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We study the S(2) gauge-Higgs system iD =4 dimensions, and analyze the influence of the fundamental-
representation Higgs field on the vortex content of the gauge field. It is shown that center projected Polyakov
lines, at low temperature, are finite in the infinite volume limit, which means that the center vortex distribution
is consistent with color screening. In addition we confirm and further investigate the presence of &ZKerte
line” in the strong-coupling region of the phase diagram, which we relate to the percolation properties of center
vortices. It is shown that this Kese line separates the gauge-Higgs phase diagram into two regions: a
confinementlike region, in which center vortices percolate, and a Higgs region, in which they do not. The free
energy of the gauge-Higgs system, however, is analytic across thesKdirie.
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I. INTRODUCTION A schematic phase diagram for the @WJHiggs model is

. . . depicted in Fig. 1.

~ Lattice studies gtrongly support the vortex picture of con-"" v «confined” phase, the potential between fundamen-
finement and the importance of the center degrees of fregz charges rises linearly at intermediate distances. Because
dom (see review 1] and references therginUntil recently,  of the color screening of fundamental charges, there is string
these numerical investigations concerned pure gluonic QC[Breaking at some finite distancg, and the potential levels
Only. If dynamical fermions are included, it is well known off. In the H|ggs phase’ the H|ggs mechanism is at Work’ and
that the long range part of the potential between statighe potential is Yukawa-like; the string tension vanishes at all
charges changes qualitatively: the string breaks and the pgeparations. However, these are not thermodynamically dis-
tential levels off at a screening distancg String breaking
has been observed numerically not only for gauge fields with
dynamical fermions, but also for gauge-Higgs theofgsin

this work we investigate the influence of dynamical matter Kertész—line
fields on the distribution of center vortices. Our model is "Higgs phase"
lattice SU2) gauge-Higgs theory with Higgs fields in the 1< 8ESP
fundamental representation.
The SU2) gauge-Higgs model is defined by the action
p
S=83 {®TC0P()+H @R (x) 113 confined phase”
X
0 B oo
— k2, [PT(X)U ()P (x+p)+c.c] (1) oo
X
1 Kertész—line
Sw=B 2 |1-5ReTrU,,(x)], 2 . .
W< v,X Higgs phase
K

where Sy, is the usual Wilson plaquette action, arel
=($;), with ¢1,¢,e(, is a massive scalar field in the fun-

damental representation.

"confined phase” |  "deconfined phase"
Electronic address: bertle@kph.tuwien.ac.at
'Electronic address: faber@kph.tuwien.ac.at FIG. 1. Schematic phase diagram for the(®Higgs system at
*Electronic address: greensit@stars.sfsu.edu zero temperaturéop), and on lattices with a fixed extension in the
$Electronic address: stefan.olejnik@savba.sk time direction(bottom).
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tinct phases. The phase diagram is connected, in the senpertantly, that vortices do not percolate in any space-slice,

that one can always find a path between any two points in thee. there is no percolation of vortex lines in a three-volume

phase diagram which avoids any nonanalyticity in thermodywith either thex, y, or z coordinate held fixed. The absence

namic quantities. The transition line which might have sepaof vortex percolation in a space-slice implies that center pro-

rated the Higgs and confinement phases ends at a criticigcted Polyakov lines have nonzero expectation values in the

point in the strong coupling region, and from there changesgleconfined phasf9,10].

over to crossover behavior. Thus if we speak of the “Higgs” Recent findingd12,13 indicate that the vortex density

or the “confinement” phases in this model, we are aware thaflso decreases sharply in the gauge-Higgs model, at the tran-

we speak rather of regions belonging to a single phase of thgition from the “confined” phase to the Higgs phase. This

system[3]. sharp decrease in vortex density occurs even in the crossover
At finite temperature ande=0 there is an additional region at small values g8, where the phase transition line

phase, namely, the deconfined phase. In this phase the quaf@s ended. It was suggested by Langfél?] that the cross-

gluon plasma arises and fundamental charges are set fre@ver line at smallg, where there is a sudden drop in the

For x>0 there is no true phase transition between the “convortex density, could be a “Kersz line” of the sort found in

fined” and “deconfined” phases, but only crossover behaviorthe Ising mode[14,15. A Kertesz line is a line of percola-

indicated by the dashed line in Fig.(Ibwer figure. Hence tion transitions which is not associated with a thermody-

we still have only one phase in th@« plane. namic transition, e.g. from an ordered to a disordered state.
The vortex theory of confinement was put forward at theOur new calculations provide further support for the exis-

end of the 1970¢see references in revielt]); early appli-  tence of a Kertsz line in the gauge-Higgs system. Although

cations to S(2) gauge-Higgs theory can be found in Refs. there is no thermodynamic transition from a “confined” to a

[4,5]. According to the vortex picture, tubelike ¢EB) or  Higgs phase, and indedth contrast to pure gauge theory

surfacelike (BD=4) objects, carrying quantized amounts of there is_ no true confined phase in this ;ystem, we nonetheless

magnetic flux, play a crucial role. The standard procedure tdind a line of center vortex depercolation.

identify these object&the center vorticeson the lattice is to

first gauge-fix the lattice configurations according to a Il. FINITE TEMPERATURE

gauge-fixing condition on link variables in the adjoint repre- _ . . .

sentation. Then the center degrees of freedom are singled oyt 't 1S most efficient to carry out Monte Carlo smula:;uons of

by projecting each S() group-valued link variable to the € gauge-Higgs system in unitary gauge, whére (5), ¢

closest Z center element. In this work we use the direct €[0°], and only one degree of freedom has to be simulated

maximal center gaugéDMCG) [6] fixed by the over- for the Higgs field. In the unitary gauge we have

relaxation method. Maximizing(|Tr{U ,(x)]|?), DMCG

shifts the link variabled) ,(x) as close as possible towards Z:f D[U]D[ dlexp — Sy— Suy) (3

the center elements of $2). Center projection in DMCG

has proven to be a useful tool for isolating the relevant de-

grees of freedom on the lattice, although other adjoint _ 2 2/ 112

gauges, and more sophisticated gauge-fixing techniques, are SH”_E {"CIFALS7 ) =11

also in use. Via center projection, the @lattice is mapped

to a % gauge field configuration. The excitations of [At- _ ~

tice configurations are the P-vortices. P-vortices form closed K%( {d(x)p(x+p) T U ,(X)]} 4

surfaces(in four dimensions or closed loopdin three di-

mensiony on the dual lattice, and are composed ofwith ¢=.®'® and integration measure

P-plaquettes. A plaquette on the projected lattice is said to be

pierced by a P-vortex, and is called a “P-plaquette,” if the o 3

product of the four projected links of the plaquette yields the f D[d’]:l:I fo dp(x) $°(x). ®)

nontrivial element of 4, i.e. —1. Center projection in an

adjoint gauge can be viewed as a tool to locate the positiofye ysed the Metropolis algorithm for the numerical simula-
of thick SU(2) vortices from the location of P-vortices on the tion of the system ol =4 dimensional Euclidean lattices of

projected lattice. dimensionsN* N2. Data were taken on lattices separated by

Here we are interested in the dependence of the Centely Monte Carlo steps. For the measurement of center pro-

vortex d|s§r|put|on on couplings and temperature. The yorte ected observables, we fixed to DMCG using the overrelax-
model at finite temperature, and the behavior of P-vortices

o : tion method and then carried out the projection.
Fhe Fransmon to the h|gh temperature phase, have t_)een Std- At finite temperature, confinement and deconfinement can
ied in recent years in Ref§7—11]. In those articles it was be studied using the Polyakov loop observable
shown that center dominance—i.e. the correspondence ofe
projected and unprojected observables sensitive to infrared 1
physics—holds also at finite temperatures. It was found <||_|>:< ‘ = Lx
[8—11] that the vortex densitp—the fraction of plaquettes N2 %
on the projected lattice which are P-plaquettes—drops sub-
stantially across the deconfinement transition and, more imwhere

> =e T for N>  (6)
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Square root of inverse 3D lattice volume 1/N.” Square root of inverse 3D lattice volume 1/VYN_3
Ni=4, p=2.2 FIG. 3. Ratio of projected to unprojected Polyakov loop expec-
A 025 . . tation values in the “confined” phase. Open symbols denote mea-
= x=0.0, without center proj. - _ surements ak= 0.0, filled symbols at=0.25.
y K=O.256v6/|thouz center ;étrOJo.| * |
- k=0.0, center projected ---©-- g “ . »
§ 0.2 %=0.95. center Ero}ected e e temperature “confined” phase. .
£ ' o At the choserg values andk=0, the expectation value
S | . ] i i i
g 01 . o of (|L|) vs 1A/NZ on unprojected lattices extrapolates lin-
[ ] L . . . . . .
8 Svel early to zero in théNg— o limit of infinite spatial volume. In
> o1r L ] contrast, at finite coupling=0.25,{|L|) tends to a nonzero
8 oY constant at infinite spatial volume. This well known feature,
& 005} e . R associated with the screening of static charges by dynamical
g g * matter fields, is also found on center projected lattices. Due
5 L mE = - g .
o o bl B8 . . . to suppressed self-energy contributions and ultraviolet fluc-
0 0.01 0.02 0.03 0.04 0.05 tuations in the projected configurations, the expectation
Squars root of inverse 3D lattice volume 1/VN.2 value of the Polyakov loop observatﬂﬁ_PD on projected

. . . lattices is larger than the corresponding expectation value
FIG. 2. Expectation values of the Polyakov loop in the *con (|L]) on unprojected lattices, but the qualitative behavior of

fined” phase. Open symbols denote measuremenis=di.0, filled the t b bl in the | | limit. is th
symbols atk=0.25. Squares are used for measurements on un- € two observables, In he large-volume fimit, 1S the same.

projected, full SW2) configurations and circles for center projected In fact, t_he ratio of ,the ,projeCted and unprojected POIyakOV
fields. expectation values is virtually constant, and nearly indepen-

dent of both lattice extensioNg and coupling« for all val-
1 ues of 3=2.1, 2.2 and 2.25, as seen in Fig. 3.
L(x) ::ETrH U4(X,X4) (7) At k=0 the Polyakov expectation valyéL|) is zero in
X4 the infinite volume limit at low temperature, and nonzero
beyond the deconfinement transition. This transition can be
understood in the framework of the vortex modék11].
The projected Polyakov liné|Lp|) has the same transition

andF is the free energy of a single static quark relative to
vacuum at temperatur€. Without dynamical matter fields,

we have from zero to nonzero values at the deconfinement tempera-
lim (|L|)=0 (8)  ture, as already reported in R¢7].
Ng— e The inclusion of a massive scalar field does not lead to a

qualitative change of the system in the high temperature

in the confined low temperature phase. If matter is includedphase. This is reflected by our results o]y and(|Lp|) at
screening becomes possible. In that céidg) is nonzero, B=2.3and 2.4, seen in Fig. 4 and Fig. 5. Again the projected
andF is finite, in the large volume limit. and the unprojected measurements are consistent. As in the

Since the idea of the vortex model is to describe the con¢confined” phase, the projected values are higher than the
fining properties of gauge fields by center degrees of freeunprojected ones, but their ratio is almost constant with re-
dom, the question arises whether this observed screening capect toN,. There is somec dependence in projected and
also be seen after singling out these variables. We have calinprojected Polyakov lines right above the highphase
ried out center projection in DMCG withouk(=0) and with  transition (which is just belowg=2.3 atN,=4), but the
(x=0.25) scalar matter fields on lattices of SMEN?Z with  ratios of projected and unprojected lines are nevertheless al-
N;=4 andNjs varying from 8 to 28. The quartic coupling has most constant, and the dependence ig|L|) and(|Lp|) is
been set to.=0.5, and data have been taken on 1000 conrather small at still higher temperatures in the deconfined
figurations for each parameter set. Some results are shown iggime.
Fig. 2 for =2.1 and 2.2, where the system is in the low From these calculations we can conclude that we see cen-
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g - large loops, where extremely high statistics are neédétds
g 0.5 | 7 problem is reflected in the vortex model. Two of (&B. and
e 04y 1 M.F.) have carefully investigated the Wilson loop observable
8 03¢ i s ot S B . in a wide range of the phase diagram £8<2.3,0.0=«
g 02t . <1.1) on lattices up to Z2[13]. As in the unprojected, full
% 01t . system, the influence of the Higgs field on the Wilson loop
o 0 : ‘ ‘ ‘ observableW(R,T) can be effectively described—for our

0 0.01 0.02 0.03 0.04 0.05 available small loopsR, T<4—by some shift3— Ber;.

Square root of inverse 3D lattice volume 1/YN_° Center dominance holds again.

At the transition to the Higgs phase, the string tension

fined phase. Open symbols denote measurements-&t0, filled measured by Wilson loops disappears even. for S_mal,l dis-
symbols atk=0.25. Squares are used for measurements on uriances. We have found that the phase transition line in the

projected, full SW2) configurations and circles for center projected 9aUge-Higgs model is closely correlated, even for small lat-
fields. tices, with a rapid drop in the vortex densjty as shown in
Fig. 6.
ter dominance for Polyakov loops also in the presence of [N this figure we plot the density of P-vortex plaquettes in
scalar matter fields, both above and below the finite tempera2€rcent as contours in thg-« plane. Data for the phase
ture phase transition. This means thfat|) and(|Lp|) are in  transition line are tgken fro@B]. In the “confined” phase,
the infinite volume limit either both zero, or both nonzero, atthe vortex density is almost independent«gf whereas the
any temperature with or without dynamical matter fields.vortex density decreases rapidly, with increasingin the
Once again, the long range physics of the system seems to Bgighborhood of the phase transition line. This rather sudden
encoded in the center degrees of freedom. In particular, thdecrease in vortex density witk, at fixed 8 was first ob-
presence of a dynamical matter field must alter the spatigierved by Langfeld12], and by two of uR.B. and M.R)
distribution of P-vortices, in such a way that P-vortex fluc-[13]. It is interesting that this region of rapid decrease in
tuations no longer bring|Lp|) to zero in the large volume density, seen in Fig. 6, appears to extend beyond the actual

limit, even in the low temperature regime. thermodynamic transition line, all the way to tjge=0 axis.
We may ask whether this is simply crossover behavior, or an

indication of some more interesting phenomenon.

FIG. 4. Expectation values of the Polyakov loop in the decon-

lll. ZERO TEMPERATURE

Our results forT=0 have been obtained on hypercubic The Kertész line

10" lattices for3=<1.9, on 12 lattices for3=2.1, and on A “Kertész line,” originally discovered in Ising spin sys-

16 lattices atp=2.3. For3=0.25, we have performed a tems, is a line of percolation transitions which is free of any
detailed scan ovex on a 16 lattice. Each measurement has

been done at =1.0 using 800 configurations. Otherwise, we

haye USEd_the same parameters and methods as for the simuneyertheless, we note that recently adjoint string breaking has

lations at finite temperature. _ been successfully measured using Wilson loops in [Rél, using a
Due to the small overlap of flux-tube states with gluelumppowerful algorithm for noise reduction devised by scher and

states, it is difficult to measure string breaking in the “con-weisz[17].

014007-4



CENTER DOMINANCE IN SU2) GAUGE-HIGGS THEORY PHYSICAL REVIEW D69, 014007 (2004

Vortex density p, A=1.0, center projected 82025, A=1.0, 16 4 |attce
0.9 ~ . . . . 100 : : . . 3.5
08} ol }e
0.7 80
0.6 " 70 L | os
05 E g0 p--eee \ _
- k=) 50 A B R B N . ég
0.4t § Pprrsoeog .
ool 30 Rort. dens., sm N = 41
02 20 | Sy oo 3
o1t ol w S e 0.5
0 0 N . , =4
0 : 0 02 0.4 0.6 1
B K

FIG. 7. P-vortex densityp, weighted average vortex siz, ,
and the one-link gauge-Higgs energy density,Jor 8=0.25.
Open symbols denote measurements after center projection; for

filled symbols (labeled with “sm”) elementary vortex cubes are
nonanalyticity in the corresponding free energy. This iSiemoved in addition.

thereforenot a line of thermodynamic phase transitions, as

usually defined. It was originally suggested by Langfdld] s =0 for the depercolation case. This is a highly nonlocal

that the rapid decrease of P-vortex density in the gaugeghservable, and it is the quantity which we use to detect a
Higgs theory, in a region where there is no thermodynamlcperco|anon transition.

FIG. 6. P-vortex density in the 8-« plane. Lattice sizes are
indicated in the text. The phase transition line is taken ffasj.

transition, might also be associated with a Kertdine of At B=0.25, it can be seen from Fig. 7 that the one-link
P-vortex perCOlanon transitions. We will now repOI’t on Someenergy dens|ty @H is a smooth function Of( and d|Sp|ayS
results which support that idea. no evidence of a transition. The vortex density, although

Our simulations are performed on “l8attices at 8 dropping rapidly in the intervak <[0.6,0.9, also shows no
=0.25, which is far below the end of the thermodynamicsjgn of any discontinuity.

phase transition line arouni=1. In Fig. 7 we display the The vortex observables in Fig. 7 have been computed in
following observables: two ways. Open symbols denote measurements on center
(i) The one-link contribution to the gauge-Higgs enE‘fgyprOJected configurations. For filled symbolkabeled with
density m” ), the first step of a vortex smoothing procedure, de-
- scribed in Ref[11], has been applied. This first step com-
Oghi=(REPT(X)U,, ()P (x+u)]). (9 pletely removes the smallegbne-cubg vortices consisting
of six P-plaquettes. We have checked that dowrBtel.0
This is a local, thermodynamic observable. this removal does not alter projected Creutz rajd&,R),
(ii) The P-vortex density. R=2. The smoothing procedure decreases the vortex density

(iii) The weighted average vortex sisg. This is the p depicted in Fig. 7 slightly, but does not qualitatively
relative size||ci(a)||/Np of the vortexc;, containing the change the shape of the curve. Smoothed or not, the vortex
P-plaquetteP,, averaged over alNp P-plaquettes in the density decreases continuously from just under 50% to zero

projected gauge field configuratién: as k increases, with no evidence of any sudden change in
phase.
1 Ne ||C|(a)|| N, ||c ”2 There is, hov_vever, a _clear sign of a sudder_1 transition,
= ] 2 ) (10 aroundx=0.74, in the weighted average vortex s&ge The
p a= i=1

plot of s,, in Fig. 6 shows a sharp depercolation transition for
this observable. Fok=<0.7, the majority of P-plaquettes be-
Here||c;|| is the number of plaquettes in vortex, i(a) the long to one big, percolating vortex surface, but fer
index of the vortex containing plaquet®,, andN, is the ~ =0.74, this surface is split into many small vortices. This is
number of vortices in the projected configuration. In the limiteven more pronounced if we remove the smallese cubg
of infinite lattice volume and finite vortex density, =1 if vortices using the smoothing procedure. After smoothing, but
all P-plaquettes belong to a single percolating vortex, andelow the transition, the average vortex contains over 90%
of all P-plaguettes. Just after the transition, this number
drops to under 1.5%. This is a fairly convincing sign of the
2This observable resembles the average clusterSidepercola- ~ €Xistence of a percolation transition. We have also checked
tion theory. In our case the clusters are the vortiGsiffers from  for percolation directly, by measuring the spatial extension of
ours, in that (i) it is not the average absolute size, but the averagdhe largest vortex surface on the lattice. In the Higgs phase,
fraction with respect to all P-plaquettes; afig all clusters resp. the largest vortex always fits inside a hypercube which is
vortices, including the percolating one, are included in the sum. smaller than the full lattice, while in the “confined” phase
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this is not possible; the largest connected vortex surface exation, which distinguishes between the confinementlike and
tends through the entire lattice, irrespective of lattice sizeHiggs regions of the phase diagram. The confinementlike
Thus we find center vortex percolation in the “confined” region is characterized by an area-law decay of Wilson loops
phase of the gauge-Higgs theory, and no percolation in thgp to a certain string-breaking scale, while in the Higgs-like
Higgs phase. There is a first-order phase transition linefegion there is no area-law falloff at any scale. The two re-
which has an end pomt in the interior of ti2k plane but  gions are separated by a line of thermodynamic first order
then continues as a Késeline, completely separating these transitions, which turns into a Keee line at3<<1. As in the
two regions of the phase diagram. Ising spin system, the Kese line is a line of percolation
It is quite natural that there should be no vortex percolatransitions, with the free energy analytic across the transition.
tion in the Higgs phase, since percolation is a necessary com? the confinementlike region, center vortices percolate
dition for achieving an area law for Wilson loops, which of throughout the lattice. In the Higgs region, they do not.
course is absent in this phase. But an asymptotic string ten- The sharp transition between the Higgs and confinement-
sion is also absent in the “confined” phase, due to color like regions has been seen in other ways. Langf&®] has
screening, yet in this case we do have vortex percolationioted that after fixing to a Landau gauge, there is remnant
This is not a paradox, however. The vortex confinementinfixed global symmetry, and that this symmetry is unbroken
mechanism requires that vortex piercings of the minimal aredn the confinementlike phase, and broken across the’ szrte
of a large Wilson loop are uncorrelated, and percolatiorine in the Higgs phase. A similar observation, this time in
alone is not enough to ensure this property. As an exampléhe Coulomly gauge, has been made very recently by two of
consider a percolating P-vortex surface having the form of &S (J.G. and S0.) and Zwanziger in Ref§20,21]. It should
branched polymeta form which often arises in numerical be noted that the order parameter for remnant symmetry
simulations of random surfagesn this case each piercing of breaking, if expressed as a gauge-invariant observable, is
a plane surface will be accompanied by a second nearb§ighly nonlocal, as is the order parameter for percolation.
piercing, with the pair contributing no net center flux, and The fact that vortices percolate in the confinementlike re-
therefore no net disordering, to the Wilson loop. In this ex-gion of the gauge-Higgs phase diagram, yet the asymptotic
ample there is no confinement, even though the P-vortegtring tension is zero, demonstrates that while vortex perco-
percolates throughout the lattice. Percolation is therefore tion is a necessary condition for confinement, it is not also
necessary, but not a sufficient condition for confineni2. a sufficient condition. Vortex percolation without confine-
ment implies that vortex piercings of a plane are not entirely
IV. CONCLUSIONS random, but are paired in some way. An example of such a
percolating but nonconfining surface is a branched polymer,
We have observed center dominance in(8Ugauge- but the actual structure of percolating center vortices, in the

Higgs theory for the Polyakov line observable, both at lowconfinementlike region of gauge-Higgs theory, is not yet
and high temperatures, throughout {Aex coupling plane.  known.

Polyakov line expectation valug$L|) and(|Lp|), on the

full and projected lattices respectively, are either both zero,

or both nonzero, in the infinite volume limit. Our research is supported in part by Fonds zindEoung
There is no true confining phase in a gauge-Higgs theorger Wissenschaftlichen Forschung P13997-TPH and P14435-

at x>0, or in any gauge theory with matter in the funda- TPH (R.B. and M.PF, the U.S. Department of Energy under

mental representation of the gauge group. Nevertheless, werant No. DE-FG03-92ER40711J.G), and the Slovak

have found a nonlocal observable, sensitive to vortex percdsrant Agency for Science, Grant No. 2/3106/23630.).
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