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Nonrigid chiral soliton for the octet and decuplet baryons
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A systematic treatment of the collective rotation of the nonrigid chiral soliton is developed in the SU~3!
chiral quark soliton model and applied to the octet and decuplet baryons. The strangeness degrees of freedom
are treated by a simplified bound-state approach which omits the locality of the kaon wave function. Then, the
flavor rotation is divided into the isospin rotation and the emission and absorption of the kaon. The kaon
Hamiltonian is diagonalized by the Hartree approximation. The soliton changes the shape according to the
strangeness. The baryons appear as the rotational bands of the combined system of the soliton and the kaon.
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I. INTRODUCTION

The soliton picture of the baryon is employed by ma
effective models of QCD in the low energy region: th
Skyrme model@1–6#, the Nambu–Jona-Lasinio model@7–9#
and the chiral quark soliton model~CQSM! @10–13#. A tech-
nical feature of the picture is the separation of the inter
and external degrees of freedom. The internal degree
freedom ~mesons, quarks! nonlinearly interact with each
other and construct the soliton self-consistently. On the o
hand, the external degrees of freedom describe the collec
motions of the soliton: rotation, vibration, translational m
tion. To solve the coupled equations for these degree
freedom, for technical reasons, one should assume the de
pling of the internal degrees of freedom with the collecti
motion and employ the simplest ansatz for the soliton:
hedgehog shape. For example, in the CQSM, the equat
of motion for the soliton consist of the local functions of th
meson profile and the infinite eigenstates of the quarks in
background soliton. Then, the equations should be s
consistently solved. The process requires a large numbe
calculations by the computer. It is hard to self-consisten
incorporate the interaction between the nonrigid soliton a
the collective motion. Thus, the symmetry of the soliton is
technically important ingredient to reduce the number of c
culational steps. From a physical point of view, however
seems oversimplified that one assumes the symmetry w
is broken by the collective rotation.

In the previous work@14#, we studied these assumption
for the octet baryons with the CQSM. To overcome the co
plexities of the self-consistent calculation for the nonrig
soliton and incorporate the interaction between the sol
and the collective motion, we introduced the physical and
mathematical tools: the mean field approximation for the
tated system, the tensor operatorZKK3

JLSI( r̂ ) for the grand spin

which is used to expand the chiral field, and the explicit fo
of the isospin vector of the chiral soliton with the qua
states. The result indicated that the hedgehog shape o
soliton is stable only for the nucleon~N! and unstable for the
strange baryons (L,S,J). Thus, the soliton changes th
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shape according to the strangeness of the baryon.
Although these tools are applicable to more general s

tems, the collective Hamiltonian takes a complicated fo
and the outlook of the collective quantization is bad due
the less symmetry of the nonrigid soliton than the hedge
one. Therefore, in this paper, we reformulate the collect
Hamiltonian and improve the procedure of the collecti
quantization given in Ref.@14#. Furthermore, we introduce
the Hartree approximation for the kaon to simplify the tre
ment of the particle-antiparticle creation@14#. We apply these
improved tools to the octet and decuplet baryons.

In Sec. II, we review the SU~3! CQSM and the mean field
approximation for the rotated system. In Sec. III, the varia
transformation between the two types of the parametriza
for the flavor rotation is given. In Sec. IV, first, we constru
the collective Hamiltonian using the variable transformatio
Next, we show the Hartree approximation for the kaon in
background soliton and define the basis for the collect
quantization using the Hartree states. In Sec. V, we show
numerical results of the Hartree approximation and the c
lective quantization. Finally, in Sec. VI we summarize t
results and discuss the relation between the deformatio
the chiral soliton and the kaon.

II. MODEL AND THE MEAN FIELD APPROXIMATION
FOR THE FLAVOR ROTATION

Hereafter we follow the notation used in Ref.@14# for the
various quantities. The chiral quark soliton model in the ca
of flavor SU~3! is given by the path integral with respect
the chiral meson fields and the quark fields@10,11,15#. We
postulate the so called cranking form@2,16# for the meson
field:

Ug5~x!5A~ t !B†~ t !U0
g5~r !B~ t !A †~ t !, ~1!

whereU0
g5(r ) is the static meson field,A(t) describes the

adiabatic rotation of the system in SU~3! flavor space, and
B(t) describes the spatial rotation. Then, the effective act
for Ug5 is reduced to

iSF5Nclog det~ i ] t1 iA †Ȧ1 iBḂ†2H8!, ~2!
©2004 The American Physical Society01-1
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where det denotes the functional determinant for the qua
Nc is the number of colors, andH8 is the rotated quark
Hamiltonian defined below.

For U0
g5, we assume the embedding of the SU~2! field to

the SU~3! matrix but do not assume the hedgehog shape@14#.
We write the flavor rotation@17# as

A~ t !5S A~ t ! 0

0† 1DAs~ t !, ~3!

whereA is the flavor SU~2! rotation operator andAs repre-
sents the rotation into the strange directions. In particular,
parametrizeAs(t) as

As~ t !5expi S 0 A2D~ t !

A2D†~ t ! 0
D , ~4!

where D5(D1 ,D2)T is the isodoublet spinor. From th
transformation property under the flavor rotation, we callD
the kaon field. In Ref.@19#, it is argued thatD;1/ANc in the
large Nc limit due to the Wess-Zumino term, even if th
strange quark mass is light. We also employ the classifica
and treatD perturbatively. Although Eq.~4! was motivated
by the bound-state approach@18#, we will not treat the local-
ity of the kaon wave function@19# in this article. Inclusion of
the locality is a complicated task.

From the current quark mass matrix:m̂5m0l0
1m8l8 (m350), we obtain the rotated one:

m̂85A †m̂A5m0l01m8D8m
(8)~As!lm , ~5!

whereDmn
(8)(As) (m,n51,2, . . . ,8) is the Wigner D function

of As in the adjoint representation:

Dmn
(8)~As!5

1

2
tr~As

†lmAsln!. ~6!

The value ofm8 represents the strength of the flavor SU~3!
symmetry breaking.

Here, we define the following quantities:

k0[2D†D, ~7!

k j[2D†t jD, ~8!

wherej 51,2,3, and give the explicit form ofDmn
(8)(As) in the

Appendix A. Suppose that the collective motionsA and B
are quantized anduB& as an eigenstate of the collectiv
Hamiltonian. If uB& points to a specific direction in the isos
pin space,

kB05^Buk0uB&, ~9!

kB35^Buk3uB& ~10!

have nonzero values@14#. Then, the expectation valu

^Bum̂8uB& may be approximated by

m̂B5m0l01mB3l31mB8l8 , ~11!
01400
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with

mBm5m8 lim
k0,3→kB0,3

D8m
(8)~As! ~m53,8!. ~12!

We call m̂B the mean field value ofm̂8.
Using these quantities, the rotated quark HamiltonianH8

in Eq. ~2! is given by

H85H081DH8, ~13!

H085
1

i
a•¹1b~MU0

g51m̂B!, ~14!

DH85b~m̂82m̂B!5bTmsm , ~15!

whereM is the dynamical quark mass,sm (m51,2, . . . ,8)
defines the fluctuation around the mean field, andTm

5lm/2. H08 contain the effects of the flavor SU~3! and SU~2!

symmetry breaking through the mean fieldm̂B .
We expand SF in power of the angular velocities

( iA †Ȧ, iBḂ†) and DH8 around the eigenstate of (i ] t

2H08) to get the effective LagrangianL @12,14#. The former
corresponds to the 1/Nc expansion@20–22#. We retain the
order of the expansion up toO(1/Nc). The latter corresponds
to the perturbation in power ofsm , which is given by the
product of m8 and the fluctuation ofD8m

(8)(As) around the
expectation value. We assume that the large parts of the
vor SU~3! symmetry breaking are included in the lowest o
der term ofSF through the mean fieldm̂B and the residual
effects can be estimated by the first order perturbation insm .
In fact, the fluctuations is small, since the expectation val
of D8m

(8) are evaluated according to the individual bary
states. For example, the fluctuation ofD88

(8) starts from the
difference between theO(1/Nc) quantities in the largeNc
limit: 23(k02kB0)/2. Furthermore, the fluctuation is a
ways accompanied bym8. The value ofm8 is about 200
MeV and fairly small compared with the typical energy sca
L which is the energy cutoff parameter around 700 Me
Here, the small value ofm8 /L does not contradict the per
turbative treatment ofD in the largeNc limit, since the kaon
field D;1/ANc independent of the strange quark mass,
noted above.

The static meson fieldU0
g5 is self-consistently determine

@11# by a variation of the classical soliton energyEcl which
corresponds to the lowest order term ofSF . Because of Eq.
~11!, it introduces the isospin symmetry breakingkB35” 0 to
the system in the body fixed frame. Here,kB35” 0 leads to an
axially symmetric deformation of the chiral soliton@14#.

It was pointed out in Ref.@27# that the Skyrmion must be
improved by the flavor SU~2! rotation to resolve the
‘‘Yukawa problem.’’ Then, the shape of the Skyrmion dev
ates from the hedgehog one in the body fixed frame. T
hedgehog shape of the soliton is the leading order term in
large Nc limit and the deviations correspond to the high
1-2
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order terms. In our case, the effects of the rotation into
strangeness directions deform the hedgehog soliton.

III. VARIABLE TRANSFORMATION

We argue the relation between the two types of the
rametrization for the flavor rotation. First, we define the lo
variablesa anda of the rotationA andA, respectively, by

ȧmTm52 iA †Ȧ

5As
†S 2 iA†Ȧ 0

0† 0
D As2 iAs

†Ȧs,

~16!

ȧ j
t j

2
52 iA†Ȧ, ~17!

wherem51,2, . . . ,8, andj 51,2,3. Amongȧm, ȧ j , andḊ,
there is a relation

ȧm5ȧ jD j m
(8)~As!1Ḋ†Cm~As!1Cm

† ~As!Ḋ, ~18!

whereCm is a isodoublet spinor defined by

Cm~As![
1

i
trS As

†]As

]D†
lmD , ~19!

and its explicit form is given in Appendix A. SpinorsCm and
D are related to the WignerD function Dmn

(8)(As) by the fol-
lowing equations:

i S D†
t j

2
Cm2Cm

† t j

2
D D5d j m2D j m

(8) , ~20!

i ~D†Cm2Cm
† D !5

2

A3
~d8m2D8m

(8)!. ~21!

Next, we investigate the relation among the canonical m
menta. The effective LagrangianL which is a function of
ȧm, is also a function ofȧ j and Ḋ through Eq.~18!. The
canonical momenta conjugate toam are defined by

I m
A5

]L
]ȧm

. ~22!

On the other hand, the canonical momenta conjugate toaj

andD are defined by

I j5
]L
]ȧ j

5D j m
(8)I m

A , ~23!

P5
]L
]Ḋ†

5CmI m
A . ~24!

For the isospin rotation, using Eqs.~20!, ~23!, and~24!, we
obtain
01400
e

-
l

-

I j
A5I j1I K j , ~25!

whereI K j is the isospin carried by the kaon:

I K j5 i S D†
t j

2
P2P†

t j

2
D D . ~26!

Furthermore, using Eq.~20!, we obtain

Y5S2
2

A3
I 8
A , ~27!

where the term2(2/A3)I 8
A is the baryon number@26#, S is

the strangeness carried by kaon, andY is the ~left! hyper-
charge defined by

S5 i ~D†P2P†D !, ~28!

Y52
2

A3
D8m

(8)I m
A . ~29!

We define

P̃5P2CjI j
A2C8I 8

A . ~30!

For the rotation into the strange direction, Eq.~24! is rewrit-
ten as

CaI a
A5 P̃, ~31!

wherea54,5,6,7. This equation is solved forI a
A as follows:

I 4
A52

A3

2N1
~D84

(8)F11D85
(8)G1!,

I 5
A52

A3

2N1
~D85

(8)F12D84
(8)G1!,

I 6
A52

A3

2N2
~D86

(8)F21D87
(8)G2!,

I 7
A52

A3

2N2
~D87

(8)F22D86
(8)G2!, ~32!

whereNi , Fi , and Gi ( i 51,2) are functions ofD and P̃,
and given in the Appendix A.

IV. COLLECTIVE QUANTIZATION

In the same manner as Eq.~22!, we introduce the canoni
cal momentaJj conjugate to the local variablesbj of B(t)
@14,16#. Then, the collective Hamiltonian is given by
1-3
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SATORU AKIYAMA AND YASUHIKO FUTAMI PHYSICAL REVIEW D 69, 014001 ~2004!
H5ȧmI m
A1ḃ jJj2L

5Ecl1
1

2U33
~J32B31s3D331s8D38!

21s3G31s8G8

1
1

2~U11V112W11
2 !

(
j 51

2

@V11~ I j
A2s jD11!

2

1U11~Jj1s j D̃11!
212W11~ I j

A2s jD11!~Jj1s j D̃11!#

1
1

2U44
@~ I 4

A2s4D44!
21~ I 5

A2s5D44!
2#

1
1

2U66
@~ I 6

A2s6D66!
21~ I 7

A2s7D66!
2#, ~33!

where Ecl , Umn , Vmn , Wmn , Dmn , D̃mn , Bm , and Gm are
defined in Ref.@14# and calculated with the quark states
the background soliton. Especially,Ecl is the classical soliton
energy. Because of the axial symmetry of the chiral fie
there is the following constraint on the canonical momen

I 3
A1J350. ~34!

In our approach, the Hamiltonian and the constra
should be considered as functions of the variablesaj ,bj ,D,
and the momentaI j ,Jj ,P with Eqs. ~25! and ~32!. Further-
more, we expandH up to the first order in power of 1/Nc and
sm . The explicit form of the collective Hamiltonian is give
in Appendix B.

In Ref. @14#, the derivation of the Hamiltonian from th
Lagrangian was performed by the perturbation with resp
to 1/Nc and m8. As a result, the Hamiltonian had a high
complicated form. On the other hand, the present form oH
is simple and has a good foresight.

For the quantization of the system, we separateH as

H5Ecl1HK1Hrot1Hint , ~35!

whereHK is the part containing onlyD andP and describes
the kaon in the background soliton,Hrot is the part contain-
ing only I j andJj and represents the collective rotation of t
system in isospin and real space, andHint represents an in
teraction between the kaon and the rotation.

A. Kaon Hamiltonian HK

We separateHK into a bilinear partHK0 and a higher
order partHK1 in power of the kaon operatorsD andP,

HK5HK01HK1 . ~36!

The explicit form of the these quantities are given in Appe
dix B.

HK0 , S @Eq. ~28!#, and I K3 @Eq. ~26!# can be exactly di-
agonalized as follows@14,19#:

HK05Eind1 (
g51

2

~vgjg
†jg1v̄gj̄g

†j̄g!, ~37!
01400
,
:

t

ct

-

S5 (
g51

2

~jg
†jg2 j̄g

†j̄g!, ~38!

I K35
1

2
~j1

†j12 j̄1
†j̄12j2

†j21 j̄2
†j̄2!, ~39!

where Eind is defined in Appendix B,g is isospin index,
jg

† (jg) and j̄g
† ( j̄g) are the creation~annihilation! operators

for the kaon and antikaon, respectively, andvg (v̄g) is the
energy eigenvalue of the kaon~antikaon!. The Fock space is
generated by successive operation of the creation opera
on the vacuum stateu0&:

un1 ,n̄1 ,n2 ,n̄2&5 )
g51

2 1

Ang! n̄g!
~jg

†!ng~ j̄g
†! n̄gu0&, ~40!

whereng and n̄g are some positive integers.
Henceforth, any quantity depending onD and P is con-

sidered as a normal ordered operator with respect
jg

† , jg , j̄g
† , andj̄g . Using this prescription, we can treat th

anharmonic terms ofH without any ambiguity. The choice o
HK0 is important, because the creation and annihilation
erators are given by the diagonalization ofHK0. In Ref.@14#,
we use theO(1) HamiltonianH0 of H in the largeNc limit
to define the creation and annihilation operators. The dif
ence betweenHK0 andH0 is higher order terms in the larg
Nc limit. In the previous work, we classifiedB3 as an
O(1/Nc) quantity and treated these terms in the rotatio
kaon interaction. In this paper, we throw this classificati
away and require only thatHK0 contains all bilinear term
with respect toD andP in H.

To incorporate the effects of the anharmonic termHK1,
we employ the Hartree approximation. In this approximatio
a bare isodoublet spinor

Xg
†5S jg

†

j̄g
D , ~41!

is transformed to a dressed oneX̃g
† by a unitary transforma-

tion:

X̃g
†5eiGXg

†e2 iG, ~42!

whereG is a Hermitian operator. Since the kaon Hamiltoni
HK commutes withS and I K3 , G takes the following form:

G5 (
g51

2

Xg
†ggXg , ~43!

wheregg are 232 Hermite matrices.
1-4
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The unitary transformation Eq.~42! with Eq. ~43! does
not changeSandI K3. The dressed state with the good qua
tum numbersS and I K3 is defined as

uB~S,I K3!&5eiGun1 ,n̄1 ,n2 ,n̄2&, ~44!

where S5n12n̄11n22n̄2 and I K35(n12n̄12n21n̄2)/2.
We assume that the bare stateun1 ,n̄1 ,n2 ,n̄2& contains only
the valence~anti!kaons@19# and the kaon-antikaon pairs a
created by the unitary transformation Eq.~42! with

gg5S 0 f g

f g* 0 D , ~45!

wheref g is a complex constant. SinceS<0 for the octet and
decuplet baryons,

uB~S,I K3!&5eiGu0,n̄1,0,n̄2&. ~46!

Here S52n̄12n̄2 and I K35(2n̄11n̄2)/2. For the fixedS,
we obtain the ‘‘multiplet’’ uB(S,I K3)& obeying

2S>2I K3>S, ~47!

sincen̄1 ,n̄2>0. The energy eigenvalue of the soliton1 the
kaon system is calculated by

EB~S,I K3!5Ecl1^B~S,I K3!uHKuB~S,I K3!&. ~48!

Since the isospin symmetry is broken by the soliton fi
@14#, the statesuB(S,I K3)& with the different I K3 are not
degenerate even within the multiplet. Hereafter, the low
eigenvalue is denoted byEB0(S,I K3) and the corresponding
state is denoted byuB0(S,I K3)&.

The matricesgg are determined by the variational equ
tions for the lowest stateuB0(S,I K3)&:

d^B0~S,I K3!uHKuB0~S,I K3!&
dgg

50. ~49!

Thus, the values ofgg are given for the individual
uB0(S,I K3)& with S corresponding to the baryons, and us
for calculation of the higher statesuB(S,I K3)& in the same
multiplet.

Furthermore, we demand that the values ofkB0 andkB3
@Eqs. ~9! and ~10!# are determined by the self-consiste
equations foruB0(S,I K3)&:

kB05^B0~S,I K3!uk0uB0~S,I K3!&, ~50!

kB35^B0~S,I K3!uk3uB0~S,I K3!&. ~51!

We call the stateuB0(S,I K3)& with Eqs.~49!, ~50!, and~51!
the Hartree state.

Here, one should recognize that the Hartree state does
necessarily correspond to the absolute minimum
EB0(S,I K3) in the parameter space (kB0 ,kB3). It is because
that the solutionkB0 of Eq. ~50! is restricted by the strange
ness of the baryon and the absolute minimum can be
physical point which does not correspond to the solution
01400
-

st

ot
f

n-

B. Collective rotation Hamiltonian Hrot and kaon-rotation
interaction Hamiltonian Hint

The explicit forms ofHrot andHint are given in Appendix
B. Hrot can be diagonalized in the space spanned by
eigenstateuJ, j 3 ,J3 ;I ,i 3 ,I 3&, whereJ and J3 (I and I 3) are
the eigenvalues of the body fixed spin~isospin! operators and
j 3 ( i 3) is the eigenvalue of the space fixed spin~isospin!
orator. The explicit representation of the eigenstate for
Euler angles is given by the direct product of the WignerD
functions in real and isospin space@16#.

Hint algebraically mixes together the space of the ka
and the collective rotation. By using the constraint Eq.~34!
with Eq. ~25!, the basis vector for the whole space is giv
by

uJ, j 3 ,J3 ;I ,i 3 ,2~J31I K3!&uB~S,I K3!&. ~52!

Because the total HamiltonianH commutes withS, the di-
agonalization is well performed in the subspace with fix
eigenvalues (J, j 3), (I ,i 3) andS. However, sinceJ3 ,I 3, and
I K3 are not good quantum numbers individually, the ro
tional band of combined system of the soliton and the kao
given by a linear combination of the basis Eq.~52!:

uC~S;J, j 3 ;I ,i 3 ;a!&5 (
J3 ,I K3

CJ3 ,I K3

C uJ, j 3 ,J3 ;I ,i 3 ,

2~J31I K3!&uB~S,I K3!&, ~53!

where a indicates quantum numbers other thanJ, j 3 ,I ,i 3,
andS. This means that the isospin symmetry broken by
soliton ~Sec. II! would be restored by the collective rotatio
One of the scales for the isospin symmetry breaking is
expectation value ofk3 for the rotational band:

kC35^Cuk3uC&. ~54!

Of course, since we perform the quantization of the kaon
the collective rotation around a specific Hartree st
uB0(S,I K3)& which breaks the isospin symmetry, the symm
try is not perfectly restored. Thus, the calculation of t
physical quantities with the rotational band Eq.~53! is an
estimate.

The number of bases in Eq.~53! decreases from (2J
11)(2I 11) due to the constraint Eq.~34! and thus the axial
symmetry of the soliton. For example, the bases for theS
particle (S521,J51/2,I 51) are given by

TABLE I. The sets of parameters: the dynamical quark massM,
the current quark massesmu5md andms , and the cutoff paramete
L. All units are MeV.

Set M mu ms L

~A! 400 6 200 700
~B! 400 6 190 700
1-5
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S uJ, j 3 ,11/2;I ,i 3 ,21&uB~21,11/2&

uJ, j 3 ,21/2;I ,i 3,0&uB~21,11/2&

uJ, j 3 ,11/2;I ,i 3,0&uB~21,21/2&

uJ, j 3 ,21/2;I ,i 3 ,11&uB~21,21/2&

D . ~55!

After the diagonalization of the total HamiltonianH with
these bases, we obtain the four rotational levels forS. We
assign the level with the lowest eigenvalue asS in the real
world. As the shape of the chiral soliton approach the hed
hog one, other higher levels become heavy and disap
from the system. For the other baryon, we equally do.

FIG. 1. Ecl1EK0, whereEK0 is the lowest eigenvalue ofHK0

@Eq. ~37!#. HerekB0 andkB3 are treated as parameters.
01400
e-
ar

V. RESULTS

For the effective action Eq.~2!, we use Schwinger’s
proper time regularization@8,10,23# with the cutoff param-
eter L. And we assume that the valence quarks are in
lowest positive energy state. Thus, we have four parame
the dynamical quark massM, the current quark massesmu

5md andms , andL. In Table I we show two parameter se
that we have considered. Set~A! is the same as the param
eters in Ref.@14# and used for comparison with the result
Set~B! has been obtained by fitting to the experimental v
ues.

At first, we give the results for set~A!. Let us denote the
lowest eigenvalue ofHK0 @Eq. ~37!# by EK0. Then, Ecl
1EK0 is the lowest order approximation of the energy f
the soliton1 the kaon system. This is a sufficient quantity
see the qualitative tendency of the system in the (kB0 ,kB3)
space. The more accurate calculation is performed be
with the Hartree approximation. Figure 1 shows thekB0 and
kB3 dependence ofEcl1EK0 in the cases ofS50,21,22,
23, wherekB0 and kB3 are treated as parameters. AskB0
grows, the graphs decrease forS521,22,23. It is because
that the SU~3! symmetry breaking stabilizes thekB05” 0 state
for the strange sectors and thekB050 state for the non-
strange one. On the other hand, the isospin symmetry is
ken by the soliton solution. Then thekB35” 0 states are stable
for S521,22,23 and thekB350 state is stable forS50.
However,Ecl1EK0 is an even function ofkB3 because of
the isospin symmetry of the model itself.

These graphs are flatter than our previous results@14#
which represent the behavior of the lowest eigenvalue of
O(1) Hamiltonian ofH @Eq. ~33!# in the largeNc limit. The
difference is mainly due to the terms depending onB3 of
HK0. These terms partially restore the isospin symmetry b
ken by the soliton in the parameter space (kB0 ,kB3). The flat
regions in the graphs indicate that the HamiltonianEcl
1HK0 accurately describes the combined system of ka
and soliton there.

Next, we show results of the Hartree approximation. F
S50,21,22,23, the Hartree states which satisfy Eqs.~49!,
~50!, and ~51! are self-consistently searched. Then, the v
ues ofkB0 , kB3 are determined. Table II shows the resulta
kB0 , ukB3u, Ecl , and EB0 @Eq. ~48!#. It is found from the
process that the stable solutions of Eq.~49! exist only in the
vicinity of kB3'0 or kB0'ukB3u. Moreover, Eqs.~50! and
~51! restrict the choice tokB0'ukB3u. In general, kB0
5ukB3u is not satisfied by the dressed state Eq.~46!. The

TABLE II. kB0 , ukB3u, Ecl , andEB0 @Eq. ~48!# of the Hartree
states forS50,21,22,23. The set of parameters is~A!.

S kB0 ukB3u Ecl (MeV) EB0 (MeV)

0 0.00 0.00 1326 1326
21 0.81 0.81 1463 1487
22 1.64 1.64 1498 1600
23 2.52 2.52 1505 1713
1-6
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only pure valence kaon state defined by Eq.~40! satisfies this
relation. Our result indicates that the kaon state is sta
against the particle-antiparticle creation in the vicinity of t
solution. As stated in Sec. IV, the Hartree state does
correspond to the absolute minimum ofEB0(S,I K3), but the
energy difference is not more than 10 MeV.

The value ofkB3 determines the shape of the chiral so
ton @14#. SincekB350 for S50, the chiral soliton takes the
hedgehog shape in the Hartree approximation. On the o
hand, sincekB35” 0 for S5” 0, the chiral soliton takes non
hedgehog shape. Although, compared with our previous
sults @14#, the values ofkB0 and ukB3u are rather small, the
conclusion about the shape of the chiral soliton does
change. From the present point of view, it is clear that
kaon states defined in Ref.@14# are unstable against th
particle-antiparticle creation.

In Table III, we show the expectation values ofk0 , k3,
andEB @Eq. ~48!# for each multiplet in the Hartree approx
mation. Here, the only multiplets which contain the Hartr
stateuB0(S,I K3)& with kB3<0, are listed. ForkB3>0, only
the signs ofI K3 and ^Buk3uB& are reversed. Because of th
isospin symmetry breaking, the quantities in Table III ta

TABLE IV. The possible rotational bands with Eq.~53! for the
set of parameters~A!.

S Particle Bands ~MeV!

0 N 1382
D 1608

21 L 1205 2448
S 1239 2475 2691 5170

S* 1453 2478 2697 4951 5173 8888

22 J 1389 1848 2109 3023
J* 1669 1848 2141 2764 3042 4400

23 V 1738 2124 2831 3901

TABLE III. ^Buk0uB&, ^Buk3uB&, and EB @Eq. ~48!# for the
multiplet uB(S,I K3)& in the Hartree approximation.uB0& is the Har-
tree state corresponding to the lowest energy eigenvalue in a
tiplet. The set of parameters is~A!.

uB(S,I K3)& ^Buk0uB& ^Buk3uB& EB(MeV)

uB0(0,0)& 0.00 0.00 1326

uB0(21,11/2)& 0.81 20.81 1487
uB(21,21/2)& 0.68 0.68 1517

uB0(22,11)& 1.64 21.64 1600
uB(22,0)& 1.42 20.22 1948
uB(22,21)& 1.20 1.20 1671

uB0(23,13/2)& 2.52 22.52 1713
uB(23,11/2)& 2.27 21.10 2301
uB(23,21/2)& 2.02 0.33 2335
uB(23,23/2)& 1.76 1.76 1814
01400
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different values even in a multiplet.
Finally, we give the results by the collective rotatio

Table IV shows the possible rotational bands by the dia
nalization with Eq.~53!. As the deformations of the soliton
become large, the excitation energy between the lowest
the first excited state decrease. Table V shows the low
rotational band, which we assign as the baryon. Here,kC0

5^Cuk0uC& similar to Eq.~54!.
The calculated masses ofS50 baryons (N,D) are larger

than the experimental value. It is pointed out in Refs.@24,25#
that these phenomena disappear by introducing the
mode due to the hedgehog shape of the soliton. ForS50, we
see^Buk3uB&50 in Table III. It means that the soliton al
ways takes the hedgehog shape. Thus, the rotational ban
S50 in Table V also producekC350 exactly.

On the other hand, for S5” 0 baryons
(L, S (* ), J (* ), V), the calculated masses are light. We c
recognize from a comparison between the Tables II and
that it is due to the collective rotation in isospin and re
space. The rotational bands forS5” 0 contain the fluctuation
caused by the transition within the multipletuB(S,I K3)& in
Table. III. As a result we obtain the expectation valuekC3
'0 in Table V.

Next, we show the possible rotational bands for the
other set~B! of parameters in Table VI.

TABLE V. kC0 , ukC3u, Baryon massesEC . for the set of pa-
rameters~A!. Expt. denotes the experimental value.

S Particle kC0 ukC3u EC ~MeV! Expt. ~MeV!

0 N 0.00 0.00 1382 939
D 0.00 0.00 1608 1232

21 L 0.75 0.08 1205 1116
S 0.75 0.08 1239 1193

S* 0.75 0.07 1453 1384

22 J 1.43 0.28 1389 1318
J* 1.42 0.25 1669 1534

23 V 2.13 0.30 1738 1672

ul-

TABLE VI. The possible rotational bands with Eq.~53! for the
set of parameters~B!.

S Particle Bands ~MeV!

0 N 1382
D 1608

21 L 1178 2499
S 1212 2527 2742 5379

S* 1425 2529 2747 5159 5380 9332

22 J 1340 1869 2122 3177
J* 1609 1868 2149 2925 3192 4763

23 V 1654 2093 2915 4157
1-7



at
to

th

re
so
a

tic
b

te
ito

n
p
t
c
ta
n
o

g
e

nt

-
-
g
is
iv

T

h
re
d

ic
ite
t

s
t

he
id
fo
n
ic
rtr

e
th

he
, it is
e.

aon
tes

nd
try.
ven

hese
ospin.
or

ed
rk.

.
t.

SATORU AKIYAMA AND YASUHIKO FUTAMI PHYSICAL REVIEW D 69, 014001 ~2004!
VI. SUMMARY AND DISCUSSION

The stability of the hedgehog shape has been investig
for the octet and decuplet baryons in the chiral quark soli
model. We have expanded the collective HamiltonianH up
to the first order in power of 1/Nc and the fluctuation (sm)
around the mean field, and separate it into the kaon,
collective rotation, and the interaction Hamiltonian.

The kaon Hamiltonian are diagonalized by the Hart
approximation. The resultant Hartree states describe the
ton and the kaon in the background soliton. The kaons
almost in the valence states and stable against the par
antiparticle creation. The shape of the soliton is controlled
the parameterskB0 andkB3 which also characterize the sta
of the kaon, and are self-consistently determined. The sol
takes the hedgehog shape for strangenessS50 and the non-
hedgehog one forS521,22,23.

The Hamiltonian for the collective rotation of the solito
is diagonalized by the angular momentum basis in isos
and real space. The interaction between the rotation and
soliton is treated by the linear combination of the dire
product of the angular momentum basis and the Hartree s
with the constraint due to the axial symmetry of the solito

TheS50 rotational bands include only the pure hedgeh
state and have the heavy masses. Weigelet al. investigated
the quantum correction due to the zero modes of the ‘‘hed
hog’’ soliton @24,25#. The correction gives a large negativ
contribution (;2400 MeV) to theN and D masses, and
their results are in good agreement with the experime
values. Their analysis is valid also for theS50 baryons in
our approach.

On the other hand, forS5” 0, the rotation mixes the Har
tree states with nonzero values ofkB3, and the resultant ro
tational bands consist of the mixing of the ‘‘nonhedgeho
states. As a result, theS5” 0 baryons have light masses. It
clear from the separation of the variables in the collect
Hamiltonian that the light masses of theS5” 0 rotational
bands are due to the rotation of the nonhedgehog soliton.
calculation of Weigelet al. would be inapplicable to theS
50 cases, because the soliton take the nonhedgehog s
and the zero mode does not arise. Thus, the consistent t
ment of the deformation of the soliton and the zero mo
would resolve the reversed mass order between theS5” 0 and
S50 baryons.

The multiplicity of the basis due to the axial symmetr
deformation of the soliton necessarily produces the exc
states with the same spin-flavor quantum numbers as
ground state. For theS521 baryon, the energy difference
between the ground state and the first excited one are
large (;1 GeV) because of the small deformation of t
soliton. Thus, these excited states may be beyond the val
of the model. On the other hand, the first excited states
S522,23 have the moderate mass and would be assig
to the excited baryon in the real world. However, the str
assignment needs more symmetric treatment of the Ha
states and the collective quantization.

Our study originated from the observation@14# that the
S521,22 baryons consist of quarks with different mass
and that the inertial force would deform the shape of
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soliton. In fact, if SU~3! symmetry breaking vanishes (m8
50) in the quark Hamiltonian, the soliton always takes t
hedgehog shape independently of the strangeness. Thus
surprising thatV (usss&) also takes the nonhedgehog shap
The solution to the problem is in Eqs.~25! and ~14!. The
former indicates that the emission and absorption of the k
cause the isospin rotation of the soliton. The latter indica
that its recoil effects~the rotated quark mass! asymmetrically
act on the isodoublet quarks in the body fixed frame a
cause the direction of the isospin vector the asymme
Since the soliton consists of valence and sea quarks, e
though the masses of valence quarks are equivalent, t
processes happen as far as the kaon states bear the is
As a result, the soliton takes the nonhedgehog shape fS
521,22,23, stably.

Inclusion of the locality is in progress but a complicat
task. Therefore we will include the results in the future wo
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APPENDIX A: FUNCTIONS RELATED
TO THE ROTATION INTO THE STRANGE DIRECTION

At first, we define the following quantities:

f 5
12cosAk0

k0
,

g5
sinAk0

Ak0

,

x15S 1

0D , x25S 0

1D ,

t̃ j5t j2k j f ~ j 51,2,3!.

The Wigner D functions Dmn
(8)(As) @Eq. ~6!# are explicitly

given as

Di j
(8)5d i j ~12k0f !1

1

2
k ik j f

2, ~A1!

D4 j
(8)5

2 ig

A2
~D†t̃ jx12x1

† t̃ jD !, ~A2!

D5 j
(8)5

2g

A2
~D†t̃ jx11x1

† t̃ jD !, ~A3!

D6 j
(8)5

2 ig

A2
~D†t̃ jx22x2

† t̃ jD !, ~A4!

D7 j
(8)5

2g

A2
~D†t̃ jx21x2

† t̃ jD !, ~A5!
1-8
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D8 j
(8)52

A3

2
g2k j , ~A6!

D84
(8)52A3

2
g~12k0f !i ~D1

†2D1!, ~A7!

D85
(8)52A3

2
g~12k0f !~D1

†1D1!,

~A8!

D86
(8)52A3

2
g~12k0f !i ~D2

†2D2!,

~A9!

D87
(8)52A3

2
g~12k0f !~D1

†1D1!,

~A10!

D88
(8)512

3

2
g2k0 , ~A11!

wherei , j 51,2,3.
The isodoublet spinorsCm @Eq. ~19!# are represented as

Cj52 i f ~2t j2k j f !D, ~A12!

C45A2gFx11
12g

k0g
~D1

†1D1!D2 f ~D1
†2D1!DG ,

~A13!

C552 iA2gFx11
12g

k0g
~D1

†2D1!D2 f ~D1
†1D1!DG ,

~A14!

C65A2gFx21
12g

k0g
~D2

†1D2!D2 f ~D2
†2D2!DG ,

~A15!

C752 iA2gFx21
12g

k0g
~D2

†2D2!D2 f ~D2
†1D2!DG ,

~A16!

C852 iA3g2D. ~A17!

The functionsNi , Fi , Gi ( i 51,2) in Eq.~32! are defined
by

N15~D84
(8)!21~D85

(8)!2, N25~D86
(8)!21~D87

(8)!2,

F15
i

2
@~11k3f !~D†P̃2 P̃†D !

1~12k0f !~D†t3P̃2 P̃†t3D !#,
01400
F25
i

2
@~12k3f !~D†P̃2 P̃†D !

2~12k0f !~D†t3P̃2 P̃†t3D !#, ~A18!

G15
1

2
~12k0f !F S g2

~12g!

k0
k3D ~D†P̃1 P̃†D !

1~D†t3P̃1 P̃†t3D !G ,
G25

1

2
~12k0f !F S g1

~12g!

k0
k3D ~D†P̃1 P̃†D !

2~D†t3P̃1 P̃†t3D !G .
APPENDIX B: COLLECTIVE HAMILTONIAN

We define the following quantities:

AK j5
1

2
~D†t j P1P†t jD ! ~ j 51,2,3!,

gB5
sinAkB0

AkB0

,
1

F (6)
5

1

2 S 1

U44
6

1

U66
D ,

D (6)5
1

2 S D44

U44
6

D66

U66
D ,

Eind53m8gB
2FkB0S G82

B3D38

U33
D

1
kB3

A3
S G32

B3D33

U33
D G B3

2

2U33
.

Furthermore, for the arbitrary three dimensional vectorsx
5(x1 ,x2 ,x3) and y5(y1 ,y2 ,y3), we introduce following
symbol:

~x•y!'5x•y2x3y3 .

The collective HamiltonianH @Eq. ~33!# is expanded up
to the first order in power of 1/Nc andsm and separated as

H5Ecl1HK1Hrot1Hint , ~B1!

whereEcl is the classical soliton energy,HK is the part con-
taining only the kaon operatorsD and P and describes the
kaon in the background soliton,Hrot is the part containing
only the angular momentaI j andJj and represents the co
lective rotation of the system in isospin and real space,
Hint represents an interaction between the kaon and the
tation.

The kaon HamiltonianHK is given by

HK5HK01HK1 , ~B2!
1-9
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HK05Eind1
1

4F (1)
P†P1

1

4F (2)
P†t3P

13F B8
2

8F (1)
1m8S D (1)B82G81

B3D38

U33
D Gk01A3S B8

4F (1)
1m8D (1)DS

13F B8
2

8F (2)
1m8S D (2)B82

G3

A3
1

B3D33

A3U33
D Gk31A3S B8

4F (2)
1m8D (2)D2I K3 , ~B3!

HK15
1

2~U11V112W11
2 !

@V11~ IK•IK!'12A3m8~V11D112W11D̃11!~k•IK!'#1
1

F (1)
S S2

8
2

1

3
IK

2 D1
I K3

2

2F (1)

1
1

3F (2)
~SIK32@ IK3AK#3!1

A3

2 S B8

4F (2)
1m8D (2)Dk3S1A3S B8

4F (1)
1m8D (1)Dk3I K3

1
A3

2 S B8

4F (1)
2m8D (1)Dk0S1F B8

2

4F (1)
2m8S D (1)B82G81

B3D38

U33
D Gk0

21A3S B8

4F (2)
2m8D (2)Dk0I K3

1F B8
2

4F (2)
2m8S D (2)B82

G3

A3
1

B3D33

A3U33
D Gk0k3 , ~B4!

whereHK0 is the bilinear part ofHK in power ofD andP andHK1 is the higher order one.
The collective rotation HamiltonianHrot and the kaon-rotation interaction HamiltonianHint are given by

Hrot5
1

2~U11V112W11
2 !

@V11~ I•I !'1U11~J•J!'12W11~ I•J!'#1
1

2U33
J3

21
J3

U33
F3m8gR

2S kB0D381
kB3

A3
D33D 2B3G , ~B5!

Hint52
1

2F (1)
~ IK•I !'2A3S B8

4F (1)
1m8D (1)D ~k•I !'2

1

2F (2)
@ I3AK#3

1
1

~U11V112W11
2 !

@V11~ IK•I !'1A3m8~V11D112W11D̃11!~k•I !'1W11~ IK•J!'1A3m8~W11D112U11D̃11!~k•J!'#

1J3F S

4F (2)
1

I K3

2F (1)
1A3S B8

4F (1)
1m8D (1)Dk31A3S B8

4F (2)
1m8D (2)Dk02

3m8

U33
S k0D381

k3

A3
D33D G . ~B6!
ys

tt

s.
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