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Chiral symmetry breaking, color superconductivity, and color neutral quark matter:
A variational approach
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We investigate the vacuum realignment for chiral symmetry breaking and color superconductivity at finite
density in the Nambu–Jona-Lasinio model in a variational method. The treatment allows us to investigate the
simultaneous formation of condensates in quark-antiquark as well as in diquark channels. The methodology
involves an explicit construction of a variational ground state and minimization of the thermodynamic poten-
tial. Color and electric charge neutrality conditions are imposed through introduction of appropriate chemical
potentials. Color and flavor dependent condensate functions are determined through minimization of the
thermodynamic potential. The equation of state is calculated. Simultaneous existence of a mass gap and
superconducting gap is seen in a small window of the quark chemical potential within the model when charge
neutrality conditions are not imposed. Enforcing color and electric charge neutrality conditions gives rise to the
existence of gapless superconducting modes depending upon the magnitude of the gap and the difference of the
chemical potentials of the condensing quarks.
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I. INTRODUCTION

The structure of vacuum in quantum chromodynam
~QCD! is one of the most interesting questions in stro
interaction physics@1#. The evidence for quark and gluo
condensates in vacuum is a reflection of its complex na
@2#, whereas chiral symmetry breaking is an essential fea
in the description of the low energy hadron properties. B
cause of the nonperturbative nature of QCD in this regi
different effective models have been used to understand
nature of chiral symmetry breaking@3#. These have been
constructed, for the most part, in the framework of
Nambu–Jona-Lasinio~NJL! model with a four fermion in-
teraction.

Recently there has been a lot of interest in strongly in
acting matter at high densities. In particular, a color sup
conducting phase for it involving diquark condensates
been considered with a gap of about 100 MeV. The stud
have been done with an effective four fermion interact
between quarks@4#, the direct instanton approach@5# or a
perturbative QCD calculation at finite density@6#. There has
also been a study of this phase in the NJL model@7#. The
possibility of diquark condensates along with qua
antiquark condensates has been considered in Refs.@8–12#.
The natural place to look for such a phase seems to be in
interior of compact stellar objects such as a neutron s
However, to apply it to the case of neutron stars, the co
and electric charge neutrality conditions need to be impo
for the bulk quark matter. Such an attempt has been mad
Ref. @13# as well as in Ref.@14# where the lighter up and
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down quarks form two flavor color superconducting~2SC!
matter while the strange quark does not participate in p
ing. It has been shown, based upon a comparison of
energy that a two flavor color superconducting phase wo
be absent in the core of neutron stars@13#. Within NJL model
in Ref. @14# it has been argued that such conclusions
consistent except for a small window in density range wh
superconducting phase is possible. There have also b
studies to include the possibility of mixed phases@15# of
superconducting matter demanding neutral matter on the
erage. In this context, there have been attempts to study
implications of vector interactions on the structure of t
phase diagram@12#.

We had applied a different approach to study the probl
in Ref. @9#. We considered a variational approach with
explicit assumption for the ground state having both qu
antiquark and diquark condensates. The actual calculat
are carried out for the NJL model such that the minimizat
of the free energy density determines which condensate
exist at what density. In the present work we generalize
approach of Ref.@9# to include the conditions of color an
electric charge neutrality. This leads to condensate functi
which depend upon both color and flavor. Although, for si
plicity, we shall be considering color superconductivity, th
can be generalized to the three flavor case to include c
flavor locking. In fact here we shall also consider three fl
vors but having theu and d quarks taking part in diquark
condensation. Although it might look rather complicated
the outset, the niceity of the approach is that within t
model one can solve for the condensate functions explic
which are flavor and color dependent.

We organize the paper as follows. In the next section
discuss the ansatz state with quark antiquark as well as
quark condensates. In Sec. III we consider the Nambu–J
Lasinio model Hamiltonian and calculate the expectat
©2004 The American Physical Society14-1
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value with respect to the ansatz state to compute the the
dynamic potential. We minimize the thermodynamic pote
tial to calculate all the ansatz functions and the result
mass as well as superconducting gap equations here. In
IV we give the results and discuss them. Finally we summ
rize and conclude in Sec. V.

II. AN ANSATZ FOR THE GROUND STATE

As noted earlier we shall include here the effects of b
chiral symmetry breaking as well as diquark pairing. For
consideration of chiral symmetry breaking, we denote
perturbative vacuum state with chiral symmetry asu0&. We
shall then assume a specific vacuum realignment wh
breaks chiral symmetry because of interaction.

Let us note first the quark field operator expansion
momentum space given as@16,17#

c~x![
1

~2p!3/2E c̃~k!eik•xdk

5
1

~2p!3/2E @U0~k!qI
0~k!1V0~2k!q̃I

0~2k!#eik•xdk,

~1!

where

U0~k!5S cosS f0

2 D
s• k̂ sinS f0

2 D D ,

V0~2k!5S 2s• k̂ sinS f0

2 D
cosS f0

2 D D . ~2!

The superscript 0 indicates that the operatorsqI
0 and q̃I

0 are
two component ones which annihilate or create quanta ac
upon the perturbative or the chiral vacuumu0&. We have
suppressed here the color and flavor indices of the qu
field operators. The functionf0(k) in the spinors in Eq.~2!
are given as cotfi

05mi /uku, for free massive fermion fields,i
being the flavor index. For massless fieldsf0(uku)5p/2.

We now consider vacuum destabilization leading to ch
symmetry breaking@9,16,17# described by

uvac&5UQu0&, ~3!

where

UQ5expS E qI
0i~k!†~s•k!hi~k!q̃I

0i~k!dk2H.c.D . ~4!

In the above,hi(k) is a real function ofuku which de-
scribes vacuum realignment for quarks of a given flavoi.
We shall take the condensate functionh(k) to be the same
for u andd quarks andh3(k) as the chiral condensate fun
01401
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tion for the s-quark. Clearly, a nontrivialhi(k) shall break
chiral symmetry. Sum over three colors and three flavor
understood in the exponent ofUQ in Eq. ~4!.

Having defined the state as in Eq.~3! for chiral symmetry
breaking, we shall next define the state involving diqua
condensates. We note that as per BCS result such a state
be dynamically favored if there is an attractive interacti
between the quarks@18#. Such an interaction exists in QCD
in the qq color antitriplet, Lorentz scalar and isospin singl
channel. In the flavor antisymmetric channel the interact
can be scalar, pseudoscalar or vector whereas in flavor s
metric channel only the axial vector channel is attractive.
the present work, we shall consider the ansatz state involv
diquarks as

uV&5Uduvac&5exp~Bd
†2Bd!uvac&, ~5!

where

Bd
†5E @qIr

ia~k!†r f ia~k!qI 2r
jb ~2k!†e i j e3ab

1q̃Ir
ia~k!r f 1

ia~k!q̃I 2r
jb ~2k!e i j e3ab#dk. ~6!

In the above,i , j are flavor indices,a,b are the color indices
and r (561/2) is the spin index. As noted earlier we sha
have u,d( i 51,2) quark condensation. We have also intr
duced here~color, flavor dependent! functions f ia(k) and
f 1

ia(k) respectively for the diquark and diantiquark channe
As may be noted the state constructed in Eq.~5! is spin
singlet and is antisymmetric in color and flavor. Clearly,
constructionf ia(k)5 f jb(k) with iÞ j andaÞb. The corre-
sponding Bogoliubov transformation for the operators
given by

F qIr
ia8~k!

qI 2r
kc8 ~2k!†G

5F cosf ia~k! 22r e ike3acsin f kc~k!

2r ekie3casin f ia~k! cosf kc~k!
G

3F qIr
ia~k!

q̃I 2r
kc ~2k!†G . ~7!

In a similar manner one can write down the Bogoliub
transformation for the antiquark operators corresponding
uV& basis.

Finally, to include the effect of temperature and dens
we next write down the state at finite temperature and d
sity uV(b,m)& taking a thermal Bogoliubov transformatio
over the stateuV& using thermofield dynamics~TFD! as de-
scribed in Refs.@19,20#. We then have

uV~b,m!&5Ub,muV&5Ub,mUdUQu0& ~8!

whereUb,m is

Ub,m5eB †(b,m)2B(b,m), ~9!
4-2
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with

B †~b,m!5E @qI8~k!†u2~k,b,m!qI8~k!†

1q̃I8~k!u1~k,b,m!q̃I8~k!#dk. ~10!

In Eq. ~10! the ansatz functionsu6(k,b,m) will be related to
quark and antiquark distributions and the underlined ope
tors are the operators in the extended Hilbert space as
ated with thermal doubling in TFD method. In Eq.~10! we
have suppressed the color and flavor indices on the quark
well as the functionsu(k,b,m). Note that we have a prolif-
eration of functions in the ansatz stateuV,b,m&—the ~flavor
dependent! chiral condensate function, the~color flavor de-
pendent! quark as well as antiquark condensate functions
the ~color flavor dependent! thermal functions. All these
functions are to be obtained by minimizing the thermod
namic potential. This will involve an assumption about t
effective Hamiltonian. We shall carry out this minimizatio
in the next section.

III. MINIMIZATION OF THERMODYNAMIC POTENTIAL
AND GAP EQUATIONS

We shall work here in a Nambu–Jona-Lasinio mod
which is based on relativistic fermions interacting throu
local current-current couplings assuming that gluonic
grees of freedom can be frozen into pointlike effective int
actions between the quarks. The Hamiltonian is given as

H5(
i ,a

c ia†~2 i a•“1g0mi !c
ia1

g2

2
Jm

a Jma. ~11!

HereJm
a 5c̄gmTac and,mi is the current quark mass whic

we shall take to be nonzero only for the case of stra
quarks (i 53). Of the two superscripts on the quark ope
tors the first index ‘‘i ’’ refers to the flavor index and the
second index,a refers to the color index. The point intera
tion produces short distance singularities and to regulate
integrals we shall restrict the phase space inside the sp
upu,L—the ultraviolet cutoff in the NJL model.

We next write down the expectation values of vario
operators in the variational ansatz state given in Eq.~8!. Us-
ing the fact that the state in Eq.~8! arises from successiv
Bogoliubov transformations one can calculate these expe
tion values. These expressions would be used to calcu
thermal expectation value of the Hamiltonian to compute
thermodynamic potential. Withc̃(k) as defined in Eq.~1!,
we evaluate the expectation values

^V~b,m!uc̃a
ia~k!c̃b

jb~k8!†uV~b,m!&

5d i j dabL1ab
ia ~k,b,m!d~k2k8! ~12!

and

^V~b,m!uc̃b~k! ia†c̃a
jb~k8!uV~b,m!&

5d i j dabL2ab
ia, jb~k,b,m!d~k2k8!, ~13!
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L6
ia~k,b,m!5

1

2
@16„F1

ia~k!2Fia~k!…6„g0cosf i~k!…

1„a• k̂ sinf i~k!…„12Fia~k!2F1
ia~k!…#.

~14!

Here the effect of diquark condensates and their tempera
and/or density dependences are encoded in the funct
Fia(k) andF1

ia(k) given as

Fia~k!5sin2u2
ia~k!1sin2f ia

„C2
ia~k!2sin2u2

ia~k!…~12da3!
~15!

and

F1
ia~k!5sin2u1

ia~k!1sin2f 1
ia
„cos2u1

ia~k!2S1
ia~k!…~12da3!.

~16!

Here, we have definedC2
ia5ue i i 8eaa8ucos2u2

i8a8 and S1
ia

5ue i i 8eaa8usin2u1
i8a8 . The da3 term indicates that the third

color does not take part in diquark condensation. Further,
have introduced the notationf i(k)5f i

0(k)22hi(k).
We also have

^V~b,m!uca
ia~x!cg

jb~0!uV~b,m!&

52
1

~2p!3E eik•xP1ga
ia, jb~k,b,m!dk,

^V~b,m!uca
ia†~x!cg

jb†~0!uV~b,m!&

52
1

~2p!3E eik•xP2ag
ia, jb~k,b,m!dk, ~17!

where

P1
ia, jb~k,b,m!5

e i j e3ab

4 FSia, jb~k!cosS f i2f j

2 D
1Xg0cosS f i1f j

2 D2a• k̂ sinS f i1f j

2 D C
3Aia, jb~k!Gg5C ~18!

and

P2
ia, jb~k,b,m!5

e i j e3abCg5

4 FSia, jb~k!cosS f i2f j

2 D
1Xg0cosS f i1f j

2 D2a• k̂ sinS f i1f j

2 D C
3Aia, jb~k!G . ~19!
4-3



t

q.
rg

/

to
ere
ght
that
he
yon

mi-

rtan

s a
y

ri-

or
i-

ve

he

A. MISHRA AND H. MISHRA PHYSICAL REVIEW D 69, 014014 ~2004!
HereC5 ig2g0 is the charge conjugation matrix~we use the
notation of Bjorken and Drell! and the functionsS(k) and
A(k) are given as

Si j ,ab~k!5sin 2f ia~k!cos 2u2
ia, jb~k,b,m!

1sin 2f 1
ia~k!cos 2u1

ia, jb~k,b,m! ~20!

and

Ai j ,ab~k!5sin 2f ia~k!cos 2u2
ia, jb~k,b,m!

2sin 2f 1
ia~k!cos 2u1

ia, jb~k,b,m!. ~21!

In the above we have defined cos 2u6
ia,jb512sin2u6

ia

2sin2u6
jb , with i , j 51,2 being the flavor indices anda,b

51,2 being the color indices andiÞ j , aÞb.
Using Eq.~13! we have for the kinetic energy of the ligh

quarks

T[^V~b,m!uc†~2 i a•“ !cuV~b,m!&

5
2

~2p!3 (
i 51,2,a51,3

E dkuku„12cos 2hi~k!

3~12Fia2F1
ia!…, ~22!

whereFia andF1
ia are defined in Eqs.~15! and~16!. We have

also subtracted the vacuum contributions.
Similarly the contribution from the interaction term in E

~11! after subtracting out the zero point perturbative ene
turns out to be

V[^V~b,m!u
g2

2
Jm

a JmauV~b,m!&5V11V2 . ~23!

Here the contributionV1 arises from contractingc with a
c†using Eqs.~12!, ~13! and is given as

V15
g2

2 (
i 51,2

S (
a51,3

I v
ia222 (

a51,3
I s

ia2D , ~24!

with

I v
ia5

1

~2p!3E dk~Fia2F1
ia! ~25!

and

I s
ia5

1

~2p!3E dk~12Fia2F1
ia!sin 2hi~k!. ~26!

In this expression, we have neglected terms of the order 1Nc
2

compared to unity. The termV2 arises from contractingc
and ac andc† with anotherc† using Eqs.~18! and~19! and
we have

V252
4

3
g2I 3

11,22I 3
12,21 ~27!
01401
y

with

I 3
ia, jb5

1

~2p!3E dkSia, jb~k!cosS f i2f j

2 D , ~28!

whereSia, jb has been defined in Eq.~20!.
To calculate the thermodynamic potential we shall have

specify the chemical potentials relevant for the system. H
we shall be interested in the form of quark matter that mi
be present in compact stars older than few minutes so
chemical equilibriation under weak interaction is there. T
relevant chemical potentials in this case then are the bar
chemical potentialmB53m, the chemical potentialmE asso-
ciated with electromagnetic chargeQ5diag(2/3,21/3,
21/3) in flavor space, and the two color electrostatic che
cal potentialsm3 and m8 corresponding toU(1)33U(1)8
subgroup of the color gauge symmetry generated by ca
subalgebra Q35diag(1/2,21/2,0) and Q85diag(1/3,1/3,
22/3) in the color space. Thus the chemical potential i
diagonal matrix in color and flavor space, and is given b

m i j ,ab5~md i j 1Qi j mE!dab1~Q3ab1Q8abm8!d i j .
~29!

Here i , j are flavor indices anda,b are color indices.
The total thermodynamic potential, including the cont

bution from the electrons, is then given by

V5T1V2^mN&2
1

b
s1Ve , ~30!

where we have denoted

^mN&5^c ia†m i j ,abc
jb&52(

i ,a
m iaI v

ia ~31!

with m ia being the chemical potential for the quark of flav
i and colora, which can be expressed in terms of the chem
cal potentialsm, mE , m3 and m8 using Eq. ~29!. Ve

52mE
4/12p2 is the electron free energy.

Finally, for the entropy density for the quarks we ha
@19#

s52
2

~2p!3 (
i ,a

E dk~sin2u2
ialn sin2u2

ia1cos2u2
ialn cos2u2

ia

1sin2u1
ialn sin2u1

ia1cos2u1
ialn cos2u1

ia!. ~32!

Now if we minimize the thermodynamic potentialV with
respect tohi(k), we get

tan 2hi~k!5
~Mi2mi !k

e i
21g2 (

a51,3
I s

iami

, ~33!

where Mi5mi1g2(bI s
ib and e i5A(k21mi

2). Substituting
this back in Eq.~26! we have the mass gap equation for t
light quarks (mi50)
4-4
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M j5g2(
a

I s
ja5

g2

~2p!3E M j

Ak21M j
2

3 (
a51,3

~12F ja2F1
ja!dk. ~34!

Clearly, the above includes the effect of diquark condens
as well as temperature and density through the functionF
andF1 given in Eqs.~15! and ~16! respectively.

Next, minimizing the thermodynamic potential with re
spect to the diquark condensate functions leads to

tan 2f 12~k!5
D12

ē2 n̄12

cosS f12f2

2 D , ~35!

tan 2f 11~k!5
D11

ē2 n̄11

cosS f12f2

2 D . ~36!

In the aboveē5(e11e2)/2, n̄115(n111n22)/2, n̄125(n12
1n21)/2. n ia is the interactingchemical potential given as

n ia5m ia2
g2

4
r i , ~37!

which may be expected in presence of a vectorial curre
current interaction. In the above,r i52(a51,3I v

ia , with I v
ia as

defined in Eq.~25!. Thus, it may be noted that the diqua
condensate functions depend upon theaverageenergy and
the averagechemical potential of the quarks that conden
We also note here that the diquark condensate functions
pend upon the masses of the two quarks which conde
through the function cos((f12f2)/2) with cosfi5sin 2hi
5Mi /ei , for u,dquarks which could be different when charg
neutrality condition is imposed. Such a normalization fac
is always there when the condensing fermions have diffe
masses as has been noted in Ref.@21# in the context of CFL
phase.

In an identical manner the di-antiquark condensate fu
tions are calculated to be

tan 2f 1
12~k!5

D12

ē1 n̄12

cosS f12f2

2 D , ~38!

tan 2f 1
11~k!5

D11

ē1 n̄11

cosS f12f2

2 D . ~39!

Further, in Eqs.~35!,~36!,~38!,~39!, D125(2g2/3)I 3
11,22, D11

5(2g2/3)I 3
12,21 which satisfy the equations
01401
es
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D125
2g2

3~2p!3
E dkF D11

Aj̄212
21D11

2 cos2S f12f2

2
D

3~cos2u2
112sin2u2

22!1
D11

Aj̄112
21D11

2 cos2S f12f2

2
D

3~cos2u1
112sin2u1

22!G cosS f12f2

2
D ~40!

and

D115
2g2

3~2p!3
E dkF D12

Aj̄211
21D12

2 cos2S f12f2

2
D

3~cos2u2
112sin2u2

22!1
D12

Aj̄111
21D12

2 cos2S f12f2

2
D

3~cos2u1
112sin2u1

22!G cosS f12f2

2
D . ~41!

In the above,j̄6 ia5 ē6 n̄ ia. Finally, minimization of the
thermodynamic potential with respect to the thermal fun
tions u6(k) gives

sin2u6
ia5

1

exp~bv6
ia!11

. ~42!

Variousv ias are given as follows:

v2
115v21de2dn

11,

v2
125v21de2dn

12,

v2
215v22de1dn

12,

v2
225v22de1dn

11, ~43!

v1
115v11de1dn

11,

v1
125v11de1dn

12,

v1
215v12de2dn

11,

v1
225v12de2dn

11
4-5
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and, finally, for the noncondensing colorsv6
i35e i6n i3. As

already mentioned, the first index refers to flavor and
second index refers to color. Here v6

5AD2cos2„(f12f2)/2…1 j̄6
2 , de5(e12e2)/2 is half the

energy difference of the two quarks which condense a
e.g.,dn

115(n112n22)/2, is half the difference of the chemica
potentials of the two quarks which condense. Note that in
absence of imposing the charge neutrality condition all
four quasi particles will have the same energyv2 . Thus it is
possible to have zero modes when charge neutrality co
tion is imposed depending upon the values ofde anddn . So,
although we shall have nonzero order parameterD, there
will be fermionic zero modes or the gapless superconduc
phase@23,24#. We shall discuss more about it in Sec. IV.

Next, let us focus our attention for the specific case
superconducting phase and the chemical potential assoc
with it. First let us note that the diquark condensate functio
depend upon the average of the chemical potentials of
quarks that condense. Since this is independent ofm3 we can
choose m3 to be zero. In that case,m115m12/3mE

1m8 /A35m12 and also m215m21/3mE1m8 /A35m22.
This also means that the average chemical potential of b
the condensing quarks are the same and is equal tom̄5m
11/6mE1m8 /A3. Further dn

125mE/22(g2/4)(r12r2)/2
5dn

11[dn . In such a situation, Eqs.~40! and ~41! are both
identical and hence we shall have only one superconduc
gap equation given as

D5
2g2

3~2p!3E dkF D

v2
~cos2u2

122sin2u2
21!

1
D

v1
~cos2u1

122sin2u1
21!GcosS f12f2

2 D . ~44!

With this condition, it is clear from Eqs.~43! that the quasi-
particle energies for each flavor become degenerate for
the colors which take part in condensation. Thus the qu
particle energies now becomev15v21d and v25v2

2d, for u andd quarks, respectively, withd5de2dn .
Now making the use of this dispersion relations and

mass gap equations~34! and the superconducting gap equ
tion ~44!, the thermodynamic potential at zero temperat
becomes, withd5de2dn ,

Vu,d5
8

~2p!3E dkF uku2
1

2
~v21v1!G1

4

~2p!3E dk

3@~v21d!u~2v1!1~v22d!u~2v2!#1
3D2

g2

2
g2

8 (
i 51,2

r i
21

1

g2
~M1

21M2
2!2 (

i 51,2
n i3r i3

1
4

~2p!3E d3kF uku2
e1

2
u~k2kf

13!2
e2

2
u~ uku2kf

23!G .
~45!
01401
e

d,

e
e

i-

g

f
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s
e

th

g

th
i-

e
-
e

The first three lines in Eq.~45! correspond to the contribu
tion from the quarks taking part in the condensation wh
the last line is the contribution from the third color for th
two light quarks.

In an identical manner one can calculate the thermo
namic potential for the strange quark sector with stran
quarks and antiquarks for the vacuum structure. The con
bution to the thermodynamic potential then is given by

Vs5
2

~2p!3
E dk (

a51,3
@AukW u21ms

22Ak21M3
2u~ uku2kf

3a!#

1
~M32ms!

2

g2
2

g2

8
r3

22(
a

n3ar3a. ~46!

Here r i5(a51,3r
ia and r ia52I v

ia for i ,a51,2, with I v
ia

given in Eq.~25!. For the third color,r i35(kf
i3)3/3p2 and

for the strange quark,r3a5(kf
3a)3/3p2. The Fermi momenta

are given by the usual relationkf
ia5(n ia

2 2Mi
2)1/2.

The total thermodynamic potential including the contrib
tion from the electrons is given by

V5Vu,d1Vs2
mE

4

12p2
. ~47!

Thus the thermodynamic potential is a function of four p
rameters: the three mass gaps and a superconducting
which needs to be minimized subjected to the conditions
electrical and color neutrality. The electric and charge n
trality constraints are given respectively as

QE5
2

3
r12

1

3
r22

1

3
r32re50 ~48!

and

Q85
1

A3
(

i
~r i11r i222r i3!50. ~49!

Equations~47!–~49! and the superconducting gap equati
Eq. ~44! constitute the basis of the numerical calculatio
that we discuss below.

IV. RESULTS AND DISCUSSIONS

For numerical calculations we have taken the values
the parameters of NJL model as follows:g2L2517.6, L
50.68 GeV as typical values giving reasonable vacu
properties@10,21,22#. We might note here that the couplin
g2 introduced here is related to the usual scalar coupling
NJL model, e.g., in Ref.@22# G asg258G.

Current quark masses foru andd quarks are taken as zer
and the current quark mass for strange quark is taken as
GeV. With this choice of parameters, the constituent qu
masses at zero temperature and density are given asM1
50.35 GeV5M2, and for strange quarkM350.575 GeV.

In Fig. 1, we have plotted the variation of masses w
baryon density without diquark condensation and witho
4-6
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imposition of the charge neutrality conditions. The decre
of masses with density is a reflection of the decrease of qu
condensates with density.

Let us next discuss the case of diquark condensates a
with quark antiquark condensates without imposing
charge neutrality condition. The numerical calculation
this case proceeds as follows. For a given chemical bar
potential~and withm3505m8), the thermodynamic poten
tial Eq. ~47! is minimized with respect to the quark mass
subjected to self consistently determining the interact
chemical potential using Eq.~37! and solving the supercon
ducting gap equation~44!. In Fig. 2 we have plotted the
masses and the superconducting gap as functions of ba
chemical potential. The behavior of masses are almost s
as those without the diquark condensates. Here, howeve

FIG. 1. Masses of the quarks as a function of baryon chem
potential. Solid curve refers to masses ofu andd quarks while the
dashed curve refers to strange quark mass.

FIG. 2. Masses of the quarks and the superconducting ga
functions of baryon chemical potential for the casemE505m8.
Solid, dashed and dot-dashed curves refer respectively to mass
up ~down! quarks, strange quark and to the superconducting ga
01401
e
rk

ng
e
r
n

g

on
e

we

observe that for a small window in the quark chemical p
tential ~about 23 MeV!, we have simultaneous existence
chiral symmetry breaking and color superconducting ph
with the gap reaching a maximum upto 65 MeV in this wi
dow. Including vector interactions similar conclusion of s
multaneous existence of both the condensates was noted
lier in Ref. @12#. However, in Ref.@12# the vector interaction
did not contribute to the superconducting gap equation no
the mass gap equation unlike the case here. We have c
pared the pressure in both the cases in this regime an
appears that in this small window, existence of both the c
densates has higher pressure than having only the quark
tiquark condensates in the ground state. Beyond this wind
chiral symmetry is restored and the gap increases monot
cally with chemical potential till the effect of cut off is fel
and then it decreases.

We next discuss the results when charge neutrality co
tions are imposed. As earlier, let us focus our attention firs
the case without the diquark condensates. The results
shown in Fig. 3. Here, thed-quark mass vanishes earlier tha
that of u quarks as the baryon chemical potential is
creased. The reason is that to maintain electrical charge
trality conditions thed quark densities are almost twice th
of u quarks which makes thed quark antiquark condensate
to vanish. In contrast to the rather sharp fall of the masse
compared to the case when electrical charge, neutrality c
dition is not imposed, theu quarks remain massive muc
after d quark become massless~about 80 MeV in the quark
chemical potential window!. The magnitude of electric
chemical potential increases with densities till strange qua
begin to appear beyond which it starts decreasing so
charge neutrality condition is maintained.

Next we show the results with diquark condensates w
neutrality conditions. For a given quark chemical potent
m, the interacting chemical potentials are determined us
Eq. ~37! with a trial value ofmE and m8. For high baryon
chemical potential when chiral symmetry is restored for lig

al

as

s of
.

FIG. 3. Masses of the quarks without superconducting ph
when electrical charge neutrality condition is imposed. Solid, d
dashed and dashed curves refer respectively to masses of up,
and strange quark mass.
4-7
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A. MISHRA AND H. MISHRA PHYSICAL REVIEW D 69, 014014 ~2004!
quarks, the thermodynamic potential is varied with respec
the strange quark constituent mass after solving the su
conducting gap equation~44!. The values ofmE andm8 are
varied so that the charge neutrality conditions Eqs.~48! and
~49! are satisfied. The results are shown in Fig. 4. The
havior of the superconducting gap is similar to that wh
charge neutrality conditions are not imposed except that
magnitude of the gap decreases. The pressure of color
electrical neutral superconducting phase is lower than w
neutrality conditions are not imposed as shown in Fig.
Further, the pressure of color and electric neutral norm
quark matter is always lower than that of the color and el
trically neutral superconducting matter.

FIG. 4. Superconducting gap when color and electrical cha
neutrality condition is imposed~solid curve!. The dashed curve cor
responds to when this condition is not imposed~i.e., mE50).

FIG. 5. Pressure as a function of baryon chemical poten
when color and electrical charge neutrality condition is impos
~solid curve!. The dashed curve corresponds to when this condi
is not imposed.
01401
to
er-

-
n
e
nd
n
.

al
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At high densities when chiral symmetry is restored for t
light quarks, de50 and d52dn52„mE/22(g2/8)(ru

2rd)…. For dn,0, v1, the quasiparticle energy foru quarks
is always positive and hence only thed quark contribution
will be there in the second term of the thermodynamic p
tential given in Eq.~45!. Further, it is easy to show that suc
a contribution arises when the magnitude ofdn , which is
half the difference of the chemical potentials of the qua
which condense, is the same or greater than the super
ducting gap, D. When udnu5D, the mode v2

5AD21( ē22 n̄2)2d, becomes gapless at the Fermi sphe
For udnu.D, the gapless modes occur at momenta hig
than the~average! Fermi momenta. In the present calculatio
this is the case for baryon chemical potential below 16
MeV. The occurrence of suchgapless superconductin
modesin neutral quark matter was first emphasized in R
@25#. Because of this the number densities ofu andd quarks
participating in the superconducting phase are not the s
in this region. This is plotted in Fig. 6. It may be noted th
even in the gapless superconducting mode, the densit
strange quarks is small but nonzero.

V. SUMMARY

We have analyzed here, in a current point interact
model, the structure of vacuum in terms of quark antiqu
as well as diquark pairs. The methodology uses an exp
variational construct of the trial state and is not based o
mean field calculation. Because of the point interaction str
ture we could solve for the gap functions explicitly. Th
distribution functions are also determined variationally. B
cause of the vector interaction, the chemical potentials
interaction dependent and are calculated self-consiste
We find that there is a small window in baryon chemic
potential ~about 80 MeV! when both the condensates a
nonzero.

To consider neutron star matter, we have imposed the c

e

l
d
n

FIG. 6. Number densities ofu quarks~solid! andd quarks~dot-
dashed! participating in superconducting phase. The density os
quarks is also plotted~dashed curve!.
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dition of color and electric charge neutrality conditio
through introduction of appropriate chemical potentials.
has been noted and emphasized earlier that projecting ou
color singlet state from color neutral state costs negligi
free energy for large enough chunk of color neutral ma
@13#.

The gap reduces when color and electric neutrality con
tions are imposed. The pressure with the gap is alw
higher than free quarks when charge neutrality conditions
imposed. For slightly lower densities, but large enough to
in the chiral symmetry restored phase, there appear to
gapless modes available when the condensing quarks ha
difference in chemical potentials which is larger than tw
the superconducting gap. In all these calculations we h
also included the effect of self-consistently determined m
for the strange quark. In fact, in the gapless superconduc
phase, the number density of strange quarks is also non

We have focused our attention here to the supercond
ing phase. The variational method adopted can be dire
s

s.

.
,

ys
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A
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generalized to include color flavor locked phase and one
then make a free energy comparison regarding the possib
of which phase would be thermodynamically favorable
what density. This will be particularly interesting for coolin
of neutron stars with a CFL core. We have considered h
homogeneous phase of matter. However, we can also
sider mixed phases of matter with matter being neutral on
average. Some of these problems are being investigated
will be reported elsewhere@26#.
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