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Center dominance in SU„2… gauge-Higgs theory
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We study the SU~2! gauge-Higgs system inD54 dimensions, and analyze the influence of the fundamental-
representation Higgs field on the vortex content of the gauge field. It is shown that center projected Polyakov
lines, at low temperature, are finite in the infinite volume limit, which means that the center vortex distribution
is consistent with color screening. In addition we confirm and further investigate the presence of a ‘‘Kerte´sz
line’’ in the strong-coupling region of the phase diagram, which we relate to the percolation properties of center
vortices. It is shown that this Kerte´sz line separates the gauge-Higgs phase diagram into two regions: a
confinementlike region, in which center vortices percolate, and a Higgs region, in which they do not. The free
energy of the gauge-Higgs system, however, is analytic across the Kerte´sz line.
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I. INTRODUCTION

Lattice studies strongly support the vortex picture of co
finement and the importance of the center degrees of f
dom ~see review@1# and references therein!. Until recently,
these numerical investigations concerned pure gluonic Q
only. If dynamical fermions are included, it is well know
that the long range part of the potential between st
charges changes qualitatively: the string breaks and the
tential levels off at a screening distancer 0. String breaking
has been observed numerically not only for gauge fields w
dynamical fermions, but also for gauge-Higgs theories@2#. In
this work we investigate the influence of dynamical mat
fields on the distribution of center vortices. Our model
lattice SU~2! gauge-Higgs theory with Higgs fields in th
fundamental representation.

The SU~2! gauge-Higgs model is defined by the action

S5SW(
x

$F†~x!F~x!1l@F†~x!F~x!21#2%

2k(
m,x

@F†~x!Um~x!F~x1m̂ !1c.c.# ~1!

SW5b (
m,n,x

S 12
1

2
Re TrUmn~x! D , ~2!

where SW is the usual Wilson plaquette action, andF
5(f2

f1), with f1 ,f2PC, is a massive scalar field in the fun

damental representation.
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A schematic phase diagram for the SU~2!-Higgs model is
depicted in Fig. 1.

In the ‘‘confined’’ phase, the potential between fundame
tal charges rises linearly at intermediate distances. Beca
of the color screening of fundamental charges, there is st
breaking at some finite distancer 0, and the potential levels
off. In the Higgs phase, the Higgs mechanism is at work, a
the potential is Yukawa-like; the string tension vanishes at
separations. However, these are not thermodynamically

FIG. 1. Schematic phase diagram for the SU~2!-Higgs system at
zero temperature~top!, and on lattices with a fixed extension in th
time direction~bottom!.
©2004 The American Physical Society07-1
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tinct phases. The phase diagram is connected, in the s
that one can always find a path between any two points in
phase diagram which avoids any nonanalyticity in thermo
namic quantities. The transition line which might have se
rated the Higgs and confinement phases ends at a cr
point in the strong coupling region, and from there chan
over to crossover behavior. Thus if we speak of the ‘‘Higg
or the ‘‘confinement’’ phases in this model, we are aware t
we speak rather of regions belonging to a single phase o
system@3#.

At finite temperature andk50 there is an additiona
phase, namely, the deconfined phase. In this phase the q
gluon plasma arises and fundamental charges are set
For k.0 there is no true phase transition between the ‘‘c
fined’’ and ‘‘deconfined’’ phases, but only crossover behav
indicated by the dashed line in Fig. 1~lower figure!. Hence
we still have only one phase in theb-k plane.

The vortex theory of confinement was put forward at t
end of the 1970s~see references in review@1#!; early appli-
cations to SU~2! gauge-Higgs theory can be found in Re
@4,5#. According to the vortex picture, tubelike (D53) or
surfacelike (D54) objects, carrying quantized amounts
magnetic flux, play a crucial role. The standard procedure
identify these objects~the center vortices! on the lattice is to
first gauge-fix the lattice configurations according to
gauge-fixing condition on link variables in the adjoint repr
sentation. Then the center degrees of freedom are single
by projecting each SU~2! group-valued link variable to the
closest Z2 center element. In this work we use the dire
maximal center gauge~DMCG! @6# fixed by the over-
relaxation method. Maximizinĝ uTr@Um(x)#u2&, DMCG
shifts the link variablesUm(x) as close as possible toward
the center elements of SU~2!. Center projection in DMCG
has proven to be a useful tool for isolating the relevant
grees of freedom on the lattice, although other adjo
gauges, and more sophisticated gauge-fixing techniques
also in use. Via center projection, the SU~2! lattice is mapped
to a Z2 gauge field configuration. The excitations of Z2 lat-
tice configurations are the P-vortices. P-vortices form clo
surfaces~in four dimensions! or closed loops~in three di-
mensions! on the dual lattice, and are composed
P-plaquettes. A plaquette on the projected lattice is said to
pierced by a P-vortex, and is called a ‘‘P-plaquette,’’ if t
product of the four projected links of the plaquette yields
nontrivial element of Z2, i.e. 21. Center projection in an
adjoint gauge can be viewed as a tool to locate the posi
of thick SU~2! vortices from the location of P-vortices on th
projected lattice.

Here we are interested in the dependence of the ce
vortex distribution on couplings and temperature. The vor
model at finite temperature, and the behavior of P-vortice
the transition to the high temperature phase, have been s
ied in recent years in Refs.@7–11#. In those articles it was
shown that center dominance—i.e. the correspondenc
projected and unprojected observables sensitive to infra
physics—holds also at finite temperatures. It was fou
@8–11# that the vortex densityp—the fraction of plaquettes
on the projected lattice which are P-plaquettes—drops s
stantially across the deconfinement transition and, more
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portantly, that vortices do not percolate in any space-sl
i.e. there is no percolation of vortex lines in a three-volum
with either thex, y, or z coordinate held fixed. The absenc
of vortex percolation in a space-slice implies that center p
jected Polyakov lines have nonzero expectation values in
deconfined phase@9,10#.

Recent findings@12,13# indicate that the vortex densit
also decreases sharply in the gauge-Higgs model, at the
sition from the ‘‘confined’’ phase to the Higgs phase. Th
sharp decrease in vortex density occurs even in the cross
region at small values ofb, where the phase transition lin
has ended. It was suggested by Langfeld@12# that the cross-
over line at smallb, where there is a sudden drop in th
vortex density, could be a ‘‘Kerte´sz line’’ of the sort found in
the Ising model@14,15#. A Kertész line is a line of percola-
tion transitions which is not associated with a thermod
namic transition, e.g. from an ordered to a disordered st
Our new calculations provide further support for the ex
tence of a Kerte´sz line in the gauge-Higgs system. Althoug
there is no thermodynamic transition from a ‘‘confined’’ to
Higgs phase, and indeed~in contrast to pure gauge theory!
there is no true confined phase in this system, we nonethe
find a line of center vortex depercolation.

II. FINITE TEMPERATURE

It is most efficient to carry out Monte Carlo simulations
the gauge-Higgs system in unitary gauge, whereF5(0

f),f
P@0,̀ #, and only one degree of freedom has to be simula
for the Higgs field. In the unitary gauge we have

Z5E D@U#D@f#exp~2SW2SHu! ~3!

SHu5(
x

$f2~x!1l@f2~x!21#2%

2k(
m,x

$f~x!f~x1m̂ !Tr@Um~x!#% ~4!

with f5AF†F and integration measure

E D@f#5)
x
E

0

`

df~x!f3~x!. ~5!

We used the Metropolis algorithm for the numerical simu
tion of the system onD54 dimensional Euclidean lattices o
dimensionsNt* Ns

3 . Data were taken on lattices separated
50 Monte Carlo steps. For the measurement of center
jected observables, we fixed to DMCG using the overrel
ation method and then carried out the projection.

At finite temperature, confinement and deconfinement
be studied using the Polyakov loop observable

^uLu&5K U 1

Ns
3 (

x
L~x!U L 5e2F/T for Ns→` ~6!

where
7-2
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L~x!ª
1

2
Tr)

x4

U4~x,x4! ~7!

and F is the free energy of a single static quark relative
vacuum at temperatureT. Without dynamical matter fields
we have

lim
Ns→`

^uLu&50 ~8!

in the confined low temperature phase. If matter is includ
screening becomes possible. In that case^uLu& is nonzero,
andF is finite, in the large volume limit.

Since the idea of the vortex model is to describe the c
fining properties of gauge fields by center degrees of fr
dom, the question arises whether this observed screening
also be seen after singling out these variables. We have
ried out center projection in DMCG without (k50) and with
(k50.25) scalar matter fields on lattices of sizeNt* Ns

3 with
Nt54 andNs varying from 8 to 28. The quartic coupling ha
been set tol50.5, and data have been taken on 1000 c
figurations for each parameter set. Some results are show
Fig. 2 for b52.1 and 2.2, where the system is in the lo

FIG. 2. Expectation values of the Polyakov loop in the ‘‘co
fined’’ phase. Open symbols denote measurements atk50.0, filled
symbols atk50.25. Squares are used for measurements on
projected, full SU~2! configurations and circles for center project
fields.
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temperature ‘‘confined’’ phase.
At the chosenb values andk50, the expectation value

of ^uLu& vs 1/ANs
3 on unprojected lattices extrapolates li

early to zero in theNs→` limit of infinite spatial volume. In
contrast, at finite couplingk50.25, ^uLu& tends to a nonzero
constant at infinite spatial volume. This well known featu
associated with the screening of static charges by dynam
matter fields, is also found on center projected lattices. D
to suppressed self-energy contributions and ultraviolet fl
tuations in the projected configurations, the expectat
value of the Polyakov loop observable^uLPu& on projected
lattices is larger than the corresponding expectation va
^uLu& on unprojected lattices, but the qualitative behavior
the two observables, in the large-volume limit, is the sam
In fact, the ratio of the projected and unprojected Polyak
expectation values is virtually constant, and nearly indep
dent of both lattice extensionNs and couplingk for all val-
ues ofb52.1, 2.2 and 2.25, as seen in Fig. 3.

At k50 the Polyakov expectation value^uLu& is zero in
the infinite volume limit at low temperature, and nonze
beyond the deconfinement transition. This transition can
understood in the framework of the vortex model@8–11#.
The projected Polyakov linêuLPu& has the same transitio
from zero to nonzero values at the deconfinement temp
ture, as already reported in Ref.@7#.

The inclusion of a massive scalar field does not lead t
qualitative change of the system in the high temperat
phase. This is reflected by our results for^uLu& and^uLPu& at
b52.3 and 2.4, seen in Fig. 4 and Fig. 5. Again the projec
and the unprojected measurements are consistent. As in
‘‘confined’’ phase, the projected values are higher than
unprojected ones, but their ratio is almost constant with
spect toNs . There is somek dependence in projected an
unprojected Polyakov lines right above the highT phase
transition ~which is just belowb52.3 at Nt54), but the
ratios of projected and unprojected lines are nevertheles
most constant, and thek dependence in̂uLu& and ^uLPu& is
rather small at still higher temperatures in the deconfin
regime.

From these calculations we can conclude that we see

n-

FIG. 3. Ratio of projected to unprojected Polyakov loop exp
tation values in the ‘‘confined’’ phase. Open symbols denote m
surements atk50.0, filled symbols atk50.25.
7-3
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BERTLE et al. PHYSICAL REVIEW D 69, 014007 ~2004!
ter dominance for Polyakov loops also in the presence
scalar matter fields, both above and below the finite temp
ture phase transition. This means that^uLu& and^uLPu& are in
the infinite volume limit either both zero, or both nonzero,
any temperature with or without dynamical matter field
Once again, the long range physics of the system seems
encoded in the center degrees of freedom. In particular,
presence of a dynamical matter field must alter the spa
distribution of P-vortices, in such a way that P-vortex flu
tuations no longer brinĝuLPu& to zero in the large volume
limit, even in the low temperature regime.

III. ZERO TEMPERATURE

Our results forT50 have been obtained on hypercub
104 lattices forb<1.9, on 124 lattices forb52.1, and on
164 lattices atb52.3. Forb50.25, we have performed
detailed scan overk on a 164 lattice. Each measurement ha
been done atl51.0 using 800 configurations. Otherwise, w
have used the same parameters and methods as for the
lations at finite temperature.

Due to the small overlap of flux-tube states with gluelum
states, it is difficult to measure string breaking in the ‘‘co

FIG. 4. Expectation values of the Polyakov loop in the dec
fined phase. Open symbols denote measurements atk50.0, filled
symbols atk50.25. Squares are used for measurements on
projected, full SU~2! configurations and circles for center project
fields.
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fined’’ phase using only Wilson loops, since the breaki
~and hence perimeter-law behavior! occurs only for rather
large loops, where extremely high statistics are needed.1 This
problem is reflected in the vortex model. Two of us~R.B. and
M.F.! have carefully investigated the Wilson loop observa
in a wide range of the phase diagram (1.0<b<2.3,0.0<k
<1.1) on lattices up to 224 @13#. As in the unprojected, full
system, the influence of the Higgs field on the Wilson lo
observableW(R,T) can be effectively described—for ou
available small loopsR,T<4—by some shiftb→be f f .
Center dominance holds again.

At the transition to the Higgs phase, the string tens
measured by Wilson loops disappears even for small
tances. We have found that the phase transition line in
gauge-Higgs model is closely correlated, even for small
tices, with a rapid drop in the vortex densityp, as shown in
Fig. 6.

In this figure we plot the density of P-vortex plaquettes
percent as contours in theb-k plane. Data for the phas
transition line are taken from@18#. In the ‘‘confined’’ phase,
the vortex density is almost independent ofk, whereas the
vortex density decreases rapidly, with increasingk, in the
neighborhood of the phase transition line. This rather sud
decrease in vortex density withk, at fixed b was first ob-
served by Langfeld@12#, and by two of us~R.B. and M.F.!
@13#. It is interesting that this region of rapid decrease
density, seen in Fig. 6, appears to extend beyond the ac
thermodynamic transition line, all the way to theb50 axis.
We may ask whether this is simply crossover behavior, or
indication of some more interesting phenomenon.

The Kertész line

A ‘‘Kertész line,’’ originally discovered in Ising spin sys
tems, is a line of percolation transitions which is free of a

1Nevertheless, we note that recently adjoint string breaking
been successfully measured using Wilson loops in Ref.@16#, using a
powerful algorithm for noise reduction devised by Lu¨scher and
Weisz @17#.

FIG. 5. Ratio of projected to unprojected Polyakov loop exp
tation values in the deconfined phase. Open symbols denote
surements atk50.0, filled symbols atk50.25.
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CENTER DOMINANCE IN SU~2! GAUGE-HIGGS THEORY PHYSICAL REVIEW D69, 014007 ~2004!
nonanalyticity in the corresponding free energy. This
thereforenot a line of thermodynamic phase transitions,
usually defined. It was originally suggested by Langfeld@12#
that the rapid decrease of P-vortex density in the gau
Higgs theory, in a region where there is no thermodynam
transition, might also be associated with a Kerte´sz line of
P-vortex percolation transitions. We will now report on som
results which support that idea.

Our simulations are performed on 164 lattices at b
50.25, which is far below the end of the thermodynam
phase transition line aroundb51. In Fig. 7 we display the
following observables:

~i! The one-link contribution to the gauge-Higgs ener
density

OGHª^Re@F†~x!Um~x!F~x1m̂ !#&. ~9!

This is a local, thermodynamic observable.
~ii ! The P-vortex densityp.
~iii ! The weighted average vortex sizesw . This is the

relative sizeuuci (a)uu/Np of the vortexci (a) containing the
P-plaquettePa , averaged over allNP P-plaquettes in the
projected gauge field configuration:2

swª
1

NP
(
a51

NP uuci (a)uu
NP

5(
i 51

Nv uuci uu2

NP
2

. ~10!

Hereuuci uu is the number of plaquettes in vortexci , i (a) the
index of the vortex containing plaquettePa , andNv is the
number of vortices in the projected configuration. In the lim
of infinite lattice volume and finite vortex density,sw51 if
all P-plaquettes belong to a single percolating vortex, a

2This observable resembles the average cluster sizeS of percola-
tion theory. In our case the clusters are the vortices.S differs from
our sw in that ~i! it is not the average absolute size, but the aver
fraction with respect to all P-plaquettes; and~ii ! all clusters resp.
vortices, including the percolating one, are included in the sum

FIG. 6. P-vortex densityp in the b-k plane. Lattice sizes are
indicated in the text. The phase transition line is taken from@18#.
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sw50 for the depercolation case. This is a highly nonloc
observable, and it is the quantity which we use to detec
percolation transition.

At b50.25, it can be seen from Fig. 7 that the one-li
energy density OGH is a smooth function ofk, and displays
no evidence of a transition. The vortex density, althou
dropping rapidly in the intervalkP@0.6,0.9#, also shows no
sign of any discontinuity.

The vortex observables in Fig. 7 have been computed
two ways. Open symbols denote measurements on ce
projected configurations. For filled symbols~labeled with
‘‘sm’’ !, the first step of a vortex smoothing procedure, d
scribed in Ref.@11#, has been applied. This first step com
pletely removes the smallest~one-cube! vortices consisting
of six P-plaquettes. We have checked that down tob51.0
this removal does not alter projected Creutz ratiosx(R,R),
R>2. The smoothing procedure decreases the vortex den
p depicted in Fig. 7 slightly, but does not qualitative
change the shape of the curve. Smoothed or not, the vo
density decreases continuously from just under 50% to z
as k increases, with no evidence of any sudden change
phase.

There is, however, a clear sign of a sudden transiti
aroundk50.74, in the weighted average vortex sizesw . The
plot of sw in Fig. 6 shows a sharp depercolation transition
this observable. Fork<0.7, the majority of P-plaquettes be
long to one big, percolating vortex surface, but fork
>0.74, this surface is split into many small vortices. This
even more pronounced if we remove the smallest~one cube!
vortices using the smoothing procedure. After smoothing,
below the transition, the average vortex contains over 9
of all P-plaquettes. Just after the transition, this num
drops to under 1.5%. This is a fairly convincing sign of t
existence of a percolation transition. We have also chec
for percolation directly, by measuring the spatial extension
the largest vortex surface on the lattice. In the Higgs pha
the largest vortex always fits inside a hypercube which
smaller than the full lattice, while in the ‘‘confined’’ phas

e

FIG. 7. P-vortex densityp, weighted average vortex sizesw ,
and the one-link gauge-Higgs energy density OGH for b50.25.
Open symbols denote measurements after center projection
filled symbols ~labeled with ‘‘sm’’! elementary vortex cubes ar
removed in addition.
7-5
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BERTLE et al. PHYSICAL REVIEW D 69, 014007 ~2004!
this is not possible; the largest connected vortex surface
tends through the entire lattice, irrespective of lattice s
Thus we find center vortex percolation in the ‘‘confined
phase of the gauge-Higgs theory, and no percolation in
Higgs phase. There is a first-order phase transition l
which has an end point in the interior of theb-k plane but
then continues as a Kerte´sz line, completely separating thes
two regions of the phase diagram.

It is quite natural that there should be no vortex perco
tion in the Higgs phase, since percolation is a necessary
dition for achieving an area law for Wilson loops, which
course is absent in this phase. But an asymptotic string
sion is also absent in the ‘‘confined’’ phase, due to colo
screening, yet in this case we do have vortex percolat
This is not a paradox, however. The vortex confinem
mechanism requires that vortex piercings of the minimal a
of a large Wilson loop are uncorrelated, and percolat
alone is not enough to ensure this property. As an exam
consider a percolating P-vortex surface having the form o
branched polymer~a form which often arises in numerica
simulations of random surfaces!. In this case each piercing o
a plane surface will be accompanied by a second nea
piercing, with the pair contributing no net center flux, a
therefore no net disordering, to the Wilson loop. In this e
ample there is no confinement, even though the P-vo
percolates throughout the lattice. Percolation is therefor
necessary, but not a sufficient condition for confinement@19#.

IV. CONCLUSIONS

We have observed center dominance in SU~2! gauge-
Higgs theory for the Polyakov line observable, both at lo
and high temperatures, throughout theb-k coupling plane.
Polyakov line expectation valueŝuLu& and ^uLPu&, on the
full and projected lattices respectively, are either both ze
or both nonzero, in the infinite volume limit.

There is no true confining phase in a gauge-Higgs the
at k.0, or in any gauge theory with matter in the fund
mental representation of the gauge group. Nevertheless
have found a nonlocal observable, sensitive to vortex pe
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lation, which distinguishes between the confinementlike a
Higgs regions of the phase diagram. The confinement
region is characterized by an area-law decay of Wilson lo
up to a certain string-breaking scale, while in the Higgs-li
region there is no area-law falloff at any scale. The two
gions are separated by a line of thermodynamic first or
transitions, which turns into a Kerte´sz line atb,1. As in the
Ising spin system, the Kerte´sz line is a line of percolation
transitions, with the free energy analytic across the transit
In the confinementlike region, center vortices percol
throughout the lattice. In the Higgs region, they do not.

The sharp transition between the Higgs and confinem
like regions has been seen in other ways. Langfeld@12# has
noted that after fixing to a Landau gauge, there is remn
unfixed global symmetry, and that this symmetry is unbrok
in the confinementlike phase, and broken across the Ker´sz
line in the Higgs phase. A similar observation, this time
the Coulomb gauge, has been made very recently by tw
us ~J.G. and Sˇ.O.! and Zwanziger in Refs.@20,21#. It should
be noted that the order parameter for remnant symm
breaking, if expressed as a gauge-invariant observable
highly nonlocal, as is the order parameter for percolation

The fact that vortices percolate in the confinementlike
gion of the gauge-Higgs phase diagram, yet the asympt
string tension is zero, demonstrates that while vortex per
lation is a necessary condition for confinement, it is not a
a sufficient condition. Vortex percolation without confin
ment implies that vortex piercings of a plane are not entir
random, but are paired in some way. An example of suc
percolating but nonconfining surface is a branched polym
but the actual structure of percolating center vortices, in
confinementlike region of gauge-Higgs theory, is not y
known.
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