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Anomalous specific heat in high-density QED and QCD
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Long-range quasistatic gauge-boson interactions lead to anomalous~non-Fermi-liquid! behavior of the spe-
cific heat in the low-temperature limit of an electron or quark gas with a leadingT ln T21 term. We obtain
perturbative results beyond the leading log approximation and find that dynamical screening gives rise to a
low-temperature series involving also anomalous fractional powersT(312n)/3. We determine their coefficients
in perturbation theory up to and including orderT7/3 and compare with exact numerical results obtained in the
large-Nf limit of QED and QCD.
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It was established long ago@1# in the context of a nonrel-
ativistic electron gas that only weakly screened lo
frequency transverse gauge-boson interactions lead
qualitative deviation from Fermi-liquid behavior. A particula
consequence of this is the appearance of an anomalous
tribution to the low-temperature limit of entropy and speci
heat proportional toaT ln T 21 @1–3#, but it was argued tha
the effect would probably be too small for experimental d
tection.

More recently, it has been realized that analogous n
Fermi-liquid behavior in ultradegenerate QCD is of cent
importance to the magnitude of the gap in color superc
ductivity @4–6#, and it was pointed out@7# that the anoma-
lous contributions to the low-temperature specific heat m
be of interest in astrophysical systems such as neutro
protoneutron stars, if they involve a normal~nonsupercon-
ducting! degenerate quark matter component.

So far only the coefficient of theaT ln T 21 term in the
specific heat was determined~with Ref. @3# correcting the
result of Ref.@1# by a factor of 4!, but not the complete
argument of the leading logarithm. While the existence of
T ln T 21 term implies that there is a temperature range wh
the entropy or the specific heatexceedsthe ideal-gas value
without knowledge of the constants ‘‘under the log’’ it
impossible to give numerical values for the required te
peratures.

Furthermore, a quantitative understanding of the
anomalous contributions is also of interest with regard to
recent progress made in high-order perturbative calculat
of the pressure~free energy! of QCD at nonzero temperatur
and chemical potential@8#, where it has been found that d
mensional reduction techniques work remarkably well
cept for a narrow strip in theT-m plane around theT50 line.

In the present Rapid Communication we report the res
of a calculation of the low-temperature entropy and spec
heat for ultradegenerate QED and QCD that goes beyond
leading log approximation. In addition to completing th
leading logarithm, we find that, forT/m!g!1, whereg is
either the strong or the electromagnetic coupling const
the higher terms of the low-temperature series involve a
anomalous fractional powersT(312n)/3, and we give their
coefficients through orderT7/3.

Our starting point is an expression for the thermodynam
potential of QED and QCD that becomes exact in the limit
0556-2821/2004/69~1!/011901~4!/$22.50 69 0119
-
a

on-

-

n-
l
-

y
or

e
e

-

e
e
ns

-

ts
c
he

t,
o

c
f

large flavor numberNf @9,10# and that at finiteNf has an
error of orderg4 in the regimeT/m!g,

P5NNf S m4

12p2 1
m2T2

6
1

7p2T4

180
D

2NgE d3q

~2p!3
E

0

`dq0

p

3F 2~@nb1 1
2 # Im ln DT

212 1
2 Im ln Dvac

21!

1S @nb1 1
2 # Im ln

DL
21

q22q0
2

2 1
2 Im ln

Dvac
21

q22q0
2D G

1O~g4m4!, ~T/m!g! ~1!

whereN53, Ng58 for QCD, and both equal 1 for QED.DT
and DL are the spatially transverse and longitudinal gau
boson propagators at finite temperatureT and ~electron or
quark! chemical potentialm obtained by Dyson-resummin
one-loop fermion loops, andDvac is the corresponding quan
tity at zero temperature and chemical potential.

Nonanalytic terms in the low-temperature expansion a
from the contribution

PT,nb

Ng
52E d3q

~2p!3E0

`dq0

p
2nb Im ln DT

21 . ~2!

The bosonic distribution functionnb51/@exp(q0 /T)21# re-
stricts theq0 integration toq0&T andT is assumed to be the
smallest mass scale in the problem. Consistently dropp
contributions proportional toT4 in the pressure (T3 in the
entropy!, which for T/m!g are beyond our perturbative ac
curacy, it turns out that we only need theT→0 limit of the
inverse propagatorDT

21 , and only the lowest orders inq0 /q
andq0 /m:

ReDT
215q2@11O~geff

2 !#

1S geff
2 m2

p2q2
211O~geff

2 q0!1O~geff
2 q2/m2!D q0

2

1O~geff
2 q0

4!, ~3!
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Im DT
2152

geff
2 q0

48pq3
~q22q0

2!~12m213q21q0
2!u~2m2q!

~4!

wheregeff
2 5g2Nf for QED andg2Nf /2 for QCD.

Keeping only the leading terms in the limitq0→0 gives

Im ln DT
21.arctan

2geff
2 ~4m21q2!q0u~2m2q!

16pq3
. ~5!

Inserting this approximation into Eq.~2! leads to the integra

E
0

2m

dq q2arctan
q0~4m21q2!

q3

.
4m2

3
q0S ln

2m

q0
1

5

2D1O~q0
5/3!. ~6!

Performing theq0 integration then gives the following con
tribution to the entropyS5]P/]T ~per unit volume!:

ST,nb

Ng
5

geff
2 m2T

36p2 S ln
32pm

geff
2 T

111gE2
6

p2
z8~2!D 1O~T5/3!.

~7!

While this reproduces the coefficient of the anomalo
T ln T 21 term reported in Ref.@3#, the coefficient under the
logarithm as well as the suppressedO(T5/3) contribution are
still incomplete. To complete the term linear inT, one has to
perform an exactly analogous calculation of the longitudi
contribution, which involves

Im ln DL
21.

geff
2 ~4m22q2!q0u~2m2q!/~8pq!

q21~geff
2 m2!/p2

, ~8!

and when inserted into Eq.~1! contributes

SL,nb

Ng
5

geff
2 m2T

24p2 S ln
geff

2

4p2
11D 1O~geff

4 !1O~T3!. ~9!

Finally, the remaining parts of~1!, which do not involve
the bosonic distribution function, yield

Snon2nb

Ng
52

geff
2

8p2
m2T. ~10!

The latter contribution matches exactly the one from
standard perturbative result to orderg2 @11#, while the con-
tributions ~7! and ~9! depend on havingT/m!g. In this re-
gion, all of the contributions listed so far are negligible co
pared to the zero-temperature contribution;g4m4 in the
pressure@which is only partially included in Eq.~1!#. How-
ever, by considering instead the entropy~and further below
the specific heat!, the above contributions become the dom
nant ones.
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Adding them all together, we obtain

S2S0

Ng
5

geff
2 m2T

36p2 S ln
4geffm

p2T
221gE2

6

p2
z8~2!D

1c5/3T
5/31c7/3T

7/31O~T3!, ~11!

whereS0 is the ideal-gas value of the entropy per unit vo
ume.

To also obtain completely the coefficients of the terms
the low-temperature expansion that involve fractional po
ers ofT we need to include more terms of Eqs.~3! and ~4!
than those kept in relation~6!. A lengthy calculation, whose
details will be discussed elsewhere, gives

c5/352

8322/3GS 8

3D zS 8

3D
9A3p11/3

~geffm!4/3, ~12!

c7/35

80321/3GS 10

3 D zS 10

3 D
27A3p13/3

~geffm!2/3.

~13!

SettingT/m;geff
11d with d.0, one finds that the terms in th

expansion ~11! correspond to the ordersgeff
31d ln(c/geff),

geff
31(5/3)d , andgeff

31(7/3)d , respectively, with a truncation erro

of the ordergeff
313d . Hence, the expansion parameter in th

low-temperature series isT/(geffm), which is also the scale
less parameter appearing in the argument of the leading l
rithm ~remarkably, however, only after the transverse and
longitudinal contributions have been added together!. The
combinationgeffm is the scale of the Debye mass at hig
chemical potential, whose leading-order value ismD
5geffm/p. In fact, the calculation of the coefficients in Eq
~11! required keeping the leading-order ‘‘hard-dense-loo
~HDL! part of the gauge boson propagator@12,13#, in par-
ticular the dynamic screening in Eq.~4!, but also a HDL
correction to the real part of the transverse self energy in
~3!. The above calculation is therefore in a certain se
another application of HDL resummation@13#, which thus
turns out to be necessary also for a perturbative treatmen
the low-temperature regimeT/m!g.

As a check on our result and also as a test of its conv
gence properties, we compare the anomalous transverse
tributionsST,nb

with those of the exactly~albeit only numeri-

cally! solvable large-Nf limit @10# in Fig. 1. We find good
convergence to the exact result as long asT/m
&geff /(2p2). This is also the region where the comple
large-Nf result for the low-temperature entropy@10# has the
anomalous property of exceeding the ideal-gas value.

Our results do not, however, seem to agree with the
sults of Ref.@7#, which recently questioned the presence o
term}aT ln T21. The~renormalization group resummed! re-
sult reported therein rather corresponds to a leading non
1-2
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lytic aT3 ln T term when expanded out perturbatively, whi
is in fact the type of nonanalytic terms that appear alread
regular Fermi liquids@14#.

For potential phenomenological applications in ast
physical systems, the specific heatCv at constant volume and
number density is of more direct interest than the entro
density that we have calculated so far. The former~per unit
volume! is given by@15#

Cv5TH S ]S

]TD
m

2S ]N
]T D

m

2 S ]N
]m D

T

21J , ~14!

whereN is the number density, but to the order of accura
of our expansions,Cv can be simply obtained as the log
rithmic derivative of the entropy:

Cv5TS ]S

]TD
m

1O~T3!. ~15!

Explicitly, the result is

Cv2Cv
0

Ng
5

geff
2 m2T

36p2 S ln
4geffm

p2T
231gE2

6

p2
z8~2!D

1
5

3
c5/3T

5/31
7

3
c7/3T

7/31O~T3! ~16!

with Cv
05NNfm

2T/31O(T3), and c5/3 and c7/3 given by
Eqs.~12! and ~13!.

For illustrative purposes, we evaluate the ratio ofCv as
given by Eq.~16! to the ideal-gas valueCv

0 for QCD with
two massless quark flavors in Fig. 2, using alternatively t
values foras that have been used also in Ref.@7# and that
correspond to one-loop running couplings with renormali
tion point 0.5 GeV~full line! and 1 GeV~dashed line!. The

FIG. 1. Transversenb contribution to the interaction part of th
low-temperature entropy density in the large-Nf limit for the three
valuesgeff

2 51,4,9. The large dots give the exact numerical resu
the full, dashed, and dash-dotted lines correspond to our pertu
tive result up to and including theT ln T 21, T5/3, andT7/3 contri-
butions.
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shaded bands shown are limited from below and above
the results to orderT5/3 andT7/3, respectively, and thus indi
cate the quality of the low-temperature expansion. One m
interpret these results as roughly corresponding to QCD w
a quark chemical potential of 0.5 GeV and the total variat
corresponding to different renormalization schemes with
minimal subtraction scale varied betweenm and 2m. The
critical temperature for the color superconducting phase tr
sition may be anywhere between 6 and 60 MeV@16#, so the
range T/m>0.012 in Fig. 2 might correspond to norm
quark matter. While it is certainly questionable to apply p
turbative results foras*0.65, Fig. 2 suggests that th
anomalous feature of an excess of the specific heat ove
ideal-gas value may possibly come into play in astrophys
situations, in particular in the cooling of~proto-!neutron stars
@17,18#. This should be contrasted with the ordinary pert
bative estimate forCv /Cv

0 based on the well-known@11#
exchange term}g2 ~which, as we have shown, require
T/m@g). The latter would predictCv /Cv

0&0.6 for as

*0.65.
For completeness, we also give the numerical results

responding to QED, wheregeff'0.303. Here the range o
temperature, where the specific heat exceeds the idea
value, and the deviations from the latter, are much sma
~the deviations from the ideal-gas value have been enlar
by a factor of 20 in Fig. 2 to make them more visible!.

To summarize, we have presented a quantitative eva
tion of the leading contributions to the entropy and spec
heat of high-density QCD and QED in the regimeT/m!g
!1, which is dominated by non-Fermi-liquid behavio
While the effect remains small in QED, it seems conceiva
that the anomalous terms in the specific heat play a not
able role in the thermodynamics of a normal quark ma
component of neutron or protoneutron stars.

A.I. and A.G. have been supported by the Austrian S
ence Foundation FWF, Project Nos. 14632-PHY and 163
N08, respectively.
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FIG. 2. The perturbative result for the specific heat, normaliz
to the ideal-gas value, to orderT5/3 and T7/3 ~lower and upper
curves, respectively! for two particular values ofas in two-flavor
QCD ~chosen for comparability to Ref.@7#! and geff'0.303 for
QED. The deviation of the QED result from the ideal-gas value
enlarged by a factor of 20, and the plot terminates where the ex
sion parameter (p2T)/(geffm)'1.
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