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Non-Abelian BIonic brane intersections
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We study ‘‘fuzzy funnel’’ solutions to the non-Abelian equations of motion of the D string. Our funnel
describesn6/360 coincident D-strings ending onn3/6 D7-branes, in terms of a fuzzy six-sphere which expands
along the string. We also provide a dual description of this configuration in terms of the world volume theory
of the D7-branes. Our work makes use of an interesting nonlinear higher dimensional generalization of the
instanton equations.

DOI: 10.1103/PhysRevD.68.126007 PACS number~s!: 11.25.Uv
b
es

lu
th

zy
th

e
tr
e

at

s
fu

n
th

c

e
e

th
als
tr
e

e
a
ld
ug

ter
gs.
m-

on

of
IV
ane
the
-

he

zy
e a
In

uct

n of
-

sor
I. INTRODUCTION

Many new results in string theory have been obtained
studying the low energy world volume theory of D-bran
@1#. A fascinating example is the appearance of noncomm
tative geometry. In particular, an interesting class of so
tions has been obtained by studying a set of D1-branes
end on an orthogonal D3-brane@2# or on an orthogonal D5-
brane@3#. These fuzzy funnel solutions consist of a fuz
sphere geometry which expands along the length of
string.

Fuzzy spheres themselves are a fascinating exampl
noncommutative geometry. They arise as solutions to ma
brane actions@4,2,3# and may also play a role in a spacetim
explanation of the stringy exclusion principle@5#. The geom-
etry of even dimensional fuzzy spheres has been investig
in @6# and the detailed SO(m) decomposition of the matrix
algebras of the fuzzy spheres has been given in@7#. For fuzzy
spheresSm with m.2, it turns out that the matrix algebra
contain more representations than is needed to describe
tions on the sphere. In fact, in the classical limit~limit of
large matrices!, the matrix algebras related to even dime
sional fuzzy spheres approach the algebra of functions of
higher dimensional space SO(2k11)/U(k). It has been ar-
gued that the appearance of these extra dimensions is a
sequence of the Myers effect@8#.

In this paper we study ‘‘fuzzy funnel’’ solutions to th
non-Abelian equations of motion of the D-string. Our funn
describesn6/360 coincident D-strings ending onn3/6 D7-
branes. The geometry of our solution is that of a fuzzyS6

which expands along the string. This connection between
number of D-strings and the number of D7-branes has
been obtained directly from the noncommutative geome
of the S6. This solution is a natural generalization of th
D1'D3 @2# and the D1'D5 @3# solutions which made us
of the fuzzyS2 and fuzzyS4, respectively. We also provide
dual description of this configuration in terms of the wor
volume theory of the D7-branes. The D7-brane theory ga
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field configurations have nonvanishing third Chern charac
on the six-sphere surrounding the end points of the D-strin
The energy, charge, and radial profile of our solution co
puted in the two descriptions agree exactly.

Our paper is organized as follows. Since our soluti
makes use of the fuzzyS6, we review the relevant matrix
algebra in Sec. II. In Sec. III we develop the description
our system using the low energy D-string theory. In Sec.
we recover the same results using the low energy D7-br
theory. In Sec. V we consider the simplest fluctuations on
fuzzy funnel solution. Finally in Sec. VI we make some com
ments on the domains of validity of both the D-string and t
D7-brane theories.

II. FUZZY SIX-SPHERE

In this section we review the construction of the fuz
six-sphere. This is done to establish notation and to deriv
number of identities that will be used in later sections.
preparing this section we found@9# helpful.

To construct the fuzzy six-sphere, we need to constr
solutions to the equation

(
i 51

7

XiXi5c1, ~2.1!

with Xi a matrix, 1 the identity matrix, andc a constant.
Schur’s lemma can be used to obtain a simple constructio
the matricesXi . Toward this end, consider the Clifford alge
bra

$G i ,G j%52d i j , i , j 51,2,...,7.

Denote the space on which theG i matrices act byV. The
n-fold tensor product ofV is written asV^ n. TheXi are now
obtained by taking

Xi5~G i
^ 1^¯^ 111^ G i

^¯^ 11¯

11^ 1^¯^ G i !st .

The subscriptst is to indicate that the aboveXi are to be
restricted to the completely symmetric and traceless ten
©2003 The American Physical Society07-1
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product space.1 To prove that the aboveXi do indeed provide
coordinates for the fuzzy six-sphere, one shows t
S i 51

7 XiXi commutes with the generators of SO~7!

Xkl5
1

2
~@Gk,G l # ^ 1^¯^ 111^ @Gk,G l # ^¯^ 11¯

11^ 1^¯^ @Gk,G l # !st .

The result~2.1! now follows from Schur’s lemma. Furthe
using the Clifford algebra we easily findc5n(n16). The
Xi j matrices generate the SO~7! Lie algebra. The matrix al-
gebra associated with the fuzzyS6 includes both theXi and
the Xi j . Together these matrices generate the SO~7,1! Lie
algebra.

The symmetric traceless representation we work with
dimension

N5
1

360
~n11!~n12!~n13!2~n14!~n15!,

which identifies the representation generated by theXi j as
the r5(n/2,n/2,n/2) irreducible representation of SO~7!.

Using the above definitions and the Clifford algebra, it
straightforward to derive the following identities~as usual,
repeated indices are summed!:

@Xi j ,Xkl#52d ikXil 22d ikXjl

12d j l Xki22d i l Xk j,

@Xi j ,Xk#52~d jkXi2d ikXj !,

XiXi5c1,

Xi j Xj56Xi5XjXji ,

XjXjkXklXl562c1,

XjXjkXklXlmXmnXn564c1,

XjXjkXklXlmXmnXnpXpqXq566c1,

Xi j Xjl 56Xil 2XiXl1cd i l 1,

Xi j Xji 56c1,

Xi j XjkXklXli 56c21,

Xi j XjkXklXlmXmnXni56c31,

e i jklmnqXiXjXkXlXmXn5 i ~3841288n148n2!Xq.

The geometry of the fuzzy six-sphere has been studie
detail in @6#. These authors argue that the fuzzy six-spher
a bundle over the sphereS6. In the classical limit the fiber

1This restriction is important if one is to obtain an irreducib
representation, which is assumed in the application of Sch
lemma.
12600
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over the sphere is the symmetric space SO~6!/U~3!. The re-
sult of relevance to us, following from this geometric
analysis, is that one can identify points in the base, and
consequence it is possible to read off the 6-brane charg
1
6 (n11)(n12)(n13). We will see that it is possible to re
produce this purely noncommutative geometric derivation
the charge using either a dynamical analysis based on
non-Abelian Born-Infeld description ofN coincident
D-strings in the largeN limit, or by using the non-Abelian
Born-Infeld description ofn3/6 D7-branes, in the largen
limit. The D6 brane charge will correspond to a D7-bra
charge in ourT-dual description.

In the remainder of this paper we work in the largen
limit. Consequently we use

N5
n6

360
, c5n2

and take the 6-brane charge to ben3/6.

III. DESCRIPTION OF THE D1 �D7 SYSTEM IN TERMS
OF N D1 BRANES

In this section we study the fuzzy geometry of th
D7'D1 system, using the non-Abelian theory describingN
coincident D-strings. Our construction employs the fuz
six-sphere to construct a fuzzy funnel in which the D-strin
expand into orthogonal D7-branes. We use an appro
based on minimizing the energy@10#, which generalizes the
results obtained in@2# for D1-branes expanding into orthogo
nal D3-branes and the results in@3# for D1-branes expanding
into orthogonal D5-branes.

The low energy effective action forN D-strings is given
by the non-Abelian Born-Infeld action@11,12#

S52T1E d2s STrA2detF hab l]aF j

2l]bF i Qi j G
[2T1E d2s STrA2detM , ~3.1!

where

Qi j 5d i j 1 il@F i ,F j #, l52p l s
2.

The symmetrized trace prescription@13# ~indicated by STr in
the above action! instructs us to symmetrize over all perm
tations of]aF i and@F i ,F j # within the trace over the gaug
group indices, after expanding the square root. We are u
static gauge so that the worldsheet coordinates are ident
with spacetime coordinates ast5x0 ands5x9. The trans-
verse coordinates are now the non-Abelian scalarsF i , i
51,...,8. These scalars areN3N matrices transforming in
the adjoint representation of the U(N) gauge symmetry
present on the worldsheet of the D1s.

’s
7-2
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We seek static solutions with seven of the scalars excited. It is a tedious but straightforward exercise to show
consistent with the equations of motion to make use of a static ansatz that involves seven of the scalars, at the lev
action. With this ansatz and a rather lengthly calculation we obtain

2det~M !511
l2

2
F i j F j i 1

l4

8
~F i j F j i !22

l4

4
F i j F jkFklF l i

1l6S ~F i j F j i !3

48
2

FmnFnmF i j F jkFklF l i

8
1

F i j F jkFklF lmFmnFni

6 D1l2]sF i]sF i

1l4S ]sFk]sFkF i j F j i

2
2]sF iF i j F jk]sFkD2l6S ]sFm]sFmF i j F jkFklF l i

4
2

]sF i]sF i~F i j F j i !2

8

1
]sF iF i j F jk]sFkFmlF lm

2
2]sF iF i j F jkFklF lm]sFmD

2l8S 2
]sFk]sFk~F i j F j i !3

48
1

]sFp]sFpF i j F j i FklF lmFmnFnk

8
2

]sFp]sFpF i j F jkFklF lmFmnFni

6

1
]sF iF i j F jk]sFk~FmlF lm!2

8
2

]sF iF i j F jk]sFkFmlF lnFnpFpm

4
2

]sF iF i j F jkFklF ln]sFnFmpFpm

2

1]sF iF i j F jkFklF lnFnpFpm]sFmD ,
tio
d

g
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F i j 5@F i ,F j #.

Our ansatz for the funnel solution is given by

F i5R~s!Xi .

We have checked that the equation determiningR(s) ob-
tained by substituting this ansatz into the equations of mo
@following from Eq.~3.1!# agree with the equations obtaine
by inserting this ansatz into the action~3.1! and varying with
respect toR(s). Following this second procedure, insertin
the above ansatz into Eq.~3.1! we obtain

S52T1E d2s STrAX11S dR̄

ds
D 2C„11 f ~R̄!…,

~3.2!

f ~R̄!512
R̄4

cl2 148
R̄8

c2l4 164
R̄12

c3l6 ,

where we have introduced the physical radius

R̄5AclR.

In obtaining this result, use has been made of the ident
listed in Sec. II. The formula~3.2! is not exact—it catches
only the leading largeN contribution. If we expand the
square root in Eq.~3.1! and implement the symmetrization o
the trace for each term in the expansion, we find correcti
to Eq. ~3.2! of order 1/c relative to the leading term. Thu
our results are only valid for largeN.
12600
n

s
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Since this is a static configuration, it is easy to obtain
following expression for the energy of our solution:

E5NT1E dsAX11S dR̄

ds
D 2C„11 f ~R̄!…

5NT1E dsAS dR̄

ds
6Af ~R̄!D 2

1S 17
dR̄

ds
Af ~R̄!D 2

>NT1E dsS 17
dR̄

ds
Af ~R̄!D .

The above inequality is saturated when

05
dR̄

ds
6A12R̄4

cl2 1
48R̄8

c2l4 1
64R̄12

c3l6 .

For smallR̄ it is simple to obtain

dR̄

ds
57

2)R̄2

Acl
⇒R̄56

Acl

2)~s2s0!
.

This is the same behavior as was found in both the D3-br
funnel @2# and the D5-brane funnel@3#. We have reproduced
the expected behavior for any D-string funnel in the reg
where the funnel is well approximated by the D-string. Co
7-3
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sider now the largeR̄ region. If our funnel is to expand into
an orthogonal D7-brane at largeR̄, the expansion must b
given by a harmonic function in seven spatial dimensions
largeR̄ we find

dR̄

ds
57

8R̄6

c3/2l3
⇒s2s056

c3/2l3

40R̄5
,

which is indeed the correct harmonic behavior needed fo
D7-brane to appear ats5s0 .

Further evidence that we have a funnel expanding i
coincident D7-branes is provided by computing the R
charge and energy of this solution. The energy of our so
tion is

E5NT1E dsS 11
dR̄

ds
A12R̄4

cl2 1
48R̄8

c2l4 1
64R̄12

c3l6 D
5NT1E

0

`

ds1NT1E
0

`

dR̄A12R̄4

cl2 1
48R̄8

c2l4 1
64R̄12

c3l6 .

The first term is easily identified as the energy ofN semi-
infinite D-strings stretching froms50 to s5`. Now con-
sider the second term. We compute this term for largeR̄,
where we expect that the funnel is expanding into a num
of coincident D7-branes. Using the identities

N5
n6

360
, c5n2,

which are valid for largen, as well as the known relation
between the tension of the D-string and the D7-brane an
the D-string and the D3-brane

T75
T1

~2p l s!
6 , T35

T1

~2p l s!
2 ,

it is straightforward to obtain the following result for th
energy:

E5NT1E
0

`

ds1
n3

6
T7S 16p3

15 E dR̄R̄6D
1

n5

240
T3E dR̄4 pR̄21DE, ~3.3!

where

DE5NT1c1/4Al

2 E
0

`FAu1213u813u42u62
3

2
u2Gdu

'~0.2629...!NT1c1/4Al.

The second term in Eq.~3.3! is precisely the energy ofn3/6
D7-branes, so that we have reproduced the noncommuta
geometric derivation of the charge given in@6#. The two
terms given provide the analogue of the two terms provid
the total energy of the supersymmetric D3'D1 system@2#.
12600
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The fact that there are further contributions to the ene
matches what one finds in the analysis of the D5'D1 system
@3#. In the D5'D1 context, this was interpreted as a cons
quence of the fact that the system is not supersymmetric.
third term in Eq.~3.3! is apparently the energy ofn5/240 D3
branes. Recall that the zero scale size limit of an instanto
a Dp-brane corresponds to a D(p24) brane bound to the
Dp-brane@14#. Thus this term is naturally interpreted as a
instanton contribution in the D7-brane theory. It is interesti
to note that the corresponding term in the D5'D1 system
arises from a D1 contribution, which can be interpreted as
instanton contribution in the D5-brane theory. It would
interesting to understand the physical origin of this ter
perhaps as a consequence of the Myers effect. The last
represents a finite binding energy.

We have evidence that our solution describes a fun
expanding into a number of coincident D7-branes located
s50. The D7 branes expand to fill theXi , i 51,2,...,7 direc-
tions. If this is indeed the case, this configuration should b
source for the eight-form RR-potentialC012345678

(8) . We check
this, providing a further check of the D7-brane charge co
puted by studying the energy of our configuration. The r
evant source term comes from the following contribution
the non-Abelian Wess-Zumino action:

SWZ52 i
l3

6
m1E STrP@~ 1̇F1̇F!3C~8!#.

Evaluating the value of this term for our solution

SWZ52 i
l4

6
m1E dsdtC01234567

~8!

3STr~e i jklmnpF iF jFkF lFmFn]sFp!

52 i
l4m1

6l7c7/2E dsdtC01234567
~8!

3STr~e i jklmnpGiGjGkGlGmGnGp!R̄6
dR̄

ds
,

using the identities given in Sec. II, the relation between
and D1 charges

m75
m1

~2p l s!
6 ,

and working in the largen limit, we obtain

SWZ5
n3

6
m7S 16p3

15 E dR̄C01234567
~8! R̄6D .

This is exactly the seven-brane source term we would exp
to get if we haven3/6 D7-branes in complete agreement wi
our energy computation.

Up to now, we have obtained solutions by employing
method which minimizes the energy. We end this sect
with a direct analysis of the equations of motion. Requiri
that Eq.~3.2! is stationary with respect to variations ofR̄, we
obtain the following equation of motion:
7-4
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A11S dR̄

ds
D 2

dA11 f ~R!

dR̄

5
d

ds S ! 11 f ~R̄!

11S dR̄

ds
D 2

dR̄

ds D .

After some straightforward manipulations, this equation
motion can be written as

S dR̄

ds
D 21

d

ds SA 11 f ~R̄!

11S dR̄

ds
D 2D 50,

which is easily integrated to give

dR̄

ds
56Ak f~R̄!21, ~3.4!

wherek is a non-negative dimensionless constant of integ
tion. For k51, we reproduce the energy we obtained abo
by minimizing the energy. For 0<k<1, the solution reache
R̄50 at a finite value ofs so that the funnel ‘‘pinches’’ off.
As explained in@2# this solution can naturally be continue
pastR̄50 by matching to a second pinched off funnel. Th
configuration provides the description of two parallel sets
coincident D7-branes, joined byN finite length D-strings. If
k.1, the solution reachesdR̄/ds50 at finite s and termi-
nates. Again@2#, this solution is naturally continued b
matching to a second funnel. In this case, the double fun
describesN finite D-strings joining a set of coinciden
anti-D7 branes with a set of parallel coincident D7-brane

This concludes our discussion of the D-string theory.
the next section we turn to a dual description of the sa
configuration, which employs the non-Abelian world volum
theory of the coincident D7-branes.

IV. D1�D7 CONFIGURATION USING A D7 WORLD
VOLUME DESCRIPTION

In the previous section we have argued that our fun
describesN5n6/360 D-strings expanding inton3/6 D7-
branes. Consequently the D7-brane world volume theory
711 dimensional non-Abelian Born-Infeld theory wit
gauge group U(n3/6). Further, to describe the D-strings, w
will also have to excite one of the transverse scalars. T
scalar has to reside in the overall U~1! component of the
U(n3/6) gauge group, since it describes a deformation of
geometry of all of the D7-branes. Consequently, we cons
the action

S52T7E d8s STrA2det~Gab1l2]af]bf1lFab!.

We employ spherical coordinates on the D7 world volum
12600
f
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ds25Gabdsadsb52dt21dr21r 2gi j da ida j ,

with gi j the metric on the six-sphere of unit radius,r is the
radial coordinate, anda i the angles. In analogy to th
D5'D1 system@3#, we make the following ansatz for th
scalar and gauge fields:

f5f~r !, Ar50, Aa i5Aa i~a j !.

Once again we have examined the full equations of mot
and have verified that this is indeed a consistent ansatz
serting this ansatz into the above action, we obtain

S752T7E d8sAX11l2S df

dr D 2Cg STrAh~r !,

g5detgi j 52T7E d8sL7 ,

~4.1!

h~r !5r 121
1

2
r 8l2Fi j Fi j

1
1

128
r 4l4e i jklmne i jopqrFklFmnFopFqr

1
1

2304
l6~e i jklmnFi j FklFmn!2.

In the above expression,Fi j [Fa ia j , indices on the field
strength are raised and lowered with the metricgi j , and
e1234565g. The equation of motion for the scalar is

d

dr S ]L7

]f8D50, f85
df

dr
.

This is easily integrated to obtain

l2f8

A11l2~] rf!2
5

f ~a i !

Ag STrAh~r !
,

wheref (a i) is an arbitrary function of integration dependin
only on the anglesa i . The left-hand side of the above equ
tion is independent of thea i , so we must have STrAh(r )
independent of the angles and further,

f ~a i !5
Agl4

b
,

with b a dimensionless constant. With this choice we obt

lf856
1

Ab2@STr„Ah~r !…#2

l6 21

. ~4.2!

After identifying s5lf we have

l
df

dr
5

ds

dr
.

7-5
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With this identification andr 5R̄, the radial profile~4.2! can
be matched to the result we obtained from the D-string wo
volume theory~3.4! by setting

k f~r !5
„STrAh~r !…2b2

l6 .

This last condition can be satisfied by choosing

Fi j Fi j 5
3c

2
1,

e i jklmne i jopqrFklFmnFopFqr524c21, ~4.3!

~e i jklmnFi j FklFmn!2536c31,

where1 is then3/63n3/6 unit matrix. It is interesting to note
that these last three identities reduce to a single indepen
equation if one chooses

8AcFi j 5e i jklmnFklFmn . ~4.4!

This last equation provides an interesting nonlinear hig
dimensional generalization of the instanton equation. T
relation is also suggested by the D-string description@6#. In
matrix theory, the commutatorXmn5 i @Xm,Xn# of the matrix
valued coordinates is naturally interpreted as a field stren
The state for which

X7us&52nus&, Xi us&50, i ,7

corresponds to a point at the north pole of the sphere.
cally at the north pole, directionsi with i ,7 correspond to
the a i directions. Acting on this state, we find that the on
nonzero ‘‘field strengths’’ are

i @X1,X2#us&52nus&, i @X3,X4#us&522nus&,

i @X5,X6#us&522nus&.

SinceAc5n, we see that the field strengths at the north p
do indeed satisfy Eq.~4.4!. In the remainder of this sectio
we will assume that our field strengths satisfy Eqs.~4.3! and
~4.4!. We will not address the issue of obtaining an act
gauge field solution from which we can compute these fi
strengths. Note that the above field strengths satisfy

1

48p3 E TrS e i jklmnFi j FklFmn

8 DAgd6a5
n6

360
5N,

exactly as one would expect for any six-sphere surround
the D-string end points.

We now turn to a computation of the energy of this so
tion. To compare to the energy of the configuration that sa
rated the energy bound, we now setk51. The energy is
12600
d
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E5T7E Agd6adrA11l2S df

dr
D 2 n3

6

3Ar 121
3r 8l2c

4
1

3r 4l4c2

16
1

l6c3

64
.

After using Eq.~4.2! this becomes

E5T1

n6

360
E

0

`

drl
df

dr

1T7

16p3

15

n3

6
E

0

`

drAr 121
3r 8l2c

4
1

3r 4l4c2

16

5NT1E
0

`

ds1
n3

6
T7S 16p3

15
E dR̄R̄6D

1
n5

240
T3E dR̄4pR̄21DE,

where again

DE5NT1c1/4Al

2 E
0

`FAu1213u813u42u62
3

2
u2Gdu

'~0.2629...!NT1c1/4Al.

This exactly matches the energy computed using the D-st
description. Thus the energy, radial profile of the funnel, a
charge computed using the D7 world volume theory is
exact agreement with the calculations performed using
D-string world volume theory.

V. FLUCTUATIONS

In this section we study the propagation of fluctuations
the fuzzy funnel solution obtained in Sec. III. For a simil
analysis of fluctuations for the D3'D1 and the D5'D1 sys-
tems see@2# and @3#, respectively.

Since our funnel has the topologyR3S6, the fluctuations
of this geometry are naturally decomposed in terms of
spherical harmonics on theS6. Of course, we have a fuzz
S6, so it is natural to expand the fluctuations in terms
traceless symmetric products of theXi , which provide the
deformation of the usual algebra of functions onS6. One
consequence of the fact that we use a fuzzy sphere is sim
that there is a highest angular momentuml< l max5n. Con-
cretely, we consider fluctuations of the form

dF85Ci 1i 2¯ i n
~t,s!Xi 1Xi 2

¯Xi n, dF i50, i ,8,

whereCi 1i 2¯ i n
(t,s) is required to be a traceless symmet

tensor. Our goal in this section is simply to show that the
modes, which correspond to partial waves of angular m
mentumn, see the correct angular momentum barrier.

The lowest order equation of motion is
7-6
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~2]t
21]s

2 !F i5†F j ,@F j ,F i #‡.

This equation of motion is valid for smallF j and hence
corresponds to the region of smallR(s). The linearized
equation for the fluctuation following from this lowest ord
equation of motion is

~2]t
21]s

2 !dF85†dF j ,@F j ,F8#‡1†F j ,@dF j ,F8#‡

1†F j ,@F j ,dF8#‡.

SinceF850 anddF j50 for j ,8, this simplifies to

~2]t
21]s

2 !dF85†F j ,@F j ,dF8#‡. ~5.1!

To evaluate the right-hand side, we need to use the resu

†F j ,@F j ,dF8#‡5R2~s!Ci 1i 2¯ i n
†Gj ,@Gj ,Gi 1Gi 2

¯Gi n#‡

54n~n14!R2~s!Ci 1i 2¯ i nGi 1Gi 2
¯Gi n.

Identifying R2(s)51/12s2 which is valid whenR(s) is
small, we obtain

S ]t
22]s

21
n~n14!

3s2 DCi 1i 2¯ i n~t,s!50.

Thus the double commutator on the right-hand side of
~5.1! has indeed reproduced the correct angular momen
barrier.

VI. FINAL COMMENTS

We have obtained a description of the D1'D7 system in
terms of a fuzzy six-sphere which expands along the str
We have studied the energy, charge, and radial profile of
configuration using the non-Abelian equations of motion
the D-string and also by using the dual description provid
by the world volume theory of the D7-branes. Our analysi
limited to the low energy world volume theory in each ca
The agreement between descriptions is perfect. Further
have found that the configuration describesn6/360 coinci-
dent D-strings ending onn3/6 D7-branes. This relation be
tween the number of D-strings and D7-branes has also b
obtained from a direct study of the noncommutative geo
etry of the fuzzyS6.

This precise agreement between the two description
also a feature of the D1'D3 and D1'D5 systems. For the
system we have studied in this paper, we would expect
D7-brane world volume theory to provide a reliable descr
tion for those regions of the funnel that have opened up to
out a seven-dimensional spatial volume and are hence
approximated as a D7-brane. The D-string world volu
theory should provide a reliable description of the funnel
the regions where the funnel is very thin and hence w
approximated by a D-string. Thus we have two complem
tary descriptions of the D1'D7 system. How are we to un
derstand the agreement between the two descriptions o
D1'D7 system?
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There are two potential sources of corrections to both
scriptions. There are both higher derivative corrections a
higher order commutator corrections. Following@3# we as-
sume that we can ignore higher derivative corrections w
l su]2Fu!u]Fu. For the D-string theory, we easily find tha
this condition implies thatr !(n3p3/12)1/5l s . For the D7-
brane theory this condition implies thatr @2l s . Thus for
large n there is a significant region @2l s!r
!(n3p3/12)1/5l s# where both descriptions do not receiv
higher derivative (a8) corrections. A conservative bound fo
the region in which higher commutator terms are avoided
obtained by requiring that the Taylor expansion of the squ
root in the D-string action should converge very rapidly. Th
implies that r !Anls . For large n we have An
@(n3p3/12)1/5, so that this is less restrictive than what w
obtained above. We have not established the analogou
gion in which higher commutator terms are avoided in t
D7-brane theory.

Since the D1'D7 system is supersymmetric, it is natur
to ask if our solution for a D1 ending on a D7 preserv
some supersymmetry. We will now argue that it is possible
lower the energy of our solution, something which isnot
possible for the D1'D5 system. The fact that we can lowe
the energy of our solution suggests that our configuratio
not supersymmetric or stable. To reproduce the correct
charge, we need to consider a field strength in the D7 br
world volume theory which satisfies

E
S6

F∧F∧F}N.

If we consider a field strength, which is nonzero only in
volumeV on theS6, we can estimate the magnitude of th
field strength as

F}S N

VD 1/3

.

After expanding the Born-Infeld action and keeping only t
term quadratic in the field strength, we obtain the followi
formula for the energy per unit length:

E
S6

F2}V1/3N2/3.

Minimizing the volumeV on which the field strength is non
zero would clearly lower this energy per unit length. Thu
under the assumptions stated, the configuration with a ho
geneous field strength over the fullS6 must be unstable. This
is in contrast to the D1'D5 system as we now explain. Fo
the D1'D5 system, the D1 charge is reproduced by a fi
strength in the D5 world volume which satisfies

E
S4

F∧F}N,

so that we would estimate
7-7
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F}AN

V
.

Hence the energy per unit length of the configuration

E
S4

F2}N

is independent ofV.
rgy
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