technique of “simulated an-

ca? 0.321) 0.261) 0.1693) 0.1041) 0.07015) 0.05143) nealing.” However in this case, determining, e.f.(x) to
the precision which is needed for the vortex analysis is ex-

B 5.6 5.6 5.7 5.8 5.9 6.0
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tremely costly from a numerical point of view. This approachwhere the adjoint matrices are defined by
is beyond the scope of the present paper and is left to future

investigations. 0%(x) =2 tr{t2Q(x)t°Q (%)},
In order to make the gauge fixing efficient by means of ab . -
iteration over-relaxation, we assume that in the optimal case, Ry (X)=2t{t?U ,(x)t°U ,(x)}. (27)

1/NtrUf}(x) comes close to a center element. In this case

we relax the condition which constrailﬁuff(x)] in Eq.

(20) to a center element. There are two possibilities for doing 1

this: N2Rmes=WTr OTRO+1, (29
[

ZIUS(x) ][ tr U5 (x)]T, (21)

Equation(26) can be written as

where we have introduced, e.g., the veadtdrof the com-
bined coordinate and color spad®?®(x)}—O. Up to a

Q Q)12
2V, 001U, 00T (22) term proportional to the unit matrifg is the adjoint Laplac-
Hence, we find the gauge conditions lan operator, I.e.,
1
1 1 1 T ab_ — ab + ba/,,
Rmes o 2 | ULUS00] || St{US001| L (23 Riy=3 20 [REC03ycr st RO )3y (29
I Xu

Note that the vecto® is subjected to the constraints that the
(24 e of vectors? with O,,,(x) ={n1(x)_,n2(x),n3(x)}ab is or-
thonormal. At the heart of LCG fixing, one relaxes these
constraints and seeks tié—1 largest eigenvalues of the
both have been advertised in the literati2@]. It is not clear  supermatrix R. These tasks can be unambiguously per-
at the beginning which of the above possibilities yields theformed with present-day algorithmic tools. From the corre-
larger overlag18). It might turn out that even a background- sponding eigenvectors, the adjoint gauge transformations
field-dependent admixture of both possibiliti&d) and(22) Oab(x) are reconstructed at each site with the help of Gram-
is best for the present purposes. Since the algorithm for th8chmidt orthogonalization. Abelian monopoles and vortices
so-called “mesonic” center gaugdMMCG) [Eq. (23)] was  appear as defects in the latter step of reconstructing the
already studied in the literature to a large exfg&#,28, we  gauge transformation. Technical details of this gauge fixing
will employ the gauge conditioiR,,.s—max for the deter- are presented in Ref25]. Finally, we point out that the LCG
mination of}(x) and perform subsequent center projectionalso seeks to maximize the MMCG condition. However, the
along the lines outlined in the previous subsection. re-orthogonalization of the eigenvectors implies that the val-
Even once we have agreed on one of the suboptimales for the overlajR [Eq. (18)] are significantly smaller than
gauge condition$23) and(24), there is still the problem of that achieved by maximizinB,.s[Eq. (23)] with the help of
the Gribov ambiguities: since the overl&pis a nonlinear an iteration over-relaxation procedure.
functional on{(x), detecting the global maximum & is
practically impossible for reasonable lattice sizes. The choice C. Identifying vortex matter
of the local maximum oR which is implicitly defined by the
algorithm determines the gauge. Although the physics ex- N Order to reveal the vortex matter @ gauge theory,
tracted in the latter gauge can be highly relevant for confineWe define
ment, the definition of gauge by the numerical procedure is
unsatisfactory. The Gribov problem can be solved by adopt- v(p)::H Z,, 1={x,u}, v(p)ely, (30
ing the LCG[23-25,30. A detailed study of these gauges lep

and the corresponding vortex matter can be found for the ,
case ofSU(2) in Ref.[7] and for the case o8 U(3) in Ref. wherep=(x,u<v) defines an elementary plaquette on the

[25]. Here, we will briefly outline the procedure for the case 'atticeé. One says that a vortex of center chazgeerces the

3

1 1
Roar= 1y, 2 mktr[Uﬂ(x)]

of SU(3) and refer the reader to R¢R5] for details. plaquettep if
The generatorg? of the SU(N) algebra satisfy the equa- o
tion v(p)=2z, z=exp{ich , (31

1 1 1 ,
tﬁ‘itf"mzz 811 Omk— N SmOmk| » trtatbzz 5%0. (25 where—N/2<¢(p)= (p’u:V(X)$ N/2 is called the center flux.
For SU(N=3), one defines the conservég monopole cur-

With the help of this identity, the MMCG function®pes " P

[Eq. (23)] can be written as 1
M) = urapli@ap(®),  A,m,(0=0, (32

R —iZ i[troT X)R,(X)O(X+ u)+1], (26)
MESTN, 57 N2 (IR, (X)Ox+ p ' where

014503-5
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T 3 —
vortex only, b=2.2
vortex only, b=2.3
vortex only, b=2.4
vortex only, b=2.5 —
vortex rem, b=2.2
fit to vortex rem
vortex rem, b=2.3
vortex rem, b=2.4

A, ®(X) =D (x+ p) — D(X). 3F

In order to reveal the span of the monopole charge we
consider an elementary, spatial hypercube (x,a<p
<v). One easily verifies, using the Abelian nature of the
groupZy, that

vortex rem, b=2.5
fit to full
fit to vortex only

[ [oon|orens

V) /01/2

2T
1:pHC D[U(p)]zeXP{'WfikmAiGka(X) , (33

where the sum over,k,m runs from 1. .. 3, andD[v(p)]
=vT(p) if the normal vector of the plaquette is antialigned
with the normal vector of the relevant surface element,of 2 . I . | ‘ I . l
andD[v(p)]=v(p) otherwise. Hence, the monopole charge "

comes in integers, i.e.,

FIG. 3. (Color online The static quark antiquark potential for
the SU(2) gauge group: full ensembles, vortex projected en-
sembles, and ensembles where the vortices have been refseesd
Eq. (39)]. Lattice size: 24. Gauge: MCG.

Finally, we point out that there are no center monopoles in
the case of &U(2) gauge group, i.em,(x)=0. MCG vortex ensembles genuinely differ from those of the

It is convenient for model building to define the vortex LCG.
matter on the dual lattice, where the lihkthe plaquettep
and the cube is mapped onto A. The case of aSU(2) gauge group revisited

1
My=5 €xmdiokm(X)=k, ki integer. (34)

* (35) In order to contrast the findings concerning tB&J(3)

gauge group, which will be presented below, with the find-
The vortex field of the dual lattice is defined via the identi- ings for the case 06U(2), webriefly discuss our numerical
fication results for the latter case in this subsection.
The MCGJEq.(23)] is implemented by using the iteration
v_(p*)=v(p) for p—p*. (36) over-relaxation procedure which is described in detail in Ref.
[5]. This procedure defines the gauge. The corresponding

The identity(33) can be transformed into an identity for dual Vortex degrees of freedom are defined by projecti2d),

, p—p*, c—I*.

|—c

fields only: which becomes, in the present case,
_ SU(2)—Z,: UR(X)—Z,(x)=sgntrU(x). (39
1= I w(p®). (37) . .
p* s 1* It turns out that this procedure produces vortex configura-

o _ . tions with sensible properties in the continuum lif@{ and
The latter equation implies that the vortices either fromyjth a close relation to the physics of confinement
closed world sheets on the dual lattice or, ®U(N=3)  [54,16,17. So far, vortex matter with “best” properties in
only, multiples ofN vortex world sheets merge at a closed the continuum limit seems to obtained with a ‘precondition-

monopole trajectory. ing’ by performing the LCG(see Sec. Ill B and subsequent
MCG fixing [7,29]. This approach also alleviates the Gribov
IV. DOMINANCE OF THE STATIC QUARK POTENTIAL problem, but its implementation is numerically “expensive.”

o ) In order to reveal the relevance of the vortex texture for
Preliminary evidence that the MCG vortex matter recov-the physics of confinement, one first calculates the static

ers the string tension of pur@U(3) gauge theory was pre- quark potential from the vortex configurations. Second, one
sented in Ref[27]. The so-called indirect center gauge, i.e., defines a toy Yang-Mills theory by

the maximal Abelian gauge fixing with a subsequent fixing

of the center gauge, was investigated in R&B]. There it UL(X):ZL(X)US(X)' (39

was observed that the string tension obtained from Abelian

monopole configurations as well as fro#y vortex en-  where the vortex texture has been removed “by hand” from

sembles is significantly smaller than the string tension of théhe lattice ensembles. It was foup] 5] that the vortex con-

completeSU(3) gauge theory. On the other hand, it is inter- figurations reproduce the linear part of the potential to a large

esting to note that th&U(3) string tension is recovered to extent. In addition, the potential evaluated from the modified

full extent in the case of the LC®5]. configurations{U, (x)} has lost its linear rise and shows a
Here, we will see that the MCG vortices act like the vor- Coulomb type of behavior. Both observations are summa-

tices defined in the indirect center gauge: roughly 62% of theized by the term “center dominance of the potential.”

full string tension is found. We will therefore find that the  Figure 3 illustrates these observations using our lattice
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TABLE I1l. Number of independen8U(2) configurations used is obtained by averaging over the ensemdles, (x)}. In

for the calculation of the static potentiedee Fig. 3 addition, we can define expectation values
B 2.2 2.3 2.4 25 W = (W, [U, 1) m; (42
# 75 75 35 55

thereby, only loop$V,[U ,] are taken into account where the
corresponding quantity,[ Z, ] belongs to the sectan. De-
composing

results. Only data which were obtained on & 2attice are
shown. The number of independent configurations employed W = WM | expli o™}, (43)
for the calculation of expectation values is listed in Table III.

The full configurations{UM(X)} as well as the Configura- one expects that for |arge |Oops
tions{U (x)} from which the vortices have been removed
“by hand” are subject to the overlap enhancement described  my 2T
in Sec. Il B. TheZ, vortex configurations already possess lim ¢y —?m, (44)
good overlap with the ground state, and no enhancement is e
used in this case. The line which fits the “vortex only” data

o . . if center vortices dominate the Wilson loop expectation
in Fig. 3 corresponds to a string tension of 97.7% of the full P &P

. . - value. The latter relation can be checked by lattice simula-
string tension. we stress that these findings have been o

- . (m) ; _ . _
tained with the most naive version of the MG@escribed in lons. The quantityp, ~ is shoi/vn forg 5'6 (227 indepen
Ref. [5]). dent measurementand for 8=5.8 (160 independent mea-

surementsin Fig. 4 as a function oh (left pane). Since the

fected by the choice of gauge, i.e., the Gribov cf@y], and statistical noise is pronounced for smﬁllvalue;, qnly val-
that the Gribov effect is influenced by the lattice volume Y€s YP tn=4 posse;sms)greasonab_le.small s.;tat.ls.tlcal error for
[22]. B=5.6. For,L_%=_5.8 @5 is also statistically S|gn|f_|ca_nt using
present statistics. It seems that the relat{dd) is indeed
satisfied for largen. If we plot the anglepﬁ,m) as a function of
B. Vortex-limited Wilson loops: SU(3) gauge group the physical size of the Wilson loop, i.¢5na(g), we ob-

Let W,[U,] denote anx n planar Wilson loop calculated serve that the data fg8=5.6 and forﬁ_=5.8, respectively,
within the particular configuratiot ,(x). The same object roughly fall on top of the same curveight paneJ.
is evaluated with th&, configurations obtained from center ~ L&t us interpret these findings from a random vortex
projection(20) after the implementation of the MMCG con- Model point of view. Following Ref[26], we assume that
dition (23). The result is calledW,[Z,]. Since W,[Z,]  CeNter vortex intersection points possess a finite correlation
€ Z,, the latter Wilson loop can be characterized by thelength L. Thus dividing the minimal area of the planar

Finally, we point out that the quality of dominance is af-

numberme{—1,0,1}, i.e., Wilson loop into squares of sizd>LZ, the center fluxes

¢ e{—1,0,1} through different squares are essentially uncor-
_ 27 related. Lefp(m,.A) denote the probability of finding center
Wn[Z#]—exp[ I ?m] ' 40 flux mthrough the aread; we define the “mesoscopic” vor-

tex density by

The expectation value of the Wilson loop, ~

P P Pes=p(M.A)A, A=nZa(p). (45)
W,=(W,[U,]), (41)  Assuming vortex dominance, we might approximate

T T T T T T : T
) 0 W™ b=5.6|_ — e ] =0 W b=56| _ _ — o ___
—a W, b=s56 2 e—a W, b=s6 b
—o W, b=56 —o W, b=56
o—o W b=s3 [| @@ W b=58
= WO b=538 ©

—a WO p=s3
—o w" b=53 o W b=s3

FIG. 4. (Color online The
angle ™ of the Wilson loop ex-
pectation value$43) as a function

e OF 7 or 7 . .
i of the Wilson loop sizen (left
| pane) and as a function of the
-1 - -1 . size in physical unitgright pane).
| Lattice size: 16. Gauge: MMCG.
2 — 2 & ]
1 L 1 L 1 L 1 L 1 | | L | |
1 2 3 4 5 0 0.2 0.4 0.6 0.8 1
n 1 [fm]
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Wn:<Wn[U,u]>%<Wn[Z,u,]>- (46) 4

Using the fact that center fluxes are uncorrelated by con-
struction, one obtains

Wo=(W,[Z,])=(Z)"*, 47
where(Z) the average flux through the arghis - }
L <+ o vortex rem, b=5.6
_ 277. ,(,” o vortex r‘em, bi5.7
= > p(m,A)exp{ i ?m]. (48) gl 4 D veemss |
m=-1...1 v vortex only, b=5.6 ..5.9
— fit to full
Hence, the string tension in the center flux approximation is 1 | 1 |
given by Y1z 3 4 s
” 01/2
1 ~ 2T
Oct=— Zln 7_21 ) p(m, A)ex I3 m FIG. 5. (Color onling The static quark antiquark potential for
m==te the SU(3) gauge group: full ensembles, vortex projected en-
1 _ sembles, and ensembles where the vortices have been refiseecd
=— Zln(1_3p)’ (49 Eq. (39)]. Lattice size: 16. Gauge: MMCG.
where we have assumed that the center symnmatry—m oo,
is not spontaneously broken, i.e., §'—1/2~ 1.08, (55)
1
p(LA)=p(=1A)=:p(A) and ;1 p(m,A)=1. implying that the naive random vortex model seems not al-

(50) ways to be justified.

A particular case is obtained by considering that the vortices
which are defined at the level of the elementary plaquette are
uncorrelatednaive random vortex modelin this case, one In a first step, the MMCG conditiof®3) is installed with

finds the help of the iteration over-relaxation algorithm described

in detail in Refs.[27,28. The Z; link elementsZ,(x) are
~ o P, 3 defined by center projectiof20). As in the case o5U(2),
p(A=a’)=5a’°<l andthus oc~5p. (51 we will compare the static quark potential obtained from full
link configurations(see Sec. )lwith the one calculated with
Thereby,p is the “microscopic” vortex density, i.epa®is  link ensembles(Z,,(x)}. In addition, the toy model is de-
the probability of finding a nontrivial center flux through a fined by configurationgU , (x)} [Eq. (39)] from which the
given plaquetténo matter whethem=—1 or m=1). vortices have been removed “by hand.” From the results of
Using the numerical data above, it is possible to estimatéhe previous subsection, we expect that the string tension is
the center flux correlation length. Let us define the “half-lost in the latter case. Our numerical findings using 100 in-

C. The “mesonic” center gauge forSU(3)

width” L,,, by the length of the Wilson loop at which dependent measurements are summarized in Fig. 5.
We find that the potential calculated from vortex configu-
W T rations scales towards the continuum limit, i.e., the data ob-
e (I=Li)= 7. (520 tained from differentg values fall on top of the same curve
if the V(r) andr are expressed in physical units. In addition,
The findings(see Fig. 4, right panekuggest that one observes “precocious” linearity: the potential is linear
even at small distances as is the case f@W@(2) gauge
L.=L4,~0.8 fm, (53 group. In contrast to the case of &u(2) gauge group, the

center projected string tension is only 62% of the full string
where we have used a string tensioroef (440 MeV)> asa  tension. The value of string tensidin lattice unitg after
reference scale. Finally, let us check whether the naive rareenter projection is in agreement with the finding in R&%/]
dom vortex model of uncorrelated vortex plaquettes is realfor a 12 lattice and3=5.6. In the latter article, however, the
istic. For this to be the case, the relation quoted value of the full string tension is underestimated. Us-

ing reliable values, the ratio of projected and full string ten-

BA~ BLZ _ ELZ _ ng <1 (54) sion is in agreement with the findings reported here.
27 V2T g U2 g TR On the other hand, removing the vortidese Eq.(39)]
produces configurations which are compatible with a vanish-
must hold. However, one finds, using E§3), ing string tension. There is a subtlety for obtaining this re-
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4
r SU@B), 16, B=6.0
Laplace center gauge
0.5+ —
041 —
c:: 0.2+ =
P
= 0
= L _
s OF B
=
H o full b
o vortex removed > 0.2 ]
o—o vortex only
= U(DxU(1) removed |
0.5 « U(xU(1) only
0.4+ —
o full
L | L 1 L | L 1 L o lap. vortex removed
0 2 4 6 8 o lap. vortex only
r/a 0.6~ _
L 1 L | L | | 1
FIG. 6. (Color online The static quark antiquark potential for 0 2 4 6 8

the SU(3) gauge group: full ensembles, vortex projected en-

sembles, and ensembles where the vortices have been refiseeed  F|G. 7. (Color online The static quark antiquark potentials for

Eg. (39)]. Same withU(1)x U(1) projection. Lattice size: 6 8 the SU(3) gauge group: full ensembles, vortex projected en-

=5.8. Gauge: MMCG. sembles, and ensembles where the vortices have been refiseeed

Eq. (39)]. Lattice size: 16, 3=6.0. Gauge: LCG.

sult: the lattice volume must be large enoddhappears that

the lattice size of 16seems to be too small fg# as big as These results are compared with those in REZ): there,

6.0. versions of the so-called maximal Abelian gauge were inves-
Since a removal of the vortices results in a loss of thetigated. These gauges are most suitable for a projection of

string tension, even if the vortices only amount to 62% of theconfigurations US(X) onto the Abelian subgrougJ(1)

full one, the question arises as to whether additional degreegU(1). Also in these cases, the string tension extracted

of freedom which reside in th&J(1)x<U(1) Abelian sub- from U(1)xU(1) configurations is substantially smaller
group are responsible for the 38% string tension completinghan the full string tension.

the vortex contribution. Candidates for such degrees of free-
dom are color magnetic monopoles. To answer this question,
we implemented the MMCG conditiori23) and subse-

quently projected the gauged configurations onto Abelian The previous subsection showed that the MM(Z3)
ones: produces vortex matter which recovers only 62% of the full

string tension. The question is wheth&f matter is able to
Uif(x)—>VM(x), V,(x) e U(1)xXU(1). (56) give the full result for the string tension at all. The answer
was already given in Ref25]: vortex matter which is de-
For these purposes, the off-diagonal elemenlsfb(x) were fined by the LCG conditior{see Sec. Ill B reproduces the
dropped, i.e., linear rise of the static quark potential in the continuum limit.
o Here, we briefly report our findings. We investigated the
Ui (x)— U (x)=diag U (x)), (57)  somewhat extreme case of a small physical volume, i.é., 16
lattice, B=6.0. The last subsection showed that for this size
andV ,(x) is given by theSU(3) element which is “closest” the removal of the vortices defined by the MMCG hardly
to Uﬁ(x) (see the discussion in Sec. ).BOne verifies that Makes the string tension vanish. The result of 50 independent
indeed/,(x) e U(1)xU(1). In addition, we investigated measurements is shown in Fig. 7. The potentials of this fig-
ensembles{U%®%(x)} which are complementary to the U'® Were fitted by the function
U(1)XU(1) configurations:

D. Laplacian center gauge

V(ra?=ca’n— -, r=na 59
UABRX) =V (x)U (). (58) i n 9
Our numerical findings for a fdattice at3="5.8 are shown In either case we find
in Fig. 6. We find that the string tension calculated from
U(1)XU(1) configurations is marginally larger than the
string tension from vortex projected configurations. As ex-
pected, configurations’,®(x) from which the Abelian sub-
group was removed do not support confinement. full: 0a?=0.05143) «=0.251).

vortex only: 0a?=0.0611) «=0.0964),

vortex removed: ca’=0.0 «a=0.432),

A small Coulomb part survives the projection onto vortices.
2| thank M. Faber for this remark. One also observes that the potential obtained from configu-
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0.4 ——————T— — , , ,
| | o mmcG: p o P | I |
o  MMCG: Prron al3 /’/ 0.55[ Hpvor/c ]
o r 32 b
03f|* rea p,e i - 0.5k " P /9|
" LCG: p 4 /’/ L _
i v 1 045+ -
P I K\H}\{ ]
0.2 i — 041 .
s 1 035 T—0 5 —F——F -
~ 03 ~
1 025 ~

| L | L | ) |

02756 57 5.8 5.9

FIG. 8. (Color online The continuum limit of the vortex and th&; monopole density for the MMCG and the LC&ft pane). The
vortex and theZ; monopole density in physical units for the MMG@ght pane).

rations from which the Laplacian vortices have been reand ¢=—1 or ¢=1. If P; denote the probability that a
moved is perfectly fitted by a Coulomb law. The string ten-particular plaguette of the lattice carries a nontrivial center
sion from vortex configurations is a bit higher than the full charge, the vortex density is defined by

string tension. This is probably due to the small physical size

of the lattice: Coulomb contributions are dominant and are Pvord’(B)="Pyg. (62)
represented by the vortex matter as string tension to some ) ] ,
extent. As outlined in Sec. lll C, theZ; monopole world lines are

It turns out[7,29 in the case of th&U(2) gauge group associated with dual Iinks whose corresp_onding monopole
that preconditioning with the LCG and subsequent imple-currentm,(x) [Eq.(32)] is nonzero. Alternatively, 3d hyper-
mentation of the MMCG by iteration over-relaxation cube; from which nontrivial ce_:nter flux emerges are _s_ald to
strongly reduces the influence of the Gribov copies. Centefontain a center monopole. Given thg} is the probability
projection of these ensembles yields high-quality vortex matthat a particular hypercube contains a center monopole, the
ter the properties of which nicely extrapolates to the con/monopole density is obtained from
tinuum limit. We have checked that repeating this approach 3
for the SU(3) case produces vortex matter where the corre- PmorP(B)= Q.
sponding string tension again only reaches 6
string tension.

(63)

0,
2% of the ful‘30th guantities characterize the vortex matter. In order to
interpret the vortices as sensible degrees of freedom in the
continuum limita— 0, the quantities must obey

V. PROPERTIES OF SU(3) VORTEX MATTER . _
lim pyo=const, limp,,,=const. (64)

In this section, we will investigate which definition of the B—oe B—oe
vortex mattefMCG or LCG) admits an interpretation of the i o . o )
vortices as physical degrees of freedom. To this aim, th&ur numerical findings are summarized in Fig. 8. Figure 8,

continuum limita— 0 of the planar vortex density,,, (i.e.,  eft panel shows the densitigg,, and pmon in units of the
the “microscopic” vortex density of Sec. IV Band the den- lattice spacing as a function af/o. Simulations were per-
sity pmon Of Z3 Monopoles are investigated. formed for3=5.6, 5.7, 5.8, and 5.9. The corresponding size
The vortex density,,, can be extracted from thg; en-  Of the lattice spacing can be found in Table II. _
sembles{Z,,(x)} as follows: we say that Z; plaquette, Let us first focus on vortex matter obtained after imple-

menting the MMCG conditiori23). There, the data are per-
fectly fitted by

vor=flz, =tk vpeze 60 puod(B)~0.452)(a\o)?, 69
carries a nontrivial center flux if Pmor>(8)~0.352)(avo)2. (66)

These findings suggest that the planar areal vortex density as
v(p)=2, z=expli 2_77 61) well as theZ; monopole density properly extrapolate to the
' 3¢ continuum limit(see Fig. 8, right panglThe same result for
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the vortex density was found for the case d6(2) gauge 0.8 v - , ' | -
group[6,5]. In a naive random vortex model, one expects -
that the string tension is given fgee Eq(51)] 075+ =8 random

3 < 0 7; =1

Tt~ 5 Pvor~0.670. (67) T

2 §
We point out that the naive string tensiog; roughly agrees £ 063 |
with the string tension measured from center projected con- &
figurations(see Sec. IV  i.e., B ]

0'23%0.620'. 0.55— =

This indicates that the intersection points of the MMCG vor- |

6.4

tex clusters do not contain significant long-range correla- 36
tions. Using Jo=440 MeV as a reference scale, one finds
for the SU3) case FIG. 9. (Color onling (line) density of Z; monopoles on the
shortest connected line joining all monopole sites: lattice simulation
pmonml 16. (69 (full symbolg and after randomly re-distributing the monopoles
T (open symbols Lattice size: 16, 3=5.9. Gauge: LCG.

1 1
onr%Z-me_T Pmon%3-7fm_37 \%Zr
The latter quantity might be of interest for the constructionculation. However, the “simulated annealing” algorithm ge-
of Z3 random vortex models. nerically generates paths the length of which is within a few
As already noticed for $U(2) gauge group7], the situ-  percents of the minimal length. This suffices for our purposes
ation drastically changes for the LCG. The vortex and monohere. Given a finite set of points, it is difficult to tell whether
pole densitiestimes the canonical powers of the lattice spac-the points are falling on top of a “smooth” curve. In order to
ing) scale linearly with the lattice spacing. Two fits representgain first insight, we have calculated a connecting loop for a

the areal vortex density almost equally well: given set 0Z; monopoles with the help of simulated anneal-
ing. Dividing the number of monopoles by the length of this
puod®(8)~0.101)+0.522)aVo, loop gives an effective line density. Finally, this quantity is

averaged over several lattice configurations. In order get a

puord®(B)~0.562)(ayc) %, (69  clue about the significance of this average line density, we

have randomly re-distributed the monopoles of a particular
' configuration and we have re-calculated the effective line
CdenS|ty If the monopoles produced by the lattice simulation
tend to fall on top of a smooth line, the average line density
30 @)~ must be significantly larger than in the case of the random
PmorP(B) 0.38(2)a\/5. (70 distribution of the same amount of monopoles. This is indeed

Both quantities, i.€.pyor andpmon, diverge in the continuum  the case, as is shown by Fig. 9.
limit a— 0. However, one finds that the ratio

where the latter fit function is slightly preferable. In addition
the monopole density is well represented by the linear fun
tion

VI. CONCLUSIONS

p
35 ~0.9 (LCG) (71) MCG vortices of the gauge groupU(2) have been real-
Pvor ized as sensible degrees of freedom in the continuum limit

is rouahly independent of the lattice spaci is the case [6], and they are closely related to confineméfm]t_ln the_
]Iczr tﬁg Myl\/IICGp 'Ce Spacags 1s S present paper, the MCG vortex matter has been investigated

It is interesting that th&, monopole densityof the LCG) for the important case &U(3), using large-scale numerical

diverges in a somewhat controlled way: a situation where thé'mUIat'onS' Focal points were the questions: To which ex-

Z5; monopoles lie dense on 2d hypersurfaces of the 4d spac gntare thé; U(3) vort!ces re]evant for c':onfiner.ne'nt? Are the
time would correspond to the observed scaling with the lat- U3) vortices meanlngfL_JI in the continuum limit? ,

tice spacing. In order to get a rough idea of how the mono- In a first step, we verified that the phase of large Wilson
poles are organized within space, a closed loop which JomgoolpS ISI representedf by 'Ejhehcenter flux going thrOl;]gh the
all monopole sites is calculated. This loop is obtained by a sonﬂ oop. We corr:lrmeh t el conjecture in RE26] It at
simulated annealing procedure which minimizes the lengtfi® Zs fluxes going through a planar area are strongly corre-
of the loop. Thereby, the Euclidean noftmhere in addition lated at length scales smal_ler than the hadronic one. As a
the toroidal topology is taken into accolg used as a mea- byproduct,_ th_e flux correlation lengtfsee Eq.(53) for a
sure for lengths. From a mathematical point of view, findingProPer definitior

the global minimum is a “traveling salesman” problem in

three dimensions, and is beyond the reach of numerical cal- L»~0.8 fm
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was seen to be in rough agreement with scaling.
In a second step, the static quark potential produced b

PHYSICAL REVIEW D 69, 014503 (2004

In contrast, both quantities diverge in the continuum limit for
the case of LCG vortices. Surprisingly, the LCG vortex mat-

the MCG vortices was addressed. In contrast to the case oér satisfies simple scaling laws:

SU(2), the string tension from the vortex projected en-

sembles turned out to be 62% of the full string tension. This
finding is rather independent of the lattice size and the value

of the lattice spacing. On the other hand, removing Zhe
vortex degrees of freedom “by hand” from the full lattice
configurationgsee Eq.(39)], always results in a vanishing
string tensior(if the physical lattice volume is large enoygh

Pmon

3/2
vor

Pmord3(8)~0.380, ~0.9 (LCG).

The investigations of sets &3 monopoles residing within
the spatial hypercube indicated that the LCG monopoles tend
to fall on top of a “smooth” 1d curve which is embedded in

This implies that there is still a certain relation between thethis hypercube.

MCG vortices and confinement.

On the other hand, it is know24,25 that vortices which
are defined from the LCG reproduce the string tension to ful
extent. Here, we checked that “preconditioning” the lattice

In summary, only the MCG allows for a direct interpreta-
tion of the vortices in the continuum limit of pur@U(3)
gauge theory. There is no string tension without MCG vorti-
ces. Both facts strongly support the picture of confinement

configurations with LCG and subsequent MCG fixing doesinduced by physical vortices also for the caseSaj(3). A

not produce vortex matter which yields significantly more
than 62% string tension.

The question arose as to which definitiMCG or LCG)
of the vortices produces vortex structures which are sensibl
in the continuum limit. Here, the planar vortex density,,

thorough study of the question why MCG vortex configura-
tions only support 62% of the full value is left to future
studies.

e
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