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Detailed analysis of one-loop neutrino masses from the generic supersymmetric standard mode
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In the generic supersymmetric standard model which has no global symmetry enforced by hand, lepton
number violation is a natural consequence. Supersymmetry, hence, can be considered the source of experimen-
tally demanded properties for the neutrinos beyond the standard model. With an efficient formulation of the
model, we perform a comprehensive detailed analysis of all~fermion-scalar! one-loop contributions to neutrino
masses.
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I. INTRODUCTION

Low-energy supersymmetry~SUSY! is the most popular
candidate theory for physics beyond the standard mo
~SM!. The most extensively studied version, called the m
mal supersymmetric standard model~MSSM!, has an extra
ad hocdiscrete symmetry, calledR parity, imposed on the
Lagrangian. It is defined in terms of baryon number, lep
number, and spin as, explicitly,R5(21)3B1L12S. The con-
sequence is that the accidental symmetries of baryon num
and lepton number in the SM are preserved, at the expen
making particles and superparticles having a categoric
different quantum number,R parity. The latter is actually no
the most effective discrete symmetry to control superpart
mediated proton decay@1#, but is most restrictive in terms o
what is admitted in the Lagrangian, or the superpoten
alone.

R parity also forbids neutrino masses in the supersymm
ric SM. However, the recent data from the solar and atm
spheric neutrino experiments can be interpreted in term
massive neutrino oscillations. Thus, the strong experime
hints for the existence of~Majorana! neutrino masses@2# is
an indication of lepton number violation, and is, hence, s
gestive ofR-parity violation ~RPV!. Giving up R parity, a
tree-level neutrino mass can be generated through diago
ization of the neutrino-neutralino mass matrix. At the 1-lo
level, all three neutrinos will become massive. There is th
no need to introduce extra superfields beyond what is
quired by the SM itself to describe neutrino phenomenolo

There is certainly no lack of studies on various RPV mo
els in the literature. However, such models typically invol
strong assumptions on the form ofR-parity violation. In most
cases, no clear statement on what motivates the assump
taken is explicitly given. In fact, there are quite some co
fusing, or even plainly wrong, statements on the issues c
cerned. It is important to distinguish among the differe
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RPV ‘‘theories,’’ and, especially, between such a theory a
the unique general supersymmetric standard model~GSSM!
@3,4#. The latter is thecompletetheory of SUSY without
R-parity, one which admits all the RPV terms withouta pri-
ori bias. In the GSSM, RPV terms come in many differe
forms. In order not to miss any plausible RPV phenome
logical features, it is important that all of the RPV param
eters be taken into consideration. A clear listing and disc
sion of all these is recently presented in Ref.@5#, under the
framework of the single-VEV parametrization~SVP! @6,7#.
The latter, summarized below, is an optimal choice of flav
bases that helps to guarantee a consistent and unambig
treatment of all kind of admissible RPV terms with comple
RPV effects on tree-level mass matrices for all states incl
ing scalars and fermions maintaining the simplest structu
Following the formulation, we present here a complete list
all the neutrino masses contributions up to 1-loop level.

A ~Majorana! neutrino mass term violates SM lepto
number by two units. The experimental evidence for neutr
masses comes in through indications of flavor oscillatio
which requires mass mixings of the flavor states,ne , nm ,
andnt . Hence, we want neutrino mass terms that have l
ton flavor violation ~LFV!. The latter is a generic conse
quence ofR-parity violation. To put it in another way, the
GSSM in fact contains many couplings that has one unit
LFV. Any combination of two of such couplings may be ab
to give rise to a neutrino mass term. Since the expec
sub-eV neutrino masses are essentially the strongest so
of upper bounds on such couplings@8# up to the present
moment, we have no way to tell which particular combin
tions of couplings do saturate the bounds and give a do
nant contribution to a neutrino mass term. In fact, each te
also depends on a set of (R-parity conserving! SUSY or
MSSM parameters. We do not have much knowledge on
SUSY parameters beyond some lower bounds on a se
related experimental parameters~mainly! from collider ma-
chines. In relation to the neutrino mass contributions d
cussed here, the set of SUSY parameters are typically ta
as fixed by one generic SUSY mass scale. Changing the
ter of course changes the actually neutrino masses resu
©2004 The American Physical Society04-1
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More importantly, it is not totally clear whether some ph
nomenological hierarchy among values of the differe
SUSY parameters, may be together with some hierar
among the values of the parameters with LFV, would n
give a picture on the relative importance of the various n
trino mass terms different from what one may expect fr
such the kind of highly simplified analyses. Thus, it would
useful to have a complete list of such neutrino mass te
without mucha priori assumption involved.

Guided by theoretical prejudices or otherwise, many d
ferent pieces of such neutrino mass terms have been stu
@9,10# ~see also Ref.@11# for a more updated list of refer
ences!. More recently, there are attempts to give the m
complete story. In particular, Ref.@12#, gives the genera
formulas for neutrino mass contributions up to the full 1-lo
level. However, the latter analysis is not formulated un
the SVP and any detailed discussion is limited to a scen
where the ‘‘third generation couplings dominate.’’ Amon
the trilinear RPV couplings, this amounts to admitting on
nonzerol i338 ’s and l i33’s, though all nonzero bilinear RPV
are indeed included. The maximal mixing result from Sup
Kamiokande may bring that wisdom of ‘‘third generatio
domination’’ under question. References@10# and @13#, for
example, illustrate how no~family! hierarchy, or even an
anti-hierarchy, among the RPV couplings may be preferr
More important to our perspective here, the study has
sumption on theBi parameters and is interested in the n
merical study of a specific high-energy scenario. Here,
aim at a more detailed analytical study on the different pie
of contribution instead. With the help of a more simple th
oretical framework, the SVP, we follow the basic approa
of Ref. @12# and give a more transparent list of formulas,
well as pushing on to give much more detailed analyti
results of each individual neutrino mass term.

The basic approach of Ref.@12# is to give each 1-loop
neutrino mass diagram in terms of effective couplings of
mass eigenstates of various scalars and fermions runnin
side the loop, using a formula from the so-called ‘‘effecti
mixing matrix’’ method @14#. Details of all the admissible
RPV contributions to all the scalar, as well as fermion, m
terms under the SVP framework are very manageable@16,4#.
The complete expressions, together with useful perturba
diagonalization formulas for the interesting elements of
mixing matrices are listed in Ref.@4#. We use below exactly
the same notation as presented in details in the latter re
ence, which is taken as the background of the present
sentation. Our goal is to present the exact analytical exp
sion for each neutrino mass term, and the approxim
dominating result from each term under very mild assum
tion. The major part of the approximation is the perturbat
diagonalization formulas of the mass matrices, which
well founded on the smallness of the neutrino masses.
approximation also helps to extract the major RPV param
dependence of each mass term and, hence, is an impo
target of the present study.

There is actually a detailed analysis of all the neutr
mass terms pretty much in the same spirit of present st
published@11#. The latter reference also essentially adop
the SVP framework. However, mass insertion approximat
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is used to obtain the results based on the use of MS
states. Our approach here may be a more direct and tran
ent alternative. Having results from both approaches a
serving as a counter checking and helps to illustrate m
clearly some of the subtle points involved. Reference@11#
also has some very different emphasis in their discuss
Hence, we consider the present study necessary to com
the story of neutrino masses in GSSM~or from R-parity vio-
lation!. Moreover, our exact formulas, in terms of ma
eigenstates running inside the loop allow direct numeri
calculations of the neutrino mass results free from any
proximation. We are also working on a detailed study
radiative neutrino decay within the model@19#, to which the
present paper also gives the necessary background.

It should be emphasized here that it is not our intention
discuss scenarios within the general model that could fit
experimental date. There being such a large number of lep
number violating parameters within the GSSM, phenome
logically viable scenarios will not be difficult to find. Th
beauty of the GSSM in explaining the neutrino data is t
the parameters responsible will also give a rich collections
other experimental signals. More studies of various asp
of the model, and constraints from various SUSY and L
searches in the future may give much better guideline
picking the real interesting scenarios. The goal of the pres
study is to provide a useful better reference for such effo

It should also be noted that we do not include here res
of the gauge boson loop contributions. Such contributio
have been studied~see, for example, the paper by Hempflin
in Ref. @9#!. They represent a small correction to the tre
level results which could be absoluted into a renormalizat
of the tree-level lepton flavor violating parameters, as a
pointed out in Ref.@11#. Hence, we focus only on the finit
1-loop contributions that will give new structure to the ne
trino mass matrix~same strategy was adopted in Ref.@11#!.
Namely, we focus on the fermion-scalar loop. Our formu
tion in terms of mass eigenstates for the fermions and sca
inside the loop allow us to identify explicitly the Goldston
mode. Any Goldstone mode contribution is taken out fro
the summation over mass eigenstates running inside the l
In fact, the Goldstone modes are of course unphysical
calculation of their contribution gauge dependent. The d
grams with the Goldstone modes only form gauge invari
sets with the corresponding gauge boson and ghost diag
added together. If one wishes, one could take it that we
doing the fermion-scalar loop calculation in the unita
gauge. The gauge choice does not matter, as we are focu
on the sector of physical scalar bosons and fermions o
Including the Goldstone modes in our fermion-scalar lo
calculations would rather be inconsistent.

In Sec. II below, we give a brief summary of the bas
formulation of GSSM used. Readers are referred to Ref.@4#
for details. Section III then starts on the neutrino mass d
cussion. While the tree-level neutrino–neutralino mass m
trix is quite well known, we present some of the details he
for completeness. The presentation also sets the stage fo
discussion of the 1-loop contribution calculation. All the b
sics of the 1-loop analysis is presented in the latter parts
the section. The next section discusses some details o
4-2
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results in the way outlined above. Some of the detailed l
ing of individual terms are, however, left to the Appendixe
In Sec. V, we present a brief discussion on the application
the results to numerical studies, while any detailed numer
studies will be left for future publications. Finally, we con
clude the paper with some remarks in Sec. VI.

II. BACKGROUND OF THE GSSM

Let us start with summarizing our formulation and no
tions here; readers are referred to Ref.@4# for more details.
The most general renormalizable superpotential with
spectrum of minimal superfields containing all the SM sta
can be written as

W5«abFmaĤu
aL̂a

b1hik
u Q̂i

aĤu
bÛk

C1la jk8 L̂a
aQ̂j

bD̂k
C

1
1

2
labkL̂a

aL̂b
bÊk

CG1
1

2
l i jk9 Û i

CD̂ j
CD̂k

C , ~1!

where (a,b) are SU~2! indices, (i , j ,k) are the usual family
~flavor! indices~going from 1 to 3!. The fourL̂a’s, with the
(a,b) indices as extended flavor indices going from 0 to
include the usual leptonic doublets and theHd doublet. Four
doublet superfields with the same quantum number
needed for gauge anomaly cancelation. The four are na
priori distinguishable. The rest of the superfield notations
obvious. Note thatl is antisymmetric in the first two indices
as required by the SU(2) product rules, shown explic
here with«1252«2151. Similarly, l9 is antisymmetric in
the last two indices from SU(3)C , though color contents ar
not shown here.

Doing phenomenological studies without specifying
choice of flavor bases is ambiguous. It is like doing S
quark physics with 18 complex Yukawa couplings, instead
the 10 real physical parameters. As far as the SM itsel
concerned, the extra 26 real parameters are simply re
dant. There is simply no way to learn about the 36 real
rameters of Yukawa couplings for the quarks in some gen
flavor bases, so far as the SM is concerned. For instance
can choose to write the SM quark Yukawa couplings su
that the down-quark Yukawa couplings are diagonal, wh
the up-quark Yukawa coupling matrix is a product of~the
conjugate of! the CKM and the diagonal quark masses, a
the leptonic Yukawa couplings diagonal. Doing that has i
posing no constraint or assumption onto the model. On
contrary, not fixing the flavor bases makes the connec
between the parameters of the model and the phenom
logical observables ambiguous.

In the case of the GSSM, the choice of flavor basis am
the 4 L̂a’s is a particularly subtle issue, because of the f
that they are superfields the scalar parts of which could b
VEVs. A parametrization called the single-VEV parametriz
tion ~SVP! has been advocated since Ref.@6#. The central
idea is to pick a flavor basis such that only one among
L̂a’s, designated asL̂0, bears a nonzero VEV. There is to sa
the direction of the VEV, or the Higgs fieldHd , is singled
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out in the four dimensional vector space spanned by theL̂a’s.
Explicitly, under the SVP, flavor bases are chosen such t
1/̂ L̂ i&[0, which implies L̂0[Ĥd ; 2/yjk

e ([l0 jk52l j 0k)
5 (A2/v0)diag$m1 ,m2 ,m3%; 3/yjk

d ([l0 jk8 ) 5 (A2/v0)
3diag$md ,ms ,mb%; 4/yik

u 5(A2/vu)VCKM
T diag$mu ,mc ,mt%,

wherev0[A2^L̂0& andvu[A2^Ĥu&. A point to note is that
the mi ’s above are, conceptually, not the charged lep
masses. The parametrization is optimal, apart from some
nor redundancy in complex phases among the couplings.
simply assume all the admissible nonzero couplings wit
the SVP are generally complex. The big advantage of
SVP is that it gives the complete tree-level mass matrice
all the states~scalars and fermions! the simplest structure@4#.

Following our notation above, the soft SUSY breakin
terms of the Lagrangian, can be written as follows:

Vsoft5eabBaHu
aL̃a

b

1eab@Ai j
UQ̃i

aHu
bŨ j

C1Ai j
DHd

aQ̃i
bD̃ j

C1Ai j
EHd

aL̃ i
bẼj

C#

1H.c.1eabFAi jk
l8 L̃ i

aQ̃j
bD̃k

C1
1

2
Ai jk

l L̃ i
aL̃ j

bẼk
CG

1
1

2
Ai jk

l9 Ũ i
CD̃ j

CD̃k
C1H.c.1Q̃†m̃Q

2 Q̃1Ũ†m̃U
2 Ũ

1D̃†m̃D
2 D̃1L̃†m̃L

2L̃1Ẽ†m̃E
2Ẽ1m̃Hu

2 uHuu2

1
M1

2
B̃B̃1

M2

2
W̃W̃1

M3

2
g̃g̃1H.c. , ~2!

where we have usedHd in the place of the equivalentL̃0

among the trilinearA-terms. Note thatL̃†m̃L̃
2
L̃, unlike the

other soft mass terms, is given by a 434 matrix. Comparing
with the MSSM case,m̃L00

2 corresponds tom̃Hd

2 while m̃L0k

2 ’s

give new mass mixings. The other notations are obvious.
writing of the soft terms in the above form makes identific
tion of the scalar mass terms straightforward. Recall t
only the doubletsHu andHd bear VEVs. TheA-terms in the
second line of Eq.~2! hence do not contribute to scala
masses.

The SVP formulation also gives the complex equation

Bi tanb5m̃L0i

2 1m0* m i , ~3!

reflecting the removed redundancy of parameters in a gen
L̂a flavor basis. They are nothing but the vanishing tadp
equations. They give consistence conditions among the
volved parameters that should not be overlooked. The eq
tions suggest that theBi ’s are expected to be suppresse
with respect to theB0, as them i ’s are, with respect tom0.
The m̃L0i

2 parameters in particular are missing in some of

relevant discussions in the literature. From a different p
spective, one may tend to think that the parameters are s
lar to them̃Li j

2 parameters linked to soft flavor mixings. How
4-3
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ever, fixingm̃L0i

2 in Eq. ~3! leads to definite relations betwee

a Bi and am i term, which may not be satisfied. The para
etersBi , m i , andm̃L0i

2 are not independent free paramete

because of the fact that freely chosen values of the se
parameters in a top-down approach, in general, do not
the model automatically into the single-VEV basis. The ta
pole equations are incorporated completely into the sc
mass matrices involved in our calculations@4#.

III. NEUTRINO MASSES

The GSSM has seven neutral fermions correspondin
the three neutrinos and four, heavy, neutralinos. The he
states are supposed to be mainly gauginos and Higgsinos
there is now admitted~RPV! mixings among all seven neu
tral electroweak states. In the case of smallm i ’s of interest, it
is convenient to use an approximate seesaw block diago
ization to extract the effective neutrino mass matrix. No
that the effective neutrino mass here is actually written i
basis which is approximately the mass eigenstate basis o
charged leptons, i.e., the basis is roughly (ne ,nm ,nt). The
tree-level result is very well-known@9,10#.

A. Getting the neutrinos among the neutral fermions

We use the basis (2 iB̃,2 iW̃,h̃u
0C

,h̃d
0 ,l 1

0 ,l 2
0 ,l 3

0) to write

the 737 neutral fermion mass matrixMN . Note that h̃d
0

[ l 0
0 , while h̃u

0C
is the charge conjugate of the Higgsinoh̃u

0 .
For small m i ’s, we have (l 1

0 ,l 2
0 ,l 3

0)'(ne ,nm ,nt) @4#. The
symmetric, but generally complex, matrix can be diagon
ized by using unitary matrixX such that

XTMNX5diag$Mx
n
0%. ~4!

Again, the first part of the mass eigenvalues,Mx
n
0 for n

51 –4 here, gives the heavy states, i.e. neutralinos. The
part, Mx

n
0 for n55 –7, hence gives the physical neutrin

masses.
The mass matrixMN can be written in the form of block

submatrices

MN5S Mn jT

j mn
oD , ~5!

whereMn is the upper-left 434 neutralino mass matrix,j is
the 334 block, andmn

o is the lower-right 333 neutrino
block in the 737 matrix. In the interest of small neutrin
masses, a perturbative~seesaw! block diagonalization can be
applied. Explicitly, the diagonalizing matrix can be writte
approximately as

Z.S I 434 ~M n
21jT!

2~M n
21jT!† I 333

D . ~6!

The tree-level effective neutrino mass matrix may then
obtained as
01300
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~mn!.2~M n
21jT!TMn~M n

21jT!52jM n
21jT

.
MZ

2 cos2 b~M1 cos2 uW1M2 sin2 uW!

det~Mn!
~m im j !,

~7!

where

det~Mn!5m0@2m0M1M21MZ
2 sin 2b

3~M1 cos2 uW1M2 sin2 uW!# ~8!

is equivalent in expression to the determinant of the MSS
neutralino mass matrix.

It is obvious that the 333 matrix (m im j ) has only one
nonzero eigenvalue given by

m5
25um1u21um2u21um3u2. ~9!

We can define

R55S m1*

m5

0
Aum2u21um3u2

m5

m2*

m5

m3

Aum2u21um3u2
2

m1m2*

m5Aum2u21um3u2

m3*

m5
2

m2

Aum2u21um3u2
2

m1m3*

m5Aum2u21um3u2

D .

~10!

Then, we haveR5
T(m im j )R55diag$m5

2 ,0,0%. Here, m5 and
Aum2u21um3u2 are taken as real and positive. With this resu
we can write the overall diagonalizing matrixX in the form

X.S I 434 ~M n
21jT!

2~M n
21jT!† I 333

D S Rn 0433

0334 ei zR5
D

5S Rn ei z~M n
21jT!R5

2~M n
21jT!†Rn ei zR5

D , ~11!

whereRn is a 434 matrix with elements all expected to b
of order 1, basically the diagonalizing matrix for theMn
block andei z is a constant phase factor put in to absorb
overall phase in the constant factor in the expression of
~7! so that the resulted neutrino mass eigenvalue would
real and positive. The matrixX contains the important infor-
mation of the gaugino and Higgsino contents of the phys
neutrinos. This is given by the mixing elements in the o
diagonal blocks. TheZ matrix in itself gives similar infor-
mation for the effective SM neutrinos~flavor states!. The
latter matrix may be more useful in the analysis of neutr
phenomenology.

B. Approach to 1-loop neutrino masses calculations

Following Ref. @12#, we use the 1-loop~renormalized!
mass formula from the ‘‘effective mixing matrix’’ approach
giving a fermion mass matrix as
4-4
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M N
(1)~p2!5M~Q!1P~p2!

2
1

2
@M~Q!S~p2!1S~p2!M~Q!#. ~12!

Note thatM(Q) is the DR renormalized tree-level mas
~matrix!, while P andS the contributions from 1-loop self
energy diagrams with and without chirality flip. We have

M N
(1)~p2!5S Mn jT

j 0 D 1S dMn djT

dj d~mn
o!

D ~p2!,

~13!

where

dMn~p2!5Pn~p2!2
1

2
@MnSn~p2!1Sn~p2!Mn#,

dj~p2!5Pj~p2!2
1

2
@Sn~p2!j1jSn~p2!1Sj~p2!Mn#,

dmn
o~p2!5Pn~p2!2

1

2
@jSj

T~p2!1Sj~p2!jT#, ~14!

with the explicit renormalization scale (Q-!dependence o
the tree-level parameters dropped. Seesaw diagonalizatio
M N

(1) yields the 1-loop result,

~mn!(1).2jM n
21jT1d~mn

o!2djM n
21jT2jM n

21djT

1jM n
21dMnM n

21jT

52jM n
21jT1Pn1PjM n

21jT1jM n
21Pj

T

1
1

2
SnjM n

21jT1
1

2
jM n

21jTSn
T

1jM n
21PnM n

21jT, ~15!

where we have dropped thep2 dependence. As discusse
below, thep2 should be taken as at the scale of the massMN
itself. Hence, in the application here to calculate the neutr
masses, thep2 in (mn)(1)(p2) may be taken as practicall
zero. An important point to note here is that theSj andSn
terms all cancel out and disappear from our final result
(mn)(1). We refer the reader to Refs.@12,14# for further dis-
cussion on the merits of the approach and references to
lated works.

At this point, some remarks on the renormalization iss
are in order. The issue has been well-addressed in the pa
by Hempfling and Hirschet al. @9# on calculations starting
from tree-level mass eigenstates. The analog formula to
~12! above is, under theDR scheme,

M pole5M DR~Q!1DM~p,Q!, ~16!

where the 1-loop correction part is given as

DM~p,Q!5@DM~p!#D50 , ~17!
01300
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i.e., the two-point functions involved are calculated by su
tracting the term proportional to the regulatorD[2/(42d)
2gE1 ln 4p of dimensional reduction. There is some amb
guity in the choice ofQ in the evaluation of the off-diagona
two-point functions. As pointed out in Hempfling’s paper, t
effect of the ambiguity is of higher order. In the ‘‘effectiv
mixing matrix’’ approach@14#, the equation is casted in th
electroweak state basis instead to arrive at Eq.~12!, which
upon seesaw block-diagonalization yields Eq.~15!. Now, p2

is practically zero, as we are calculating only diagrams w
neutrinos on the external legs of the two-point functions. T
rest are only tree-level mass matrix entries~to MN) coming
into the formula as mixing matrix elements between the n
tralino and neutrino blocks. The result for (mn)(1) is however
Q-dependent. Apart from theQ-dependence in the former se
of parameters, there is also theQ-dependence coming u
from the calculation of the two-point functions under theDR
scheme as in Eq.~17!. Furthermore, there are the full set o
couplings involved in such calculations, which should
taken as running couplings at the scaleQ. In the straight
formal sense, the pole mass formula gives resultM pole that
is Q-independent. However, in the application to obta
M N

(1)(p2) and its subsequent use in any explicit calcu
tions, some residualQ-dependence is difficult to avoid.

Since we are interested in radiative neutrino mass gen
tion from superparticles, we may takeQ as MSUSY, or
roughly the electroweak scale. Below the scale, the super
ticles decouple and the neutrino mass terms can only be
pressed in terms of five-dimensional operators of the S
Strictly speaking, one get the correct pole mass for the n
trinos only by running the operators to the neutrino ma
scale through the corresponding renormalization group eq
tions. However, such effects are minimal@15#. Apart from
yielding the neutrino mass matrix in the more interesti
flavor basis, Eq.~15! also avoids the superficial singularit
reflecting the arbitrariness in the diagonalization of the m
matrix with degenerate massless neutrinos at tree-level.
thering, the MNS~neutrino mixing! matrix obtained from the
diagonalization of (mn)(1) maintains a full unitary matrix.

The full 737 neutral fermion mass matrix has four hea
and three very light mass eigenvalues, corresponding to
neutralinos and neutrinos; and we are essentially only in
ested in the neutrino states. For a general mass calculatio
1-loop, we must choose a renormalization prescription
each of the tree-level parameters appearing in the full m
matrix MN , and will have to worry about the renormaliza
tion scale dependence issues of such parameters. The ‘‘e
tive mixing matrix’’ formula @cf. Eq. ~15!# avoid the compli-
cation as the neutrino mass results depend only onp2

explicitly, which is practical zero, as pointed out in Ref.@12#.
The parameters involved in the neutrino mass generation
then taken as running parameter at the scale of inter
Renormalization scale dependence comes in only through
Sn part ~refer to Ref.@14# for more details! and the effect is
small. TheSn part itself is mostly not very important, as ca
be easily seen in Eq.~15!.

Our neutrino mass formula@Eq. ~15!# calls for a seesaw
type block diagonalization of the mass matrixMN up to
1-loop order. The diagonalizing transformation correspon
4-5
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to the matrixZ of expression~6!. The tree-level contribution
given by the first term in the formula, is obviously sees
suppressed~by the neutralino mass scale!. The second term
Pn gives the direct 1-loop contributions. However, there
parts ofPn that involved other suppression beyond the lo
factor. A typical example is the pure gaugino loop, or G
loop @20#, diagram contribution which can be interpreted
requiring seesaw induced Majorana-like ‘‘sneutrino’’ mass
give a nonvanishing result@5#. They may be called pseudo
direct 1-loop contributions. For the rest of the terms in E
~15!, are indirect 1-loop contributions, which has part of t
basic seesaw suppression going along. These include re
from 1-loop diagrams contributing to the off-diagonal bloc
of the MN matrix, from Sn diagrams, as well as from dia
grams contributing to the diagonal blockMn . The last one,
given by the last term in the formula, gives no interesti
features. It can be absorbed, for instance, into the tree-l
result ~first term! by replacingMn there with the 1-loop
corrected result. And, from the related calculations with
MSSM, we know that the correction is about 6%@14#. In
fact, the flavor conserving part of the contributions involvi
Sn is similarly uninteresting. However, the part of the latt
with LFV may be of interest.

To calculate explicitly the various neutrino mass contrib
tions using the above formula, we need to have the effec
couplings of the electroweak state neutral fermions to p
sible scalar and fermion mass eigenstates running in
quantum loop. The neutral fermion themselves, together w
the nine neutral scalars of the model, give a class of neu
loop contributions. Obviously, the loop with the neutralin
states dominates here. The effective couplings, to be g
below, involve diagonalizing matrix elements of the sta
contributing to the states running inside the loop. For
fermion part, it is theX matrix discussed above. Simila
perturbative diagonalization expressions for all the other m
trices, those for the charged fermion, charged scalar, do
squarks, as well as the neutral scalar sector are discuss
details in Ref.@4#. We refrain from repeating the long list o
such formulas in this paper. Most parts of the notation us
as will appear below, are quite easy to appreciate. Rea
interested in checking any details on the derivations of
results, however, would need to use Ref.@4# extensively.

C. Neutral loop contributions

For the neutral loop contributions, we start with the effe
tive interaction for the externall i

0’s with internal mass eigen
states,

L5g2C̄~ l i
0!FN inm

L 12g5

2
1N inm

R 11g5

2 GC~xn
0!fm

0 1H.c.,

~18!

where1
2 (17g5) are the left~L! and right~R! handed projec-

tions. We have

N inm
R 5

1

2
@ tanuWX1n* 2X2n* #@D ( i 12)m

s 1 iD ( i 17)m
s #,

~19!
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and N inm
L 5N inm

R* . The direct 1-loop contributions is give
by1

Pn i j

N 52
aem

8p sin2uW

N inm
R* N jnm

R* Mx
n
0B0~p2,Mx

n
0

2
,MSm

2 !,

~20!

where the loop functionB0 is defined in the limit ofp2→0
by

B0~p2,m1
2 ,m2

2!52
m2

2

m1
22m2

2 ln
m1

2

m2
22 ln

m1
2

Q2 11. ~21!

As will be shown explicitly below, this result is the gaug
loop contribution first discussed in Ref.@20#. Note thatX is
the matrix that diagonalizes the seven neutral fermions
discussed explicitly above. Among the seven fermion~tree-
level! mass eigenstates denoted by the sum overn here, con-
tributions from then55 –7 states are certainly negligible
The sum ofm runs through the nine physical neutral sca
states. The states, together with the unphysical Golds
mode, are obtained from the 10310 neutral scalar mass
squared matrix to be diagonalized byD s. We refer readers to
Ref. @4# for details on the scalar sector. The set of coupli
vertices may also be combined to give contributions to
self energy functionSn . We have

Sn i j

N 52
aem

8p sin2 uW

N inm
R* N jnm

R B1~p2,Mx
n
0

2
,MSm

2 !, ~22!

where the loop functionB1 is defined by in the limit ofp2

→0 by

B1~p2,m1
2 ,m2

2!5
1

2 F12 ln
m2

2

Q22S m2
1

m1
22m2

2D 2

ln
m1

2

m2
2

1
1

2 S m1
21m2

2

m1
22m2

2D G . ~23!

For the indirect 1-loop contributions, we need

1Here we have all fermions involved being Majorana fermion

We compose the 4-spinorC by C5( cL

cR ) where we havecR

52 is2cL* . A mass term hasC̄8C5cL8
†cR1cR8

†cL . For in-

stance, thecR8
†cL part can be written ascL8

Tis2cL . The N inm
R*

vertex brings in acLi
while a matchingN jnm

L vertex brings in a
cRj

† 5cL j

T is2. With the proper handling of the fermion wavefunc

tion, Pn i j

N has contributions proportional toN inm
R* N jnm

L which is

equivalent to theN inm
R* N jnm

R* used here. Just for thel i
0 states, the use

of N inm
R can only be seen as the intrinsic left-handed nature of

states. However, the explicit use of their charge conjugate to c
pose the 4-spinors and derive the effective couplings is necessa
complete the formulation, say in the case of theC inm

L for the
charged loop discussed below.
4-6
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N 0nm
R 5

1

2
@ tanuWX1n* 2X2n* #@D 2m

s 1 iD 7m
s #, ~24!

N h̃nm
R

52
1

2
@ tanuWX1n* 2X2n* #@D 1m

s 1 iD 6m
s #,

~25!

N W̃nm
R

5
1

2
X3n* @D 1m

s 1 iD 6m
s #

2
1

2
X~41a!n* @D (21a)m

s 2 iD (71a)m
s #, ~26!

N B̃nm
R

52
1

2
tanuWX3n* @D 1m

s 1 iD 6m
s #

1
1

2
tanuWX~41a!n* @D (21a)m

s 2 iD (71a)m
s #.

~27!

The list of extraN R* terms each combines with theN inm
R* to

give a neutral loop contribution toPj .

D. Charged loop contributions

The effective interaction for the externall i
0 with ~color-

less! charged fermions and scalars inside the loop is given

L5g2C̄~ l i
0!FC inm

L 12g5

2
1C inm

R 11g5

2 GC~xn
- !fm

11H.c. ,

~28!

where

C inm
R 5

yei

g2
V( i 12)nD2m

l* 2
l ikh*

g2
V(h12)nD (k12)m

l* ,

C inm
L 52U1nD ( i 12)m

l* 1
yei

g2
U2nD ( i 15)m

l*

2
l ihk

g2
U(h12)nD (k15)m

l* . ~29!

Here,V†MCU5diag$Mx
n
2% whereMC is the 535 charged

fermion mass matrix. MatrixD l diagonalizes the mass
squared matrix of eight scalars of unit negative charge~see
Ref. @4# for details!. The latter includes again the unphysic
Goldstone mode to be dropped from the sum overm.

Charged fermion loop contribution to direct 1-loop ne
trino mass could then be easily obtained as

Pn i j

C 52
aem

8p sin2 uW

C inm
R* C jnm

L Mx
n
2B0~p2,Mx

n
2

2
,M ,̃m

2
!

~ i↔ j !. ~30!
01300
y

l

Unlike the case for the neutral loop result, thePn i j

C matrix

written through theC inm
R* C jnm

L coupled-vertices is not sym
metric with respect toi and j. Hence, an explicit symmetri
zation has to be performed, as indicated above. The sym
trization also takes care of the asymmetry with respect tL
andR, automatically. Similarly, for theSn part, we have

Sn i j

C 5
aem

8p sin2uW

$C inm
L C jnm

L* 1C inm
R* C jnm

R %B1~p2,Mx
n
2

2
,M ,̃m

2
!

( i↔ j ). ~31!

To go on to discussions of the indirect 1-loop contrib
tions, we need the corresponding expressions of theC inm

L,R for
the other four neutral fermions. These are given as follo
with obvious notations,

C 0nm
R 52

yek

g2
V(k12)nD (k12)m

l* ,

C 0nm
L 52U1nD 2m

l* 2
yek

g2
U(k12)nD (k15)m

l* , ~32!

C h̃nm
R

52V1nD 1m
l* ,

C h̃nm
L

50, ~33!

C W̃nm
R

5
21

A2
V2nD 1m

l* ,

C W̃nm
L

5
1

A2
@U2nD 2m

l* 1U(k12)nD (k12)m
l* #, ~34!

C B̃nm
R

5
2tanuW

A2
@V2nD 1m

l* 12V(k12)nD (k15)m
l* #,

C B̃nm
L

5
tanuW

A2
@U2nD 2m

l* 1U(k12)nD (k12)m
l* #. ~35!

Combining aC R* with a C L gives half of the charged fer
mion loop contribution, to the corresponding mass term;
other half is given by flippingL andR. For instance, thel i

0-B̃
mass term, orPj i1

, is given by substitutingC B̃nm
L for C jnm

L in

Eq. ~30!, i.e., by aC inm
R* C B̃nm

L combination, as well as the

combinationC B̃nm
R* C inm

L .
There is also another type of contributions, namely

quark-squark loops. The direct 1-loop part of such contrib
4-7
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tions is among the most well discussed. We summarize th
here, under our notation, for completeness. We have

Pn i j

D 52
aemNc

8p sin2uW

C inm8R* C jnm8L mdn
B0~p2,mdn

2 ,Md̃m

2
! ~ i↔ j !,

~36!

where

C inm8R 52
l ikn8*

g2
D km

d* ,

C inm8L 52
l ink8

g2
D (k13)m

d* , ~37!

and D d diagonalizes the 636 squark mass-squared matr
M D

2 . The structure is to be compared directly with tho
from thel-couplings above. ForSn , we have

Sn i j

D 5
aem

8p sin2 uW

$C inm8L C jnm8L* 1C inm8R* C jnm8R %B1~p2,Mdn

2 ,Md̃m

2
!

( i↔ j ). ~38!

For the indirect 1-loop part, we need

C 0nm8R 52
ydn

g2
D km

d* ,

C 0nm8L 52
ydn

g2
D (k13)m

d* , ~39!

C W̃nm
8R

50,

C W̃nm
8L

5
1

A2
D km

d* , ~40!

C B̃nm
8R

52
A2

3
tanuWD (k13)m

d* ,

C B̃nm
8L

52
A2

6
tanuWD km

d* . ~41!

We get the indirect 1-loop contributions by combinin
C 8R(L)*with C inm8L(R) , in the same way as we do in the abo
case of~colorless! charged fermion loop.

IV. MORE DETAILED ANALYTICAL RESULTS

In this section, we give more explicit details of the ne
trino mass terms obtained by applying the formulas in
preceeding section. We list the result from different com
nations of interaction vertices and go on to illustrate the c
tent of these exact mass eigenstate results by extracting
dominating piece~s! in the mass eigenstate double su
There, we give the ‘‘approximate’’ analytical results throu
the use of perturbative diagonalization expressions@4# for
01300
m

-
e
-
-

the
.

the elements of the various mixing matrices. Such pertur
tive diagonalizations have been illustrated to be very go
approximations, which also serve to illustrate well the role
the various lepton flavor violating~LFV! couplings involved
~see Refs.@17,18# for other illustrations!.

Note that we focus our discussions below only on t
parts of the results that are particularly interesting to o
analytical study. For instance, in the

Pn i j

N 52
aem

8p sin2 uW

N inm
R* N jnm

R* Mx
n
0B0~p2,Mx

n
0

2
,MSm

2 !

term, we focus on theN inm
R* N jnm

R* Mx
n
0 part. That is, we will

drop the common prefactoraem/8p sin2 uW and the loop in-
tegral B0 from all the neutrino mass term results given b
low. The following discussions do not include theSn part.
The results of the latter are left all to an appendix at the e
They are included here mainly for completeness. It does
look like there is any important off-diagonal contributio
while diagonal contributions, as discussed above, only r
resent a universal correction to the tree-level result.

A. Results for Pn i j

N and „PjM n
À1jT

… i j
N

The result here may be written in the form of a sing
term as

1

4
@ tanuWX1n2X2n#2Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #

3@D ( j 12)m
s 2 iD ( j 17)m

s #

.
BiBj tan2 b

Ms
3 F1

4
~ tanuWX1n2X2n!2

Mx
n
0

Ms
G

~n51 –4 dominate!. ~42!

The scalar sum is dominated bym51,2, and 7 contributions
We illustrate here only the dependence on theBi parameters
and tanb, with Ms denoting a generic mass parameter at
slepton scale.2 Note that we write the final result in the form
such that the square bracket@ # contains a factor of order 1~a
pattern we stick to below!, so that the reader can have a

2Note that we have @D ( i 12)1
s 2 iD ( i 17)1

s #.@2Re(Bi)/Ms
2#

2 i @ Im(Bi)/Ms
2#@ tanbsina2cosa#52(Bi /Ms

2)@tanb sina2cosa#
from our perturbative formulas on theD s elements. One may also
check the other pieces. Take them52 piece, for example, we hav
then @D ( i 12)1

s 2 iD ( i 17)1
s #.2(Bi /Ms

2)@ tanb cosa1sina#; for m
57, @D ( i 12)7

s 2 iD ( i 17)7
s #.@2Im(Bi)1 i Re(Bi)#/cosbMs

2

5i(Bi /Ms
2)(1/cosb). The extra factor ofi guarantees a cancelatio

with the m51 and 2 terms if the (m57) ‘‘pseudoscalar’’ is mass
degenerate with the latter ‘‘scalars,’’ as@ tanb sina2cosa#2

1@tanb cosa1sina#251/cos2b. Hence, to illustrate the generi
result, we write the dominating@D ( i 12)m

s 2 iD ( i 17)m
s # result as

2Bi tanb/Ms
2 . This is used throughout the section.
4-8
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idea on the major parameters~those before the squar
bracket! affecting the scale of the neutrino mass. The res
ant proportionality of the mass term here to the productBiBj
has been addressed and interpreted as the necessity
Majorana-like scalar mass insertion to complete the diagr
in terms of complex scalars. When one follows such an
terpretation to consider the scalar inside the loop as com
field with mass insertions put in on the line explicitly~as
shown in Fig. 6 of Ref.@5# for example!, a proportionality on
BiBj would likewise be resulted. The differentm pieces in
the scalar sum, however, cannot be put together at this le
Each piece involves actually a different value forMs and a
different loop integral from a physical scalar of differe
mass running in the loop. In fact, if one naively takes a s
over m without considering the loop integrals, a zero res
would be obtained for anyD am

s D bm
s with aÞb. The lack of

degeneracy among the scalar mass eigenstates is what m
a nonzero result possible. This is a common feature for
type of diagrams~see also Ref.@18#!. Interestingly enough
for the present case under discussion, a pairwise degene
among the ‘‘scalar’’ and ‘‘pseudoscalar’’ parts of a compl
scalar is enough to guarantee a null result. This is equiva
to the statement that the neutrino mass contribution is p
n

ra

th
-

iv
ra
rm
e

-

y
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portional to a Majorana-like mass term. It is illustrated he
in our expressions as a consequence of the cancelation
tweenD ( i 12)m

s D ( j 12)m
s andi 2D ( i 17)m

s D ( j 17)m
s as well as be-

tweenD ( i 12)m
s D ( j 17)m

s andD ( i 17)m
s D ( j 12)m

s for each single
m value, from our perturbative expressions for the mixi
matrix elements.

Next, we come to the (PjM n
21jT) i j

N part. The dominating
results from all the individual terms of the form have a co
mon proportionality to the combination of LFV parameter

Bim j~ tanb!.

Again, the contribution mainly involves diagrams with
~physical! neutralino, together with a neutral scalar, runni
in the loop. As noted above, the lack of mass degener
among the scalars is essential for a nontrivial result. N
that upon the necessary symmetrization not explicitly sho
we will have also theBjm i(tanb) parameter combination
coming in.

All the different terms in this class have very simila
structure. We discuss here only an illustrative term, and le
the rest to Appendix A below. Let us take a look at the te
Pn 0

N (M n
21jT)4 j . It is given as
i

2m j

m0M1M22MZ
2 sinb cosb~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
@ tanuWX1n2X2n#2Mx

n
0•@D ( i 12)m

s 2 iD ( i 17)m
s #@D 2m

s 2 iD 7m
s #

.
Bim j tanb

Ms
2 Fm0M1M22MZ

2 sinb cosb~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
~ tanuWX1n2X2n!2Mx

n
0G . ~43!
f

of
to
a-
ass.
op
r 1

a-
own
Note that from the general flavor structure of the model, o
expectPn i0

N to have an expression similar toPn i j

N above with

index j replaced by a 0, i.e.,Pn i0
N .(BiB0 /Ms

4)tan2 b 1
4

3(tanuWX1n2X2n)2Mx
n
0. Observing thatB0 /cosb is a pa-

rameter of the same order as the generic mass scale pa
eterMs

2tanb we do see an agreement here.

B. Results for the charged and color loops

Similar to the neutral loop case above, each term in
charged loop contributions to theP ’s has a scalar part in

volving Dam
l D bm

l* which would give a null result foraÞb if
summed overm naively. The different loop integrals from
the lack of scalar degeneracy is what guarantees nontr
results. The fermionic part is more interesting. For illust
tive purpose, we take an expression of the fo
V( i 12)n* Mx

n
2U1n . Here n51 and 2 give the chargino stat

contributions, with a largeMx
n
2 mass but a more sup

pressed V( i 12)n* mixing. The results are given b
(RR21

* /Mc1)mim iU1n and (RR22
* /Mc2)mim iU2n , respectively.

On the other hand, then5 i 12 term involves a small fer-
e

m-

e

ial
-

mion massMx
i 12
2 5mi but a less suppressed mixing o

U1(i 12).(A2MW cosb/M0
2)mi . Dropping all the factors of

order 1, we have all three terms giving contribution
roughly the same order of magnitude, all proportional
mim i /Ms , whereMs again denotes a SUSY scale mass p
rameter here corresponds, more exactly, to a chargino m
This kind of feature is quite common in the charged lo
results below. We illustrate results by dropping all the orde
parameters and using the generic mass parameterMs repre-
senting chargino as well as slepton mass scale.

There are six terms to thePn i j

C result. We mostly just list

them, while drawing attention to particularly interesting fe
tures. Note that the necessary symmetrization is not sh
explicitly,

2
yei

g2
V~ i 12!n* Mx

n
2U1nD2m

l D ( j 12)m
l* .2

yei

g2

mim iBj tanb

Ms
3

.

~44!

The scalar part result here is mainly fromD2(21 j )
l

.Bj tanb/Ms
2 .
4-9
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yei

g2

yej

g2
V~ i 12!n* Mx

n
2U2nD2m

l D ( j 15)m
l*

.
yei

g2

yej

g2

mimjm im j tanb

Ms
3

. ~45!

The scalar part result here is mainly fromD2(51 j )
l

.mjm j tanb/Ms
2 .

2
yei

g2

l jhk

g2
V~ i 12!n* Mx

n
2U(h12)nD2m

l D (k15)m
l*

.2
yei

g2

l j ik

g2

mimkmk tanb

Ms
2

. ~46!

Here, the result is fromn5 i 12 which is interesting only a
h5 i ; hence, only that is shown in the sum overh. It is the
SUSY analog of the Zee diagram, discussed in Refs.@13,5#.
For hÞ i parts, the result is much further suppressed~by
anotherm imh* /Ms

2 factor!. The scalar part result is the sam
as the previous case,

l ikh

g2
V~h12!n* Mx

n
2U1nD (k12)m

l D ( j 12)m
l* .

l i jh

g2

mhmh

Ms

~symmetrization!.

~47!

We note here that the result is actually very sensitive to
i↔ j symmetrization. The dominant result in the express
above is from the case with the (j 12)th charged scalar run
ning in the loop. This is approximately thel̃ j

- slepton. The
symmetrization and the fact thatl i jh52l j ih suggest a per-
fect cancelation of the result in the limit of degenerate sl
tons which correspond roughly to thel̃ i

- and l̃ j
- states. This

has also been discussed in some detail in Ref.@5#,

2
yej

g2

l ikh

g2
V~h12!n* Mx

n
2U2nD (k12)m

l D ( j 15)m
l*

.2
yej

g2

l ikh

g2

mhmh~M̃RL
2 ! jk*

Ms
3

, ~48!

where

~M̃RL
2 ! jk5@Ae* 2m0 tanb#mjdk j1

A2MW cosb

g2
dAk j

E*

2
A2MW sinb

g2
~m il ik j* ! ~49!

gives the completeLR mixing of l̃ j
1 and l̃ k

- states. The las
part of the latter is a contribution beyond the well know
MSSM parts.
01300
e
n

-

l ikh

g2

l jqp

g2
V~h12!n* Mx

n
2U(q12)nD (k12)m

l D (p15)m
l*

.
l ikh

g2

l jhp

g2

mh~M̃RL
2 !pk*

Ms
2

. ~50!

This is the most well known part ofPn i j

C result discussed

extensively in the literature. Note again the extra~last! term
in the LR mixing (M̃RL

2 )pk* . Its contribution to neutrino
masses in the case ofpÞk may be particularly interesting.

For the (PjM n
21jT) i j

C part, we present the long list o
terms in Appendix B. In the neutral loop counterpart abo
we see that the class of indirect 1-loop result all involve
combinationBim j tanb. Here for the charged loop result
we see the same parameter combination does give some
portant terms, but without the tanb factor. These are labele
as Pn i0

C (M n
21jT)3 j—part 1 andPn i0

C (M n
21jT)1 j—part 5

@with correspondingPn i0
C (M n

21jT)2 j part# inside the Appen-

dix. In factor, these terms could easily dominate over
direct 1-loop terms fromPn

C over. They provide neutrino
mass contributions of orderBim j /Ms

2 .
Another type of interesting terms are given by those

beled asPn i0
C (M n

21jT)1 j—part 4@again with corresponding

Pn i0
C (M n

21jT)2 j part# andPn i0
C (M n

21jT)1 j—part 10 inside

the Appendix. We have, roughly, the results (l ikh /
g2)(m jmh /Ms

2) or (l ihk /g2)(m jmh /Ms
2).

Most of the other terms are actually not very interestin
They typically involve further suppression from factors su
as (mi /Ms)(yei

/g2). However, one should note that for th

large tanb case, thei 53 part has an order 1 coupling~es-
sentially thet Yukawa! which renders the suppression n
too strong. A careful numerical study will be necessary
check if there could be a scenario where such term co
play a role.

The quark-squark loop results are much more simple a
class. In fact, parallel structure between thel i jk8 coupling
terms and thel i jk coupling terms can also be used to wri
down the results directly. In particular, for the indirect 1-loo
part, we expected (l ikh8 /g2)(m jmdh

/Ms
2) or (l ihk8 /

g2)(m jmdh
/Ms

2) to match the similar terms just discusse
above. We list the details in Appendix C.

V. CONCLUDING REMARKS

We have listed and discussed the detailed results of all
neutrino mass terms within the GSSM, up to 1-loop ord
Our approach gives expression for exact results, each t
obtained through a double summation over the fermion
scalar mass eigenstates running inside the loop. We fur
give approximate expressions of each of these terms thro
extracting the dominating pieces within the double summ
tion and approximating the elements of the mass mixing m
trices by perturbative diagonalization formulas. The valid
of such perturbative diagonalizations are well founded on
4-10
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experimental smallness of effects involving lepton flav
violation or R-parity violation. However, there are partia
cancellations among pieces within the sum—a result o
GIM type unitary cancellation also pointed out in Re
@17,18#, rendering the approximate formulas agree only
order of magnitude level with the summed exact results. T
latter is also cross-checked through numerical calculatio
part of which is given in Appendix E for illustrative pur
poses. We most probably have given the results in more
tails than necessary. However, we emphasize that our ig
rance about the nature of SUSY parameters,R-parity
violating or otherwise, says that imposing much theoreti
prejudice on the likely importance on some contribution o
the others may be unwise. The detailed listing here is
tended to provide a reference to later studies on any pla
01300
r

a
.
t
e
s,

e-
o-

l
r
-

si-

bly interesting scenario out the model. Numerical studies
the latter will be published independently.
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APPENDIX A: DETAILS OF „PjM n
À1jT

…

N TERMS

Pn i0
N (M n

21jT)4 j ,

2m j

m0M1M22MZ
2 sinb cosb~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
@ tanuWX1n2X2n#2Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D 2m

s 2 iD 7m
s #

.
Bim j tanb

Ms
2 Fm0M1M22MZ

2 sinb cosb~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
~ tanuWX1n2X2n!2Mx

n
0G . ~A1!

This is exactly expression~43! which we repeat.

Pn i h̃
N (M n

21jT)3 j ,

m j

MZ
2 cos2 b~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
@ tanuWX1n2X2n#2Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D 1m

s 2 iD 6m
s #

.
2Bim j tanb

Ms
2 FMZ

2 cos2 b~M1 cos2 uW1M2 sin2 uW!

det~Mn!

1

4
~ tanuWX1n2X2n!2Mx

n
0G . ~A2!

Again, thePn i h̃
N term has a structure similar to that ofPn i0

N ~or Pn i j

N ) with the replacement ofh̃d([ l 0) by h̃u
† .

Pn i W̃
N (M n

21jT)2 j—part 1,

m j

MZ cosbm0M1 cosuW

det~Mn!

1

4
X3n@ tanuWX1n2X2n#Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D 1m

s 1 iD 6m
s #

.
2Bim j tanb

Ms
2 FMZ cosbm0M1 cosuW

det~Mn!

1

4
X3n~ tanuWX1n2X2n!Mx

n
0G . ~A3!

Pn i W̃
N (M n

21jT)2 j—part 2,

2m j

MZ cosbm0M1 cosuW

det~Mn!

1

4
X(41a)n@ tanuWX1n2X2n#Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D (21a)m

s 1 iD (71a)m
s #

.
Bim j tanb

Ms
2 FMZ cosbm0M1 cosuW

det~Mn!

1

4
X4n~ tanuWX1n2X2n!Mx

n
0G . ~A4!
4-11
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Here, we have different terms fora50 –3, among which we show only thea50 result. Thea51 –3 cases have obvious ext
suppressions from theX(41a)n matrix element and a smaller scalar mixing part. The former has an extram j* /Ms factor while

the latter introduces a (m̃Li j

2 1m i* m j )/Ms
2 factor. The overallPn i W̃

N results are not too different from the previous ones ab

either.

Pn i B̃
N (M n

21jT)1 j—part 1,

2m j

MZ cosbm0M2 sinuW

det~Mn!

1

4
tanuWX3n@ tanuWX1n2X2n#Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D 1m

s 1 iD 6m
s #

.
Bim j tanb

Ms
2 FMZ cosbm0M2 sinuW

det~Mn!

1

4
tanuWX3n~ tanuWX1n2X2n!Mx

n
0G . ~A5!

Pn i B̃
N (M n

21jT)1 j—part 2,

2m j

MZ cosbm0M2 sinuW

det~Mn!

1

4
tanuWX(41a)n@ tanuWX1n2X2n#Mx

n
0@D ( i 12)m

s 2 iD ( i 17)m
s #@D (21a)m

s 1 iD (71a)m
s #

.
Bim j tanb

Ms
2 FMZ cosbm0M2 sinuW

det~Mn!

1

4
tanuWX4n~ tanuWX1n2X2n!Mx

n
0G . ~A6!
ix
re

he

-

If one rotates theB-ino andW-ino into a photino and aZ-ino,
the photino would of course be decoupled from mass m
ings with the neutral fermions. The closely related structu
of Pn i W̃

N (M n
21jT)2 j and Pn i B̃

N (M n
21jT)1 j reflect on that.

One can certainly write the two part of the results toget
through aPn i Z̃

N term with diagrams involving theZ-ino part

only. However, to the extent that photino andZ-ino are not
mass eigenstates, there is really not much to gain.

APPENDIX B: DETAILS OF „PjM n
À1jT

…

C TERMS

Pn i0
C (M n

21jT)4 j : Here, we introduce the order 1 con

stant,

C45
m0M1M22MZ

2 sinb cosb~M1 cos2 uW1M2 sin2 uW!

det~Mn!

3Ms ~B1!

to simplify the expressions, given as follows.

Pn i0
C (M n

21jT)4 j—part 1,

m j

C4

Ms

yei

g2
V~ i 12!n* Mx

n
2U1nD2m

l D2m
l* .

yei

g2

mim im j

Ms
2

C4 .

~B2!

Pn i0
C (M n

21jT)4 j—part 2,

m j

C4

Ms

yei

g2

yek

g2
V~ i 12!n* Mx

n
2U(k12)nD2m

l D (k15)m
l*

.S yei

g2
D 2

mi
2m im j tanb

Ms
3

C4 . ~B3!
01300
-
s

r

Pn i0
C (M n

21jT)4 j—part 3,

2m j

C4

Ms

l ikh

g2
V~h12!n* Mx

n
2U1nD (k12)m

l D2m
l*

.2
l ikh

g2

m jmhmhBk* tanb

Ms
4

C4 . ~B4!

Pn i0
C (M n

21jT)4 j—part 4,

2m j

C4

Ms

l ikh

g2

yep

g2
V~h12!n* Mx

n
2U(p12)nD (k12)m

l D (p15)m
l*

.2
l ikh

g2

yeh

g2

m jmh~M̃RL
2 !hk*

Ms
3

C4 . ~B5!

Pn i0
C (M n

21jT)4 j—part 5,

2m j

C4

Ms

yek

g2
V~k12!n* Mx

n
2U1nD (k12)m

l D ( i 12)m
l*

.2
yei

g2

mim im j

Ms
2

C4 . ~B6!

Pn i0
C (M n

21jT)4 j—part 6,

m j

C4

Ms

yei

g2

yek

g2
V~k12!n* Mx

n
2U2nD (k12)m

l D ( i 15)m
l*

.
yei

g2

yek

g2

m jmkmk~M̃RL
2 ! ik*

Ms
4

C4 . ~B7!
4-12
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Pn i0
C (M n

21jT)4 j—part 7,

2m j

C4

Ms

l ihk

g2

yep

g2
V~p12!n* Mx

n
2U(h12)nD (p12)m

l D (k15)m
l*

.2
l ihk

g2

yeh

g2

m jmh~M̃RL
2 !kh*

Ms
3

C4 . ~B8!

Pn i h̃
C (M n

21jT)3 j : Here, we need to use, in addition

above, expressions for the elements of the mixing ma
D1(i 12)

l .Bi /Ms
2 andD1(i 15)

l .mim i /Ms
2 ; and introduce the

order 1 constant

C35
MZ

2 cos2 b~M1 cos2 uW1M2 sin2 uW!

det~Mn!
Ms ~B9!

to simplify the expressions. We also useMc to denote a mass
parameter of the~physical! chargino mass scale. The resu
are as follows.

Pn i h̃
C (M n

21jT)3 j—part 1,

m j

C3

Ms
V1n* Mx

n
2U1nD1m

l D ( i 12)m
l* .

Bim j

Ms
2

C3

Mc

Ms
. ~B10!

Pn i h̃
C (M n

21jT)3 j—part 2,

2m j

C3

Ms

yei

g2
V1n* Mx

n
2U2nD1m

l D ( i 15)m
l*

.2
yei

g2

mim im j

Ms
2

C3

Mc

Ms
. ~B11!

Pn i h̃
C (M n

21jT)3 j—part 3,

m j

C3

Ms

l ihk

g2
V1n* Mx

n
2U(h12)nD1m

l D (k15)m
l*

.
l ihk

g2

m jmhmh* mkmk

Ms
4

C3 . ~B12!

Pn i W̃
C (M n

21jT)2 j and Pn i B̃
C (M n

21jT)1 j : We have noted

above in the case ofPj
N the close similarity between

Pn i W̃
N (M n

21jT)2 j and Pn i B̃
N (M n

21jT)1 j . The story in the

same here, betweenPn i W̃
C (M n

21jT)2 j andPn i B̃
C (M n

21jT)1 j ,

with some exception. Note that from comparing Eqs.~34!

and ~35!, we can see that there is and extra term inC B̃nm
R

without the matching partner inC W̃nm
R . We list below all

results of theB-ino case, namely,Pn i B̃
C (M n

21jT)1 j . Among

the 10 parts listed below, 1–7 have theW-ino counterparts
in Pn B̃

C (M n
21jT)2 j , to be given with an extra facto
i

01300
ix

(21/tanuW)(M1 /M2), which we do not list explicitly. Parts
8–10 have noW-ino counterparts. We also introduce order
constants,

C15
tanuW

A2

MZ cosbm0M2 sinuW

det~Mn!
Ms ~B13!

to simplify the expressions.

Pn i B̃
C (M n

21jT)1 j—part 1,

2m j

C1

Ms

yei

g2
V~ i 12!n* Mx

n
2U2nD2m

l D2m
l* .2

yei

g2

mim im j

Ms
2

C1 .

~B14!

Pn i B̃
C (M n

21jT)1 j—part 2,

2m j

C1

Ms

yei

g2
V~ i 12!n* Mx

n
2U(k12)nD2m

l D (k12)m
l*

.2
yei

g2

miBim j tanb

Ms
3

C1 . ~B15!

Pn i B̃
C (M n

21jT)1 j—part 3,

m j

C1

Ms

l ikh

g2
V~h12!n* Mx

n
2U2nD (k12)m

l D2m
l*

.
l ikh

g2

m jmhmhBk* tanb

Ms
4

C1 . ~B16!

Pn i B̃
C (M n

21jT)1 j—part 4,

m j

C1

Ms

l ikh

g2
V~h12!n* Mx

n
2U(p12)nD (k12)m

l D (p12)m
l*

.
l ikh

g2

m jmh~m̃Lkh

2 1mk* mh!

Ms
3

C1 . ~B17!

Pn i B̃
C (M n

21jT)1 j—part 5,

2m j

C1

Ms
V2n* Mx

n
2U1nD1m

l D ( i 12)m
l* .2

Bim j

Ms
2

C1

Mc

Ms
.

~B18!

Pn i B̃
C (M n

21jT)1 j—part 6,

m j

C1

Ms

yei

g2
V2n* Mx

n
2U2nD1m

l D ( i 15)m
l* .

yei

g2

mim im j

Ms
2

C1

Mc

Ms
.

~B19!
4-13
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Pn i B̃
C (M n

21jT)1 j—part 7,

2m j

C1

Ms

l ihk

g2
V2n* Mx

n
2U(h12)nD1m

l D (k15)m
l*

.2
l ihk

g2

m jmh* mkmk

Ms
3

C1 . ~B20!

Pn i B̃
C (M n

21jT)1 j—part 8,

2m j

C1

Ms
2V~k12!n* Mx

n
2U1nD (k15)m

l D ( i 12)m
l*

.
m jmkmk~M̃RL

2 ! ik*

Ms
4

2C1 . ~B21!

Pn i B̃
C (M n

21jT)1 j—part 9,

m j

C1

Ms
2

yei

g2
V~k12!n* Mx

n
2U2nD (k15)m

l D ( i 15)m
l*

.
yei

g2

mim im j

Ms
2

2C1 . ~B22!

Pn i B̃
C (M n

21jT)1 j—part 10,

2m j

C1

Ms
2

l ihk

g2
V~p12!n* Mx

n
2U(h12)nD (p15)m

l D (k15)m
l*

.2
l ihk

g2

m jmkm̃Ehk

2

Ms
3

2C1 . ~B23!

APPENDIX C: DETAILS OF „PjM n
À1jT

…

D TERMS

Pn i j

D : Note that the necessary symmetrization is n

shown explicitly,

Nc

l ikh8

g2

l jhp8

g2
mdh

D km
d D (p13)m

d* .3
l ikh8

g2

l jhp8

g2

mdh
~M RL

2 !pk*

Ms
2

,

~C1!

where

~M RL
2 !pk5@Ad* 2m0 tanb#mdp

dkp1
A2MW cosb

g2
dAkp

D*

2
A2MW sinb

g2
~m il ikp8* !. ~C2!
01300
t

(PjM n
21jT) i j

D : Pn i 0̃
D (M n

21jT)4 j—part 1,

2Ncm j

C4

Ms

l ikh8

g2
2

ydh

g2
2

mdh
D km

d D (h13)m
d*

.2
l ikh8

g2

ydh

g2

m jmdh
~M RL

2 !hk*

Ms
3

3C4 . ~C3!

Pn i 0̃
D (M n

21jT)4 j—part 2,

2Ncm j

C4

Ms

l ihk8

g2

ydh

g2
mdh

D hm
d D (k13)m

d*

.2
l ihk8

g2

ydh

g2

m jmdn
~M RL

2 !kh*

Ms
3

3C4 . ~C4!

Pn i W̃
D (M n

21jT)2 j ,

Ncm j

C1

tanuWMs

l ikh8

g2
mdh

D km
d D hm

d*

.
l ikh8

g2

m jmdh
m̃Qkh

2

Ms
3

3C1

tanuW
. ~C5!

Pn i B̃
D (M n

21jT)1 j—part 1,

2Ncm j

C1

3Ms

l ikh8

g2
mdh

D km
d D hm

d* .2
l ikh8

g2

m jmdh
m̃Qkh

2

Ms
3

C1 .

~C6!

Pn i B̃
D (M n

21jT)1 j—part 2,

2Ncm j

2C1

3Ms

l ihk8

g2
mdh

D (h13)m
d D (k13)m

d*

.2
l ihk8

g2

m jmdh
m̃Dhk

2

Ms
3

2C1 . ~C7!

APPENDIX D: THE Sn RESULTS

Sn i j

N : We have a simple result here, given as

1

4
@ tanuWX1n2X2n#2@D ( i 12)m

s 2 iD ( i 17)m
s #@D ( j 12)m

s

1 iD ( j 17)m
s #

.
BiBj* tan2 b

Ms
4 F1

4
~ tanuWX1n2X2n!2G

~n51 –4 dominate!. ~D1!

Sn i j

C : We list all the individual terms below,
4-14
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U1nU1n* D ( i 12)m
l* D ( j 12)m

l .
~m̃L ji

2 1m im j* !

Ms
2

, ~D2!

yei

g2

yej

g2
U2nU2n* D ( i 15)m

l* D ( j 15)m
l .

yei

g2

yej

g2

m̃Eji

2

Ms
2

, ~D3!

l ihk

g2

l jpq*

g2
U(h12)nU~p12!n* D (k15)m

l* D (q15)m
l .

l ihk

g2

l jhk*

g2
,

~D4!

2
yej

g2
U1nU2n* D ( i 12)m

l* D ( j 15)m
l .2

yej
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APPENDIX E: SOME ILLUSTRATION ON THE VALIDITY
OF THE APPROXIMATE FORMULAS

THROUGH NUMERICAL CALCULATIONS

In order to see how well our approximated formulas of t
1-loop neutrino mass corrections work, we present here s
of the numerical neutrino mass values from the appro
mated formulas and compare them verses those from
exact expressions of the corresponding neutrino mass te
We have a disclaimer to pronounce first. What we do h
are not numerical studies of phenomenological viable s
narios of neutrino masses generation within the model.
make no attempt to choose parameters to fit any neut
oscillation data. Rather, we are choosing simple and q
arbitrary input parameters, only to check and give an idea
the validity of out analytical results. The practice also he
to illustrate some theoretical issues behind the formulas.
choose a set of convenient input parameters and compute
list results from nine of the long list of neutrino mass term
While the results do give some idea on the relative stren
of the various terms, the readers should be warned that th
only a consequence of a specific choice of inputs, which i
no sense generic or particularly phenomenologically inter
ing.

Our choice of input parameters is as follows. We take
SUSY mass as around the scale of 100 GeV. In the ex
results calculations, however, we have to split the masse
different superpartners to avoid unwanted special cance
tions. We will clarify on the latter issue below. We choo
input values that turned up mass eigenvalues for the SU
particles in the hundreds of GeV scale, details of which
really not interesting. The value of tanb is set at 3. The
parameters responsible for the lepton number violating ef
are simply taken to be the same numerically, at a value
1024. Explicitly, l i jk5l i jk8 51024, m i51024 GeV, Bi

51024 GeV2. The neutrino mass results are presented
Table I, in which we show only contributions to the~3,3!
elements of the effective~SM! neutrino mass matrix. The
upper part of the table corresponds to the results from
approximated formulas while the lower part to those fro
the corresponding exact expressions. In each part, the
line corresponds to terms in Eqs.~42!,~43!,~B2!, the second
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one to Eqs.~B3!,~B6!,~B15! and the third one to Eqs
~B22!,~48!,~C1!.

As one can see from the table, the difference between
two results for any specific contribution is within an order
magnitude. One could not really expect a better agreem
than this. In fact, as discussed above and in some rel
earlier studies@17,18#, the structure of the class of 1-loo
diagrams are such that there is a GIM-type unitarity can
lation involved in the sum over mass eigenstates. Say, i
the mass eigenstate fermions of the same quantum num
are degenerate, the sum over the set of fermion mass e
states in a neutrino mass term will be proportional to
mass matrix entry that a naive look at the Feynman diag
will suggest. In most cases, that is vanishing. Similarly, wh
the set of the mass eigenstate scalars involved in a certa
diagram is mass degenerate, the sum over the set of s
gives a vanishing result due to unitarity of the diagonaliz
matrix. Take Eq.~B6! as an illustrative explicit example, th
exact expression of the neutrino mass contribution is prop
tional to

2m j

C4

Ms

yek

g2
V~k12!n* Mx

n
2U1nD (k12)m

l D ( i 12)m
l*

3B0~p2,Mx
n
2

2
,M ,̃m

2
!.

In case of mass degeneracy, one can factor out a ferm
summation

(
n

V~k12!n* Mx
n
2U1n

and a scalar summation

(
m

D (k12)m
l D ( i 12)m
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The former is nothing but the vanishing (k12,1) entry of the
charged fermion mass matrix, while the latter is zero by u
tarity of the matrix Dl ~for iÞk). As discussed in Refs
@17,18#, the lack of mass degeneracy leads to first order v
lation of such unitarity cancellations, which explains t
nonvanishing results. It also explains the not better than
der of magnitude agreement between our exact results,
tained really summing over all the contributions from t
different mass eigenstates, and that from the approxim
formulas, which only extract the analytical form of the lar
est term within such summations.

With the above explanation, we see that our approxim
formulas do work as well as they are to be expected.
emphasize again that the approximate formulas mainly se
the purpose of illustrating the role of the lepton number v
lating parameters in each of the neutrino mass contribu
term.

TABLE I. Some numerical results from the chosen neutri
mass terms.~See text of Appendix E.!

Approximated formulas~eV!

23.8531029 29.3531029 6.3831028

1.78310210 24.3831028 22.4731029

1.0031028 3.3131027 4.4631023

Exact formulas~eV!

22.6131029 23.4531028 1.4531028

5.63310210 21.7331028 23.9431029

23.2331029 6.9031027 3.2631023
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@1# L.E. Ibáñez and G.G. Ross, Nucl. Phys.B368, 3 ~1992!.
@2# For recent reviews, see M.C. Gonzalez-Garcia and Y. Nir, R

Mod. Phys.75, 345 ~2003!; J.N. Bahcall, M.C. Gonzalez
Garcia, and C. Pena-Garay, J. High Energy Phys.07, 054
~2002!.

@3# O.C.W. Kong, Nucl. Phys. B~Proc. Suppl.! 101, 421 ~2001!.
@4# O.C.W. Kong, IPAS-HEP-k008, hep-ph/0205205.
@5# O.C.W. Kong, J. High Energy Phys.09, 037 ~2000!.
@6# M. Bisset, O.C.W. Kong, C. Macesanu, and L.H. Orr, Ph

Lett. B 430, 274 ~1998!.
@7# M. Bisset, O.C.W. Kong, C. Macesanu, and L.H. Orr, Ph

Rev. D62, 035001~2000!.
@8# See, for example, G. Bhattacharyya, Nucl. Phys. B~Proc.

Suppl.! 52A, 83 ~1997!; H. Dreiner, inPerspectives on Super
symmetry, edited by G. Kane~World Scientific, Singapore
1999!, p. 462.

@9# See, for example, E.J. Chun, S.K. Kang, C.W. Kim, and U.
Lee, Nucl. Phys.B544, 89 ~1999!; S.Y. Choi, E.J. Chun, S.K
Kang, and J.S. Lee, Phys. Rev. D60, 075002~1999!; M. Hir-
sch, M.A. Diaz, W. Porod, J.C. Romao, and W.F. Valle,ibid.
v.

.

.

.

62, 113008~2000!. We have no intention to give a complet
list of references; interested readers may check out refere
lists of some of the papers cited here. However, we would l
to mention also a couple of more noteworthy earlier wor
These include, R. Hempfling, Nucl. Phys.B478, 3 ~1996!; B.
de Carlos and P.L. White, Phys. Rev. D54, 3427~1996!; H.P.
Nilles and N. Polonsky, Nucl. Phys.B484, 33 ~1997!.

@10# O.C.W. Kong, Mod. Phys. Lett. A14, 903 ~1999!.
@11# S. Davidson and M. Losada, J. High Energy Phys.05, 021

~2000!; Phys. Rev. D65, 075025~2002!.
@12# E.J. Chun and S.K. Kang, Phys. Rev. D61, 075012~2000!.
@13# K. Cheung and O.C.W. Kong, Phys. Rev. D61, 113012~2000!.
@14# S. Kiyoura, M.M. Nojiri, D.M. Pierce, and Y. Yamada, Phy

Rev. D 58, 075002~1998!. See also D. Pierce and A. Pap
dopoulos, Phys. Rev. D50, 565 ~1994! for more background.

@15# See, for example, M. Frigerio and A. Smirnov, J. High Ener
Phys.02, 004 ~2003! and references therein.

@16# Reference@5# identifies pieces of RPV contributions to squa
and slepton masses often overlooked in the literature and
address their phenomenological implications. Some more
4-16



nt

DETAILED ANALYSIS OF ONE-LOOP NEUTRINO . . . PHYSICAL REVIEW D69, 013004 ~2004!
tailed studies of the related stringent constraints are prese
afterwards for neutron electric dipole moment@17# andm→eg
@18#.

@17# Y.-Y. Keum and O.C.W. Kong, Phys. Rev. Lett.86, 393
~2001!; Phys. Rev. D63, 113012~2001!.
01300
ed@18# K. Cheung and O.C.W. Kong, Phys. Rev. D64, 095007
~2001!.

@19# S.K. Kang and O.C.W. Kong~work in progress!.
@20# Y. Grossman and H.E. Haber, Phys. Rev. D59, 093008~1999!;

hep-ph/9906310.
4-17


