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Vortex structures in pure SU„3… lattice gauge theory
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~Received 13 October 2003; published 26 January 2004!

The structures of confining vortices which underlie pureSU(3) Yang-Mills theory are studied by means of
lattice gauge theory. Vortices andZ3 monopoles are defined as dynamical degrees of freedom of theZ3 gauge
theory which emerges by center gauge fixing and by subsequent center projection. It is observed for the first
time for the case ofSU(3) that these degrees of freedom are sensible in the continuum limit: the planar vortex
density and the monopole density properly scales with the lattice spacing. By contrast to earlier findings
concerning the gauge groupSU(2), the effective vortex theory only reproduces 62% of the full string tension.
On the other hand, however, the removal of the vortices from the lattice configurations yields ensembles with
vanishing string tension.SU(3) vortex matter which originates from Laplacian center gauge fixing is also
discussed. Although these vortices recover the full string tension, they lack a direct interpretation as physical
degrees of freedom in the continuum limit.
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I. INTRODUCTION

Since QCD was recognized as the theory of strong in
actions by means of high energy scattering experiments,
question arose as to whether QCD also explains the abs
of quarks in the particle spectrum. After extensive numeri
simulations had become feasible with modern computer
became clear that the pure gluonic theory already bears
ness to quark confinement: the static quark antiquark po
tial rises linearly for large distances due to the formation o
color-electric flux tube@1#. Moreover, the low-energy mode
in which a fluctuating bosonic string plays the role of t
effective degree of freedom, predicts a characteristic 1/r cor-
rection to the potential at large distances. This picture
cently received viable support from lattice simulations wh
verified the dependence of this term on the number of dim
sions at a quantitative level@2#. A major challenge of modern
quantum field theory is the question: Why does the co
electric flux tube form?

Over the recent past, lattice gauge simulations h
strengthened the idea that topological degrees of freed
which are characteristic for the non-Abelian nature, are
evant for confinement. Among those, color-magnetic mo
poles and center vortices are under intense discussion~for a
most recent review see Ref.@3#!. Here, we will focus on the
vortex picture of confinement.

The central idea is to simplify pure Yang-Mills theor
under the retention of its confining capability, hoping to filt
out degrees of freedom which meet two criteria:~i! the de-
grees of freedom are sensible in the continuum limit of l
tice gauge theory, and~ii ! they are closely related to confine
ment of pure Yang-Mills theory.

Gauge fixing and projection techniques have proven to
convenient for these purposes. Center gauges have bee
signed to maximize the importance of center degrees of f
dom, and the projectionSU(N)→ZN was proposed for the
simplification process@4,5#. Vortices andZN monopoles ap-
pear as the dynamical degrees of freedom of theZN gauge
theory. Indeed, criteria~i! and~ii ! were seen to be satisfied i
0556-2821/2004/69~1!/014503~12!/$22.50 69 0145
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the case of aSU(2) gauge theory if the maximal cente
gauge~MCG! is adopted@4–7#.

Of particular interest is the case of theSU(3) gauge
group because of its relevance to the theory of strong in
actions. In the present paper, a thorough study of the con
ing vortices is performed for the gauge groupSU(3). For
the first time the planar vortex density as well as the den
of the Z3 monopoles are reported to properly extrapolate
the continuum limit in the case of MCG. In sharp contrast
the case ofSU(2), the vortices fail to recover the string
tension to its full extent. We will see below, however, th
there is still a close relation of the MCG vortices to confin
ment: removing the vortices yields a model theory with va
ishing string tension. These findings will be contrasted
those obtained in the Laplacian center gauge~LCG!.

The techniques for extracting static quark potentials
well as the numerical setup are explained in Sec. II. Det
of the definition and construction of the vortex matter a
given in Sec. III. To what extent the vortex matter is able
reproduce theSU(3) string tension is studied in Sec. IV
Thereby, new high-precision data for the case ofSU(2) are
presented. These data serve as a ‘‘contrast agent’’ for
findings for theSU(3) case. In Sec. V, the properties o
vortices andZ3 monopoles are discussed in the continuu
limit. Conclusions are left to the final section.

II. THE STATIC QUARK POTENTIAL

Focal points are the study of the relevance of the vorti
for the SU(3) string tension and of the properties of th
vortex matter emerging in the continuum limit. For the
purposes, a careful determination of the physical value of
lattice spacing is mandatory. This is the subject of the pres
section.

A. Numerical setting

Results of the simulation of pureSU(N) gauge lattice
gauge theory will be presented below forN52 and 3, re-
©2004 The American Physical Society03-1
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spectively. The dynamical degrees of freedom are the uni
matricesUm(x)PSU(N). Configurations$Um(x)% will be
generated according to the Wilson action

S5b (
x,m,n

1

2N
tr@Pmn~x!1Pmn

† ~x!#, ~1!

Pmn~x!5Um~x!Un~x1m!Um
† ~x1n!Un

†~x!, ~2!

wherePmn(x) is the plaquette. The update is performed u
ing the Creutz heat-bath algorithm@8# for the case ofSU(2).
Updating the diagonalSU(2) subgroups as proposed b
Cabibbo and Marinari@9# is performed in the case ofSU(3).
Each ten heat-bath sweep is accompanied by four mi
canonical reflections in order to reduce autocorrelatio
Measurements were taken after twenty such blocks
sweeps. Most of the data are taken on aL4, L516 lattice. In
the case of theSU(2) gauge group, lattices withL524 were
also studied.

The static quark antiquark potentialV(r ) will be extracted
from planar, rectangular Wilson loopsW(R,T) of extension
R3T, i.e.,

^W~R,T!&}exp$2V~r !aT%, rªRa, T: large, ~3!

wherea is the lattice spacing.

B. Overlap enhancement

In order to extract the physical signal from noisy Wilso
loops, so-called overlap enhancement has been proven
an important tool@10–12#. For the case ofSU(2),1 we
closely follow the procedure in Ref.@12# and define the
cooledspatial links by

P i~x!5PN(
k

Uk~x!Ui~x1k!Uk
†~x1 i !, i 51,2,3, ~4!

wherek runs from23 . . . 3 andk5 i is excluded from the
sum.PN is the projector onto the ‘‘closest’’SU(N) element.
In the case ofSU(2) and for M5a01 i tWaW , ta being the
Pauli matrices, the effect of the operatorP2 is

P2M5
1

Aa0
21aW 2

~a01 i tWaW !. ~5!

Details concerningP3 can be found in Ref.@12#. Temporal
links are unchanged, i.e.,

P0~x!5U0~x!. ~6!

Since the projectionPN , N53 is ‘‘expensive’’ from a nu-
merical point of view, we used a different method to defi
the cooled spatial linksP i(x), i 51,2,3. Let us define the
action of the spatial links of a given time slicet by

1For the case ofSU(3), anovel method will be proposed below
01450
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S(3)~ t !5 (
i .k,1 . . . 3

Pik~x!, ~7!

wherePik(x) ~2! is the plaquette calculated from the spat
links. In addition, we define three different embeddings
the SU(2) matrix a01 i tWaW , a0

21aW 251 into the group
SU(3), i.e.,

V(1)5S 1 0 0

0 a01a3 a22 ia1

0 2a22 ia1 a02a3

D ,

V(2)5S a01a3 0 a22 ia1

0 1 0

2a22 ia1 0 a02a3

D , ~8!

V(3)5S a01a3 a22 ia1 0

2a22 ia1 a02a3 0

0 0 1
D . ~9!

Let us now consider a particular spatial linkUl(x). Substi-
tuting U8ªV(1)Ul(x), we locally maximize the actionS(3)
with respect toV(1). Subsequently, we replaceU8 by U9
5V(2)U8 and maximize with respect toV(2), and setting
U-5V(3)U9, V(3) is chosen to maximizeS(3) . Finally, we
define

P l~x!5V(3) V(2) V(1) Ul~x!. ~10!

We then visit the next link on the lattice. One sweep has b
performed when all spatial links of the lattice have be
visited. The advantage of the present procedure is that
maximization ofS(3) with respect to one of theSU(2) sub-
groups can be implemented very efficiently.

In order to achieve a good overlap with the groundsta
the above procedure for determining the linksP l(x) is ap-
plied recursively, and the Wilson loop expectation val
^W(R,T)& is calculated from the configurations$Pm(x)%
rather than the ensembles$Um(x)%. The average ofS(3) over
the time slices divided by the total number of spatial lin
serves as litmus paper for the overlap. It turned out that
sweeps are enough to yield more than 0.99 ground s
overlap. Good overlap is also signaled by the quantity

2 ln^W~R,T!&, ~11!

which already shows a linear behavior inT for T>3. This is
illustrated for the case of aSU(3) gauge group,L45164,
andb55.9. The final results are obtained from 100 indepe
dent measurements. The symbols in Fig. 1, left panel, re
sent the lattice data of quantity~11!; the lines are linear fits in
T, i.e.,

2 ln^W~R,T!&5gT1d. ~12!

The coefficientsg can be interpreted asV(r )a. The latter
quantity is shown in Fig. 1, right panel~symbols!. The line is
a fit according to the function
3-2
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FIG. 1. ~Color online! Linear-
ity of the function2 ln^W(R,T)& in
T for several values ofR ~left
panel!. The static quark antiquark
potential for SU(3), 164 lattice
andb55.9 ~right panel!.
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V~r !a5cR2
b

R
1V0 , r 5Ra, ~13!

where the parameterc can interpreted as the string tension
units of the lattice spacing, i.e.,c5sa2. This method for the
calculation of the string tension was used, e.g., in Ref.@13#.
For the present example, we find

sa2~b55.9!50.070160.0005, ~14!

which is in agreement with the value reported in the lite
ture, i.e.,sa2(b55.9)50.073@14,15# ~also see Fig. 2!.

C. The scaling relation

In order to mark a dimensionful quantity as a physica
sensible one in the continuum limita→0, it is crucial to
express this quantity in units of a physical reference sc
Throughout this paper, the string tensions will serve this
purpose.

It is time consuming but straightforward to determine t
dependence ofsa2(b) on b. The results for the gauge grou
SU(2) are summarized in Table I. Those for the case o
SU(3) gauge group are shown in Table II.

These values are in good agreement with those repo
e.g., in Ref.@14#.
01450
-
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III. THE VORTEX TEXTURE

Concerning the criteria~i! and~ii ! of Sec. I one first notes
that the properties of theSU(2) vortices extrapolate properl
to the continuum limit@6# if the MCG is used. Moreover, the
MCG vortex theory correctly reproduces the deconfinem
temperature@16#. The phase transition acquires a geometri
picture: is appears as a vortex depercolation phase trans
@16,17# which already points towards a weak vortex intera
tion ~also see Ref.@18#!. Second, it was observed that th
geometrical picture correctly reproduces the finite size s
ing of the 3D Ising universality class@19#. This shows that at
least for temperatures close to deconfinement, MCG vort
interact weakly.

It turns out that the nonlocality induced by gauge fixing
crucial for property~i! above: it was analytically shown tha
if unfixed lattice configurations are projected onto vort
configurations, the complete static quark potential~including
the Coulomb term! is obtained@20#. At the same time, the
properties of this vortex matter strongly depend on the s
of the lattice spacing. Thus, these vortices lack an interp
tation in the continuum limit. In these respects the nonloc
ity of the approach to the vortex matter is an advantage.
the other hand, however, this nonlocality generically ma
it difficult to access the vortex matter in practical simul
tions: using a variational gauge condition as, e.g., in the c
of MCG @5#, the definition of the vortices is ambiguous as
r

FIG. 2. ~Color online! The

static quark antiquark potential fo
the SU(2) gauge group ~left
panel! and for the case of the
SU(3) gauge group~right panel!.
3-3
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TABLE I. String tensions in units of the lattice spacinga for the case of theSU(2) gauge group.

L 16 24 16 24 16 24 16 24

b 2.2 2.2 2.3 2.3 2.4 2.4 2.5 2.5

sa2 0.26~2! 0.24~1! 0.146~3! 0.145~2! 0.0752~7! 0.0754~5! 0.0391~3! 0.0373~1!
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result of the inability to localize the global maximum of
nonlinear functional. At least for small lattice sizes, the s
called Gribov ambiguity might have a significant influen
on physical observables@21,22#.

Marked progress concerning the Gribov problem w
made with the construction of the Laplacian gauges@23#: the
nonlocality of the gauge fixing is preserved while the ma
mization is replaced by an eigenvector problem, which c
be handled by present-day algorithms. The Laplacian ver
of the MCG was firstly proposed for aSU(2) gauge group in
Ref. @24# and generalized to theSU(3) case in Ref.@25#. A
further improvement was reported in Ref.@29#. Vortex matter
of the LCG is unambiguously defined and recovers
asymptotic string tension for both gauge groups,SU(2) and
SU(3). In thecase of aSU(2) gauge theory, it was, how
ever, observed that the LCG vortices are produced in la
abundance, implying that they lie dense~nevertheless in a
controlled way! in the continuum limit@7#. This indicates a
rather strong interaction of LCG vortices, which might re
der it difficult to mimic LCG vortex matter in a low-energ
effective model.

The present section briefly reviews details of the cen
gauge fixing procedures and the vortex projection techniq
with an emphasis on the case ofSU(3).

A. The ideal center vortex cluster

In order to reveal degrees of freedom which are relev
for confinement, we are looking for configurations$Zm(x)%,
Zm(x)PZN which best represent the full link configuration
$Um(x)%, Um(x)PSU(N). Thereby,ZN represents the cente
of the groupSU(N), i.e.,

Zm~x!5expH i
2p

N
mJ , 2

N

2
,m<

N

2
, ~15!

where m is an integer. There is an optimal choice of t
gauge for which the overlap of the center configurations w
the full ones is maximal. Let us denote the gauge tra
formed links by

Um
V~x!5V~x!Um~x!V†~x1m!, V~x!PSU~N!.

~16!

TABLE II. String tensions in units of the lattice spacinga for
the case of theSU(3) gauge group.

L 12 16 16 16 16 16

b 5.6 5.6 5.7 5.8 5.9 6.0

sa2 0.32~1! 0.26~1! 0.169~3! 0.104~1! 0.0701~5! 0.0514~3!
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In order to obtain the ideal center configurations, we mi
mize the functional

(
x,m

@Um
V~x!2Zm~x!#†@Um

V~x!2Zm~x!# →
V,Zm

min ~17!

with respect toV(x) andZm(x). The selection ofV(x) im-
plies the choice of a gauge. We will call this gaugeideal
center gauge~ICG! throughout this paper. The condition~17!
directly implies that the overlap, i.e.,

R5
1

Nl
(
x,m

R
1

N
tr@Um

V~x!Zm
† ~x!# ~18!

is maximized.Nl is the number of links of the lattice, and
21<R<1. R51 means that the link configuration$Um(x)%
can be entirely expressed in terms of center elements af
suitable gauge has been chosen.

The maximization ofR with respect to the center elemen
Zm(x) can be performed locally: with

1

N
trUm

V~x!5ulexp$ iw l%, Zm~x!5exp$ iwm
l %,

wm5
2p

N
m, ~19!

wherel 5$x,m% specifies the link, one finds

R5
1

Nl
(

l
ulcos~w l2wm

l !.

The optimal choice is obtained by choosingm @Eq. ~19!# in
such a way thatwm

l is closest tow l . This mapping,

SU~N!→ZN : Um
V~x!→Zm~x!5Z@Um

V~x!#, ~20!

is called center projection. InsertingZm(x) from Eq. ~20!
into Eq. ~18!, the overlapR must then be maximized with
respect to the gauge transformations, i.e.,V(x).

B. Center gauges

Since the mapping~20! by no means depends smooth
on V(x), an iteration over-relaxation algorithm which itera
tively determinesZm(x) andV(x) from Eq. ~18! can hardly
work. State of the art would be to determine the desi
quantitiesZm(x), V(x) by the technique of ‘‘simulated an
nealing.’’ However in this case, determining, e.g.,V(x) to
the precision which is needed for the vortex analysis is
3-4
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tremely costly from a numerical point of view. This approa
is beyond the scope of the present paper and is left to fu
investigations.

In order to make the gauge fixing efficient by means
iteration over-relaxation, we assume that in the optimal ca
1/Ntr Um

V(x) comes close to a center element. In this ca
we relax the condition which constrainsZ@Um

V(x)# in Eq.
~20! to a center element. There are two possibilities for do
this:

Z@Um
V~x!#}@ tr Um

V~x!#†, ~21!

Z@Um
V~x!#}@ trUm

V~x!#2. ~22!

Hence, we find the gauge conditions

Rmes5
1

Nl
(
x,m

F 1

N
tr@Um

V~x!#GF 1

N
tr@Um

V~x!#G†

, ~23!

Rbar5
1

Nl
(
x,m

RF 1

N
tr@Um

V~x!#G3

; ~24!

both have been advertised in the literature@27#. It is not clear
at the beginning which of the above possibilities yields
larger overlap~18!. It might turn out that even a background
field-dependent admixture of both possibilities~21! and~22!
is best for the present purposes. Since the algorithm for
so-called ‘‘mesonic’’ center gauge~MMCG! @Eq. ~23!# was
already studied in the literature to a large extent@27,28#, we
will employ the gauge conditionRmes→max for the deter-
mination ofV(x) and perform subsequent center projecti
along the lines outlined in the previous subsection.

Even once we have agreed on one of the subopti
gauge conditions~23! and ~24!, there is still the problem of
the Gribov ambiguities: since the overlapR is a nonlinear
functional onV(x), detecting the global maximum ofR is
practically impossible for reasonable lattice sizes. The cho
of the local maximum ofR which is implicitly defined by the
algorithm determines the gauge. Although the physics
tracted in the latter gauge can be highly relevant for confi
ment, the definition of gauge by the numerical procedure
unsatisfactory. The Gribov problem can be solved by ado
ing the LCG @23–25,30#. A detailed study of these gauge
and the corresponding vortex matter can be found for
case ofSU(2) in Ref. @7# and for the case ofSU(3) in Ref.
@25#. Here, we will briefly outline the procedure for the ca
of SU(3) and refer the reader to Ref.@25# for details.

The generatorsta of the SU(N) algebra satisfy the equa
tion

tki
a t lm

a 5
1

2 S d i l dmk2
1

N
d lmdmkD , tr tatb5

1

2
dab. ~25!

With the help of this identity, the MMCG functionalRmes
@Eq. ~23!# can be written as

Rmes5
1

Nl
(
x,m

1

N2
@ tr OT~x!Rm~x!O~x1m!11#, ~26!
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where the adjoint matrices are defined by

Oab~x!52 tr$taV~x!tbV†~x!%,

Rm
ab~x!52 tr$taUm~x!tbUm

† ~x!%. ~27!

Equation~26! can be written as

N2Rmes5
1

Nl
Tr O TRO11, ~28!

where we have introduced, e.g., the vectorO of the com-
bined coordinate and color space,$Oab(x)%→O. Up to a
term proportional to the unit matrix,R is the adjoint Laplac-
ian operator, i.e.,

R xy
ab5

1

2 (
m

@Rm
ab~x!dy,x1m1Rm

ba~x2m!dy,x2m#. ~29!

Note that the vectorO is subjected to the constraints that th
set of vectorsna with Oab(x)5$n1(x),n2(x),n3(x)%ab is or-
thonormal. At the heart of LCG fixing, one relaxes the
constraints and seeks theN21 largest eigenvalues of th
supermatrixR. These tasks can be unambiguously p
formed with present-day algorithmic tools. From the cor
sponding eigenvectors, the adjoint gauge transformati
Oab(x) are reconstructed at each site with the help of Gra
Schmidt orthogonalization. Abelian monopoles and vortic
appear as defects in the latter step of reconstructing
gauge transformation. Technical details of this gauge fix
are presented in Ref.@25#. Finally, we point out that the LCG
also seeks to maximize the MMCG condition. However, t
re-orthogonalization of the eigenvectors implies that the v
ues for the overlapR @Eq. ~18!# are significantly smaller than
that achieved by maximizingRmes@Eq. ~23!# with the help of
an iteration over-relaxation procedure.

C. Identifying vortex matter

In order to reveal the vortex matter ofZN gauge theory,
we define

v~p!ª)
l Pp

Zl , l 5$x,m%, v~p!PZN , ~30!

wherep5(x,m,n) defines an elementary plaquette on t
lattice. One says that a vortex of center chargez pierces the
plaquettep if

v~p!5z, z5expH i
2p

N
wJ , ~31!

where2N/2,w(p)[wmn(x)<N/2 is called the center flux
For SU(N>3), one defines the conservedZN monopole cur-
rent by

mm~x!5
1

N
emnabDnwab~x!, Dmmm~x!50, ~32!

where
3-5



he

d
f
ge

i

x

ti-

al

m

ed

v
-
e.
ng

lia

th
r-

o

r-
th
e

he

d-
l

n
ef.
ing

ra-

nt

n-
t
v
.’’
for
atic
ne

m

rge
ed
a
a-

tice

r
n-

d

KURT LANGFELD PHYSICAL REVIEW D 69, 014503 ~2004!
DmF~x!ªF~x1m!2F~x!.

In order to reveal the span of the monopole chargem4, we
consider an elementary, spatial hypercubec5(x,a,b
,g). One easily verifies, using the Abelian nature of t
groupZN , that

15 )
pPc

D@v~p!#5expH i
2p

N
e ikmD iwkm~x!J , ~33!

where the sum overi ,k,m runs from 1. . . 3, andD@v(p)#
5v†(p) if the normal vector of the plaquette is antialigne
with the normal vector of the relevant surface element oc,
andD@v(p)#5v(p) otherwise. Hence, the monopole char
comes in integers, i.e.,

m45
1

N
e ikmD iwkm~x!5k, k: integer. ~34!

Finally, we point out that there are no center monopoles
the case of aSU(2) gauge group, i.e.,mm(x)[0.

It is convenient for model building to define the vorte
matter on the dual lattice, where the linkl, the plaquettep
and the cubec is mapped onto

l→c* , p→p* , c→ l * . ~35!

The vortex field of the dual lattice is defined via the iden
fication

v̄~p* !5v~p! for p→p* . ~36!

The identity~33! can be transformed into an identity for du
fields only:

15 )
p* { l*

v̄~p* !. ~37!

The latter equation implies that the vortices either fro
closed world sheets on the dual lattice or, forSU(N>3)
only, multiples ofN vortex world sheets merge at a clos
monopole trajectory.

IV. DOMINANCE OF THE STATIC QUARK POTENTIAL

Preliminary evidence that the MCG vortex matter reco
ers the string tension of pureSU(3) gauge theory was pre
sented in Ref.@27#. The so-called indirect center gauge, i.
the maximal Abelian gauge fixing with a subsequent fixi
of the center gauge, was investigated in Ref.@13#. There it
was observed that the string tension obtained from Abe
monopole configurations as well as fromZ3 vortex en-
sembles is significantly smaller than the string tension of
completeSU(3) gauge theory. On the other hand, it is inte
esting to note that theSU(3) string tension is recovered t
full extent in the case of the LCG@25#.

Here, we will see that the MCG vortices act like the vo
tices defined in the indirect center gauge: roughly 62% of
full string tension is found. We will therefore find that th
01450
n
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n

e

e

MCG vortex ensembles genuinely differ from those of t
LCG.

A. The case of aSU„2… gauge group revisited

In order to contrast the findings concerning theSU(3)
gauge group, which will be presented below, with the fin
ings for the case ofSU(2), webriefly discuss our numerica
results for the latter case in this subsection.

The MCG@Eq. ~23!# is implemented by using the iteratio
over-relaxation procedure which is described in detail in R
@5#. This procedure defines the gauge. The correspond
vortex degrees of freedom are defined by projection~20!,
which becomes, in the present case,

SU~2!→Z2 : Um
V~x!→Zm~x!5sgn trUm

V~x!. ~38!

It turns out that this procedure produces vortex configu
tions with sensible properties in the continuum limit@6# and
with a close relation to the physics of confineme
@5,4,16,17#. So far, vortex matter with ‘‘best’’ properties in
the continuum limit seems to obtained with a ‘preconditio
ing’ by performing the LCG~see Sec. III B! and subsequen
MCG fixing @7,29#. This approach also alleviates the Gribo
problem, but its implementation is numerically ‘‘expensive

In order to reveal the relevance of the vortex texture
the physics of confinement, one first calculates the st
quark potential from the vortex configurations. Second, o
defines a toy Yang-Mills theory by

Um8 ~x!5Zm
† ~x!Um

V~x!, ~39!

where the vortex texture has been removed ‘‘by hand’’ fro
the lattice ensembles. It was found@4,5# that the vortex con-
figurations reproduce the linear part of the potential to a la
extent. In addition, the potential evaluated from the modifi
configurations$Um8 (x)% has lost its linear rise and shows
Coulomb type of behavior. Both observations are summ
rized by the term ‘‘center dominance of the potential.’’

Figure 3 illustrates these observations using our lat

FIG. 3. ~Color online! The static quark antiquark potential fo
the SU(2) gauge group: full ensembles, vortex projected e
sembles, and ensembles where the vortices have been remove@see
Eq. ~39!#. Lattice size: 244. Gauge: MCG.
3-6
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results. Only data which were obtained on a 244 lattice are
shown. The number of independent configurations emplo
for the calculation of expectation values is listed in Table

The full configurations$Um(x)% as well as the configura
tions $Um8 (x)% from which the vortices have been remov
‘‘by hand’’ are subject to the overlap enhancement descri
in Sec. II B. TheZ2 vortex configurations already posse
good overlap with the ground state, and no enhanceme
used in this case. The line which fits the ‘‘vortex only’’ da
in Fig. 3 corresponds to a string tension of 97.7% of the
string tension. we stress that these findings have been
tained with the most naive version of the MCG~described in
Ref. @5#!.

Finally, we point out that the quality of dominance is a
fected by the choice of gauge, i.e., the Gribov copy@21#, and
that the Gribov effect is influenced by the lattice volum
@22#.

B. Vortex-limited Wilson loops: SU„3… gauge group

Let Wn@Um# denote an3n planar Wilson loop calculated
within the particular configurationUm(x). The same objec
is evaluated with theZ3 configurations obtained from cente
projection~20! after the implementation of the MMCG con
dition ~23!. The result is calledWn@Zm#. Since Wn@Zm#
PZ3, the latter Wilson loop can be characterized by t
numbermP$21,0,1%, i.e.,

Wn@Zm#5expH i
2p

3
mJ . ~40!

The expectation value of the Wilson loop,

Wn5^Wn@Um#&, ~41!

TABLE III. Number of independentSU(2) configurations used
for the calculation of the static potential~see Fig. 3!.

b 2.2 2.3 2.4 2.5

# 75 75 35 55
01450
d
.

d

is

ll
b-

e

is obtained by averaging over the ensembles$Um(x)%. In
addition, we can define expectation values

Wn
(m)5^Wn@Um#&m ; ~42!

thereby, only loopsWn@Um# are taken into account where th
corresponding quantityWn@Zm# belongs to the sectorm. De-
composing

Wn
(m)5uWn

(m)uexp$ iwn
(m)%, ~43!

one expects that for large loops

lim
n→`

wn
(m)5

2p

3
m, ~44!

if center vortices dominate the Wilson loop expectati
value. The latter relation can be checked by lattice simu
tions. The quantitywn

(m) is shown forb55.6 ~227 indepen-
dent measurements! and for b55.8 ~160 independent mea
surements! in Fig. 4 as a function ofn ~left panel!. Since the
statistical noise is pronounced for smallb values, only val-
ues up ton54 possess a reasonable small statistical error
b55.6. Forb55.8w5

(m) is also statistically significant using
present statistics. It seems that the relation~44! is indeed
satisfied for largen. If we plot the anglewn

(m) as a function of
the physical size of the Wilson loop, i.e.,l 5na(b), we ob-
serve that the data forb55.6 and forb55.8, respectively,
roughly fall on top of the same curve~right panel!.

Let us interpret these findings from a random vort
model point of view. Following Ref.@26#, we assume tha
center vortex intersection points possess a finite correla
length Lc . Thus dividing the minimal areaA of the planar
Wilson loop into squares of sizeA.Lc

2 , the center fluxes
wP$21,0,1% through different squares are essentially unc
related. Letr̃(m,A) denote the probability of finding cente
flux m through the areaA; we define the ‘‘mesoscopic’’ vor-
tex density by

rmesª r̃~m,A!/A, A5n2a2~b!. ~45!

Assuming vortex dominance, we might approximate
FIG. 4. ~Color online! The
anglew (m) of the Wilson loop ex-
pectation values~43! as a function
of the Wilson loop sizen ~left
panel! and as a function of the
size in physical units~right panel!.
Lattice size: 164. Gauge: MMCG.
3-7
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Wn5^Wn@Um#&'^Wn@Zm#&. ~46!

Using the fact that center fluxes are uncorrelated by c
struction, one obtains

Wn'^Wn@Zm#&5^Z&A/A, ~47!

where^Z& the average flux through the areaA is

^Z&5 (
m521 . . . 1

r̃~m,A!expH i
2p

3
mJ . ~48!

Hence, the string tension in the center flux approximation
given by

sc f52
1

A ln F (
m521 . . . 1

r̃~m,A!expH i
2p

3
mJ G

52
1

A ln~123r̃ !, ~49!

where we have assumed that the center symmetrym→2m
is not spontaneously broken, i.e.,

r̃~1,A!5 r̃~21,A!5: r̃~A! and (
m521

1

r̃~m,A!51.

~50!

A particular case is obtained by considering that the vorti
which are defined at the level of the elementary plaquette
uncorrelated~naive random vortex model!. In this case, one
finds

r̃~A5a2!5
r

2
a2!1 and thus sc f'

3

2
r. ~51!

Thereby,r is the ‘‘microscopic’’ vortex density, i.e.,ra2 is
the probability of finding a nontrivial center flux through
given plaquette~no matter whetherm521 or m51).

Using the numerical data above, it is possible to estim
the center flux correlation length. Let us define the ‘‘ha
width’’ L1/2 by the length of the Wilson loop at which

w (1)~ l 5L1/2!5
p

3
. ~52!

The findings~see Fig. 4, right panel! suggest that

Lc>L1/2'0.8 fm, ~53!

where we have used a string tension ofs5(440 MeV)2 as a
reference scale. Finally, let us check whether the naive
dom vortex model of uncorrelated vortex plaquettes is re
istic. For this to be the case, the relation

r

2
A'

r

2
L1/2

2 '
sc f

3
L1/2

2 '
s

3
L1/2

2 !1 ~54!

must hold. However, one finds, using Eq.~53!,
01450
-

is

s
re

te

n-
l-

s

3
L1/2

2 '1.03, ~55!

implying that the naive random vortex model seems not
ways to be justified.

C. The ‘‘mesonic’’ center gauge forSU„3…

In a first step, the MMCG condition~23! is installed with
the help of the iteration over-relaxation algorithm describ
in detail in Refs.@27,28#. The Z3 link elementsZm(x) are
defined by center projection~20!. As in the case ofSU(2),
we will compare the static quark potential obtained from f
link configurations~see Sec. II! with the one calculated with
link ensembles$Zm(x)%. In addition, the toy model is de
fined by configurations$Um8 (x)% @Eq. ~39!# from which the
vortices have been removed ‘‘by hand.’’ From the results
the previous subsection, we expect that the string tensio
lost in the latter case. Our numerical findings using 100
dependent measurements are summarized in Fig. 5.

We find that the potential calculated from vortex config
rations scales towards the continuum limit, i.e., the data
tained from differentb values fall on top of the same curv
if the V(r ) andr are expressed in physical units. In additio
one observes ‘‘precocious’’ linearity: the potential is line
even at small distances as is the case for aSU(2) gauge
group. In contrast to the case of anSU(2) gauge group, the
center projected string tension is only 62% of the full stri
tension. The value of string tension~in lattice units! after
center projection is in agreement with the finding in Ref.@27#
for a 124 lattice andb55.6. In the latter article, however, th
quoted value of the full string tension is underestimated. U
ing reliable values, the ratio of projected and full string te
sion is in agreement with the findings reported here.

On the other hand, removing the vortices@see Eq.~39!#
produces configurations which are compatible with a vani
ing string tension. There is a subtlety for obtaining this

FIG. 5. ~Color online! The static quark antiquark potential fo
the SU(3) gauge group: full ensembles, vortex projected e
sembles, and ensembles where the vortices have been remove@see
Eq. ~39!#. Lattice size: 164. Gauge: MMCG.
3-8
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VORTEX STRUCTURES IN PURESU(3) LATTICE . . . PHYSICAL REVIEW D 69, 014503 ~2004!
sult: the lattice volume must be large enough.2 It appears that
the lattice size of 164 seems to be too small forb as big as
6.0.

Since a removal of the vortices results in a loss of
string tension, even if the vortices only amount to 62% of
full one, the question arises as to whether additional deg
of freedom which reside in theU(1)3U(1) Abelian sub-
group are responsible for the 38% string tension comple
the vortex contribution. Candidates for such degrees of fr
dom are color magnetic monopoles. To answer this ques
we implemented the MMCG condition~23! and subse-
quently projected the gauged configurations onto Abe
ones:

Um
V~x!→Vm~x!, Vm~x!PU~1!3U~1!. ~56!

For these purposes, the off-diagonal elements ofUm
V(x) were

dropped, i.e.,

Um
V~x!→Ūm

V~x!ªdiag~Um
V~x!!, ~57!

andVm(x) is given by theSU(3) element which is ‘‘closest’’
to Ūm

V(x) ~see the discussion in Sec. II B!. One verifies that
indeedVm(x)PU(1)3U(1). In addition, we investigated
ensembles$Um

ABR(x)% which are complementary to th
U(1)3U(1) configurations:

Um
ABR~x!5Vm

† ~x!Um
V~x!. ~58!

Our numerical findings for a 164 lattice atb55.8 are shown
in Fig. 6. We find that the string tension calculated fro
U(1)3U(1) configurations is marginally larger than th
string tension from vortex projected configurations. As e
pected, configurationsUm

ABR(x) from which the Abelian sub-
group was removed do not support confinement.

2I thank M. Faber for this remark.

FIG. 6. ~Color online! The static quark antiquark potential fo
the SU(3) gauge group: full ensembles, vortex projected e
sembles, and ensembles where the vortices have been remove@see
Eq. ~39!#. Same withU(1)3U(1) projection. Lattice size: 164, b
55.8. Gauge: MMCG.
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These results are compared with those in Ref.@13#: there,
versions of the so-called maximal Abelian gauge were inv
tigated. These gauges are most suitable for a projectio
configurations Um

V(x) onto the Abelian subgroupU(1)
3U(1). Also in these cases, the string tension extrac
from U(1)3U(1) configurations is substantially smalle
than the full string tension.

D. Laplacian center gauge

The previous subsection showed that the MMCG~23!
produces vortex matter which recovers only 62% of the f
string tension. The question is whetherZ3 matter is able to
give the full result for the string tension at all. The answ
was already given in Ref.@25#: vortex matter which is de-
fined by the LCG condition~see Sec. III B! reproduces the
linear rise of the static quark potential in the continuum lim
Here, we briefly report our findings. We investigated t
somewhat extreme case of a small physical volume, i.e.,4

lattice,b56.0. The last subsection showed that for this s
the removal of the vortices defined by the MMCG hard
makes the string tension vanish. The result of 50 independ
measurements is shown in Fig. 7. The potentials of this
ure were fitted by the function

V~r !a25sa2n2
a

n
, r 5na. ~59!

In either case we find

vortex only: sa250.061~1! a50.096~4!,

vortex removed:sa250.0 a50.43~2!,

full: sa250.0514~3! a50.25~1!.

A small Coulomb part survives the projection onto vortice
One also observes that the potential obtained from confi

-

FIG. 7. ~Color online! The static quark antiquark potentials fo
the SU(3) gauge group: full ensembles, vortex projected e
sembles, and ensembles where the vortices have been remove@see
Eq. ~39!#. Lattice size: 164, b56.0. Gauge: LCG.
3-9
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FIG. 8. ~Color online! The continuum limit of the vortex and theZ3 monopole density for the MMCG and the LCG~left panel!. The
vortex and theZ3 monopole density in physical units for the MMCG~right panel!.
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rations from which the Laplacian vortices have been
moved is perfectly fitted by a Coulomb law. The string te
sion from vortex configurations is a bit higher than the f
string tension. This is probably due to the small physical s
of the lattice: Coulomb contributions are dominant and
represented by the vortex matter as string tension to s
extent.

It turns out@7,29# in the case of theSU(2) gauge group
that preconditioning with the LCG and subsequent imp
mentation of the MMCG by iteration over-relaxatio
strongly reduces the influence of the Gribov copies. Cen
projection of these ensembles yields high-quality vortex m
ter the properties of which nicely extrapolates to the c
tinuum limit. We have checked that repeating this appro
for the SU(3) case produces vortex matter where the co
sponding string tension again only reaches 62% of the
string tension.

V. PROPERTIES OF SU„3… VORTEX MATTER

In this section, we will investigate which definition of th
vortex matter~MCG or LCG! admits an interpretation of th
vortices as physical degrees of freedom. To this aim,
continuum limita→0 of the planar vortex densityrvor ~i.e.,
the ‘‘microscopic’’ vortex density of Sec. IV B! and the den-
sity rmon of Z3 monopoles are investigated.

The vortex densityrvor can be extracted from theZ3 en-
sembles$Zm(x)% as follows: we say that aZ3 plaquette,

v~p!ª)
l Pp

Zl , l 5$x,m%, v~p!PZ3 , ~60!

carries a nontrivial center flux if

v~p!5z, z5expH i
2p

3
wJ ~61!
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and w521 or w51. If Pb denote the probability that a
particular plaquette of the lattice carries a nontrivial cen
charge, the vortex density is defined by

rvora
2~b!5Pb . ~62!

As outlined in Sec. III C, theZ3 monopole world lines are
associated with dual links whose corresponding monop
currentmm(x) @Eq. ~32!# is nonzero. Alternatively, 3d hyper
cubes from which nontrivial center flux emerges are said
contain a center monopole. Given thatQb is the probability
that a particular hypercube contains a center monopole,
monopole density is obtained from

rmona
3~b!5Qb . ~63!

Both quantities characterize the vortex matter. In order
interpret the vortices as sensible degrees of freedom in
continuum limita→0, the quantities must obey

lim
b→`

rvor5const, lim
b→`

rmon5const. ~64!

Our numerical findings are summarized in Fig. 8. Figure
left panel shows the densitiesrvor and rmon in units of the
lattice spacing as a function ofaAs. Simulations were per-
formed forb55.6, 5.7, 5.8, and 5.9. The corresponding s
of the lattice spacing can be found in Table II.

Let us first focus on vortex matter obtained after imp
menting the MMCG condition~23!. There, the data are per
fectly fitted by

rvora
2~b!'0.45~2!~aAs!2, ~65!

rmona
3~b!'0.35~2!~aAs!3. ~66!

These findings suggest that the planar areal vortex densi
well as theZ3 monopole density properly extrapolate to th
continuum limit~see Fig. 8, right panel!. The same result for
3-10
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VORTEX STRUCTURES IN PURESU(3) LATTICE . . . PHYSICAL REVIEW D 69, 014503 ~2004!
the vortex density was found for the case of aSU(2) gauge
group @6,5#. In a naive random vortex model, one expe
that the string tension is given by@see Eq.~51!#

sc f'
3

2
rvor'0.67s. ~67!

We point out that the naive string tensionsc f roughly agrees
with the string tension measured from center projected c
figurations~see Sec. IV C!, i.e.,

sZ3'0.62s.

This indicates that the intersection points of the MMCG v
tex clusters do not contain significant long-range corre
tions. UsingAs5440 MeV as a reference scale, one fin
for the SU~3! case

rvor'2.2
1

fm2
, rmon'3.7

1

fm3
,

rmon

rvor
3/2

'1.16. ~68!

The latter quantity might be of interest for the constructi
of Z3 random vortex models.

As already noticed for aSU(2) gauge group@7#, the situ-
ation drastically changes for the LCG. The vortex and mo
pole densities~times the canonical powers of the lattice spa
ing! scale linearly with the lattice spacing. Two fits represe
the areal vortex density almost equally well:

rvora
2~b!'0.10~1!10.52~2!aAs,

rvora
2~b!'0.56~2!~aAs!0.66, ~69!

where the latter fit function is slightly preferable. In additio
the monopole density is well represented by the linear fu
tion

rmona
3~b!'0.38~2!aAs. ~70!

Both quantities, i.e.,rvor andrmon, diverge in the continuum
limit a→0. However, one finds that the ratio

rmon

rvor
3/2

'0.9 ~LCG! ~71!

is roughly independent of the lattice spacinga, as is the case
for the MMCG.

It is interesting that theZ3 monopole density~of the LCG!
diverges in a somewhat controlled way: a situation where
Z3 monopoles lie dense on 2d hypersurfaces of the 4d sp
time would correspond to the observed scaling with the
tice spacing. In order to get a rough idea of how the mo
poles are organized within space, a closed loop which jo
all monopole sites is calculated. This loop is obtained b
simulated annealing procedure which minimizes the len
of the loop. Thereby, the Euclidean norm~where in addition
the toroidal topology is taken into account! is used as a mea
sure for lengths. From a mathematical point of view, findi
the global minimum is a ‘‘traveling salesman’’ problem
three dimensions, and is beyond the reach of numerical
01450
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culation. However, the ‘‘simulated annealing’’ algorithm g
nerically generates paths the length of which is within a f
percents of the minimal length. This suffices for our purpo
here. Given a finite set of points, it is difficult to tell wheth
the points are falling on top of a ‘‘smooth’’ curve. In order t
gain first insight, we have calculated a connecting loop fo
given set ofZ3 monopoles with the help of simulated annea
ing. Dividing the number of monopoles by the length of th
loop gives an effective line density. Finally, this quantity
averaged over several lattice configurations. In order ge
clue about the significance of this average line density,
have randomly re-distributed the monopoles of a particu
configuration and we have re-calculated the effective l
density. If the monopoles produced by the lattice simulat
tend to fall on top of a smooth line, the average line dens
must be significantly larger than in the case of the rand
distribution of the same amount of monopoles. This is inde
the case, as is shown by Fig. 9.

VI. CONCLUSIONS

MCG vortices of the gauge groupSU(2) have been real-
ized as sensible degrees of freedom in the continuum l
@6#, and they are closely related to confinement@3#. In the
present paper, the MCG vortex matter has been investig
for the important case ofSU(3), using large-scale numerica
simulations. Focal points were the questions: To which
tent are theSU(3) vortices relevant for confinement? Are th
SU(3) vortices meaningful in the continuum limit?

In a first step, we verified that the phase of large Wils
loops is represented by the center flux going through
Wilson loop. We confirmed the conjecture in Ref.@26# that
theZ3 fluxes going through a planar area are strongly cor
lated at length scales smaller than the hadronic one. A
byproduct, the flux correlation length@see Eq.~53! for a
proper definition#

L1/2'0.8 fm

FIG. 9. ~Color online! ~line! density of Z3 monopoles on the
shortest connected line joining all monopole sites: lattice simula
~full symbols! and after randomly re-distributing the monopol
~open symbols!. Lattice size: 164, b55.9. Gauge: LCG.
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KURT LANGFELD PHYSICAL REVIEW D 69, 014503 ~2004!
was seen to be in rough agreement with scaling.
In a second step, the static quark potential produced

the MCG vortices was addressed. In contrast to the cas
SU(2), the string tension from the vortex projected e
sembles turned out to be 62% of the full string tension. T
finding is rather independent of the lattice size and the va
of the lattice spacing. On the other hand, removing theZ3
vortex degrees of freedom ‘‘by hand’’ from the full lattic
configurations@see Eq.~39!#, always results in a vanishin
string tension~if the physical lattice volume is large enough!.
This implies that there is still a certain relation between
MCG vortices and confinement.

On the other hand, it is known@24,25# that vortices which
are defined from the LCG reproduce the string tension to
extent. Here, we checked that ‘‘preconditioning’’ the latti
configurations with LCG and subsequent MCG fixing do
not produce vortex matter which yields significantly mo
than 62% string tension.

The question arose as to which definition~MCG or LCG!
of the vortices produces vortex structures which are sens
in the continuum limit. Here, the planar vortex densityrvor
~the density of points where the vortices intersect a 2D pla
hypersurface! as well as the~volume! density rmon of Z3
monopoles were studied. We found that in the case of
MCG vortices both quantities properly extrapolate to t
continuum:

rvor

s
'0.45,

rmon

s3/2
'0.35,

rmon

rvor
3/2

'1.16.
ys

ik

dt
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In contrast, both quantities diverge in the continuum limit f
the case of LCG vortices. Surprisingly, the LCG vortex m
ter satisfies simple scaling laws:

rmona
3~b!'0.38aAs,

rmon

rvor
3/2

'0.9 ~LCG!.

The investigations of sets ofZ3 monopoles residing within
the spatial hypercube indicated that the LCG monopoles t
to fall on top of a ‘‘smooth’’ 1d curve which is embedded
this hypercube.

In summary, only the MCG allows for a direct interpret
tion of the vortices in the continuum limit of pureSU(3)
gauge theory. There is no string tension without MCG vo
ces. Both facts strongly support the picture of confinem
induced by physical vortices also for the case ofSU(3). A
thorough study of the question why MCG vortex configur
tions only support 62% of the full value is left to futur
studies.
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