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Baryon decuplet to octet electromagnetic transitions in quenched
and partially quenched chiral perturbation theory

Daniel Arndt* and Brian C. Tiburzi†
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We calculate baryon decuplet to octet electromagnetic transition form factors in quenched and partially
quenched chiral perturbation theory. We work in the isospin limit ofSU(3) flavor, up to next-to-leading order
in the chiral expansion, and to leading order in the heavy baryon expansion. Our results are necessary for
proper extrapolation of lattice calculations of these transitions. We also derive expressions for the case of
SU(2) flavor away from the isospin limit.
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I. INTRODUCTION

The study of the baryon decuplet to octet electromagn
transitions provides important insight into the strongly int
acting regime of QCD. Spin-parity selection rules for the
transitions allow for magnetic dipole (M1), electric quadru-
pole (E2), and Coulomb quadrupole (C2) amplitudes. Un-
derstanding these amplitudes, both in theory and experim
gives insight into the ground state wave functions of
lowest lying baryons. For example, in the transition of t
D(1232) to the nucleon, if both baryon wave functions a
spherically symmetric then theE2 andC2 amplitudes van-
ish. Experimentally,M1 is seen to be the dominant amp
tude. However, recent experimental measurements of
quadrupole amplitudes in theD→Ng transition @1,2# show
that the quadrupole amplitudesE2 andC2 are likely non-
zero. This has revitalized the discussion as to the mechan
for deformation of the baryons. Although we expect mo
experimental data in the future, progress will be slower
the remaining transitions as the experimental difficulties
significant.

First-principles lattice QCD calculations of the matrix e
ements can provide a theoretical explanation of these exp
mental results. In fact, the experimental difficulties m
force us to rely on lattice data for the non-nucleonic tran
tions. Recently several such lattice calculations@3,4#, which
improve upon an earlier one@5#, have appeared. Unfortu
nately now and foreseeably, these lattice calculations ca
be performed with the physical masses of the light quark
the calculation time would be prohibitively long. Therefor
to make physical predictions, it is necessary to extrapo
from the heavier quark masses used on the lattice~currently
on the order of the strange quark mass! down to the physical
light quark masses. Chiral perturbation theory (xPT! pro-
vides model-independent input for the behavior of obse
ables as a function of quark masses.

For lattice calculations that use the quenched approxi
tion of QCD ~QQCD!, where the fermion determinant tha
arises from the path integral is set equal to one, quenc
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chiral perturbation theory (QxPT) @6–12# has been devel-
oped to aid in the extrapolation. The problem with t
quenched approximation is that the Goldstone boson sing
h8, which is heavy in QCD, remains light in QQCD an
must be retained in QxPT, requiring the addition of new
operators and hence new low-energy constants in the
grangian. In general, the low-energy constants appearin
the QxPT Lagrangian are unrelated to those inxPT and
extrapolated quenched lattice data are unrelated to QCD
fact, several examples show that the behavior of meson lo
near the chiral limit is misrepresented in QxPT @13–18#.

These problems of QQCD can be remedied by using p
tially quenched QCD~PQQCD!. Unlike QQCD, where the
masses of quarks not connected to external sources are
infinity, these ‘‘sea quark’’ masses are kept finite in PQQC
The masses of the sea quarks can be varied independen
the valence quark masses; usually they are chosen to
heavier. By keeping the sea quarks as dynamical degree
freedom, the fermion determinant is no longer equal to o
However, by efficaciously giving the sea quarks larg
masses, the determinant is much less costly to calcu
Moreover, since PQQCD retains aU(1)A anomaly, the
equivalent to the singlet field in QCD is heavy~on the order
of the chiral symmetry breaking scaleLx) and can be inte-
grated out@19,20#. As a consequence, the low-energy co
stants appearing in partially quenched chiral perturbat
theory (PQxPT) @19–26#, which is the low-energy effective
theory of PQQCD, are the same as those appearing inxPT.
By fitting PQxPT to partially quenched lattice data, one c
determine these constants and actually make physical pre
tions for QCD. PQxPT has been used recently to stu
heavy meson@27# and octet baryon observables@17,28–31#.
The available lattice calculations for theD→Ng transition
@3,4# largely use the quenched approximation, and there
currently no partially quenched simulations. However, giv
the recent progress that lattice gauge theory has made in
one-hadron sector and the prospect of simulations in the t
hadron sector@32–36#, we expect to see partially quenche
calculations of these form factors in the near future.

This paper is organized as follows. First, in Sec. II, w
briefly review PQxPT including the treatment of the baryo
octet and decuplet in the heavy baryon approximat
@37,38#. Since we will use the conventions used in our rec
©2004 The American Physical Society01-1
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related work on the octet and decuplet baryons@17,18# we
will keep this section brief. In Sec. III we calculate baryo
decuplet to octet transition form factors in both QxPT and
PQxPT up to next-to-leading order~NLO! in the chiral ex-
pansion and keep contributions to lowest order in the he
baryon mass,MB . These calculations are done in the isosp
limit of SU(3) flavor. For completeness we also provide t
PQxPT results for the transitions using theSU(2) chiral
Lagrangian with nondegenerate quarks in the Appendix
Sec. IV we conclude.

II. PQ xPT

In PQQCD the quark part of the Lagrangian is written
@19–26#

L5 (
j ,k51

9

Q̄j~ iD” 2mQ! jkQk ~1!

which differs from the QCDSU(3) flavor Lagrangian by the
inclusion of three bosonic ghost quarks,ũ, d̃, and s̃, and
three fermionic sea quarks,j, l, and r, in addition to the
fermionic light valence quarksu, d, ands. These nine quarks
are in the fundamental representation of the graded gr
SU(6u3) @39–41# and have been accommodated in the ni
component vector

Q5~u,d,s, j ,l ,r ,ũ,d̃,s̃! ~2!

that obeys the graded equal-time commutation relation

Qi
a~x!Qj

b†~y!2~21!h ih jQj
b†~y!Qi

a~x!

5dabd i j d
3~x2y!, ~3!

wherea and b are spin andi and j are flavor indices. The
graded equal-time commutation relations for twoQ’s and
two Q†’s can be written analogously. The grading factor

hk5H 1 for k51,2,3,4,5,6

0 for k57,8,9
~4!

takes into account the different statistics for fermionic a
bosonic quarks. The quark mass matrix is given by

mQ5diag~mu ,md ,ms ,mj ,ml ,mr ,mu ,md ,ms! ~5!

so that closed valence quark loops are canceled by lo
containing their ghostly counterparts. Effects of virtual qua
loops are, however, present due to the contribution of
finite-mass sea quarks.

As has been recently realized@42#, the light quark electric
charge matrixQ is not uniquely defined in PQQCD and th
only constraint one imposes is forQ to have vanishing su
pertrace so that, as in QCD, no new operators involving
singlet component are introduced. Following@28# we use

Q5diagS 2

3
,2

1

3
,2

1

3
,qj ,ql ,qr ,qj ,ql ,qr D . ~6!
01450
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QCD is recovered in the limitmj→mu , ml→md , and mr
→ms independently of theq’s.

For massless quarks, the Lagrangian in Eq.~1! exhibits a
graded symmetrySU(6u3)L ^ SU(6u3)R^ U(1)V that is as-
sumed to be spontaneously broken down toSU(6u3)V
^ U(1)V . The low-energy effective theory of PQQCD th
emerges by expanding about the physical vacuum stat
PQxPT. The dynamics of the emerging 80 pseud
Goldstone mesons can be described at lowest order in
chiral expansion by theO(E2) Lagrangian1

L5
f 2

8
str~DmS†DmS!1l str~mQS1mQ

† S†!

1a]mF0]mF02m0
2F0

2 ~7!

where

S5expS 2iF

f D5j2, F5S M x†

x M̃
D , ~8!

f 5132 MeV, and the gauge-covariant derivative isDmS
5]mS1 ieAm@Q,S#. The str~! denotes a supertrace over fl
vor indices. TheM, M̃ , and x are matrices of pseudo
Goldstone bosons with quantum numbers ofqq̄ pairs,

pseudo-Goldstone bosons with quantum numbers ofq̃q̄̃
pairs, and pseudo-Goldstone fermions with quantum nu
bers ofq̃q̄ pairs, respectively.F is defined in the quark basi
and normalized such thatF125p1 ~see, for example,@28#!.
Upon expanding the Lagrangian in Eq.~7! one finds that to
lowest order the mesons with quark contentQQ̄8 are canoni-
cally normalized when their masses are given bymQQ8

2

5(4l/ f 2)(mQ1mQ8).
The flavor singlet field given byF05str(F)/A6 is, in

contrast to the QxPT case, rendered heavy by theU(1)A
anomaly and can therefore be integrated out inxPT. Analo-
gously its massm0 can be taken to be on the order of th
chiral symmetry breaking scale,m0→Lx . In this limit the
flavor singlet propagator becomes independent of the c
pling a and deviates from a simple pole form@19,20#.

Just as there are mesons in PQQCD with quark con
Q̄iQj that contain valence, sea, and ghost quarks, there
baryons with quark compositionsQiQjQk that contain all
three types of quarks. To this end, one decomposes the
ducible representations ofSU(6u3)V into irreducible repre-
sentations ofSU(3)val^ SU(3)seâ SU(3)ghost̂ U(1). The
method to construct the octet baryons is to use the inte
lating field

B i jk
g ;~Qi

a,aQj
b,bQk

g,c2Qi
a,aQj

g,cQk
b,b!eabc~Cg5!ab ~9!

whereC5 ig2g0 is the charge conjugation matrix. The spi
1/2 baryon octetBi jk5Bi jk , where the indicesi, j, andk are
restricted to 1–3, is contained as a (8,1,1) of SU(3)val

1Here,E;p, mp wherep is an external momentum.
1-2
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^ SU(3)seâ SU(3)ghost in the 240 representation. The octe
baryons, written in the familiar two-index notation

B5S 1

A6
L1

1

A2
S0 S1 p

S2 1

A6
L2

1

A2
S0 n

J2 J0
2

2

A6
L

D ,

~10!

are embedded inBi jk as @12#

Bi jk5
1

A6
~e i j l Bkl1e iklBjl !. ~11!

The remaining baryon states needed for our calculation h
at most one ghost or one sea quark and have been
structed explicitly in@28#.

Similarly, the familiar spin-3/2 decuplet baryons are e
bedded in the138. Here, one uses the interpolating field

T i jk
a,m;~Qi

a,aQj
b,bQk

g,c1Qi
b,bQj

g,cQk
a,a

1Qi
g,cQj

a,aQk
b,b!eabc~Cgm!bg ~12!

that describes the138 dimensional representation o
SU(6u3)V . The decuplet baryonsTi jk are then readily em-
bedded inT by construction:Ti jk5Ti jk , where the indicesi,
j, andk are restricted to 1–3. They transform as a (10,1,1)
underSU(3)val^ SU(3)seâ SU(3)ghost. Because of Eqs.~3!
and ~12!, Ti jk is a totally symmetric tensor. Our normaliza
tion convention is such thatT1115D11. For the spin-3/2
baryons consisting of two valence and one ghost quark
two valence and one sea quark, we use the states constr
in @28#.

At leading order in the heavy baryon expansion, the f
Lagrangian for theBi jk andTi jk is given by@12#

L5 i ~B̄v•DB!12aM~ B̄BM1!12bM~B̄M1B!

12sM~B̄B!str~M1!2 i ~ T̄mv•DTm!1D~ T̄mTm!

12gM~ T̄mM1Tm!22s̄M~ T̄mTm!str~M1!, ~13!

whereM15 1
2 (j†mQj†1jmQj) andD is the mass splitting

between theT andB. The brackets in Eq.~13! are shorthands
for field bilinear invariants originally employed in@12#. The
Lagrangian describing the relevant interactions of theBi jk
andTi jk with the pseudo-Goldstone mesons is

L52a~B̄SmBAm!12b~B̄SmAmB!

1A3

2
C@~ T̄nAnB!1H.c.#12H~ T̄nSmAmTn! ~14!

whereSm is the covariant spin operator and the axial-vec
and vector meson fieldsAm andVm are defined in analogy to
01450
ve
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those in QCD, Am5( i /2)(j]mj†2j†]mj) and Vm

5 1
2 (j]mj†1j†]mj). The latter appears in Eq.~13! in the

covariant derivatives ofBi jk andTi jk that both have the form

~D mB! i jk5]mBi jk1~Vm! i l Bl jk

1~2 !h i (h j 1hm)~Vm! jmBimk

1~2 !(h i1h j )(hk1hn)~Vm!knBi jn . ~15!

The constants appearing in Eqs.~13! and~14! encode the UV
physics and must be determined from either experimen
lattice simulations. By restricting the indices ofBi jk to
i , j ,k51,2,3 one can relate the constantsa andb to D andF
that are used in QCD and finds

a5
2

3
D12F, b52

5

3
D1F, ~16!

while C andH are the constants of QCD.

III. BARYON DECUPLET TO OCTET TRANSITION

The electromagnetic baryon decuplet to octet transiti
have been investigated previously inxPT @43–46#. Very re-
cently there also has been renewed interest in these tra
tions in the largeNc limit of QCD @47#. Here we calculate
these transitions in PQxPT and QxPT. While we have re-
viewed PQxPT briefly in the last section and our recent p
pers@17,18#, for QxPT we refer the reader to the literatu
@6–12#.

Using the heavy baryon formalism@37,38#, transition ma-
trix elements of the electromagnetic currentJr between a
decuplet baryon with momentump8 and an octet baryon
with momentump can be parametrized as

^B̄~p!uJruT~p8!&5ū~p!O rmum~p8!, ~17!

where um(p) is a Rarita-Schwinger spinor for an on-she
decuplet baryon satisfyingvmum(p)50 and Smum(p)50.
The tensorO rm can be parametrized in terms of three ind
pendent, Lorentz invariant, dimensionless form factors@48#

O rm5
G1~q2!

MB
~q•Sgmr2qmSr!

1
G2~q2!

~2MB!2
~q•vgmr2qmvr!S•q

1
G3~q2!

4MB
2D

~q2gmr2qmqr!S•q, ~18!

where the momentum of the outgoing photon isq5p82p.
Here we have adopted the normalization of theG3(q2) form
factor used in@46# so that the leading contributions to a
three form factors are of order unity in the power countin
1-3
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Linear combinations of the above form factors atq250
make the magnetic dipole, electric quadrupole, and Coul
bic quadrupole moments,

GM1~0!5S 2

3
2

D

6MB
DG1~0!1

D

12MB
G2~0!,

GE2~0!5
D

6MB
G1~0!1

D

12MB
G2~0!,

GC2~0!5S 1

3
1

D

6MB
DG1~0!

1S 1

6
1

D

6MB
DG2~0!1

1

6
G3~0!. ~19!

FIG. 1. Loop diagrams that contribute to the transition mome
but are zero to the order we are working. Octet mesons are den
by a dashed line, singlets~hairpins! by a crossed dashed line, an
the photon by a wiggly line. A thin~thick! solid line denotes an
octet ~decuplet! baryon.
01450
-

A. PQxPT

Let us first consider the transition form factors in PQxPT.
Here, the leading tree-level contributions to the transit
moments come from the dimension-5 dipole transition a
the dimension-6 quadrupole transition operators2

L5A3

2
mT

ie

2MB
~B̄SmQT n!Fmn

1A3

2
QT

e

Lx
2 ~B̄S$mQT n%!va]mFna ~20!

where the action of$ . . . % on Lorentz indices produces th
symmetric traceless part of the tensor, viz.,O $mn%5O mn

1O nm2 1
2 gmnO a

a . Here the PQQCD low-energy constan
mT andQT have the same numerical values as in QCD.

The NLO contributions in the chiral expansion arise fro
the one-loop diagrams shown in Fig. 1 and 2. However,
cause of the constraints satisfied by the on-shell Rar
Schwinger spinors, the diagrams in Fig. 1 are all identica
zero. Calculation of the diagrams in Fig. 2 gives

s
ted

FIG. 2. Loop diagrams contributing to the transition momen
G1~0!5
mT

2
aT1

MB

Lx
2
4HC(

X
bX

TE
0

1

dxS 12
x

3D F xD log
mX

2

m2
2mXRS xD

mX
D G

2
MB

Lx
2
4C~D2F !(

X
bX

BE
0

1

dx~12x!F xD log
mX

2

m2
1mXRS 2

xD

mX
D G , ~21!

G2~0!5
MB

2

Lx
2 H 24QTaT116HC(

X
bX

TE
0

1

dx
x~12x!

3 F log
mX

2

m2
1

xDmX

mX
22x2D2

RS xD

mX
D G

216C~D2F !(
X

bX
BE

0

1

dx x~12x!F log
mX

2

m2
2

xDmX

mX
22x2D2

RS 2
xD

mX
D G J , ~22!

and

G3~0!52
MB

2

Lx
2
16FHC(

X
bX

TE
0

1

dx
x~12x!

3 S x2
1

2D DmX

mX
22x2D2

RS xD

mX
D

1C~D2F !(
X

bX
BE

0

1

dxx~12x!S x2
1

2D DmX

mX
22x2D2

RS 2
xD

mX
D G , ~23!

2We useFmn5]mAn2]nAm .
1-4
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where the functionR(x) is given by

R~x!5Ax221 log
x2Ax2211 i e

x1Ax2211 i e
~24!

and we have only kept loop contributions that are nona
lytic in the meson massmX . The tree-level coefficientsaT
are listed in Table I and the coefficients for the loop diagra
in Fig. 2, bX

T andbX
B , are given in Tables II and III, respec

tively. In these tables we have listed values correspondin
the loop meson with massmX . We have also defined th
shorthandqjl 5qj1ql . As required, in the QCD limit the

TABLE I. Tree-level coefficientsaT in xPT, QxPT, and
PQxPT.
01450
-

s

to

PQxPT coefficients reduce to those ofxPT. It is comforting
that the one-loop results for theG3(q2) form factor are finite.
This is consistent with the fact that one cannot write dow
dimension-7 operator that contributes at the same orde
the chiral expansion as our one-loop result forG3(q2). The
full one-loopq2 dependence of these form factors can eas
be recovered by replacing

mX→AmX
22x~12x!q2. ~25!

Notice that the tree-level transitionsS* ,2→S2g and
J* ,2→J2g are zero because they are forbidden byd↔s
U-spin symmetry@49#. There is also symmetry between th
S* ,1→S1g and J* ,0→J0g transitions as well as the
S* ,2→S2g and J* ,2→J2g transitions that holds to
NLO in xPT and PQxPT.

B. QxPT

The calculation of the transition moments can be repea
in QxPT. At tree level, the operators in Eq.~20! contribute,
but their low-energy coefficients cannot be matched o
QCD. Therefore we annotate them with a ‘‘Q.’’ At the ne
order in the chiral expansion, there are again contributi
from the loop diagrams in Fig. 2. The results are the sam
in the partially quenched theory, Eqs.~21!–~23!, with the
coefficients bX

T and bX
B replaced bybX

T,Q and bX
B,Q/(DQ

2FQ), which are listed in Table IV.
In addition, there are contributions of the formm0

2logmq

at the same order in the chiral expansion that are artifact
quenching. These come from hairpin wave-function ren
TABLE II. The SU(3) coefficientsbX
T in xPT and PQxPT.
1-5
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malization diagrams and from the four loop diagrams
Fig. 3. In these diagrams the photon can couple to the ba
line via

L5
ie

2MB
@ma

Q~B̄@Sm ,Sn#BQ!1mb
Q~B̄@Sm ,Sn#QB!#Fmn

1mc
Q 3ie

MB
~ T̄mQTn!Fmn2Qc

Q 3e

Lx
2 ~ T̄ $mQT n%!va]mFna

~26!

and via the terms in Eq.~20! including their Hermitian con-
jugates~with quenched coefficients!3. It is easier to work
with the combinationsmD

Q andmF
Q defined by

ma
Q5

2

3
mD

Q12mF
Q and mb

Q52
5

3
mD

Q1mF
Q . ~28!

Although the argument presented in@50# does not apply to
the case of different initial and final states, the axial hair
01450
on

n

interactions still do not contribute simply because their pr
ence requires closed quark loops. The hairpin wave-func
renormalization diagrams have been calculated in QxPT for
the baryon octet@15# (ZB

Q) and decuplet@18# (ZT
Q) and we do

not reproduce them here. We find the hairpin contributio
~HP! to the transition form factors to be

FIG. 3. Loop diagrams contributing to the transition form fa
tors in QxPT. The four diagrams correspond to terms involving t
parametersAXX8 , BXX8 , CXX8 , andDXX8 in Eqs.~29! and ~30!.
d

G1
HP~q2!5

mT
Q

2
aT

ZB
Q21

2

ZT
Q21

2
1

m0
2

16p2f 2 (
X,X8

F 5

108
H QmT

QAXX8I XX82
1

18
~C Q!2mT

QBXX8I XX8
2D,D

2
20

27
H QC QQTmc

QCXX8I XX8
D

2
2

3
C Q~QTmF

Q1aDmD
Q!DXX8I XX8

D G , ~29!

G2
HP~q2!524QT

QaT

MB
2

Lx
2

ZB
Q21

2

ZT
Q21

2
1

m0
2

16p2f 2

MB
2

Lx
2 (

X,X8
F2

9
H QQT

QAXX8I XX81
4

3
~C Q!2QT

QBXX8I XX8
2D,D

2
16

9
H QC QQTQC

QCXX8I XX8
D G , ~30!

andG3
HP(q2)50. Thus in QxPT: Gj

Q(q2)5Gj
PQ(q2)1Gj

HP(q2), where thebX
T andbX

B coefficients ofGj
PQ(q2), Eqs.~21!–

~23!, are understood to be replaced by their quenched valuesbX
T,Q andbX

B,Q/(DQ2FQ). Above we have used the shorthan
notation I hqhq8

5I (mhq
,mhq8

,0,0,m), I hqhq8

D 5I (mhq
,mhq8

,D,0,m), and I hqhq8

D1 ,D25I (mhq
,mhq8

,D1 ,D2 ,m) for the function

I (m1 ,m2 ,D1 ,D2 ,m) that is given by

I ~m1 ,m2 ,D1 ,D2 ,m!5
Y~m1 ,D1 ,m!1Y~m2 ,D2 ,m!2Y~m1 ,D2 ,m!2Y~m2 ,D1 ,m!

~m1
22m2

2!~D12D2!
~31!

with

3Note that possible contributions from diagrams involving

L5
e

Lx
2 @ca

Q~B̄BQ!1cb
Q~B̄QB!#vm]nFmn1cc

Q
3e

Lx
2 ~ T̄ sQTs!vm]nFmn ~27!

are identically zero due to the constraints satisfied by the on-shell Rarita-Schwinger spinors.
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TABLE IV. The SU(3) coefficientsbX
B,Q andbX

T,Q in QxPT.
h

tio

o

ed
by

to
ar
iral
a-
D

O
eir

ing
bu-
rk
Y~m,D,m!5DS m22
2

3
D2D log

m2

m2
1

2

3
m~D22m2!RS D

mD .

~32!

The coefficientsAXX8 , BXX8 , CXX8 , andDXX8 are listed in
Tables V and VI. Note that the symmetry between t
S* ,1→S1g and J* ,0→J0g transitions as well as the
S* ,2→S2g and J* ,2→J2g transitions that holds
in xPT and PQxPT is now broken by singlet loop
contributions.

IV. CONCLUSIONS

We have calculated the baryon octet to decuplet transi
form factors in QxPT and PQxPT using the isospin limit of
SU(3) flavor and have also derived the result for the nucle
doublet in two flavor PQxPT away from the isospin limit.
01450
e

n

n

Extrapolating lattice calculations that employ the quench
or partially quenched approximation can only be done
using their respective low-energy theories, QxPT and
PQxPT. Whereas PQQCD can be smoothly connected
QCD, QQCD exhibits pathological behavior, in particul
QQCD observables are usually more divergent in the ch
limit than in QCD. This stems from the fact that new oper
tors not present in QCD must be included in the QQC
Lagrangian.

For the decuplet to octet transition form factors our NL
QxPT results are not more divergent than th
xPT counterparts:G1 ,G2;a1b logmQ and G3;a. This,
however, does not mean that this result is free of quench
artifacts. The quenched transition moments pick up contri
tions from hairpin loops. A particular oddity is that the qua
mass dependence of theS* ,2 andJ* ,2 quenched transition
moments is solely due to the singlet parameterm0

2; even
TABLE V. The SU(3) coefficientsAXX8 andBXX8 in QxPT.
1-8
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TABLE VI. The SU(3) coefficientsCXX8 andDXX8 in QxPT.
s
re

f-
to

on
ea

ul
Th
rg

s

th
at
ix

e

worse, G3
Q(q2)50 at this order. These transitions thu

present extremes of the quenched approximation in ag
ment with the quenched lattice data of@5# where theS* ,2

and J* ,2 E2 moments were found to be significantly di
ferent from the other transitions. In contrast
QxPT results, our PQxPT results will enable not only the
extrapolation of PQQCD lattice simulations of the transiti
moments but also the extraction of predictions for the r
world: QCD.
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APPENDIX: D\Ng TRANSITIONS IN SU„2… FLAVOR
WITH NON-DEGENERATE QUARKS

In this appendix, we repeat the calculation of the tran
tion moments for the case ofSU(2) flavor with nondegen-
erate quarks, i.e., the quark mass matrix readsmQ

SU(2)

5diag(mu ,md ,mj ,ml ,mu ,md). Since defining ghost and
sea quark charges is constrained only by the restriction
QCD be recovered in the limit of appropriately degener
quark masses, the most general form of the charge matr

Q SU(2)5diagS 2

3
,2

1

3
,qj ,ql ,qj ,ql D . ~A1!

The symmetry breaking pattern is assumed to beSU(4u2)L
^ SU(4u2)R^ U(1)V→SU(4u2)V^ U(1)V . The baryon
01450
e-

l

is
y

i-

at
e
is

field assignments are analogous to the case ofSU(3) flavor.
The nucleons are embedded as

Bi jk5
1

A6
~e i j Nk1e ikNj !, ~A2!

where the indicesi , j and k are restricted to 1 or 2 and th
SU(2) nucleon doublet is defined as

TABLE VII. The SU(2) coefficientsbX
B andbX

T in PQxPT for
D→Ng.
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N5S p

nD . ~A3!

The decuplet fieldTi jk is normalized to contain the
D-resonancesTi jk5Ti jk with i, j, k restricted to 1 or 2 and
T1115D11. The construction of the octet and decuplet ba
ons containing one sea or one ghost quark is analogous t
SU(3) flavor case@29# and will not be repeated here.

The free Lagrangian forB and T is the one in Eq.~13!
@with the parameters having different numerical values th
theSU(3) case#. The connection to QCD is detailed in@29#.
Similarly, the Lagrangian describing the interaction of theB
and T with the pseudo-Goldstone bosons is the one
Eq. ~14! that can be matched to the familiar one in QCD~by
restricting theBi jk andTi jk to theqqq sector!,
D

01450
-
the

n

n

L52gAN̄SmAmN1g1N̄SmNtr~Am!1gDN~ T̄ n
k j iAil

n Njekl

1H.c.!12gDDT̄ k j i
n SmAil

mTn,l jk12gXT̄ k ji
n SmTn,i jk tr~Am!,

~A4!

where one finds at tree levelg1522(D2F), gA5D1F,
C52gDN , andH5gDD , with gX50. The leading tree-leve
operators which contribute toD→Ng have the same form a
in Eq. ~20!; of course the low-energy constants have differe
values. For transitions no additional tree-level operators
volving supertrace ofQSU(2) appear.

Evaluating the transition moments at NLO in the chir
expansion yields expressions identical in form to those
Eqs. ~21!–~23! with the SU(2) identifications made forC,
H, D, andF. For theSU(2) coefficients inxPT one finds
bX

B5gA /A3 andbX
T55/(3A3) for thep6. The correspond-

ing values for the case of PQxPT appear in Table VII.
0-

hop
ko,

ys.

B

lis,
@1# C. Mertzet al., Phys. Rev. Lett.86, 2963~2001!.
@2# CLAS Collaboration, K. Jooet al., Phys. Rev. Lett.88,

122001~2002!.
@3# C. Alexandrouet al., Nucl. Phys. B~Proc. Suppl.! 119, 413

~2003!.
@4# C. Alexandrouet al., hep-lat/0307018.
@5# D.B. Leinweber, T. Draper, and R.M. Woloshyn, Phys. Rev.

48, 2230~1993!.
@6# A. Morel, J. Phys.~France! 48, 1111~1987!.
@7# S.R. Sharpe, Phys. Rev. D46, 3146~1992!.
@8# C.W. Bernard and M. Golterman, Nucl. Phys. B~Proc. Suppl.!

26, 360 ~1992!.
@9# C.W. Bernard and M.F.L. Golterman, Phys. Rev. D46, 853

~1992!.
@10# M.F.L. Golterman, Acta Phys. Pol. B25, 1731~1994!.
@11# S.R. Sharpe and Y. Zhang, Phys. Rev. D53, 5125~1996!.
@12# J.N. Labrenz and S.R. Sharpe, Phys. Rev. D54, 4595~1996!.
@13# M.J. Booth, hep-ph/9412228.
@14# M. Kim and S. Kim, Phys. Rev. D58, 074509~1998!.
@15# M.J. Savage, Nucl. Phys.A700, 359 ~2002!.
@16# D. Arndt, Phys. Rev. D67, 074501~2003!.
@17# D. Arndt and B.C. Tiburzi, Phys. Rev. D68, 094501~2003!.
@18# D. Arndt and B.C. Tiburzi, Phys. Rev. D68, 114503~2003!.
@19# S.R. Sharpe and N. Shoresh, Int. J. Mod. Phys. A16S1C, 1219

~2001!.
@20# S.R. Sharpe and N. Shoresh, Phys. Rev. D64, 114510~2001!.
@21# C.W. Bernard and M.F.L. Golterman, Phys. Rev. D49, 486

~1994!.
@22# S.R. Sharpe, Phys. Rev. D56, 7052~1997!.
@23# M.F.L. Golterman and K.-C. Leung, Phys. Rev. D57, 5703

~1998!.
@24# S.R. Sharpe and N. Shoresh, Nucl. Phys. B~Proc. Suppl.! 83,

968 ~2000!.
@25# S.R. Sharpe and N. Shoresh, Phys. Rev. D62, 094503~2000!.
@26# N. Shoresh, Ph.D. thesis, University of Washington, UMI-3
36529, 2001.

@27# M.J. Savage, Phys. Rev. D65, 034014~2002!.
@28# J.-W. Chen and M.J. Savage, Phys. Rev. D65, 094001~2002!.
@29# S.R. Beane and M.J. Savage, Nucl. Phys.A709, 319 ~2002!.
@30# M.J. Savage, Nucl. Phys. B~Proc. Suppl.! 119, 377 ~2003!.
@31# D.B. Leinweber, hep-lat/0211017.
@32# URL http://www.jlab.org/;dgr/lhpc/march00.pdf.
@33# URL http://www.jlab.org/;dgr/lhpc/sdac_proposal_final.pdf.
@34# S.R. Beane and M.J. Savage, Phys. Rev. D67, 054502~2003!.
@35# S.R. Beane and M.J. Savage, Phys. Lett. B535, 177 ~2002!.
@36# D. Arndt, S.R. Beane, and M.J. Savage, Nucl. Phys.A726, 339

~2003!.
@37# E. Jenkins and A.V. Manohar, Phys. Lett. B255, 558 ~1991!.
@38# E. Jenkins and A. V. Manohar, talk presented at the Works

on Effective Field Theories of the Standard Model, Dobogo
Hungary, 1991.

@39# A.B. Balantekin, I. Bars, and F. Iachello, Phys. Rev. Lett.47,
19 ~1981!.

@40# A.B. Balantekin and I. Bars, J. Math. Phys.22, 1149~1981!.
@41# A.B. Balantekin and I. Bars, J. Math. Phys.23, 1239~1982!.
@42# M. Golterman and E. Pallante, Nucl. Phys. B~Proc. Suppl.!

106, 335 ~2002!.
@43# M.N. Butler, M.J. Savage, and R.P. Springer, Nucl. Ph

B399, 69 ~1993!.
@44# M.N. Butler, M.J. Savage, and R.P. Springer, Phys. Lett.

304, 353 ~1993!.
@45# M. Napsuciale and J.L. Lucio, Nucl. Phys.B494, 260 ~1997!.
@46# G.C. Gellas, T.R. Hemmert, C.N. Ktorides, and G.I. Pou

Phys. Rev. D60, 054022~1999!.
@47# E. Jenkins, X.-d. Ji, and A.V. Manohar, Phys. Rev. Lett.89,

242001~2002!.
@48# H.F. Jones and M.D. Scadron, Ann. Phys.~N.Y.! 81, 1 ~1973!.
@49# H.J. Lipkin, Phys. Rev. D7, 846 ~1973!.
@50# C.-K. Chow, Phys. Rev. D57, 6762~1998!.
1-10


