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We study “fuzzy funnel” solutions to the non-Abelian equations of motion of the D string. Our funnel
describes1®/360 coincident D-strings ending a11/6 D7-branes, in terms of a fuzzy six-sphere which expands
along the string. We also provide a dual description of this configuration in terms of the world volume theory
of the D7-branes. Our work makes use of an interesting nonlinear higher dimensional generalization of the
instanton equations.
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[. INTRODUCTION field configurations have nonvanishing third Chern character
on the six-sphere surrounding the end points of the D-strings.
Many new results in string theory have been obtained byl'he energy, charge, and radial profile of our solution com-
studying the low energy world volume theory of D-branesputed in the two descriptions agree exactly.
[1]. A fascinating example is the appearance of noncommu- Our paper is organized as follows. Since our solution
tative geometry. In particular, an interesting class of solumakes use of the fuzzg®, we review the relevant matrix
tions has been obtained by studying a set of D1-branes thaigebra in Sec. Il. In Sec. Ill we develop the description of
end on an orthogonal D3-brafi2] or on an orthogonal D5- our system using the low energy D-string theory. In Sec. IV
brane[3]. These fuzzy funnel solutions consist of a fuzzy we recover the same results using the low energy D7-brane
sphere geometry which expands along the length of théheory. In Sec. V we consider the simplest fluctuations on the
string. fuzzy funnel solution. Finally in Sec. VI we make some com-
Fuzzy spheres themselves are a fascinating example afients on the domains of validity of both the D-string and the
noncommutative geometry. They arise as solutions to matrifo7-brane theories.
brane action$4,2,3] and may also play a role in a spacetime

explanation of the stringy exclusion princigig|. The geom- Il. FUZZY SIX-SPHERE
etry of even dimensional fuzzy spheres has been investigated . _ _ .
in [6] and the detailed S®@) decomposition of the matrix In this section we review the construction of the fuzzy

algebras of the fuzzy spheres has been givéijinFor fuzzy ~ Six-sphere. This is done to establish notation and to derive a
spheresS™ with m>2, it turns out that the matrix algebras number of identities that will be used in later sections. In
contain more representations than is needed to describe fungreparing this section we fourf@] helpful.

tions on the sphere. In fact, in the classical lirdimit of To construct the fuzzy six-sphere, we need to construct
large matrices the matrix algebras related to even dimen-solutions to the equation

sional fuzzy spheres approach the algebra of functions of the
higher dimensional space SA(21)/U(k). It has been ar-
gued that the appearance of these extra dimensions is a con-
sequence of the Myers effel@].

In this paper we study “fuzzy funnel” solutions to the i, xi 5 matrix, 1 the identity matrix, ancc a constant.
non-Abelian equations of motion of the D-_strlncgﬁOur funnel schyrs lemma can be used to obtain a simple construction of
describesn®/360 coincident D-strings ending am’/6 D7-  {he matricesx!. Toward this end, consider the Clifford alge-
branes. The geometry of our solution is that of a fugly

which expands along the string. This connection between the

number of D-strings and the number of D7-branes has also {Fi’rj}:25ij, ij=1,2,...,7.

been obtained directly from the noncommutative geometry

of the S®. This solution is a natural generalization of the Denote the space on which thi¢ matrices act byv. The

D1LD3 [2] and the D1 DS [3] solutions which made use |, f5|q tensor product o¥ is written asv®". TheX' are now
of the fuzzyS? and fuzzyS*, respectively. We also provide a obtained by taking

dual description of this configuration in terms of the world
volume theory of the D7-branes. The D7-brane theory gauge X=T®le0l+lelie @lt

M -

XX'=c1, (2.1

i=1

+101®--ol),,.
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product spacé To prove that the abov¥' do indeed provide over the sphere is the symmetric space(@@(3). The re-
coordinates for the fuzzy six-sphere, one shows thasult of relevance to us, following from this geometrical
3/ X'X" commutes with the generators of &P analysis, is that one can identify points in the base, and as a
consequence it is possible to read off the 6-brane charge as
i(n+1)(n+2)(n+3). We will see that it is possible to re-
produce this purely noncommutative geometric derivation of
the charge using either a dynamical analysis based on the
+lele-o[INIM)y. non-Abelian Born-Infeld description ofN coincident
D-strings in the largeN limit, or by using the non-Abelian
Born-Infeld description ofn®/6 D7-branes, in the large
limit. The D6 brane charge will correspond to a D7-brane
charge in oufT-dual description.

In the remainder of this paper we work in the large
limit. Consequently we use

klzi k! kTHe---
X 2([l“ JN910 - @1+1x[I' M@ -1+

The result(2.1) now follows from Schur’s lemma. Further,
using the Clifford algebra we easily fint=n(n+6). The
X'l matrices generate the 0 Lie algebra. The matrix al-
gebra associated with the fuz®j includes both theX' and
the X'I. Together these matrices generate the7SD Lie

algebra.
The symmetric traceless representation we work with has
dimension N né 2
. 360 °7
N (n+1)(n+2)(n+3)%(n+4)(n+5),

360 and take the 6-brane charge to f¥6.
which identifies the representation generated by XHeas
ther=(n/2,n/2n/2) irreducible representation of $0.

Using the above definitions and the Clifford algebra, it is
straightforward to derive the following identiti€as usual,
repeated indices are summed In this section we study the fuzzy geometry of the

i kI o sikgdl o skl D71 D1 system, using the non-Abelian theory describihg
[XY,XT]=28"X"—256"X coincident D-strings. Our construction employs the fuzzy

IIl. DESCRIPTION OF THE D1 LD7 SYSTEM IN TERMS
OF N D1 BRANES

28K 251K six-sphere to construct a fuzzy funnel in which the D-strings
expand into orthogonal D7-branes. We use an approach
[Xi1 XK= 2( 81X — 5'kX), based on minimizing the ener@g0], which generalizes the
results obtained ifi2] for D1-branes expanding into orthogo-
XiXi=c1, nal D3-branes and the results[®] for D1-branes expanding
into orthogonal D5-branes.
Xiixi=eXi=xix, The low energy effective action fad D-strings is given

by the non-Abelian Born-Infeld actiofi1,12
XIXIkxKx!=62¢1,

Py ikyklyel _p4 Nab N3, P!
XIXIEXHIXIMXMIX" = 6%c1, S=—T1f d’c STr\/—de{ : °

— N9, D' ]
XIxikyklyImymnynpy payd— g6c1, ’ °

- _ 2 —
XX =X — XX+ c6' 1, = Tlf d“o STry—detM, (3.9
XIX!=6c1, where
XIXIEXKX! =6¢71, o o
. _ QI=81+iN[®, @], A=2ml2
xljxjkxk|x|mxmnxm:6031,
IKImnay i x kI XM= (384+ 288n -+ 48n2) XY, The symmetrized trace prescriptift3] (indicated by STr in

the above actioninstructs us to symmetrize over all permu-
The geometry of the fuzzy six-sphere has been studied itations ofd,®' and[®',®’] within the trace over the gauge
detail in[6]. These authors argue that the fuzzy six-sphere igroup indices, after expanding the square root. We are using
a bundle over the sphe®®. In the classical limit the fiber static gauge so that the worldsheet coordinates are identified
with spacetime coordinates as-x° and o=x°. The trans-
verse coordinates are now the non-Abelian scafhfs i
This restriction is important if one is to obtain an irreducible =1,...,8. These scalars alX N matrices transforming in
representation, which is assumed in the application of Schurdhe adjoint representation of the NJ gauge symmetry
lemma. present on the worldsheet of the D1s.
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We seek static solutions with seven of the scalars excited. It is a tedious but straightforward exercise to show that it is
consistent with the equations of motion to make use of a static ansatz that involves seven of the scalars, at the level of the
action. With this ansatz and a rather lengthly calculation we obtain

A2 A A\
—detM)= 1+—c1>'lq>1' ( ijq)ii)Z_Z(Dijq)jkq)qu)li

+729,D'9,

. (q)ijq)ji)3 q)mnq)nmq)ijq)jkq)qu)li q)ij(Djkq)qu)lmq)mn(Dni
MT s 8 " 6

3, %9, O D! O I, @M, PMOTOKOKDN 5 D', D (DT
2= — 3, DI DKy K| —\b| T—F L=
2 o 7 4 8
9,D' DI DKy, DrDMp!m S
+ -2 2" —aoqa'qn'lcblkqﬂ'@'ma,,cbm)
9,D%9, DK DIDI) g, Py, PPOIDIDKDMPMPNK 5 DPY, DPDIPIKPKDIMPMNDN
_)\8 _ o g + o o _ o o
48 8 6
Uqqu)iq)ijq)jko-,(rq)k(q)mlq)lm)Z 0—,0(Diq)ij(I)jko-'(rq)kq)mlq)lnq)npq)pm &O_CI)iCI)ij(Djk(I)kl(I)lnﬁ(rCI)n(I)mpCI)pm
+9, D' D P PKDNPPHPTY P™|
|
where Since this is a static configuration, it is easy to obtain the
- o following expression for the energy of our solution:
O'=[d",®'].
Our ansatz for the funnel solution is given by \/ dRr\? -
: : E=NT;| d 1+ — 1+f(R
@IZR(O')XI. lf g do ( ( ))
We have checked that the equation determini{gr) ob- dR 2
tained by substituting this ansatz into the equations of motion = NTlJ do ( f(R) 17— Vi(R)
[following from Eg.(3.1)] agree with the equations obtained do

by inserting this ansatz into the acti@ 1) and varying with —
respect taR(o). Following this second procedure, inserting ~NT f do’( _dR f(ﬁ)
=NT, Y .

the above ansatz into E¢3.1) we obtain 1*@
dR\?
S= _Tlf d2o STr\/(1+ d:) )(1+f(§)), The above inequality is saturated when
(o
=Y o8 512 (3.2 dR 12R* 48R 64R12
R) R R R O0=——= 7t a7t 3%
f(R)=125+48 717+ 64 35, do cA? At A

where we have introduced the physical radius For smallR it is simple to obtain

R=CAR. -
dR 2\/ R2 _ Jen
In obtaining this result, use has been made of the identities do \/— R= if—-
listed in Sec. Il. The formuld3.2) is not exact—it catches A 2v3(o—0o)

only the leading largeN contribution. If we expand the

square root in Eq3.1) and implement the symmetrization of This is the same behavior as was found in both the D3-brane
the trace for each term in the expansion, we find correctionfunnel[2] and the D5-brane funn¢8]. We have reproduced

to Eqg. (3.2) of order 1€ relative to the leading term. Thus the expected behavior for any D-string funnel in the region
our results are only valid for larg. where the funnel is well approximated by the D-string. Con-
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sider now the Iargé_zregion. If our funnel is to expand into The fact that there_ are_further contributions to the energy
an orthogonal D7-brane at large the expansion must be matches what one finds in the analysis of thelLMBl system

given by a harmonic function in seven spatial dimensions. A£3] In the DSL D1 context, this was interpreted as a conse-
Iargeﬁwe find quence of the fact that the system is not supersymmetric. The

third term in Eq.(3.3) is apparently the energy of/240 D3
— — I 3 branes. Recall that the zero scale size limit of an instanton in
d_R:I 8R —o—o _.°c A a Dp-brane corresponds to a p{4) brane bound to the
do c32)\3 o A0RS Dp-brane[14]. Thus this term is naturally interpreted as an
instanton contribution in the D7-brane theory. It is interesting
which is indeed the correct harmonic behavior needed for # note that the corresponding term in the 031 system
D7-brane to appear at=oy. arises from a D1 contribution, which can be interpreted as an
Further evidence that we have a funnel expanding intdnstanton contribution in the D5-brane theory. It would be
coincident D7-branes is provided by computing the RRinteresting to understand the physical origin of this term,
charge and energy of this solution. The energy of our soluperhaps as a consequence of the Myers effect. The last term

tion is represents a finite binding energy.
We have evidence that our solution describes a funnel
dﬁ 12R* 48R® 64R12 expanding into a number of coincident D7-branes located at
E:NTJ dol 1+ =N oz T oad e o=0. The D7 branes expand to fill th€, i=1,2,...,7 direc-

tions. If this is indeed the case, this configuration should be a

12R4 48R8 64R12 source for the eight-form RR-potenti@fg),,s¢, We check
—NTlf do+ Nle drR c)\z 03)\6. this, providing a further check of the D7-brane charge com-
puted by studying the energy of our configuration. The rel-
evant source term comes from the following contribution to
the non-Abelian Wess-Zumino action:

The first term is easily identified as the energyNofsemi-
infinite D-strings stretching frono-=0 to o=2. Now con-

sider the second term. We compute this term for Id%e A3

where we expect that the funnel is expanding into a number Swz=~15 f STrP[(1414)°C®].
of coincident D7-branes. Using the identities
16 Evaluating the value of this term for our solution
N= =, c=n? 4
360 A

Swz=—1i B M 1J dUdTCE)%)234567
which are valid for largen, as well as the known relation
between the tension of the D-string and the D7-brane and of X STH KMMPH DI DRD!' ™D, DP)
the D-string and the D3-brane

T T, . T, iWJ d(7(17'(301234567
2l 3 (2mlg?* iR
X STH IMmIPGIGI GG GGG R

it is straightforward to obtain the following result for the do’
energy:
5 s using the identities given in Sec. Il, the relation between D7
o n 167 —
E:NTlf do+ =T, J' JRR® and D1 charges
0 6 15
fg= M1
7T 5 16
27l
240T3f dR4 mR2+ AE, (3.3 (2mls)

and working in the large limit, we obtain
where 3

n 1673
N [ 3 Swz=€l/«7 dRC0123456R
AE=NT1C1/4\/; | o v S au
0 This is exactly the seven-brane source term we would expect
- 3 . .
~(0.2629..)NT1C1’4\/X. to get if we haven®/6 I_D?-branes in complete agreement with
our energy computation.
The second term in Eq3.3) is precisely the energy of*/6 Up to now, we have obtained solutions by employing a

D7-branes, so that we have reproduced the noncommutativ@ethod which minimizes the energy. We end this section
geometric derivation of the charge given [if]. The two with a direct analysis of the equations of motion. Requmng
terms given provide the analogue of the two terms providinghat Eq.(3.2) is stationary with respect to variations Rf we

the total energy of the supersymmetric DB1 system[2]. obtain the following equation of motion:
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aR\ 24 14+1R) ds?=G,pdo?do®= —dt?+dr?+r2g;da'dal,

1+ d_ - —_ with g;; the metric on the six-sphere of unit radiusis the
7 dR radial coordinate, andr' the angles. In analogy to the

D51 D1 system[3], we make the following ansatz for the

d 1+f(R) dR scalar and gauge fields:
do (dﬁ)zdo ' b=d(1), A=0, Ay=A(al).
1+ —
do Once again we have examined the full equations of motion

) ) ) ) ) and have verified that this is indeed a consistent ansatz. In-
After some straightforward manipulations, this equation ofserting this ansatz into the above action, we obtain

motion can be written as
d 2
s7=—T7f dBo/[1+)2 —d‘f )gSTr\/h(r),

g=detg;;= —T7J déol,,

which is easily integrated to give 4.7
— h(r)y=rt2+ 1r8)\2F”F--
dR = 2 i
£=t\/kf(R)—1, (3.9
1 N
+_r4}\4 - |JopqukIanF F

wherek is a non-negative dimensionless constant of integra- 128 " Ciikimn€ opar
tion. Fork=1, we reproduce the energy we obtained above 1
by minimizing the energy. For€k=1, the solution reaches + m)\e(fiJanF”Flemn)z-

R=0 at a finite value ofr so that the funnel “pinches” off.
As explained in2] this solution can naturally be continued In the above expressiorF;;=F ., indices on the field

pastR=0 by matching to a second pinched off funnel. This gyrength are raised and lowered with the megi¢, and
configuration provides the description of two parallel sets of¢ .- —g. The equation of motion for the scalar is
coincident D7-branes, joined WY finite length D-strings. If

k>1, the solution reachesR/do=0 at finite ¢ and termi- dfdls) , do

nates. Again[2], this solution is naturally continued by dr\ag’ dr

matching to a second funnel. In this case, the double funnel

describesN finite D-strings joining a set of coincident This is easily integrated to obtain

anti-D7 branes with a set of parallel coincident D7-branes.

This concludes our discussion of the D-string theory. In A2’ f(a')
the next section we turn to a dual description of the same W: sTr/hin)
configuration, which employs the non-Abelian world volume () \/6 rh(r)
theory of the coincident D7-branes. wheref (') is an arbitrary function of integration depending
only on the angles'. The left-hand side of the above equa-
IV. D1 1L D7 CONFIGURATION USING A D7 WORLD tion is independent of the', so we must have STh(r)
VOLUME DESCRIPTION independent of the angles and further,
In the previous section we have argued that our funnel \/@\4
describesN=n®/360 D-strings expanding intm®/6 D7- fla)= ,
branes. Consequently the D7-brane world volume theory is a b

7+1 dimensional non-Abelian Born-Infeld theory with
gauge group U{3/6). Further, to describe the D-strings, we
will also have to excite one of the transverse scalars. This

with b a dimensionless constant. With this choice we obtain

scalar has to reside in the overal(1l) component of the N/ =+ ! _ (4.2)
U(n®/6) gauge group, since it describes a deformation of the \/bZ[STr(M)]Z

geometry of all of the D7-branes. Consequently, we consider - "1

the action A\°

After identifying o=\ ¢ we have

S=-T, f d8o STry—de(G,p+ N20,pdpd+ NFop).
do¢ B do
We employ spherical coordinates on the D7 world volume dr dr’
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With this identification and =R, the radial profilg(4.2) can de\?nd
be matched to the result we obtained from the D-string world E=T7f \/adeadl’ 1+\? —) —
volume theory(3.4) by setting dr/ 6
3r8\%c  3rf\%c? \S¢B
(STryh(r))?b? X \/r12+ + + .
kf(r)=——%—"—: 4 16 64

This last condition can be satisfied by choosing After using Eq.(4.2) this becomes

n re  d¢
i. 3c E=T dr)\—
FUF;= > 1 360 dr
N , 1643 n3 \/ 3ré&\2c 3r4)\4 2
[0} r mn —
Eijklmr‘lelj PATEKIE FOqur_24C 1, (43) 7 15 6 f dr 16
(E" Fiijlan)2:3&331, - n3 16773 L
kimn —NT1J dot = T7| — f dRR®
0
wherel is then®/6X n®/6 unit matrix. It is interesting to note
that these last three identities reduce to a single independent =
equation if one chooses + %Tsf dR47R“+AE,
8\/EFIJ = Eijklman|an. (44) Where aga|n
This last equation provides an interesting nonlinear higher Y — . <
dimensional generalization of the instanton equation. This AE=NT;c f VU 3UPH3uT—uP = S u” | du

relation is also suggested by the D-string descripfi®jn In
matrix theory, the commutatot“”=i[ X#,X"] of the matrix ~(0.2629.)NT,cY4/\.
valued coordinates is naturally interpreted as a field strength.

The state for which This exactly matches the energy computed using the D-string

) description. Thus the energy, radial profile of the funnel, and
X'|sy=—nls), X|[s)=0, i<7 charge computed using the D7 world volume theory is in
exact agreement with the calculations performed using the
corresponds to a point at the north pole of the sphere. Lob-string world volume theory.
cally at the north pole, directioriswith i <7 correspond to
the o' directions. Acting on this state, we find that the only V. FLUCTUATIONS
nonzero “field strengths” are
In this section we study the propagation of fluctuations on
i[X!,X2]|s)=2nls), i[X3X4[s)=—2n|s), the fu;zy funnel sc_)lution obtained in Sec. Ill. For a similar
analysis of fluctuations for the D3D1 and the D3 D1 sys-
tems seg2] and[3], respectively.
Since our funnel has the topologx S°, the fluctuations
of this geometry are naturally decomposed in terms of the
Sincec=n, we see that the field strengths at the north polespherical harmonics on tH&f. Of course, we have a fuzzy
do indeed satisfy E(4.4). In the remainder of this section S° so it is natural to expand the fluctuations in terms of
we will assume that our field strengths satisfy E¢s3) and  traceless symmetric products of thé, which provide the
(4.4). We will not address the issue of obtaining an actualdeformation of the usual algebra of functions 8% One
gauge field solution from which we can compute these fielcconsequence of the fact that we use a fuzzy sphere is simply
strengths. Note that the above field strengths satisfy that there is a highest angular momentlsal ,,,,=n. Con-
cretely, we consider fluctuations of the form

i[X®%,X®]|sy=—2n|s).

1 €ijkimnF ) FHE™ n® o A
4873 f T 8 Vgda= 360 N SP8=C; i (1,0)X1X'2--XIn, 50'=0, <8,
exactly as one would expect for any six-sphere surrounding/hereC i....; (7,0) is required to be a traceless symmetric
the D-string end points. tensor. Our goal in this section is simply to show that these

We now turn to a computation of the energy of this solu-modes, which correspond to partial waves of angular mo-
tion. To compare to the energy of the configuration that satumentumn, see the correct angular momentum barrier.
rated the energy bound, we now &et 1. The energy is The lowest order equation of motion is
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(_(9§+ 3§)cpi =[®I [P, DT]. There are two potential sources of corrections to both de-
scriptions. There are both higher derivative corrections and

This equation of motion is valid for smaib/ and hence higher order commutator corrections. Followif@§j we as-
corresponds to the region of smdl(c). The linearized Sume that we can ignore higher derivative corrections when

equation for the fluctuation following from this lowest order !s|9“®[<|d®|. For the D-strlng3th§ory,llwe easily find that
equation of motion is this condition implies that <(n®=*/12)". For the D7-

brane theory this condition implies that-2l5. Thus for
(= 32+ 3%) 6DB=[5D] [ D], D8]+ [DI,[ 5P!, D8]] large n there is a significant region [2ls<r
T o <(n®7%/12)Y8 ] where both descriptions do not receive
+[D),[ D], 5D8]]. higher derivative &) corrections. A conservative bound for
. the region in which higher commutator terms are avoided is
Since®®=0 and =0 for j <8, this simplifies to obtained by requiring that the Taylor expansion of the square
root in the D-string action should converge very rapidly. This
(— %+ 92) 6D8=[D) [ DI, 5D8]]. (5.1)  implies that r<ynlg. For large n we have Jn
>(n®7%/12)Y®, so that this is less restrictive than what we
To evaluate the right-hand side, we need to use the result obtained above. We have not established the analogous re-
gion in which higher commutator terms are avoided in the
[@[®),608]]=R?(0)C't2 [G],[G!,G'1G'2 --G'n]] D7-brane theory.
_ ) i i i Since the D1 D7 system is supersymmetric, it is natural
=4n(n+4)R(g)Clt2"nGhG'2: -G, to ask if our solution for a D1 ending on a D7 preserves
o o . . some supersymmetry. We will now argue that it is possible to
Identifying R?(o)=1/120* which is valid whenR(0) is  |ower the energy of our solution, something which rist
small, we obtain possible for the D1 D5 system. The fact that we can lower
the energy of our solution suggests that our configuration is
not supersymmetric or stable. To reproduce the correct D1
charge, we need to consider a field strength in the D7 brane
world volume theory which satisfies
Thus the double commutator on the right-hand side of Eg.

(5.1) has indeed reproduced the correct angular momentum
barrier. LGFDF OF<N.

252 n(n+4)

T—d; 352 C't'zIn(7,0)=0.

VI. FINAL COMMENTS If we consider a field strength, which is nonzero only in a

. _ . volumeV on theS®, we can estimate the magnitude of this
We have obtained a description of the D7 system in field strength as

terms of a fuzzy six-sphere which expands along the string.
We have studied the energy, charge, and radial profile of this

configuration using the non-Abelian equations of motion of FX(E
the D-string and also by using the dual description provided \%
by the world volume theory of the D7-branes. Our analysis is

limited to the low energy world volume theory in each case.After expanding the Born-Infeld action and keeping only the
The agreement between descriptions is perfect. Further, werm quadratic in the field strength, we obtain the following
have found that the configuration describ®¢360 coinci-  formula for the energy per unit length:

dent D-strings ending on®/6 D7-branes. This relation be-

tween the number of D-strings and D7-branes has also been

obtained from a direct study of the noncommutative geom- fﬁFz‘meNm-

etry of the fuzzyS®. s

This precise agreement between the two descriptions iﬁ/l' oo . . .
inimizing the volumeV on which the field strength is non-
also a feature of the DID3 and D1.D5 systems. For the zero would clearly lower this energy per unit length. Thus,

system we have studied in this paper, we wo_uId expect .thﬁnder the assumptions stated, the configuration with a homo-
D7-brane world volume theory to provide a reliable descrip-

: . geneous field strength over the f&ff must be unstable. This
tion for those regions of the funnel that have opened up to filF". .
Is in contrast to the D1 D5 system as we now explain. For

out a seven-dimensional spatial volume and are hence we . .
approximated as a D7-brane. The D-string world volumet e D1 DS system, the D1 charge IS repr(_)d_uced by a field
theory should provide a reliable description of the funnel instrength in the D5 world volume which satisfies
the regions where the funnel is very thin and hence well

approximated by a D-string. Thus we have two complemen- f FOF N,

tary descriptions of the DILD7 system. How are we to un-

derstand the agreement between the two descriptions of the

D11 D7 system? so that we would estimate

1/3
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Hence the energy per unit length of the configuration

f F2«N
¢

is independent of/.
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