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Improved rf cavity search for halo axions
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The axion is a hypothetical elementary particle and cold dark matter candidate. In this rf cavity experiment,
halo axions entering a resonant cavity immersed in a static magnetic field convert into microwave photons,
with the resulting photons detected by a low-noise receiver. The ADMX Collaboration presents new limits on
the axion-to-photon coupling and local axion dark matter halo mass density from a rf cavity axion search in the
axion mass range 1.9-2/8eV, broadening the search range to 1.9—3€3/. In addition, we report first
results from an improved analysis technique.
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I. INTRODUCTION was 1.6 K. The frequency of the cavity mode is tuned with a
pair of axial tuning rods(metal or dielectrig that can be
The axion is the pseudo Goldstone bogby2] implied by  translated from near the cavity center to the wall.

the Peccei-Quinn solutidr8] to the “strongCP” problem in For our most recent run, we used one metal tuning rod
QCD (for reviews, see, e.g., Refgt,5]). The axionisalsoa (d~7.5cm) and one ceramic dielectric tuning rod (
good cold dark matter candidaf6—8], and could make a ~5.0 cm), with the ceramic rod fixed near the cavity center.
substantial contribution to the nearby galactic halo mass denFhis is our first use of a dielectric tuning rod. With this
sity, estimated to be approximately 0.45 GeVici]. Ax-  tuning rod configuration, we were able to tune from 461-550
ions are commonly thought to be thermalized, with an energHz, corresponding to axion masses 1.9-28V. Earlier
virial width O(10°%) [10], and may be detected by the publications reported on axion masses 2.3-2¢8/[19] and
Sikivie rf cavity techniqug[11]. This paper describes new
results from an ongoing rf cavity search by the ADMXXx- m.
ion Dark Matter ExperimentCollaboration. We report limits - Stepping motors
based on predictions for the power- ggw deposited in the |
cavity from two benchmark axion models, Dine-Fischler- Yacuum Pump <=—""

Srednicki-Zhitnitskii (DFS2) [12,13 and Kim-Shifman- L Chvosat vesse,
Vainshtein-ZakharoyKSVZz) [14,15, whereg,,, is the ef- 1 ryostatvesse
fective coupling strength of axions to two photdd4]. ] 1 Magnet support
1 if/ Cavity LHe reservoir
Il. EXPERIMENT B I
The experimental apparatus has been described elsewhe Ot s Magnet LHe reservoir

[16]. Briefly, halo axions couple to the electric field in a

tunable resonant cavity plus a dc magnetic field provided by
a superconducting solenoid surrounding the cavity volume.
The signal is excess power in the cavity when the frequency
of the TMy;o mode is close to the energy of the halo axions.

The electric field in the cavity is coupled by an antenna f Tuning mechanism
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probe to an ultralow-noise cryogenic preamplifier, followed
by further amplification, mixing, and digitizatiohl7,1§.
Figure 1 shows a sketch of the detector and. Riga sche-
matic diagram of the receiver chain. -~ HitHr—— Dielectric tuning rod
The magnet is a superconducting solenoid of 7.9 T central il
field. The rf cavity is a circular cylinde(50 cm diameter,
100 cm long constructed of stainless steel plated with cop- —

14
\

__— Microwave Cavity

|~ Metal tuning rod

per and subsequently annealed. The unloaded cavity qualit ] Superconducting magnet
factorQ is approximately 200 000 at a resonant frequency of
500 MHz. In recent running, the temperature of the cavity FIG. 1. Sketch of the rf cavity axion detector.
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FIG. 2. Schematic diagram of the receiver chain.
2.9-3.3ueV [17]. Each cavity spectrum was corrected with this receiver cali-

The cryogenic gain of the receiver comes from balanceddration. The center 175 bins of each spectrum were then
GaAs HFET preamplifiers built by the National Radio As- corrected with a 5-parameter equivalent-circuit model char-
tronomy Observatory20]. At the operating temperature of acterizing the cavity, transmission line, and amplifier interac-
1.6 K, they have a noise temperature of approximately 1.9 Kion. Subsequently, spectra were linearly combined with a
and a power gain of 17 dB. The amplifier noise temperaturein-by-bin weighting that accounts for that bin’s contribution
was deduced by employing the warmed, critically coupledio a thermalized axion signal. Figure 4 shows the distribution
cavity as a Nyquist source. Due to their improved noise perof single-bin power about the mean in units of rms power.
formance compared to earlier preamplifiers, the system noisehe curve is a unit-variance Gaussian distribution. The de-
temperaturg(sum of cavity physical temperature and elec-viations are well-described by Gaussian-distributed noise.
tronic noise temperatuyés significantly improved, produc- More details can be found in Refgl6,18.
ing a factor of 2 increase in the search rate relative to earlier This resulting medium resolution combined power spec-
operation[17,18. trum was used in two parallel analyses. The first analysis

Data were collected from 8 July 2002 through 27 May created a power spectrum that was the sum of every 6 adja-
2003 in the form of “medium resolution” single-sided power
spectra. Each spectrum consists of 10000 averaged, 400-bil averaging time (Iogmdays)

125 Hz/bin subspectra, with each spectrum having 80 sec o

exposure. After each 80-sec spectrum, the cavity frequenc 1
was tuned downwards by approximately 1 kHz, a somewhat

smaller tuning step than in our earlier publicatiddg,18|. 1
There is also a dedicated hardware channel optimized fol
detecting very narrow axion lines; results from this channel .
are not reported here. A F . -

Each frequency bin appears in 15-25 power spectra, corlL .
responding to an averaging time of about 25 min. The re-&
ceiver is stable over a much longer time, as demonstrated i e .
Fig. 3. This figure shows the single-bin rms power divided & ‘.
by the average power versus the number of averédgeser - 3r \. 7
abscisspand the averaging time in dayspper abscisga -
The log-log slope is approximately 1/2 until 1¢° aver- 4L "~
ages, corresponding to 30 days of continuous averaging; thi:
establishes the ultimate single-bin sensitivity of the receiver, , | | |
corresponding to~10 26 W, or approximately 1 rf photon 0 2 4 6 8
per minute at the signal frequency.

-8 -4 -2 0

number of averages (Iong)

Ill. DATA ANALYSIS AND RESULTS ) o
FIG. 3. Receiver power sensitivity (lggsP/P) vs number of
The receiver transfer function was calibrated by recordingaverages (log N) (lower abscissgor averaging time (log, days)

spectra with a precision noise source at the receiver inputupper abscissa
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FIG. 4. Distribution of deviations of single-bin power excess
about the mean in units of rms power. The points are data over thf‘dashe()i from WE and 6-bin searches

frequency range 500-525 MHz and the curve is a unit-variance
nearly match the number of candidates from the 6-bin search

Gaussian distribution.

at the same candidate threshold.

FIG. 6. Search confidence for finding thermalized axi@udid),
narrow 1-bin wide axiongdotted, and wide 10-bin wide axions

cent bins of the combined power spectrum. This procedure is Figure 5 shows a WF weighting for an axion mass corre-
identical to that of Ref[19]. The second analysis, first sug- sponding to 500 MHz. The abscissa represents the 125-Hz
gested in Ref[21], is newly reported here, and applied afrequency bin offset from 500 MHz and the ordinate the WF
Wiener filter (WF) [22] derived from the thermalized near- Weight.

Maxwellian axion signal line shap¢lQ], whose output

formed another power spectrum.

S(v)

W)= N

ers in each frequency bin of the combined power spectrun),
(by contrast, the first analysis weights 6 adjacent bins Witf‘{
unity and others zejo The WF was normalized so as to

We compared the WF and 6-bin sensitivity by simulating

three different signal line shapes on Gaussian noise: the ther-

The output of the WF is a bin-by-bin sum with weighting Malized near-Maxwellian line shape, a narrow single-bin line
shape(developing power in one bjnand a 10-bin wide line
shape(developing power uniformly in 10 adjacent binkor

1) the narrow line shape, the WF is more sensitive than the
6-bin filter; this is expected because the WF is narrower. For
the wide line shape, the WF is slightly less sensitive. This is

demonstrated in Fig. 6, which shows search confidence ver-
sus candidate threshold in units of single-bin rms potasr
Refs.[16,18). Sensitivity to narrow line shapes is impor-
ant, as narrow structures are predicted to accompany galaxy

formation[23].
1.4 . . . m_{ueV)
R ) 2 25
1.2 | - ' ' '
»
1L 4 210" @
. N :%’
- ) ~
S 08f - D.x 6-bin analysis 3
(o] ~ w
= @ 1r —
c 08 . ] 3 09 )
0 2 _n 4 [(/]
04 g & 08y {1x10™® <
al ) 0.7t WF analysis o
. L)
02 | . 06 <
0.5 1 1 1 1
0 ! ! ! 500 600 700 800
0 2 4 6 10 frequency (MHz)

bin

500 MHz. The normalization is discussed in the text.

FIG. 7. Upper limit on axion-to-photon conversion power and
FIG. 5. Wiener filter weighting for axion mass corresponding to couplingg,,,, excluded at greater than 90% confidence, assuming

axion halo density 0.45 GeV/cin
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m_(ueV) esis that these candidates are due to environmental rf con-
tamination. In a further study, the cavity was replaced by a
2 25 3 stub antenna connected to the input of the receiver. These
10— | . ] same five candidates were also seen in these background

power spectra. The attenuation and stub antenna studies sug-
[ ] gest these remaining candidates are interfering external sig-
I | nals and are therefore rejected as axions.
I W ] Figure 7 shows axion-to-photon couplings excluded at
STHE T greater than 90% confidence across our search range, assum-
I T ing axion halo density 0.45 GeV/énThe upper and lower
abscissas represent axion mass and corresponding micro-
wave photon frequency; the left and right ordinates represent
power sensitivity in units of expected thermalized KSVZ ax-
ion power, and the axion-to-photon coupligg,, divided by
the axion mass, . The solid line is the 6-bin analysis upper
limit, and the dotted line is the WF analysis upper limit. The
WEF analysis was not applied to frequencies greater than 550
L L I I MHz [24].
500 600 700 800 These results also constrain the local axion dark matter
halo mass density19]. Figure 8 shows the axion halo mass
density excluded at greater than 90% confidence for thermal-
FIG. 8. Upper limits on galactic axion dark matter halo massized KSVZ and DFSZ axions. The upper and lower abscissas
density excluded at greater than 90% confidence for KSVZ andepresent the axion mass and the corresponding microwave
DFSZ axions using the two analyses described in the text. photon frequency; the ordinate represents the local axion
dark matter mass density. The lower pair of lines are upper

Candidates were selected separately from both analyseinits for KSVZ axions; the upper pair of lines are upper
The 6-bin threshold was chosen so as to have the analysignits for the weaker coupled DFSZ axions. Solid lines are
sensitive to thermalized KSVZ axions at 94% confidence UPPer limits obtained from the 6-bin analysis; dotted lines
established via the Monte Carlo technique. The WF threshol@'® the upper limits obtained from the more sensitive WF
was selected to yield the same or a slightly lower number oftnalysis.
candidates than the 6-bin search at the same confidence.

There were 3159 6-bin candidates and 2974 WF candidates IV. CONCLUSION

(1473 appeared in commpn. , _In conclusion, we now exclude at greater than 90% con-
More data were taken at just these candidate frequenciggjence a KSVZ halo axion of mass 1.9-38V, assuming

so as to nearly double the effective integration time. Of thesg, o+ 5ions saturate the local dark matter halo. We also ex-
candidates, 176 6-bin candidates and 187 WF candidaes ) ,qe at greater than 90% confidence a local axion dark mat-

candidates in commgrpassed a second candidate threshold[er halo mass density of greater than 0.45 GeV/cm
(chosen to maintain greater than 93% search confidence f r g GeV/cn?) for KSVZ (DFS2) axions. Improv.ements to

—_
T
1

halo mass density (GeV/icm®)

frequency (MHz)

13 WF candid_ateslo candida_tes in commompersisted. .. __mately 13%, representing an increased effective integration
At a very high search confidence, ten of the 15 persistent o o¢ about 25%.

candidates did not reappear after integrating forr&é at

e_ach can_dldate freque_ncy. These cano_lldat_es are t_herefore ACKNOWLEDGMENTS

highly unlikely to be axions. The remaining five candidates

(common to both filtersreappeared after this long integra-  This work was performed under the auspices of the U.S.
tion. These five candidate frequencies were reexamined aft@epartment of Energy by the University of California,
removing a 20-dB attenuator at a calibration port. The powetLawrence Livermore National Laboratory under Contract
at each candidate frequency increased by roughly 100-foldYo. W-7405-ENG-48, and the University of Florida under
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