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Nonrigid chiral soliton for the octet and decuplet baryons
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A systematic treatment of the collective rotation of the nonrigid chiral soliton is developed in tt8& SU
chiral quark soliton model and applied to the octet and decuplet baryons. The strangeness degrees of freedom
are treated by a simplified bound-state approach which omits the locality of the kaon wave function. Then, the
flavor rotation is divided into the isospin rotation and the emission and absorption of the kaon. The kaon
Hamiltonian is diagonalized by the Hartree approximation. The soliton changes the shape according to the
strangeness. The baryons appear as the rotational bands of the combined system of the soliton and the kaon.
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[. INTRODUCTION shape according to the strangeness of the baryon.

Although these tools are applicable to more general sys-
The soliton picture of the baryon is employed by manytems, the collective Hamiltonian takes a complicated form
effective models of QCD in the low energy region: the and the outlook of the collective quantization is bad due to
Skyrme mode[1-6], the Nambu—Jona-Lasinio mod&-9]  the less symmetry of the nonrigid soliton than the hedgehog
and the chiral quark soliton modeCQSM) [10-13. Atech- ~ one. Therefore, in this paper, we reformulate the collective
nical feature of the picture is the separation of the internaH@miltonian and improve the procedure of the collective

and external degrees of freedom. The internal degrees @fua@ntization given in Ref.14]. Furthermore, we introduce
freedom (mesons, quarksnonlinearly interact with each the Hartree approximation for the kaon to simplify the treat-

other and construct the soliton self-consistently. On the othenent of the particle-antiparticle creatipt4]. We apply these

hand, the external degrees of freedom describe the coIIecti\}Qqﬁ);oglgg tI?OJ\?etcr)eg;SV\?tcrth S&? gg(gjl\?llgnze};ygrrféan field
motions of the soliton: rotation, vibration, translational mo- Y

tion. To solve the coupled equations for these degrees E}pproximation for the rotated system. In Sec. lll, the variable

freed for technical hould the d Ytansformation between the two types of the parametrization
reedom, for technical reasons, one should assume the CeCO 1,6 fiayor rotation is given. In Sec. 1V, first, we construct

pling of the internal degrees of freedom with the collectivey, o ¢,jjective Hamiltonian using the variable transformation.
motion and employ the simplest ansatz for the soliton: th§\eyt e show the Hartree approximation for the kaon in the
hedgehog shape. For example, in the CQSM, the equationg,ckground soliton and define the basis for the collective
of motion for the soliton consist of the local functions of the quantization using the Hartree states. In Sec. V, we show the
meson profile and the infinite eigenstates of the quarks in thg merical results of the Hartree approximation and the col-
background soliton. Then, the equations should be selffaciive quantization. Finally, in Sec. VI we summarize the

consistently solved. The process requires a large number ofqits and discuss the relation between the deformation of
calculations by the computer. It is hard to self-consistentlyine chiral soliton and the kaon.

incorporate the interaction between the nonrigid soliton and
the collective motion. Thus, the symmetry of the soliton is a
technically important ingredient to reduce the number of cal- Il. MODEL AND THE MEAN FIELD APPROXIMATION
culational steps. From a physical point of view, however, it FOR THE FLAVOR ROTATION

seems oversimplified that one assumes the symmetry which

is broken by the collective rotation. various quantities. The chiral quark soliton model in the case

In the previous worK14], we studied these assumptions N ) :
for the oc?et baryons Wli{th t]he CQSM. To overcome thFe) com-Of fIavgr SU3) is given by the path mtegral with respect to
plexities of the self-consistent calculation for the nonrigidthe chiral meson fields and the quark fie[d®,11,13. We

soliton and incorporate the interaction between the solito .olsdt.ulate the so called cranking foii,16] for the meson
and the collective motion, we introduced the physical and/o eld:

mathematical tools: the mean field approximation for the ro-

tated system, the tensor operafrifkss'(F) for the grand spin U7s(x)=A(t)BT(HUS(r)B(t) A'(t), (1)
which is used to expand the chiral field, and the explicit form

of the isospin vector of the chiral soliton with the quark whereugS(r) is the static meson fieldA(t) describes the

states. The result indicated that the hedgehog shape of t%%iabatic rotation of the system in &) flavor space, and

soliton is stable only foHr the nucledh) anq unstable for the B(t) describes the spatial rotation. Then, the effective action
strange baryonsA,%,=). Thus, the soliton changes the for Us is reduced to

Hereafter we follow the notation used in REE4] for the
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where det denotes the functional determinant for the quarksyith

N, is the number of colors, antl’ is the rotated quark

Hamiltonian defined below. Mg, =Mg lim (8)(As) (n=39). (12)
For Ug5, we assume the embedding of the (8lfield to K05 KBO3

the SU3) matrix but do not assume the hedgehog shHagé
We write the flavor rotatiofil7] as We call mg the mean field value i’

0) Using these quantities, the rotated quark Hamiltortin

s(t)

A(t)z(Ao(,tr) (3) in Eq. (2) is given by

whereA is the flavor SW2) rotation operator ané repre- H'=Hq+AH’, (13
sents the rotation into the strange directions. In particular, we
parametrizeAg(t) as 1 .
Ho=—a-V+pB(MUS+mg), (14
[0 J2D(t) !
Aq(t)=expi b 0o | (4) -
AH'=B(m'—mg) =BT, ,0,, (15
where D=(D;,D,)" is the isodoublet spinor. From the
transformation property under the flavor rotation, we &ll  whereM is the dynamical quark mass,, (©=1,2,...,8)

the kaon field. In Ref|19], it is argued thaD~1/\/N; inthe  defines the fluctuation around the mean field, ang
large N limit due to the Wess-Zumino term, even if the =\ ,/2. H¢ contain the effects of the flavor $8) and SU2)
strange quark mass is light. We also employ the cla55|f|cat|0g mmetrv breaking throuah the mean fi

and treatD perturbatively. Although Eq4) was motivated yWe e3>/<pand SFg in po%ver of the aﬂ%ular velocities
by the bound-state approaf8], we will not treat the local- . .- . . )

y 9 pproaLts, we wi (iATA,iBB") and AH’ around the eigenstate ofid

ity of the kaon wave functiopl9] in this article. Inclusion of , ; .
—Hy) to get the effective Lagrangiafi [12,14]. The former

the locality is a complicated task. ' :
From the current quark mass matrixm=mo\ corresponds to the NI expansion20—22. We retain the
+Mghg (Ms=0), we obtain the rotated one: 0%0  order of the expansion up ©(1/N.). The latter corresponds
she s to the perturbation in power of,, which is given by the
~ ~ (8)
M’ = ATmA=mo\ o+ msD P I\ (5) product of mg and the fluctuatlon oDg,/(As) around the

expectation value. We assume that the large parts of the fla-

WhereDE?,}(As) (w,v=1,2,...,8) is the Wyner D function ~ VOr SU@) symmetry breaking are i-nclyded in the Iowest or-
of A in the adjoint representation: der term ofSg through the mean fielthg and the residual
effects can be estimated by the first order perturbatian,in
1
DEJBIB(AS)ZEU(A;Y)‘#AS)‘J' ©6) of D(S) are evaluated according to the individual baryon
states. For example, the fluctuation bf%) starts from the
The value ofmg represents the strength of the flavor@U  difference between th©(1/N,) quantities in the largeN,

symmetry breaking. _ N limit: —3(ko— kgo)/2. Furthermore, the fluctuation is al-
Here, we define the following quantities: ways accompanied byng. The value ofmg is about 200
—op'D R MeV and fairly small compared with the typical energy scale

A which is the energy cutoff parameter around 700 MeV.
Here, the small value afhg/A does not contradict the per-
turbative treatment oD in the largeN, limit, since the kaon
wherej=1,2,3, and give the explicit form (ﬂﬁf?(As) inthe field D~ 1/JN, independent of the strange quark mass, as
Appendix A. Suppose that the collective motiodsandp ~ noted above. _ _ _ _
are quantized andB) as an eigenstate of the collective ~ The static meson field }° is self-consistently determined
Hamiltonian. If|B) points to a specific direction in the isos- [11] by a variation of the classical soliton energy, which

x;=2D"7,D, (8)

pin space, corresponds to the lowest order termSf. Because of Eq.
(12), it introduces the isospin symmetry breakirg; # 0 to
kgo={(B|xo|B), (9 the system in the body fixed frame. Hergz# 0 leads to an
axially symmetric deformation of the chiral solitgma4].
kg3=(B|k3|B) (10 It was pointed out in Ref.27] that the Skyrmion must be

) improved by the flavor S(2) rotation to resolve the
have nonzero value$l4]. Then, the expectation value “yykawa problem.” Then, the shape of the Skyrmion devi-

In fact, the fluctuations is small, since the expectation values

(B|r?1’|B> may be approximated by ates from the hedgehog one in the body fixed frame. The
hedgehog shape of the soliton is the leading order term in the

Mg= Mo\ o+ Mgz\ 3+ Mgghsg, (11 large N limit and the deviations correspond to the higher
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order terms. In our case, the effects of the rotation into the [A=

strangeness directions deform the hedgehog soliton.

Ill. VARIABLE TRANSFORMATION

We argue the relation between the two types of the pa-
rametrization for the flavor rotation. First, we define the local

variablesa anda of the rotation.4 andA, respectively, by

ahT,=—iATA
S —IATA 0)
A g1 oATIAA
(16)
. jﬂ_ At
a 5= iATA, (17
whereu=1,2, ...,8, and=1,2,3. Amonge*, al, andD,
there is a relation
at=alDB(A)+D'C,(A)+Cl(A)D, (18
whereC,, is a isodoublet spinor defined by
1 t dA
CulAg =7t AN |, (19

and its explicit form is given in Appendix A. Spino, and
D are related to the Wigndd function D{*)(A,) by the fol-
lowing equations:

5,—D®

Jm?

i|DT JC —c! JD) (20)

2 K2

. t 2 (8)
i(D cM—cMD):E((sS#—DB#). (21)

PHYSICAL REVIEW D59, 014001 (2004

i+ 1k, (29
wherel; is the isospin carried by the kaon:
Ti Ti
i t 2 t
|Kj—I(D EP_P ED) (26)
Furthermore, using Eq20), we obtain
2
=s-—=lg, 27
\/§ 8

where the term-(2//3)13' is the baryon numbei26], Sis
the strangeness carried by kaon, ands the (left) hyper-
charge defined by

S=i(D'P-P'D), (28)
2
Yz—ﬁDgL)I;‘ (29
We define
P=P—-CjI{'=Cglj". (30)

For the rotation into the strange direction, E2¢4) is rewrit-
ten as

Caly=P,

a

3D
wherea=4,5,6,7. This equation is solved fof as follows:

|*“\/§

4= 5y, (D&F1+DgGa),

Next, we investigate the relation among the canonical mo-

menta. The effective Lagrangiafi which is a function of

a*, is also a function ofl and D through Eq.(18). The
canonical momenta conjugate 4d* are defined by

|f‘:a.—£. (22

"
dat

On the other hand, the canonical momenta conjugat@ to

andD are defined by

aL
— _— _p®))4a
IJ gal jMIM' (23
L
_ _ A
P= Y CMIM (24

For the isospin rotation, using EqR0), (23), and(24), we
obtain

[
|§l: (D(S) (8)G ),
N
5=~ 5, (PtoF2+ D§/Go),
f
1= — (D“” -D{G,), (32

whereN;, F;, andG; (i=1,2) are functions oD and P,
and given in the Appendix A.

IV. COLLECTIVE QUANTIZATION

In the same manner as EQ2), we introduce the canoni-
cal momentaJ; conjugate to the local variablds of B(t)
[14,16. Then, the collective Hamiltonian is given by
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H=a*1*+blJ - L 2 -
e 5= 2 (£, &%), (39)
=
1
= EC|+ F(Jg_ Bg+ 0'3A33+ 0'8A38)2+ 0'31—‘3+ 0-81-‘8
33
1 _ -
1 lka= 5 (£161— E161— E)ér+ £67), (39

2
o > [Vu(lf' - jA1)°

2(U3 Vi — Wiy =1 : :
where E;,4 is defined in Appendix B,y is isospin index,

- y -

+Un(J+ 038102+ 2Way(1' = 0341 (I + 04 1) £} (¢,) andg], (&,) are the creatiortannihilation) operators
1 4 4 for the kaon and antikaon, respectively, ang (w,) is the

+ m[(u —04A49)%+ (15— 050 49)°] energy eigenvalue of the kadantikaon. The Fock space is

generated by successive operation of the creation operators

1 on the vacuum stat@®):
+ s —[(1§— 06060 >+ (17— 070 60) %], (33 &
2U¢6
2 1 _
whereE¢), U,,, V,,, W,,, A,,,A,,, B,, andT, are In1.ng.np )= [ ——=&)H™(EH™0), (40
defined in Ref[14] and calculated with the quark states in y=1 \/nyl n,!

the background soliton. Especially,, is the classical soliton
energy. Because of the axial symmetry of the chiral field,

there is the following constraint on the canonical momenta:wheren, andn, are some positive integers. _
Henceforth, any quantity depending éhandP is con-

I3+ J3=0. (34) sidered as a normal ordered operator with respect to
o _ 51;, £y a andé,, . Using this prescription, we can treat the
In our approach, the Hamiltonian and the constraintanharmonic terms g without any ambiguity. The choice of
should be considered as functions of the varialaleb’,D, 34,  is important, because the creation and annihilation op-
and the momentd ,J; ,P with Egs.(25) and(32). Further-  erators are given by the diagonalizatior?f,. In Ref.[14],
more, we expand{ up to the first order in power of Bl and e use theD(1) Hamiltonian, of H in the largeN, limit
o, - The explicit form of the collective Hamiltonian is given tg define the creation and annihilation operators. The differ-
in Appendix B. ence betweefti,, and, is higher order terms in the large
In Ref. [14], the derivation of the Hamiltonian from the N, limit. In the previous work, we classifie®; as an
Lagrangian was performed by the perturbation with respec(1/N,) quantity and treated these terms in the rotation-
to IN; andmg. As a result, the Hamiltonian had a highly kaon interaction. In this paper, we throw this classification
complicated form. On the other hand, the present fori{of away and require only that(,, contains all bilinear term

is simple and has a good foresight. with respect toD andP in H.
For the quantization of the system, we sepafdtas To incorporate the effects of the anharmonic tekp;,
we employ the Hartree approximation. In this approximation,
H=Eei+ He+ Hrott Hint (39 a bare isodoublet spinor

whereHy is the part containing onlip andP and describes

the kaon in the background solitoH,; is the part contain- .
ing onlyl; andJ; and represents the collective rotation of the X,=
system in isospin and real space, drigl; represents an in-

teraction between the kaon and the rotation.

i

: 41
£ (41)

is transformed to a dressed of(é by a unitary transforma-
A. Kaon Hamiltonian H tion:

We separateHi into a bilinear partHy, and a higher
order partHy, in power of the kaon operatof3 andP, S(f/: eti‘;e—iG, (42)

HK:HKO+ HKl' (36) ) o ) ] )
whereG is a Hermitian operator. Since the kaon Hamiltonian
The explicit form of the these quantities are given in Appen-H, commutes withSandl x5, G takes the following form:
dix B.

Hko,» S[EQ. (28)], andl«3 [Eq. (26)] can be exactly di- 2
agonalized as follow§14,19: G= 21 XJ;gyXy, (43)
=
2
Hyo=Eina+ Te tw, £, 3
Ko™ =ind )/Zl (@658, w,656) 37 whereg,, are 2<2 Hermite matrices.

014001-4



NONRIGID CHIRAL SOLITON FOR THE OCTET AND . .. PHYSICAL REVIEW D59, 014001 (2004

The unitary transformation Eq42) with Eq. (43) does TABLE I. The sets of parameters: the dynamical quark ndss
not changeSandl 3. The dressed state with the good quan-the current quark masses,=my andms, and the cutoff parameter
tum numbersS and| 5 is defined as A. All units are MeV.

B(S/1ka))=€°|ny,n1,n5,1;), (44)  Set M My ms A
= — B — — (A) 400 6 200 700

where S=n;—n;+ny—n, and lgz=(ny—ny nzﬂ'an)/Z. ®) 400 6 190 700
We assume that the bare stég,n;,n,,n,) contains only
the valencdantikaons[19] and the kaon-antikaon pairs are
created by the unitary transformation E42) with B. Collective rotation Hamiltonian 7., and kaon-rotation

0 f interaction Hamiltonian 7y,

Y
9,= ( #* 0 ) : (45 The explicit forms ofH,,; and;,, are given in Appendix
Y

B. H,o,: can be diagonalized in the space spanned by the
wheref , is a complex constant. Sin&=0 for the octet and eigenstatd,js,Js;l.i3,13), whereJ andJ; (I andly) are

decuplet baryons the eigenvalues of the body fixed spisospin) operators and
j3 (i3) is the eigenvalue of the space fixed spgisospin
|B(S,IK3)>=e‘G|0,Fl,OHZ>. (46) ~ orator. The explicit representation of the eigenstate for the

Euler angles is given by the direct product of the WigbBer
Here S= —n;—n, and | «3=(—n+n,)/2. For the fixeds, ~ functions in real and isospin spagks.

we obtain the “multiplet”|B(S,I«3)) obeying Hin: algebraically mixes together the space of the kaon
and the collective rotation. By using the constraint E3f)
—S=21¢3=S, (470 with Eq. (25), the basis vector for the whole space is given
by

sincen;,n,=0. The energy eigenvalue of the solitenthe , .
kaon s;stém is calculated by [9:13:93; 113, — (J3+1ka))[B(S,  ka))- (52)

Ea(S,Ika) =Eci+(B(S,Ika)|Hk[B(S,Ika)). (48  Because the total HamiltoniaH commutes withS, the di-

Since the isospin symmetry is broken by the soliton ﬁeldagonalization is well performed in the subspace with fixed

[14], the stategB(S,Ix3)) with the differently; are not eigenvaluesl,js), (1,i5) andS However, sincels, |5, and

degenerte even witin the mutpet. Heeafer the lowesf 3 11 9000 Sl numbers rebicual. e o
eigenvalue is denoted Wyg,(S,|«3) and the corresponding Y

state is denoted byB(S, 1 ka)). given by a linear combination of the basis E§2):

The matricegy,, are determined by the variational equa-
tions for the lowest statiBy(S,Ik3)):

5(Bo(S )| M Bo( Sl a)
59, 0 49 —(Ja+1ka))|B(Slka)). (53

W(Sdjsilizia)= 2 CJ i disdsilis,
J3.lks

Thus, the values ofg, are given for the individual
|Bo(S,1k3)) with S corresponding to the baryons, and used
for calculation of the higher statd8(S,1x3)) in the same
multiplet.

Furthermore, we demand that the valueskgf and g3
[Egs. (9) and (10)] are determined by the self-consistent
equations fo By(S,1k3)):

kpo=(Bo(S,I3)| k0|Bo(S:Ik3)). (50

kpa={(Bo(S.Iks)| k3|Bo(S:Ik3)). (51) Of course, since we perform the quantization of the kaon and
the collective rotation around a specific Hartree state
We call the statéBy(S,1x3)) with Egs.(49), (50), and(51) |Bo(S,1k3)) which breaks the isospin symmetry, the symme-
the Hartree state. try is not perfectly restored. Thus, the calculation of the
Here, one should recognize that the Hartree state does nphysical quantities with the rotational band HE§3) is an
necessarily correspond to the absolute minimum ofestimate.
Ego(S,1k3) in the parameter spacegg,«g3). It is because The number of bases in E¢53) decreases from @
that the solutionkgy of Eq. (50) is restricted by the strange- +1)(21+1) due to the constraint E¢34) and thus the axial
ness of the baryon and the absolute minimum can be ursymmetry of the soliton. For example, the bases forthe
physical point which does not correspond to the solution. particle (S=—-1,J=1/2]=1) are given by

where « indicates quantum numbers other thaps,l,is,
and S This means that the isospin symmetry broken by the
soliton (Sec. 1) would be restored by the collective rotation.
One of the scales for the isospin symmetry breaking is the
expectation value ok for the rotational band:

ky3=(V|ks|¥). (54
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FIG. 1. E. +Eko, WhereEgg is the lowest eigenvalue ¢y,
[Eq. (37)]. Here kgy and kg5 are treated as parameters.

(55
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V. RESULTS

For the effective action Eq(2), we use Schwinger’s
proper time regularizatiof8,10,23 with the cutoff param-
eter A. And we assume that the valence quarks are in the
lowest positive energy state. Thus, we have four parameters:
the dynamical quark madd, the current quark masses,
=my andmg, andA. In Table | we show two parameter sets
that we have considered. S&t) is the same as the param-
eters in Ref[14] and used for comparison with the results.
Set(B) has been obtained by fitting to the experimental val-
ues.

At first, we give the results for s€f\). Let us denote the
lowest eigenvalue ofHkq [EQ. (37)] by Eko. Then, E
+Ego is the lowest order approximation of the energy for
the soliton+ the kaon system. This is a sufficient quantity to
see the qualitative tendency of the system in tkgy(xg3)
space. The more accurate calculation is performed below
with the Hartree approximation. Figure 1 shows kg and
kg3 dependence o+ Ekg in the cases 06=0,—1,—2,

—3, wherexgy and kg3 are treated as parameters. Agg
grows, the graphs decrease 8+ —1,—2,—3. It is because
that the SU3) symmetry breaking stabilizes thg# 0 state

for the strange sectors and thg,=0 state for the non-
strange one. On the other hand, the isospin symmetry is bro-
ken by the soliton solution. Then they;# 0 states are stable
for S=—-1,—2,—3 and thekzg3;=0 state is stable fo=0.
However, E; +Eyp is an even function okg; because of
the isospin symmetry of the model itself.

These graphs are flatter than our previous requl#
which represent the behavior of the lowest eigenvalue of the
O(1) Hamiltonian ofH [Eq. (33)] in the largeN,, limit. The
difference is mainly due to the terms depending B of
Hyo. These terms partially restore the isospin symmetry bro-
ken by the soliton in the parameter spaeg(, xg3). The flat
regions in the graphs indicate that the HamiltoniBp
+Hyo accurately describes the combined system of kaon
and soliton there.

Next, we show results of the Hartree approximation. For
S=0,—1,—2,—3, the Hartree states which satisfy EG89),
(50), and (51) are self-consistently searched. Then, the val-
ues ofkgg, kg3 are determined. Table Il shows the resultant
Kgo, |Kkgsl, E¢, andEgg [EQ. (48)]. It is found from the
process that the stable solutions of E4P) exist only in the
vicinity of xkg3~0 or kgo=~|kgs|. Moreover, Eqs(50) and
(51) restrict the choice toxgy~|kgs|. In general, kg
=|kpgs| is not satisfied by the dressed state Efp). The

TABLE Il. kg, |kg3|, Eci» andEgg [Eq. (48)] of the Hartree
states forS=0,—1,—2,— 3. The set of parameters (8.).

After the diagonalization of the total Hamiltonigk with S B0 | el Ec (MeV) Eeo (MeV)
these bases, we obtain the four rotational levelsX¥oWe 0 0.00 0.00 1326 1326
assign the level with the lowest eigenvalue3asn the real -1 0.81 0.81 1463 1487
world. As the shape of the chiral soliton approach the hedge- —2 1.64 1.64 1498 1600
hog one, other higher levels become heavy and disappear —3 252 2.52 1505 1713

from the system. For the other baryon, we equally do.
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TABLE Ill. (Bl|ko|B), (B|«3/B), and Eg [Eq. (48)] for the TABLE V. kyg, |3, Baryon massegy, . for the set of pa-
multiplet |B(S,1k3)) in the Hartree approximatiofBy) is the Har-  rameterA). Expt. denotes the experimental value.
tree state corresponding to the lowest energy eigenvalue in a mui=

tiplet. The set of parameters (8.). S Particle «yo |kws] Eg (MeV)  Expt.(MeV)
|B(S,Ik3)) (Blxo|B) (B|xs|B) Eg(MeV) 0 N 0.00 0.00 1382 939
A 0.00  0.00 1608 1232
|Bo(0,0)) 0.00 0.00 1326
-1 A 075 0.08 1205 1116
|Bo(—1,+1/2)) 0.81 -0.81 1487 by 0.75 0.08 1239 1193
|B(—1,—1/2)) 0.68 0.68 1517 S* 0.75  0.07 1453 1384
|Bo(—2,+1)) 1.64 —-1.64 1600 -2 = 1.43  0.28 1389 1318
|B(—2,0)) 1.42 —0.22 1948 =l 142 0.25 1669 1534
|B(—2,—1)) 1.20 1.20 1671
-3 Q 2.13  0.30 1738 1672
|Bo(—3,+3/2)) 2.52 —2.52 1713
|B(—3,+1/2)) 2.27 -1.10 2301
|B(—3,—1/2)) 2.02 0.33 2335

different values even in a multiplet.

Finally, we give the results by the collective rotation.
Table IV shows the possible rotational bands by the diago-
nalization with Eq.(53). As the deformations of the soliton
only pure valence kaon state defined by Ef) satisfies this  pecome large, the excitation energy between the lowest and
relation. Our result indicates that the kaon state is stablghe first excited state decrease. Table V shows the lowest

against the particle-antiparticle creation in the vicinity of the - :onal band. which we assign as the baryon. Herg,
solution. As stated in Sec. IV, the Hartree state does not : '

o =(W|ko| W) similar to Eq.(54).
correspond to the absolute minimum By (S, «3), but the
energy difference is not more than 10 MeV. The calculated masses 80 baryons N,A) are larger

The value ofxg; determines the shape of the chiral soli- EEZ? misee)(peﬁgimgn\;agg; 'segflr;tectri%étgfm’tig 2610
ton[14]. Sincekgz=0 for S=0, the chiral soliton takes the P PP y 9

hedgehog shape in the Hartree approximation. On the othépCde due to the hedgehog shape of the soliton =0, we
hand, sincexgs#0 for S#0, the chiral soliton takes non- see(B|x3B)=0 in Table Ill. It means that the soliton al-
hedgehog shape. Although, compared with our previous ré¥ays .takes the hedgehog shape. Thus, the rotational band for
sults[14], the values ofkg, and|«gs| are rather small, the S=0 in Table V also producg;=0 exactly.
conclusion about the shape of the chiral soliton does not On the other  hand, for S#0  baryons
change. From the present point of view, it is clear that thA, *), E*), Q), the calculated masses are light. We can
kaon states defined in Refl4] are unstable against the recognize from a comparison between the Tables Il and V,
particle-antiparticle creation. that it is due to the collective rotation in isospin and real
In Table Ill, we show the expectation values &f, k3,  Space. The rotational bands f8# 0 contain the fluctuation
andEg [Eq. (48)] for each multiplet in the Hartree approxi- caused by the transition within the multipl&(S,1y3)) in
mation. Here, the only multiplets which contain the HartreeTable. lll. As a result we obtain the expectation vakig;
state|By(S,1k3)) with kgz<0, are listed. Fokg;=0, only =0 in Table V.
the signs ofl x5 and(B|«5|B) are reversed. Because of the  Next, we show the possible rotational bands for the an-
isospin symmetry breaking, the quantities in Table Ill takeother set(B) of parameters in Table VI.

|B(—3,—3/2)) 1.76 1.76 1814

TABLE IV. The possible rotational bands with EGJ) for the TABLE VI. The possible rotational bands with E3) for the
set of parameteréA). set of parametereB).
S Particle Bands (MeV) S Particle Bands (MeV)
0 N 1382 0 N 1382
A 1608 A 1608
-1 A 1205 2448 -1 A 1178 2499
3 1239 2475 2691 5170 3 1212 2527 2742 5379
3* 1453 2478 2697 4951 5173 8888 3* 1425 2529 2747 5159 5380 9332
-2 = 1389 1848 2109 3023 -2 =] 1340 1869 2122 3177
B* 1669 1848 2141 2764 3042 4400 g* 1609 1868 2149 2925 3192 4763
-3 Q 1738 2124 2831 3901 -3 Q 1654 2093 2915 4157
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VI. SUMMARY AND DISCUSSION soliton. In fact, if SU3) symmetry breaking vanishesng
. : .. =0) in the quark Hamiltonian, the soliton always takes the
The stability of the hedgehog shape has been investigat dgehog shape independently of the strangeness. Thus, it is

for the octet and decuplet baryons in the chiral'quark Somonsurprising that) (|ss$) also takes the nonhedgehog shape.
model. _We have _expanded the collective Hamllt(_)rﬂarup The solution to the problem is in Eq&5) and (14). The
to the first order in power of N and the fluctuationd,)  former indicates that the emission and absorption of the kaon
around the mean field, and separate it into the kaon, thgayse the isospin rotation of the soliton. The latter indicates
collective rotation, and the interaction Hamiltonian. that its recoil effectgthe rotated quark masasymmetrically

The kaon Hamiltonian are diagonalized by the Hartreeact on the isodoublet quarks in the body fixed frame and
approximation. The resultant Hartree states describe the soltause the direction of the isospin vector the asymmetry.
ton and the kaon in the background soliton. The kaons argince the soliton consists of valence and sea quarks, even
almost in the valence states and stable against the particlethough the masses of valence quarks are equivalent, these
antiparticle creation. The shape of the soliton is controlled byprocesses happen as far as the kaon states bear the isospin.
the parametergg, and kg3 Which also characterize the state As a result, the soliton takes the nonhedgehog shap& for
of the kaon, and are self-consistently determined. The solitor- —1,—2,— 3, stably.

takes the hedgehog shape for strange®es8 and the non- Inclusion of the locality is in progress but a complicated

hedgehog one fo=—-1,—2,—3. task. Therefore we will include the results in the future work.
The Hamiltonian for the collective rotation of the soliton

is diagonalized by the angular momentum basis in isospin ACKNOWLEDGMENTS

and real space. The interaction between the rotation and the ]
soliton is treated by the linear combination of the direct ©One of us(S.A) would like to thank H. Kondo and C.
product of the angular momentum basis and the Hartree statgsuda for many helpful discussions and encouragement.
with the constraint due to the axial symmetry of the soliton.

The S=0 rotational bands include only the pure hedgehog APPENDIX A: FUNCTIONS RELATED
state and have the heavy masses. Weigell. investigated =~ TO THE ROTATION INTO THE STRANGE DIRECTION
the quantum correction due to the zero modes of the “hedge-
hog” soliton [24,25. The correction gives a large negative
contribution (~—400 MeV) to theN and A masses, and 1—cosykg
their results are in good agreement with the experimental f=—,

At first, we define the following quantities:

values. Their analysis is valid also for tise=0 baryons in Ko
our approach. i
On the other hand, fo+ 0, the rotation mixes the Har- - sinVkg
tree states with nonzero values i3, and the resultant ro- \/K—o ’
tational bands consist of the mixing of the “nonhedgehog”
states. As a result, th8+ 0 baryons have light masses. It is 1 0
clear from the separation of the variables in the collective X+:<O), X:<1>,

Hamiltonian that the light masses of tl&#0 rotational

bands are due to the rotation of the nonhedgehog soliton. The

calculation of Weigelet al. would be inapplicable to th&

=0 cases, because the soliton take the nonhedgehog sh . : 8 s

and the zero mode does not arise. Thus, the consistent trezlzﬁe WignerD functions DE“Z(AS) [Bq. (6)] are explicitly

ment of the deformation of the soliton and the zero mode "o &°

would resolve the reversed mass order betweeisthé and 1

S=0 baryons. Di(j8>=5ij(1—,<0f)+§,<i,<jf2, (A1)
The multiplicity of the basis due to the axial symmetric

deformation of the soliton necessarily produces the excited )

states with the same spin-flavor quantum numbers as the DE;?)— —19 (DTI;]X+_X1;jD)r (A2)

H=r-xf (=123,

ground state. For th8= —1 baryon, the energy differences \/E
between the ground state and the first excited one are too
large (~1 GeV) because of the small deformation of the -9 . _
soliton. Thus, these excited states may be beyond the validity D= —=(D"7x, +x\7D), (A3)
of the model. On the other hand, the first excited states for V2
S=—2,—3 have the moderate mass and would be assigned
to the excited baryon in the real world. However, the strict NO —ig N .
assignment needs more symmetric treatment of the Hartree 6] — f( TiX-~Xx-7D), (A4)
states and the collective quantization.
Our study originated from the observatiph4] that the
S=—1,—2 baryons consist of quarks with different masses D®= __g(DT;‘X_jLX’L;,D), (A5)
and that the inertial force would deform the shape of the ) \/f ' J

014001-8
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3
DE)=——-g’«;. (A6)

3
D®)=— \ég(l—Kof)i(DI_Dl), (A7)

3
DE=— \[Egu—xofxDHDl),

(A8)
3 .
Dg%)z — \[Eg(l—Kof)l(D;—Dz),
(A9)
3
DE— - \[Eg(l_Kof)(DI+ Dy,
(A10)
(8) 3 2
D88:1_§g Ko (All)

wherei,j=1,2,3.

The isodoublet spinor€, [Eq. (19)] are represented as

Cj:_if(ZTj_Kjf)D, (A12)
-9
Cs=129 X++K—w<DI+Dl>D—f<DI—Dl>D},
(A13)
: 1-9 t
Cs=—i\2g X+ F g (D1=DD—F(D1+D1)D |,
(A14)
1-9 T
Co=12g X-F g (D2+D2)D (D3 DD |,
(A15)
. 1-g .
C;=—iv2g X-F g (D27 Do)D—f(D2+D,)D |,
(A16)
Cg=—i+/3g°D. (A17)

The functionsN;, F;, G; (i=1,2) in Eq.(32) are defined

by
N:=(DE)?+(DE)%  N,=(DE)?+ (D)2,
i ~ ~
F1=5[(1+x5f)(D'P—P'D)

+(1_ Kof)(DTT3’I5_~F’)TT3D)],

PHYSICAL REVIEW D59, 014001 (2004

i tP_pt
Fo=5[(1-xsH)(D'P-P'D)

— (1= kof)(DTrP—PTr3D)], (A18)

G, = %(1—K0f) (g— (1':09) K3)(DT5+|3*D)

+(DTrsP+PTr3D)

(1-9)

Ko

1 -
Go=5 (1 of)|| g+ K3)(DTP+PTD)

—(D'r3P+PT73D)

APPENDIX B: COLLECTIVE HAMILTONIAN

We define the following quantities:

A -=1(DTT-P+PTT-D) (j=1.23
KiT—o ] j 1419

_ sinykgo 1 1( 1 1)

9= " — ' $,. 2\Un Ue
KBo () 44 66

1/A A
A(i):_ i‘i—%),
2 U44 U66

B3Asg
Eina=3Mgg3 KBO(FB_ U
33
+E( _BsAgs) B%
J3 % Ugs | |2Ugs”

Furthermore, for the arbitrary three dimensional vectors
=(X1,X2,X3) and y=(y1,Y2,Y3), we introduce following
symbol:

(X-y) | =X-Y—X3Y3.

The collective Hamiltoniar¥{ [Eqg. (33)] is expanded up
to the first order in power of N ando, and separated as

H=E¢+Hk+ Hiot+ Hint (B1)

whereE_, is the classical soliton energyii is the part con-
taining only the kaon operatof® and P and describes the
kaon in the background solitori{,; is the part containing
only the angular momentg andJ; and represents the col-
lective rotation of the system in isospin and real space, and
Hint represents an interaction between the kaon and the ro-
tation.

The kaon Hamiltoniart is given by

HK:HKO+HK11 (BZ)

014001-9
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1 1
HKOZEind+ PTP“— PT7'3P

2
BBABB) ( BS )
+3|=———+mg| A \Bg—T'g+ +3| ———+mgA S
8(1)( 8 (+)Ps— 18 U33 Ko \/_ 4(1)(+) 82 (+)
B I's BsAss)
+3| = +mg| A_\Bg— — + +(( +m8A )2|K3, (B3)
8, “) V3 V3Ug 40— “

1 ~ 1 (s 1, 12,
HKl:—Z[Vll(IK'lK)L+2\/§m8(V11A11_W11A11)(K'|K)L]+m B 3kt

2(U1V1— W1y 2q)(+)
+l<SI [|XA])+\/§B+A)S+\/_(B+A)I
k3~ LIk XAkls Mg K3 Mg K3lks
30 40 ) 40, (+)
\/5 Bg Bg BSA38 ) B8
+ — —4q)(+)_m8A(+) KOS+ —4q)(+)—m8(A(+)Bg—F8+ U33 ) K0+ ﬁ(m_mgA(_) K0|K3

2
KoK3, (B4)

I's A

8 BsAss

I
40 © \/_ V3Ug;

whereHy, is the bilinear part ofHx in power of D and P andH, is the higher order one.
The collective rotation Hamiltoniaf,,; and the kaon-rotation interaction Hamiltoniaf;,; are given by

Js
[Via(l-1) +U;4(3-3); +2Wyy(1-) ]+ J3+ Uss 3m89R ) (B5)

Hrot=

1 KB3
20U Vq— W2, KgoAag+ —=A33| —B
2( U 11V11— Wil) 2U 33 B0~ 38 /—3 33) 3

1 Bg 1
Hine= =5 (D1 =B g+ el oy | (e 1), = 5 —[1X A3

+ [Vl D+ V3Mg(V11A 13~ Wi& 1) (- 1), + Wi+ ), + V3mg(WiiA 13— UgsB 1) (& J), ]
(Ug1V1— Wiy

S 3m8 K3
+J3 4(13( ) 2®(+)+\/— +m8A(+) K3+\/— )+m8A( )) U_33 K0A38 \/§A33 . (BG)
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