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Boundary states as exact solutions aofvacuum) closed string field theory
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We show that the boundary states are idempoBrB =B with respect to the star product of Hata-Itoh-
Kugo-Kunitomo-Ogawa-typelosedstring field theory. Variations around the boundary state correctly repro-
duce the open string spectrum with the gauge symmetry. We explicitly demonstrate it for the tachyonic and
massless vector modes. The idempotency relation may be regarded as the equation of motion of closed string
field theory at a possible vacuum.
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[. INTRODUCTION truncation regularization seems to handle it numerically.
However, the analytic treatment of the problem remains as a
Study of the off-shell structure of string theory is an es-real challenge.
sential step in understanding its nonperturbative physics. In In this paper, we change the viewpoint and start the analy-
recent years, Witten-type open string field theply has sis of D-branes irtlosed string field theoryWe believe that
been intensively examined in this context. One of the goals isuch a treatment is natural since the nature of D-branes is
to understand D-branes as soliton solutions of open stringnost precisely encoded in the boundary st&tewhich lives
field theory. One of the promising discoveries was that then the Hilbert space of the closed string sector. In particular,
energy of the tachyon vacuum correctly reproduced the tenae will prove that the boundary stat¢soth for Neumann
sion of D-branes at least numericallg]. and Dirichlet boundary conditionssatisfy an analogue of
Inspired by the experiences of noncommutative fieldEq. (1),
theory, it was conjectured by Rastelli, Sen, and Zwiebach
that the D-branes may be understood as the solutions to the |B)*|B)=|B) 2
projector equation
up to a pure ghost prefactor.
Yr¥=v, 1) Unlike the open string version, E) has a natural geo-
metrical meaning. The boundary state, as suggested by its
wherex is the noncommutative and associative Witten-typename, describes the boundary condition of the string world
star product for an open string field. It was conjectured thasheet. Suppose there exist two holes with the same type of
this equation may be understood as the equation of motion dfoundary condition. If we merge these two holes by a closed
a string field expanded around the tachyon vacltive so-  string star product, we expect to have the same boundary
called vacuum string field theor SFT) conjecture[3,4]]. condition on the new holé&Fig. 1).
In particular, a few examples of the projectors, the sliver To demonstrate this observation explicitly, we have to be
state or butterfly state, were examined as the candidatespecific about the choice of the star product. There are three
which describe the D-brane. candidates of closed string field theory which were well ex-
It turned out, however, that the treatment of D-branes inamined so far.
open string field theory is very delicate. One of the difficul- The oldest one is the light-cone gauge apprd@thThis
ties was the description of the closed string sector. In Wittenis consistent in the sense that it produces the correct integra-
type open string field theory, the action does not include the¢ion range over the moduli parameter. However, for the ap-
closed string degrees of freedom at the tree level. If we needlication to our problem, it is not useful since the boundary
to describe them in open string language alone, we have tstates have nontrivial dependence on the time coordinate. We
consider a singular state such as identity string field wher@aeed covariant descriptions.
the closed string vertex is inserted at the midpdut-6]. The second one is the closed string version of Witten's
The midpoint in open string field theory causes many subtleepen string theory. A generalization of Witten-type midpoint
ties, for example, it causes the breakdown of the associativitinteraction vertex to closed strings results in nonpolynomial
[7] and we have to be very careful while handling such astring field theory[10,11].2 The action contains infinitely
degree of freedorhD-brane couples to the closed string sec-many terms to cover the moduli spaces for the Riemann
tor (for example, gravity at the tree level, and we cannot surfaces corresponding to various interactions. This approach
escape from using such a singular description. The levetontains many mathematically interesting features such as
L., structure. Handling of the moduli parameters still remains
as a challenge, however, and it has not reached the com-
*Electronic address: ikishimo@hep-th.phys.s.u-tokyo.ac.jp pletely satisfactory level.
TElectronic address: matsuo@phys.s.u-tokyo.ac.jp
*Electronic address: eytoku@hep-th.phys.s.u-tokyo.ac.jp
'Recently, a regularization method was propokgid 2See[12] for a review.
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(2) as defining a projector. In the following, however, we will
continue to use the word “projector” to describe the state
that satisfies Eq(2) because of the similarity with the dis-
cussion of the open string.

We conjecture that Eq2) gives a good characterization
of the conformal invariant boundary. For this purpose, we
calculate an infinitesimal variation of the boundary state of
the following form:

SIB)= $ dov(o)[B) ®)

FIG. 1. * product of the boundary states. whereV(o) is a vertex operator inserted at the boundary. We
argue that the idempotency conditi¢®) requires the vertex
The third one is based on a split-joining-type vertex,V to be marginal. We will prove this expectation for the
which was proposed about the same time as Witten-typeachyonic state and the massless vector state. For such varia-
open string field theory and is now known as HIKKO's tions, this gives the mass-shell condition for these open
(Hata-Itoh-Kugo-Kunitomo-Ogawa string field theory string modes. In a sense, the idempotency condition knows
[13,14]. It has exactly the same action as Witten’s open stringhe mass-shell condition of the open string while they are the
field theory, namely, the kinetic term and a three stringequation for the closed string states.
interaction® In HIKKO?s theory, it is necessary to introduce  We note that our argument is very similar to the discus-
a parameter called string lengthto specify string interac- sjon of vacuum string field theory. For example, use of the
tions, which has no analogue in Witten-type string field theo-ariation of Eq.(2) to derive the mass-shell condition for the
ries. It must be integrated in computing physical quantitiesopen string states was examined in the VSFT context by
and might cause a divergence in loop amplituflEs|. The  Hata-Kawand17] and Okawd18]. In particular, in the latter
simplest way to resolve this difficulty is to just se&=p™,  approach, the marginal deformation was made over the
but it breaks the covariance. whole boundary. This is basically the same variation as Eg.
To summarize, there is no completely satisfactory closede). The difference is, of course, the Hilbert space where the
string field theory. In this paper, we adopt HIKKO's star projector lives. In VSFT, to describe such an projector, we
product to explicitly demonstrate E(2). However, we ex- have to consider singular states. For example, the sliver state
pect it to hold even if we replace it with a Witten-type prod- is made by taking the infinite star products of the vacuum
uct. We will come back to prove it in our future padd6].  state. On the other hand, our closed string description does
We would like to propose this relation as a universal characnot include such a singular manipulation. The boundary state
terization of the boundary states in closed string field theoryis a well-defined state in the boundary conformal field theory.
which is independent of the specific proposals for the actionin this way, we can escape from the subtleties of VSFT.
A merit to use HIKKO's approach is the analogy of the ac-  The paper is organized as follows. In Sec. Il, we give the
tion with Witten’s open string field theory. If we want to have explicit definitions of the boundary states and the 3-string
an analogy with VSFT proposal, this gives a good reason tgertex which are discussed in this paper. We will then present
start from it. our claims more precisely. The proof is given explicitly in
We note that HIKKO’s+ product in Eq.(2) has different  the following sections which are rather technical. In Sec. IlI
properties compared with Witten's star product in open stringve prove the idempotency relation of the boundary states.
field theory. It may be summarized as the following relations:We need many properties of the Neumann coefficients which
are summarized in Appendix C. In Sec. IV we investigate

D W =—(-1) Iy« ap, (3 infinitesimal variations around the boundary state and derive
(DJ( ]+ |A] on-shell condition of open string on them. In Sec. V, we
(O*W)* A+ (1) (U A)*D discuss some issues of our results.
+(—1)MAPI+¥D A+ P)* ¥ =0, (4)

1. BOUNDARY STATE AND STAR PRODUCT

Q(@*‘P)=Q®*‘P+(—1)‘¢|¢*Q‘P. (5) OF CLOSED STRING FIELD THEORY

A. Boundary states

First of all, the product iganti-)commutative(3). While it ) . .
breaks associativity, it satisfies the analogue of Jacobi iden- 1he boundary statei®(F)) which we are going to dis-
uss are those forbranes with constant field strendh,,

tity (4). In a sense, it has the same property as the commuz
tator of Witten-type open string product, 19],
q)*HIKKO\I,H(D*Witten\I,_(_1)\¢||‘I’|\I,*Wittenq)‘ Since |B(F)>
the nature of the product is different, we cannot interpret Eq.

n=1

()T ()T _ —
—e Zn=13; ' Oa, ex;{z ((:$1+)TE$1 )T+C$1 )TEr(1+)T)

3The action for open strings contains 3-string and 4-string vertices '
besides a kinetic term. X|p,=0x"), (7)
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O*=[(1+F)"Y1-F)1*, u,»=01,...p,
=[(1HF) H1-F) 1, u P 2<q>|::j dc(R(1,2)| D), (15

Oj==4, i,j=p+1,...d-1. (99 The reflector is defined bj14]

daldaz

x*(u=0,1,... are the coordinates along the Neumann
(p D) g (R(L, 2)|_f XD 2

directions and'(i=p+1, ... d—1) are along the Dirichlet
directions? We use the letters!,N (=0, ... d—1) to rep-
resent all these directions. We pidit=26 since we are con- Xexr{— S (@a®W. a(H@ 4 (D@
sidering bosonic string theory. These states satisfy the fol- n n n n
lowing conditions:

1<X(l) a| 2<X(2) ay|

*,n=1

[Xi(0) [ B(F)) =X B(F) (10 o e S e - 2m
d X 8(a+as). (16)
Pu(0)=F 4,5 X"() ||B(F))=0, (11)
T The_ 3-string vertexV(1,2,3)) is given explicitly in terms of
()| B(F)) = ()| B(F)) = 0. 12 oscillators a%

The boundary states are invariant under Becchl Rouet-StoréVv(1,2,3))= | 8(1,2,3[ x(1,2,312pMp@p®
Tyutin (BRST) transformatiorQg|B(F))=0.%> O is orthogo-

nal 00 T=0TO=1 sinceF ,, is antisymmetric. Along the 3
Dirichlet directions, this malrix becomes trivial in the sense: x|
[(1+ (’))/2]}20, but zero modes have nonzero momentum. =

1
1wl

The oscillator representations of E¢$0)—(12) are summa- « eF(1.2.3) 1
rized in Appendix D. 1p1,a1)1|P2, @2)2| P, )3, 17
B. Reflector and 3-string vertex F(1,2,3=> 2 > N, a( DT (O
+ r,s=1 mn=1

HIKKO's star product for the closed string is a covariant
version of light-cone string field theory. It is defined by the ()Nt _1—(+)(S)T)
~ . +\mea,Cry n Cn
reflector(R| which maps a ket vector to a bra vector and the Frim (Vna)
3-string vertex|V(1,2,3)) which lives in the tensor product

3
. . . 1 ~ L 7|
of three closed string Hilbert spaces: Lz 2 2 Ngag,)(r)‘l‘. p— 0
T =1n=1 dajazag
@1 ®3)3= f defidcf? (@4] A @|V(1,2.3), (14 (18
P:=aipy—azps, (19
“We summarize our notation of the oscillators and the vacuum
tate in Appendix A. In particul seto denote the antighost 1 .
state in Appendix A. In particular, we u ’o enote the antighos wih=_— 2 E W asc( )(s)t
(usually written asb) by following HIKKO’s convention[13,14]. 2T &= m
For ghost zero mode convention, we usg-omitted formulation
(Sec. VB in Ref[14]). 1 m-1
5This property is essential to couple the boundary state as the IS_ ISy NS NN
o W=y mNS+ — >, mNSS L, 20
external source to closed string field theory. The authors of Ref. m=X m arn; m=n.n (20
[20] proposed such an action
1 3
1(1 1 rs—g§ — _ r
So=— {5 @ Qe®+ 3P (P*®) +B(F)- & +I(F), (13 X rysar(“r—l “r+1)+§1 €
g
(agi=ay, €?=+1), (22)

namely,Qg|B(F))=0 is necessary to satisfy the gauge invariance

of Stot. This was the first example where the boundary state ap- p( 3 3

, 7'0221 alog|ay|, (22

peared essentially in closed string field theory. They used this action w(1,2,3=exp — TOE
to derive open string actiofBorn-Infeld action and proved their

gauge invariance through string field theory. An unsatisfactory point

was, however, that one needs to put the boundary state by hand—

from outside. Our study starts from a hopederive it within the ®This is the same d¥'(1,2,3)) in Eq.(5.15 in [14], which is the
framework of closed string field theory. 3-string vertex invrS-omitted formulation.

ay
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o o—sgn(o)m|a,|
Ul(a):a_l' Uz(U)Z—aZ )

o3(o)= —Sgr'(a)w|a3|—a" (30

—aj

where — 7| ag|<o<m|as| and «; (i=1,2,3) are real pa-
rameters with the constraini, + a,+ a3=0. In light-cone
string field theory, they are interpreted as the light-cone mo-
menta which are preserved at the interaction. In the covariant
theory, they become the external parameters which charac-
terize the overlap condition&26)—(28). We note that the

FIG. 2. Overlapping configuration of three closed strings.above C%ndltlons dare for ths. .par-tlcular Caie3|=r|]a-1|
Strings with the labels 1,2,3 whose length parameters are"'|a2| and we need some modifications for other choices.

|aq],| || as|(=]ay|+]|ay|) are parametrized by, ,0,,05(— 7

<o,=<mw). o3=Et7(B+1) (B:=a,/aj) are interaction points on C. Main results
string 3 which correspond te;=*,0,=0 on string 1 and 2, . S . .
respgctively P 172 g At this point, it is possible to make a precise statement of

our results, given as follows.
dip, d%, d%p; dey da, das | (1.) We sll_ghtly redgfme the boundary sta®&(F)) (i) by
f 5(1,2,3)=f 58 2.8 (2718 27 2 2—(277) multiplying ¢, to obtain the correct ghost number of closed
(2m)" (2m)" (2m)" 2m 2m 2m string field in the physical sector in gauge-fixed actjad]
X 84 P+ patps)2mS(a+ay+ag), (23  and(ii) by including the string-length parametex param-
eten

o= a9

oNY—NO)
2 '

—_a(M)Toa(IT (T T ()T ()T i
|<I>B(a))=e a Oa e¢ c +c c Co pMZO,X',a>.

(31
N.= > n(af?"-af?+cf?el+c{7e(?). . N | .
n=1 We claim that it satisfies the following relatigfprojec-
(24 tor equation” with the ghost insertion

The coefficients N[, are Neumann coefficientsN'S,,

=mNiS Jn, Ni:=mN;,. Their definitions and some for- |Dg(aq)* Pg(ay))=cg|Pglar+ay)),
mulas which they satisfy are given in Appendix &) is a
projector to impose the level matching conditibh =N_ sgn aq)sgn a,) >0, (32
on theith string. Note that we can rewrite some of the above
as J
Co=Vap-16=, (33
P=a;1p,— ayp1=aP3— agP= azp;— aiPs, Co
log|g| log|+1]
Pz 3 p2 — _ 2 _
_ 22 Pr (25) c=exp —2(B°+pB+1) B+1 3

X[de(1—r?)] (@272
in the presence o functions which imposep;+ p,+ p3
=0 anday+ a,+ a3=0. N
The 3-string vertexV(1,2,3)) is determined by the over- B=— o (39
lap conditions(Fig. 2) a1t ap

0, XD(0) +0,X(0,) — X (03)=0, (26)  Vg4_p-1 is the volume of the Dirichlet directions. The matrix
r is given by
01,6 (o) +0,a,cP(03) — asc®(03) =0, (27)

BB DM g,

0107 °cM(0) +0,a; ¢ (02) — a3 ’c®)(a3) =0, Fn= m+n
(28

01(0)=0(7|ai|—|o]), Oy0)=0(|c|—m|ay]), FS):I‘(—ml[g)em[ﬁ'°9|B|*(ﬁ+1)|09lﬁ+1\] 5
(29) m miT(—mB+1—m) '
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do Jako o X etk X))
(2) We consider the infinitesimal variations @fg of the E( 7K, 0, X")€e"n [Pg(a))

following form:®

do .~
o) = § 5o s PO @g(a), 37

d o
oy|Pg(a))= ﬁi(ﬁéﬁaxv)ewwk“x | Dg(a)).

d N
=i §§ag<e'kwx )| dg(a))=0. (43

In this sense, the gauge symmetry is automatically encoded
in the vector particle.

One may give an intuitive proof of the projector equation
(32. We note that the boundary conditio$0)—(12) for

(38 |B(F)) and the overlap condition@6)—(28) for |V(1,2,3)

are the local requirements on the boundary, namely, they are

The first (second one corresponds to the tachyonic modeyefined for eaclr. Therefore, if we impose the same bound-
(vector particlg of the open string. The infinitesimal varia- ary conditions foiB,) and|B,), they are translated into the

tion of Eq.(32),

S| Pg(ay))* | Pg(ay))+|Pp(ar))* 8| Pg(as))

=cgd|Pp(astay))
gives the following constraints:

k,G*k,=2 for 6=5r; k,G*k,=0 for 6=24y,

same boundary conditions féB,* B,) of the corresponding
point. Since the boundary state can be determined from the
boundary conditions up to the normalizatidB,* B,) must

(39) be proportional to the same boundary state. More explicit

proof of this identity in terms of the Neumann coefficients

becomes, as we see below, rather lengthy while it is mostly
straightforward. We have to use many nontrivial identities of
the Neumann coefficients. In this sense the computation illu-
minates a special role played by the boundary state.

(40)

where

wv

1+01+0T - -
=[(1+F) " 'p(1-F)~1»

2 2

GMV::

Ill. PROOF OF THE IDEMPOTENCY
OF THE BOUNDARY STATES

In the following sections, we give the technical details of
the proof of Eqs(32), (40). We first derive the star product

(42 of the boundary state which includes the additional linear

term in the exponential. It will be used to give the source

is the “open string metric” on the P brane. These are pre- term to derive the variation of the boundary state.
cisely the mass-shell conditions for the tachyon and the vec- We consider a tensor product of the boundary states,
tor particles. There are no further constraintsdgr, namely,

the transversality conditiok,{”=0 is not reproduced at the D)@ |d,)=el2aMa'raTg—cMge el 4 )

level of the “equation of motion,” Eq(39).

We note, however, that the variati¢88) is invariant un- ®c?|p,y,az), (44)

der the gauge transformation; namely, if we change

where we used abbreviated notation,

(=Lt ek, (42)

in Eq. (38), 8y|Pg(a)) is not affected at all since the change

(H)t
a
af= )

a(ot

can be written as the total derivative with respectrtand it

drops out after the integration,

Akt B
a®t= ( a(z)(i)’”) , similar notation forc,c, (45
n

"While we have not succeeded in determining it analytically, we

can numerically evaluate it by truncating the matrito L X L. We

find that a good fit of this coefficient is
log(¢)~3log(L)+7.07

log| 8| log|5+1]

+0.866(B%+B+1) 5+l 3

At L=100, the error is about 0.02. This estimate shows that_3

is a finite and well-behaved function ¢@f.

8Normal ordering which is necessary here is defined in App-

endix D.

M _( 0 _OMN‘smn5rs)
_O-II\—/INamnérs 0 ,
36) M —( 0 —Ogﬁmnérs) (46)
g —Oy6mnOrs 0 '
A=), AOD, )\(i):()\gll)t(i), )\EWZP)L(i)),
r,s=12; mn=12,... . 47
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We note thatOy=1 for the conventional boundary state. We N3 T
include this extra degree of freedom since there exists an- ()= " ,

other choiceog= —1 which satisfies
as we will see later.

N - (54)
the projector equation NZ?E({’:)(—)T

The corresponding bra state is obtained by applying the o=(c"), ),

reflector and projectors,

do, de,

(P1]p@(Pylp= fﬁ o E<_p11_

2) 1/2aMa+\a
®<_p2,—a2|a() e e

o= (PR, AN, (55)
al@)l)
By taking the inner product with the aid of the useful formu-
Mg, las, Egs.(B2), (B4), in Appendix B, we can arrive at the
' following general formula after some calculatith:

(48)
do;do, , . —

wheré [P 1% Do) =cp o 2mC mCeMaCo| pyt P2, a1t ay),

A= (N0 N0y, (56)

) B L . c=[u(1,2,3]°det " 1-MN)de(1+NgMy),

)\(_)9:(8+|n01)\§11)(_)' e+|n02)\E12)(_)). (49) (57)
We take the inner product between this state with the 3-string 1 ey 1o (1) e Al
vertex (17). For this purpose, it is convenient to rewrite the Hn=5a N a'+ 5N (@™'+a'’hp
factor in the exponential as
T eyl MaeNw)
F(1,2,3= }aTN a+al u+a®NBa®)T— i 2 daiazas 2
o 2 4a1a2a3

+cNCT ¢ p+ o T+ TCURNBC V20T,

where we introduced some notation

n o0 N1t
L N2t

NN
N = ng O B Ng
Lo ngr M| R

1
+A(1-NM) tu+ E)\”N(l— MN) I\ (58

(50)
Hg=c'CYAN¥FC™(M2cT— o(1+ MgNg) ~*Mgp,
(59
N2 a1
C::+— a3(C$]+)T+C$f)T)
N22/’ dcg 2n=1
N12 X Wﬁ3+ 2 {C1’2N3rC*1’2a;1
Ngz) , (51) rs=1.2
g
X[(1=OgNg) " *Og]"asws}, |. (60)

NE;SZ a’rCUZNrSC_UZCVs_l v Cn=Mbpmn, (52)

B M(+)
=)/

N3 )t 4 %“Nlp

NEAGIE ;sz

In the derivation of this formula, we do not use the informa-
tion of the particular form oM. In this sense, this gives the
general formula for the star product of the generic squeezed
states of the forn{44).

This expression looks hopelessly complicated. In particu-
lar, the appearance of the inverse of Neumann coefficients,
(1-NM) *or (1+NgMg) ~*in Hy, andH,, looks unman-
ageable and even singular for genévic

A major simplification occurs, however, when we replace
the matricesV,M with those of the form(46). In this case,
one may use

, (53

1% this expression and in the computation in the following, we
omit the suffix ® in the oscillators. The vecta' should be inter-

°The elements oM, M4 do not change by because of the form preted as PO arPONT The same convention is also ap-

(46).

plied toc andc.
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L[ 1 no\t (1-n?)"s=4ANTT276)
(I-NM)“t=(
no 1 — [(1_n2)—1]rs:£ D(r)FZD(s)T. (67)
( (1-n?)~1  —On(1-n?)~? 4
—O0™n(1—n?)"1 (1-n®)~1 ) With this remark, we derive the following relations which
(61) are essential to show the idempotency of the boundary state:
and a similar one for the ghost sector. We note thandn N33+ 2 N3nit[(1—n?)~ 1N =0,
commute with each other since the matdx acts on the rst=12
Lorentz indices while the Neumann coefficients act on only
the level index. The problem is reduced to deriving the in- > Ne(1-n?) " 1]rsNs3=1. (68)
verse (1-n?) 1. At first look, this is singular since the re- rs=12
lation (C5) among Neumann coefficients implies
We list many other formulas for Neumann coefficients in
ours ~ 13735 Appendix C.
(1-n)pm= ; NneNem  (r,s=1,2). (62 In the next section, we will need to cut off the range of the

lower indices of the Neumann coefficients to obtain a finite

. . . . P i Njr3N3

On the left hand side, the size of the matrix with respect tgesult. We need to impose the condition thatN;N7g (62
the indiced{(r,n),(s,m)} is “2 X %" whereas the summation has the inverse even in the finite size truncation. For this
on the right hand side is taken over the™set. If we na-  purpose, the matricé’s should be rectangular, namely, the
ively regularize the Neumann matricé¥3 N3¢ (r,s=1,2) index p,q run from 1 toL, while the other indeX runs to
by truncating their size td respective'y, the rank of (1 2L. This observation will have an important consequence
—n?) becomed. while its size is 2. later. _

It is surprising that, contrary to this naive expectation, it NOW we come back to the computation ofproduct. By
has a well-defined inverse. This is a specialty of the infinitesing the relationg68), we can simplify the Gaussian part of

dimensional matrices. For the explicit computation, we needEd- (56). We neglect the. dependence for the moment since
detailed forms of the Neumann coefficients they are not relevant in the proof of the idempotency of the

boundary states. The expone(®8) and (59) are

NI _ NTPr—1a(9) Nf — _a(DP-1
Nipn= 6rs0mn— 2(A" ' T7"A™) 1, Ny, (AT "B)y, ’ _1 Mat 1 (+)T1+O (_)T1+OT
(63) m—za a _E a T—I—a

2 Bsin(mB) 1 1+0
A(l):__ mn_l m+n—, _ T
mn T (—1) n2—m2g2 8P_2 PB'B

2 (B+1)sin(mmB) . o (M?-1) (69)

B+ 1)sinimmB S M 2 —Du

AP = _Z mn=1)M , 64 2 (1-NM)(1—N")
TR (64)

for the matter sector and
20[3

3_ _ — . J—
A= 8, Bn=~ aray ™ 32(—1)Msinmm B), Hy= —c"MgeT+ (02— 1) c'CVANE
N rs
g N|S3~—1/12~7F
x NSc-v%t  (70)
L= St 2y (ADAOT) (65 (1+MgNg)(1=Ng) | ¢
r

=12
) ) ) for the ghost sector. These expressions are further simplified
A and B describe the overlap of Fourier basis of threepy the following conditions:
strings at the vertex. A crucial property &f") for r=1,2 is

that they have an inverse, which was provedam], 1+0T  1+0

M2=1, M§=1,TP— 5—P=0 (72)

> AODN=1 DOAG =3,

r=12 1+0
= 0T0=1, O4==*1, —5—(@ipz—azpy) =0 (72
a3 -
DN=_"caATc-1 =1,2). . i . ;
mn a, c ¢ (rs=12 (66) which are satisfied automatically for the conventional bound-
ary state(31). After we use these relations, we arrive at the
By using this inverse, one obtains the inverse efrf?, final result
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1
Hnt Hg=> a'Ma’—c'Mc’ (73)

We note that commutativitf M,N]=[My,Ng]=0 which
follows from Eq. (46) and unipotency ofM,My (71) are
sufficient conditions to derive this form.

The ghost prefactof in Eq. (56) becomes

J 1
C= — +2a3[w33+w330 C- 1/2((1 O n) l)SrNr3cl/2]

dCo
X (et ()T, (74
It is simplified further forOy=+1,
g 1 2
C+: 4 ag W33_E W3rc 1/2D(r)cl/2)
(9C0 2 =1
J
X (eI = —| (75)
Co
and for Og=—-1
J 1 2
C =—+= w33+ w3 C-12a(NTcL2
dCq 2 s 'Zl
X (e 4T (76)
IS ()14 (1
=—+2 cognm(B+1)](c,”’ +cy ).
&CO n=1
(77)
At the final stage in Eqs(75), (77), we have used relations
[13]
1 m—1
w;?:m( TSNS+ . nEl NRs n)
l ee]
=—| 8, scosma, — mE Nmncosnar) (r,s=1,2,3),
,
where o=, 05,=0, o3=m(B+1). (78
After computing, the normalization facteris
c=[1(1,2,3]°[de(1—n?)]~ 4=~
log|8| log|g+1|
= —_— 2 -
ex;{ 2(B°+pB+1) B+1 B
X[de(4ANTT 2A6)) (5722 (79

The second factor is
def4(2?_,AOAON I ~2]=def4(I'-1)I' "2]. After we
use the expressioN®*=1-2I""1 and the relation§C1)—
(C3) in Appendix C, we obtain Eq.34).

Thus far, for the string field

simplified by

PHYSICAL REVIEW D 68, 126006 (2003

—_a(Mtoa)1T (DT T (DT
|<I)O(p,a))=e a @) +Og(c c +c c )Colp,a%

0T0=1, O4==*1, (80)

we have derived

|Do(p1,a1)* Po(Pa,az))=cpCs|Po(py+ Pz ar+ay))
(81)

with  nonvanishing momentum only along Dirichlet
directions$! wherec,C.. are given by Eqs(34), (75), (77),
respectively.

In the case oDy= +1, the final result, Eq32), with the
volume factor is obtained by Fourier transformation along
the Dirichlet direction '),

d p— 1 .
)= [ stz e, 2

J» dd p 1p dd—p—1p2 dd—p—lp3
(2m)d Pt (2m)d Pt (2q)dPt

X 1(X'] (X[ (2m) P19 P (py+ Pyt pg)
X|p1)1lP2)2lPs)s

dd—p—l
:Vdfpflf

e
=Vy_p-1/X)3.

(83
Finally we make a few comments on the analogy with
VSFT. We note that there exists an extra solution of idempo-

tency relation, th¢d,) (80) with Oy=—1. The ghost pref-
actorC_ can be rewritten as

g{iﬂ'z[w(ﬁ-i- D]+imd —

C_|®g)= 7(B+ 1)1} Do),
(84)
where o3=*m(B+1) are the interaction points of the

stringr =3. It has a similar form to BRST operator in VSFT
[4]: c(7/2) in Witten-type open string field theory; namely,
if we regard the projector equatig8l) as an analogue of the
equation of motion of VSFT, the string field,) with Oy
=—1 corresponds to Hata-Kawano's “sliverlike” solution
of VSFT [22]. On the other hand, in the case 6f=+1,
|dy) corresponds to “identitylike” solution of VSFT23]
with the same analogy a@f, = d/dcy~cg. Although there are
two choices for ghost secto®y==*1 for Eq. (81), only
|®g) with Og= +1 relates to the boundary stat@s which
have conventional BRST invariance. In the following sec-
tion, we discuss only®g) (31) with Og=+1.

The condition for momentum comes frofi{1+ ©)/2](a;p,
—ayp1)=0in Eq.(72).
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IV. FLUCTUATION AROUND PROJECTORS 1
. . . _ “NIN(1-MN)~I\?

In this section we consider two types of fluctuations Eqgs. 2
(37), (38) around|®z) and demonstrate explicitly that the

2
idempotency conditioi39) produces the on-shell conditions E ()6, — ATA(S) (5) b5
(40) for these particles. We note that the variations of the 4 2 NP (s JP
type 5
do i 2 ADop (6, _D(r)D(S)T)p NOLS
|00g)= fﬁﬂvw)lcm (85)

(90

correspond to the open string modes on the D-bfaae, for

example[19]). We conjecture that the equation of motion, N 1-NM) 1u

Eq. (81), will produce the on-shell condition for all of them,

namely, they should be the marginal deformation on the

boundary. We pick the simplest two examples to illustrate =— 2 NP, ADTP gl = > %P _DOP_al

this idea explicitly. r=1 =t
Before we start the computation for these cases, we give a

2 2

few technical remarks. 5 ﬂ
(1) By using Eqg.(56) with nonzero\ as the generating 1 2 (1) )T 2
functional, we will compute the left hand side of E@9). 4~ PATBL o7 P
Explicitly, for a fluctuation >
+ + _ T
|00g)=af)" - Te Mo dg), (86) -0
d 1 2
we can compute product as - NoZ Q)
-7 2 P.DOB| 1 |P (91)

_ 9 2
N,

A. Tachyon-type fluctuation

We consider tachyon-type fluctuation of the form of Eq.
N (37). After we use the identification of the oscillators on the

0 boundary statéD1)—(D3), (D13), the variation takes the fol-
(87 lowing form:

and|®gx 5Og) similarly.
(2) From the definition of the tensor product of the bound- |0r®g(a))= ZVT(U)@B(“»
ary states, Eq(44), we can define projection matricé.

ag? _ gk 3Ed_<fea<+)roa()fﬁaf
2
1M
Pi:T’ (89 ¢ ge e el colk,, Xay, (92
which satisfy

T —ino ino
P2=P., PL=P., P.P.=0, P,+P =1, (89 N (1“9 #eThT [1+0\ren?
S A N N R

because of Eq9.72). These projection operators are useful

for classifying the external source term into odd and/or even _ 1

parts under the reflection at the boundary and for simplifying = —k(cosna)C (1,1 P.

the computations. _ +ik(sinno)C Y41, 1)P_, (93
(3) A-dependent terms of the exponent in E8f) can be

simplified by using the identities of Neumann coefficients

(Appendix C 313 )\i‘7=0. (94)

We need some explanations on our notation. The bra vector

12\ in the following should be interpreted as Ed6) with 5,  (COsho) [or (sinna)] has only the level index and whose
dropped. nth component is caso (or sinng). In this notation, we may
Bwe  denote  NDf=(\OMIH NN = (e n\(H  also write, for exampld cosfio)/\/n]=[ cosfio)]C 2 and
ey r=12. so on. The other bra vector (1,1) has the indexwhich
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distinguishes the left and right movers. Finald. have the
indices of Lorentz and left/right- as was defined in Egs.
(89), (46).

The integration with respect to appears automatically
because of the projectign in the definition of ther product
(56).

We investigate “on-shell” condition which is imposed by
Eqg. (39). We evaluate the products

I[V1(o)Pg(ay)]* Pg(ay))

:CBEOE!ikiXi §%8E1e0(+)*€()*+c()’r€(+)fc—o
2
X[k, X @yt @), (95
[@g(an)*[Vi(0)Pe(az)])
:CB@eikiXi 3[;%eEzec(”*@—)Mc(—)@HE
2
X|k#,xi,al+ a'2>_ 96

The calculation ofEq,E, is reduced to that oH,, in the
previous section, Eq58). We have already evaluated first
four terms while we need to keep the nontrivialdepen-
dence. The last two terms are simplified in E@9), (91). In
the computation oE; we put\(?=0:

E,=EP+EM+EM, (97
EPl=—aM1oa ", (98)
T
E[f]:—% a0 a9 Bk
2\t 0173+A(1)T7)+a1'_ b alfpr(l),P, at
(99
ab 1+0
0l _ “2pTRK__ _
El= - 2BTBk——k
1+0
1 o+6q T 2
2
1-0
1 o+ 60y (1) 2
_Z)\ P_D azB 1—OT k
2

1
+ Z)\a'Jr 0173+(1_ A(l)TA(l))rP+)\0'+ 0,

PHYSICAL REVIEW D 68, 126006 (2003

1
- Z"U+ p_(1-DODOTyp_\ot 01, (100

The quadratic part in the oscillatcﬁllz] is the same as the
boundary state. To calculaig'! andEL”!, we need to evalu-
ate the inner products between the vectors (@)€ /2 or
(sinna)C~ Y2 with matricesA™") andD("). They are reduced
to the calculation of Fourier transformation which we ex-
plain in detail in Appendix C, Eq¥C30—(C46). They sim-
plify the linear part dramatically to

E51]= —\ " Bloto)+mgt (101

This is identical to the linear part coming from the tachyon
vertex. The constant part is similarly computed, as follows:

2

1 1+0 @
O_Zk=_ k- —2BT
i 2k 5 k B+?
Xi sirfm= B T .
2 | 2mip? Zmzﬁommwﬁcosmﬁ(a 1)

0

+ >, cosm(o+ 6;)cosn(o+ 6;)
mn=1

X(ﬁm,n_4_ﬁ2°° (—1)™ "psifpm )
mo S (- p?E?)(nP-p?pY)

o0

+ E sinm(o+ 61)sinn(o+ 6,)

mn=1

( Smn _AmN - (—1)™"sirp7B
M7 65 p(me-p?pY(n?-p?p?)

I

(102

The overall factor oE”) becomes

1k1+ok_ 1k G
20 2 T2 v
1+0 1+0T|# . .
GH=| ——— =[(1+F) 1p(1—F) 1~

(103

G*” is open string metric on the ®brane.

We evaluate the numerical factpr- - ] in Eq. (102). The
quantities in the first line are convergent. On the other hand,
the evaluation of the terms in the second and third lines are
very subtle. Two terms with,,, can be summed to give
37 —11/m which diverges logarithmically. The summation of
the other two terms, if we first perfor®,, ,_, using Egs.
(C30, (C31), gives again- 2;":11Ip, which is divergent but
with negative sign:
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© - - Ig

> cosm(o+ 6;)cosn(a+ 6;) E,=—aNToa()T— )\~ B+Dm=e ‘92)aT——k GH'k, .
mn=1
(107
432 i (—1)™ "psirfpmB ) Coming back to Eqs95), (96), (106), (107),
I 2 2p2\(n2_ n2p2
7T p=1 (M°— n-—
P P P°A°) | 51Pg(ay)* Pg(ay))
- do (1/2)k,, G4k, ) aikiX
+ > sinm(o+ 6;)sinn(o+ 6;) =cg P52 vp €'
mn=1 2
db1 ()t oa(-)t_y—Blo+ o)+ mt
amn < (—1)™ "sirpB fﬁﬁe
X| ——=
7 5=1 p(m?*—p®B%)(n°-p?B?) . . _
o @e T (Tl )1—|k Xyt ap)
4 1 cos +6,)\? — 95— (12K, Gk, nikix!
=-—=2 sinzpwﬂ{p( o — PR 0) =cg 2 BT el
™ p=1 2p°p 2pBsinpmp ,
« %die_a(+)1'0a(*)1’_)\*Bo—’+77+03a’r
. 1(1TSinp,8(0'+ 6,) T 2m 2m
p 2 sinpwB w gt T )f—(+)1—|k Xyt ap)
B i ( B sirfp7 B . 2 sinpmBcospB(o+ ;) E) =27 W2k Gk | 51D (g + ay)), (108
p=1 “p°p? mp°B P/ . —(1/2)k ,G*7k
and similarly |®g(a;)* 5rPg(ay))=2" MDKuC kg,
(104) |61®Pg(ai+ ay)). By putting these two equations into Eq.
, our proof, Eq.(40), is finished:
(39 f (40), is finished
The summation of the first two terms are finite and exactly 5. « P +|d * 5.
cancel with the first line of Eq.102). As for the third term, |OrPe(ar)* Dol az)) F|Pglar)* SrPe(az))
we encounter subtle cancellation of the forfn- -] =cg|61Pg(ast+ ay)) < k,G*k,=2. (109

=37 -1(1m)-= ,11/p w—o, \We need some regulariza-
tion to obtain a f|n|te resul For this purpose, we cut off the This is exactly the on-shell condition of open string tachyon
infinite dimensional matrix foA®”. As we commented in the on the Dp-brane™®

previous section, in order thA(") has the invers®(") in the

sense, Eq(66), we should regardh\ (") (r=1,2) as 2. XL B. Vector-type fluctuation

matrices with respect to indices,n. With this regulariza-

. . Next, we consider a vector-type fluctuation of the form of
tion, we obtain

Eq. (38), which after using the properties of the boundary
state(D14), is equivalent to

]_nm(E 3—2 ) —~log2. (105

do
Lo 1m p=1 |6y Pg(a))= % E(d”‘a*) Vi(o)|Pg(a@)), (110
We have obtained a very compact result Eor, where andd” is given by¢, as
log 2 1+07 o
— _a(H)T ()T —Blo+o)+m Tt _ "2 v o_ 5| _ —ino ino | ~1/2
E;=—a'""’"'0Oa A VT 5 k, Gk, . d7=¢ 5 € C

106

(106 ={(i(sinng)CY4(1,)P, — (cosno)CY¥41,—1)P_).
We can deriveE, similarly, (111

We can compute the product of §,®g and ®g using the

14There was a similar subtlety of the tachyon mass around th&€chnique of Eq(87):
sliver solution in the oscillator approach of VSFT which was pro-
posed in[17]. As was shown if24,25, the correct mass was re-
produced using a regularization of the Neumann matrices although®The on-shell condition of the perturbativbosedtachyon isp?
it becomes divergent if one uses relations among them naively. =8 in our convention aftef14].
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|(8yPg(ay))* Pp(as))

dO' - Jd “xat
ﬁ_ —d R|e Dgay)*Pg(ay))
~eY Por f 2m

2
,)\—,B(rr-*- 61)+7ra1‘

A=\CT

—(1/2)k,, Gk,

XDle |CI)B(a1+a2)>, (112)

|Pg(ay)*[ Sy Pg(az)])

3§—d0 a1 —xalg

= —de *

27 (9)\| glaj)*e s(ay)) .
d6,

B § do § )
~Cs¥ 2w | 27

_)\7(B+1)(‘n'*0'* SZ)aT

- (1/2)k,G 7k,

XDze |CI>B(a1+a2)>, (113)
where\? is given by Eq.(93).

There are three terms which contributeZig:

Dy=d’ (.. Hat+do (. )P+HdTT (NI O,
(114

The main contribution comes from the first term:

Dy=—pRd Al gty ..

(115

We show the details of computation and other terms in Ap

pendix E. Similarly, we obtairD, in Eq. (113 as
D,=(B+1)d BT NE=o=b) gt ... (116

Noting the integration over the intervalm2which is caused
by projectionp, the sum of Eqs(112) and (113 becomes

I[6vPg(ay)]* Pg(az))+|Pglaq)*[ 5yPa(ay)])
=27 V2,CM [ — B+ (B+1)]cp| Sy Pl s+ ag))+ - - -
=2_1/2(#GﬂkaCB| SyPglar+ay))+---. (117

The remaining terms- - cancel each othéE8) and we have
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less mode. The transversality condition should be imposed in
order to fix this symmetry. This structure is similar to the
gauge theory.

It may be of some interest to compare it with the analysis
in VSFT [17]. While our variations,®g has a unique form
of d” (111), its counterpard}; [Eq. (4.29 in Ref.[17]] of
VSFT was arbitrary. Actually they are all gauge degrees of
freedom in VSFT except for ong26]. As for the ordinary
gauge transformation, it is reproduced only after using regu-
larization[27]. While we have discussed a close analogy of
our analysis with VSFT, the gauge structure is very different.

The analysis of higher modes will be more complicated
because of the treatment of the interaction point. It will give
a very nontrivial test of our scenario that the idempotency
condition of closed string field would give the correct spec-
trum and symmetry of the open string.

V. DISCUSSION

We have seen that the “vacuum version” of closed string
field theory embodies the basic goals of the VSFT proposal,
namely it has a family of exact solutions that correspond to
various D-branes. In our case, all of the basic types the
boundary states in the flat backgrouffdp-brane with the
flux) appear as the exact solutions. Furthermore, the infini-
tesimal variation of the solutions produces the correct spec-
trum of the open string living on the D-braiat least lower
lying modes with the correct gauge symmetry.

What is the vacuum version of closed string field theory?
Resemblance of the action of HIKKO’s string field theory

1 1
S=50-QP+5 - (PD) (119

with Witten’s open string field theory is one of the encour-
aging points to suspect the existence of such a theory. The
computation of the tachyon vacuum is parallel to the open
string cas¢2] and will be possible at least numerically. As in
the VSFT proposal, one may conjecture that the equation of
motion at this “vacuum” may be written as E¢32). We
have observed the close analogies of the structure of the pure
ghost kinetic term at the end of Sec. Ill. At this vacuum,
there would be no propagating degree of freedom both in the

obtained the on-shell condition for vector-type fluctuationclosed and open string sectors. There exist, however, the

(110

I[6vPg(ar)]* Pglay))+|Pglay)*[ 5yPg(as)])

:CB|5V(I)B(al+ a2)><—>k'uG"“’k,,=0. (118)

This is the on-shell condition for massless vector on the
p-brane.

nonperturbative solutions—the boundary states.

It is tempting to conjecture that, as in the VSFT proposal,
the reexpansion of the theory around the solution produces
open string field theory. By the assumption of the vacuum
theory, there is no closed string propagation at the tree level.
On the other hand, the open string becomes physical. The

DBRsT charge at the new vacuum would be

We note that we do not have transversality condition

k,{*=0 from our equation of motiof89). This is consistent

with our expectation that only the marginal transformation of

a0 .
Q|d)=a®—|P)—2[Dg* D),
ac

the boundary state will keep the idempotency. We note that
the polarization vector has nothing to do with the dimension 2
of the vertex operator. On the other hand, as we have seen in @;B: lim

Eq. (43), there exists a correct gauge symmetry in the mass- as0ptp=-112Vd-p-1

(120
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which is formally nilpotent by the Jacobi identit&? factor _ 1 (— )
in front of ¢, derivative is needed to make this i- o(0)=——=1co* 2 (cf+c e,
0 part a deri 2\ o n

vation. Here we need to take the limit—0 or « since «
parameter is preserved by the star product. More detailed 1
examination of this scenario will be presented in the future j—;)— _~—_ {2_+ > (P +ct ))e'“”],
study. 2w | dc, 170

The use of the closed string degree of freedom has a defi-
nite advantage in describing the physical process involving 1 9
the D-brane, for example, in the time dependent solutions of ~ c(o)=— [|—+ 2 (c{P-cl ))e'”‘f]
the D-brane decay. In such a situation, the role of the closed 2‘/;

strings seems more important than the open stri@gé If

we use the open string fields alone, the treatment of closed ) ) ) sine
strings becomes singular while in our approach it is encoded | 7c(0)=— ﬁ —2im+ gzo (cn’—cly)em” .
as the fundamental degrees of freedom. Of course, to pro- 7 (A1)
ceed in this direction, we need to understand how the propa-

gat.ing degrees of freedom appear iq the c'losed string SectQfe note thatc(o) is written more often a®(c) in the
which would be the most important issue in our proposal. literature.

We describe our scenario as a possible physical interpre- Commutation relations of nonzero modes are
tation of the idempotency equation of the boundary states.
We do not deny the other possibilities at this point. Since Eq. [alf

M (=)N7_ MN  fa(®) o0
(32) is a mathematically rigorous statement, it will play a T 1=MOmnon, {Cn " ,Ch T} dmino-

fundamental T2 even if our scenario might not be so accu- (A2)
rate. _ _ We often use the notation
Finally we have obtained the boundary states which sat-

isfy the idempotency relation, E¢32) rather than the equa- a{M= \/ﬁa'gi)'\/' M= \/Waff)'\“,
tion of motion of full string field theory,

c(H=cE) - cHT=c=) " (mn>0), (A3)

Qb+ d*P=0. (121)
which satisfy

For example, if29], it was argued that the asymptotic be-

havior of [1/(Lo+Lo)]|B) coincides with the supergravity
solution at the linear level. However, at the nonlinear level, it

[agni)M :agt)NT] = 5m,n77MN

=+ =) =)t N —
is easy to see that it fails to be the solution of HIKKO’s e S R N S T T (A4)
equation of motion. The settlement of this apparent conflict
is another good challenge in the future. Matter zero modes are representedagya;, as
M i

N
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APPENDIX A: NOTATIONS AND CONVENTIONS |X) = (2/7)W/el20"~2xa0=x"| 0y (A6)

We give a summary of our convention of the oscillators (XXM = (x|xM, xM]x)y=xM|x), (x|x')= &% x—x")
and the vacuum used in the text. The mode expansions of ' ' ’(A7)
basic oscillators are given as follow$4]:

<p| — <0| e 1/22Aig+?iop71/4p2(277)d/4,

X“"(U):i

7

i 1 .
M+ =D Z(a{PM =Ml
2n¢o n

|p>:(2ﬂ_)d/4e—(1/2)532+é5p—(1/4)p2|0>, (A8)
(plp"=(plp™, p"|p)=p"Ip),

Pu(0)=
e (plp"y=(2m) &% p—p"), (A9)

Pmt WMNEO (al N+ a(n)N)einU] ,

1
2\m
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(plx)=e""PX, (x|p)=€P*, (0|a}=0, a,|0)=0. A=1+a(1+BA)" '8,
(A10)
E;=c’(1+BA) Bb'+c’(1+BA) Y(p—Bu)+(vB+0)
Similarly «-dependent part is treated as an analogue of mat- 1t .
ter zero modes, X(1+AB) "b'"+v(1+BA) “(p—Bu)
. . —o(1+AB) Y Ap+u),
alay=cala), (ala={(ala, (a|la’)=2m)é(a—a). o ) (At )

(A11) Eo=—cf(1+BA) !BA " a(1+BA) 'Bb'—by]

On the ghost zero mode, the bra-ket convention is —cf(1+BA) " 18A [ a(1+BA) "LXp—Bu)+v]
P J —[(v—0cA)(1+BA) 1B+ 5]A7 1
9Co dCo X[a(1+BA) Bb'—bg]—[(v—cA)(1+BA) 1B

+S8IA Y a(1+BA) Y p—Bu)+ v]. B5
APPENDIX B: GAUSSIAN FORMULAE 1A e ) P Bty B9

In string field theories using oscillator representation, WeIn particular, if there are no terms dependent on zero mode,

. the above formula is simplified @&=1, E;=0. In the com-
often encounter computations of the foreﬁMaeaTNaWO)_. putation of Eq.(56), we uge i fora=,u=o1/= y=0 case.
We show useful formulas for this type of computations.

These are proved by inserting coherent states and performing
Gaussian integration.
For the matter sector with bosonic oscillators

APPENDIX C: RELATIONS AMONG NEUMANN
COEFFICIENTS OF LIGHT-CONE-TYPE
STRING FIELD THEORY

t1_ _
[am,an]=dmn, a,|0)=0, n=1, (B1) 1. Definitions of Neumann coefficients

we have Neumann coefficients are used to define 3-string vertex
|V(1,2,3)) which represents connection conditions of string

1 1, : world sheets and encodes string interactions.
exp saMa+\ajexp 5 a'Na'+pua |0) In Eq. (17), we used light-cone-type Neumann coeffi-
cientsN5,,Ny, which are explicitly given by21,13,14
1 1
:—exp(—xN(l—MN)lx a  ag) Tt —
Vde(1-MN) 2 Nimn= —arapas| —+—|  NuNq, (CY
1
+§,uM(1—NM)_1,u+)\(1—NM)_l,u) 1
Nh=a—fm(—ar+1/ar)em””“r (agi=ay), (C2
r
_ —1.t
XeX[{()\N-F,LL)(l MN) a T(nx)
fa(X) (C3)

B n'r'(nx—n+1)°

1
+§aTN(l—MN)’1aT |0), (B2)

We also use the notation

whereM,N are symmetric matrices. NS = /mNS /i NC=JmN. ca
For the ghost sector with fermionic oscillators mn mn, Ny m (4

They satisfy relation$30]
{Cn\bm}=dnimo,

3 )
c)|+)=0, n=0, b+)=0, n=1; 21 p; NN = 8¢ sOmn.
CE::C,n, bg::bin, n?l, (B3) 3 -
Nt Nt — _NIr
we have ;1 pgl NmpNp=—Np,,
exp(CAb+coab+cu+ vb+coy)expc'Bb +c'Bby+ctp 3 )
~rt )
+ob+ 8bg)|+)=de(1+BA)detA - eF17Fo| +), ;1 le NpNp= arayy’ (CH)
(B4) _ _ _ _ . :
It is convenient to rewrite them using matrix representations
where as
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Nﬁfﬁ (Cl/zﬁrscllz)mn: OmnSrs™ Z(A(r)TF - 1A(S))mn*

(Co)
Npp=(CYN") = —(AOT 1B, (C7)
where, for|a;|+|a,| =
(1) m 1 (7 nec mo
= ( 1) dacos—cos—
,85|nm77,8
=" m m+n—— "
1 m(ay+as)
2)— \[ m
Amn=2 \ i~ D" N do
N(o—may) Mo
X COS Cos— (C9Y
2 ag
(B+1)sinmmpB
—_ _ _ m,
—ymn(—1) A g+ D)2 (C10
A= (C11)
2
I'mn= 5m,n+21 (A(r)A(r)T)mn:rnmv (C12
Bn=— 2 @ m~%2(—1)"sinm= 3 (C13
m T ajay '
Crn=Mdmn. (C19
Here we used the notation
-4 1=—22 g =0
B_a_g' B+ = a_s, or a1+a2+a'3— .
(C19

We note that- 1< 8<0 in this case.

2. Relations among overlap coefficienté\, B

We list some relations between the coefficieAtand B
which were proved if21].

(64
- a—;(C’lA(r)TCA(S))mnz Sr.s0mn (1,5=1,2),

(C16)

(AOTCB),,=0 (r=1,2), (C17
1

= a,a,B'CB=1, (C18

2

a
(D7ICTHAN) = (CTHAN) ot — (T THANC Y
3

(r=12, (C19
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2
a3 _ 1
T Omnt 2, ar(ANCTIAOD =y apaBrBn,

(C20
(FC™ ) mn=(C M)t (I'C Hn—= 5 @102BrBy,
(C21)
(C Hmn— (CT T D= (T 7'1C Y p
+£a1a2(F_lB)m(F_1B)n=O, (C22

2

1
Ea1a2a3(A(r)TF_1B)m(A(S)TI‘_1B)n

(A(r)TF AG)

o oy
=—q,(C )mnér st _+

(r,s=1,2,3, (C23
[(1=ATTA) " H]5= 6 sOmnt+ (AOTA®)
(r,s=1,2, (C249
2
[(ATF_lA)_l];:n: r,sm,n _ZA(S)C)
(r,s=1,2), (C2H
2

BT 1= ——° (C26

ajaya3

In particular, the infinite matrices A, AR)  are

invertible® namely, we can find an inverse matrix
D= =2(CAOTC Y, (c27)
r
In fact, we can prove
é DAL =606, s (r,5=1,2),
2
2, 2, ARDIA= dmp (C29

directly. These relations are mainly based on the Fourier ex-

pansion[21]

1%0ne might think— (a, /a3)(C*AMTC) ,,,is also an “inverse”
from Eq. (C16). However, this matrix has zero mod€17). This
kind of subtlety was noticed in Ref8] for Witten's open string
field theory.
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o0

>

n=—o

(_1)neiny_ T

e Y (—g<y<g
n+a ( y )

(C29

sinTa

or

(— 1) cosny T COSay

——2(12

2R . (—m<y<m),

(C30

B sinmTa

2nsinny T Sinay

n;(—n“ = — — (—

n“—a SINTa

Ty<n).

(C3)

3. List of useful formulas related to matrix n and N"™

PHYSICAL REVIEW D 68, 126006 (2003

We collect useful formulas associated with the Neumann

coefficientsn andN" [see Eq(51)]:
1
[(1_n2)—1](rs):ZD(r)1"2D(s)T

:j-_l( DODOTH ANTAB) 42 5(9))

(C32

[(1— n)*l](rS):% (89 +DMDBT),
(C33

[(1+ n)*l](rS):% (579 + ANTAG)),
(C34

[n(l_n)—l](rs):% (D(r)D(s)T_ 5(rs))'
(C39

[n(1+ n)—l](rs): _%(A(r)TA(S)_ 5(I’S))'

(C36
2 [(1=n) HINE=—p), (c37)
> [(1+n) " 1ONGE3)= — AT, (C39

4. Some formulas associated witl{cosno), (sinne), and
A(f)l D™

1 __a\m
[(cosncr)C‘”ZA(l)T]m=§a28m+ Wcosmﬂa,
(C39
. _ (=n™
[(sinno)C~Y2DD] =— sinmga,
(C40
[(sinno)CY2PAMT] = Bym(—1)"sinmBa,
(C41)
[(cosno)CY2DM)],
=— BJm(—1)"cosmBo
- 1\ (-1)m2
+ nzl (—1)"cosno + > ( \/E)Tr sinm= B
=— Bym(—1)"cosmBa
- 1
—( 21 (—1)"cosno+ 5| azBBum.  (C42

For the interval- n<m— o<,

[(cosno)C~ 12AT]

== %aleJr \/%cos{m(ﬁnt D(m—a)],

(C43

[(sinno)C~ Y2D?)], = - isin[m(5+ 1) (m—o)],
Jm
(C449
[(sinna)CY2ART] = —(B+1)Vmsim(B+1)(m— )],
(C45
[(cosno)CY?D@)],,
=(B+1)Vymeogm(B+1)(7m—0)]

0

2( 1)"cosn(m— o)+ 5 o

Jmm

&nmwﬁ

=(B+1)Vmcogm(B+1)(m—0)]

[

> (—1)"cosn(m— o)+ %

n=1

a,(B+1)B,m.
(C40)

APPENDIX D: OSCILLATORS
ON THE BOUNDARY STATE

The conditions, Eqg10), (11), (12), of the boundary state

We list some more formulas which we use in computa-|B(F)) corresponding to the [Pbrane can be rewritten in

tions in Sec. IV. For the interval n<o<r,

terms of the oscillators as follows.
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(1) Nonzero modes:

(a7 = |B(F))=0, (D1)
(a7 + 01N B(F)) = (al *+ (0T a™)")B(F))

=0, (D2)

(c{P+cCNIBF)=(c{—ct))B(F))=0. (D3)

(2) Zero mode:
n ) ~ J
(x'=x")|B(F))=p*|B(F))=0, —|B(F))=0. (D4)
Jco

It is convenient to define new oscillatass, on the bound-
ary state|B(F)) to consider vertex operators on‘t:

1

ap! =S lap M e(mO*,aty")

r'1( I, _T[a )#+€(n)(OT)M (+)V]

(DY)

()i, 1 (F)m (=)

a, —\/_[a —e(n)a '],

(=i 1 (=) ()i
a), :=E[an —e(n)ay'], (D6)

[ar M @ N =ms . non™N, @ MB(F))=0,

PHYSICAL REVIEW D 68, 126006 (2003

n=1. (D7)
In terms ofa;, we can rewritex™(o),PM (o) as
1 i 1| {1-e(mOT\*
I3 [ Mmoo _ r(+)v
XH (o) \/;[X +\/§§on{(—2 )Van
1+e(n)oO\*
— 62( ) ) a/_(n—)v‘| IHO'} (D8)
. 1 i o 1 o .
e e ]
71' =
(D9)
1+e(mO™\» .
PA(0)= f P2 > —) )
1-€e(n)O\* .
+<%)> ai(r:r)v elna'], (D10)
pi(g)zi p‘+\/§§: (' (Niginoy o/ (iginay |
2\/; =1 " -n
(D11)

We can define the normal ordering of tachyon vertex with
respect to the new oscillatora/(*):=a; )/ \n, a7
=a'(F)n, (n=1) as

. 1 [1+0T7 - 1+0 N Ll B
— A/ |kM\f7-rXM(tr).: 1(+)t4—ino (=)t 4ine |kMxM
Vi(o)=N:e : Nex;{kﬂzl | A e ——ale ) e
51 [1-0T7 . -0 o\
Xexp{—kﬂnzl E( > ar;(+)e ar’w(—)e—lno) % kz \/_(a/(+)elna+a/( Jg~ino)i
(D12)
Then we have
1 (1407 1+0 o\
VT(J)|B(F)>=Nex;{k#r§1 E 5 3 a) )Te'“”) ek’ |B(F))
” 1+07 _ 1+0 R Rt B
:exr{ Z T Ta””e'”"+7a§1”em”> e'kMXM|B(F)>. (D13)
Here we defined
+1 (n>0)
“V=1_1 (n<oy
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In the last equation we rewrote again in terms of original oscillators. Here, we have chosen the normalization constant as
N=exf3k(1+0/2)k=}_,(1/n)].
Similarly, we can consider the vector vertex on the boundary state as follows:

V() |B(F))=N: fymra, XM (o) e ™) | B(F))

[

Nzw-Ef

1+07 +0 a

/(+)Te—|na 12 ar/q(—)‘!‘einu

1 (1+07

ikpxM
5 eV |B(F))

X ex;{ k #nzl

=—§ME Jn

- 1+0 A\
ar’1(+)‘re—|na+ Tarl1()‘re|n¢r)

1+ oT . 1+0 ”

a(+)Te7|n0'_ agf)Tean

1+07
2

el |B(F)). (D14)

xexp[k 2

m
a(+)Te7in0'+ ?agﬁeir‘m)

We usedd X above instead of X because we consider “open string vertex” in terms of a closed string.
We note that there are no excitations along Dirichlet directionfB¢#)) in Egs.(D13), (D14).

APPENDIX E: COMPUTATION OF VECTOR-TYPE FLUCTUATION

Here we present details of computations in Sec. IV B.
We first evaluate the quantit®, (114) using Eqs(C30—(C42). For thed”* (. ..)a' term in Eq.(91), we have

da’+ 01[P+A(1)TP+ +P_ D(l)P_]aT: _Bd—ﬁ(u+ 01)+7TaT

> (—1)"cosn(o+ 6;)+ %

n=1

T "
. ajay o 1+0 AT 1+(9a(_” _

(ED
For thed®*%1(- - -)P term, we replaca’ appropriately:

1
dd‘+ 91[’])+A(1)TP+ + P_ D(l)P_]% B( 1) k

_ “. sinmB(o+ 6,) sinmm (OT—0\»
=_ wy _
1£,6"k, 2, e M( 5 K,
“. cosmB(o+ 6;) sinm - 1
xS plo+ 6) sinmmf —(3+ D S (—1)"cosn(o+ ;) + —” (E2)
m=1 2mm n=1 2
In Eq. (90), we can compute thd”* 1(- .- )A“" % term using
(sinno)CY3(1—- AWTAMYC~Y2(cosno)
“ sin2mo sinmpBsinppo . sin 2p,6'(r
= E: + Z 2 (E3)

2 wp =

(cosno)CY(1-DWDMNC~ Y2 sinno)

-3

sin 2ma' sinpm sinp,Bcr é sin 2p,80'

p p=

2( l)mcosma+ Z (E4)

Then Eq.(114) becomes
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o

1\ oy«
Dy=—Bd Pl gy | > cosn(m—o— o)+ 5 ; 2BTC§,¢L< alft—
n=1 3

T ©
140 1+Oa‘”)

i sinpwBsinpB(a+ 6;)

—ig,GMK,
L p=1 p

2 i , +1
p m:1cosm(a-r o—0,) >

cosmpB(o+6;) sinmzwp 1
2mm * E(’B—HL)

OT_O 3%
e
a0y T

=—Bd Aot TN S(r—o—0)) > B'C
3

- 1
E cosn(m—ao—06¢)+ =
=1 2

e ]
>
m=1

T ©
140" 1+Oa“”)

) v . sirfpwp OT—0\* B+1
—i¢, Gk, 25(77—0—01)le ~ul k) ==+ 5 (B+D(m—0—61)| (~w<o+6y=m)
(EH
where we used formulas
1 1 i B g Six_2
EJr;n:lcosnx—n:_oo (X—2n7r),
” sinnxcosny [—x/2 (0=x<y)
> ——=1 (E6)
n=1 n (m—Xx)12 (y<x=mr).

Similarly, we can evaluat®, as

1+07 1+0 .
D2=(/B+l)d('8“)(""02)aT—5(0+02)77a;azBTC§#< alfT— a‘”)
3
_ ", sirfpBw OT—0\» B
+i¢,G"7k,| 28(a+ 6) 2, Tl —5 | k| — gt BNt (—m<m—o—6=m). (EV)
p=1

From Egs.(112), (113, (E5), (E7), we have obtained

I[ovPg( ) ]* Pgla))+|Pg(ay)*[ SyPglar)])

T_

v 1 0 - v
=27 W2KE g | 5, Doy + ag)) + Zgl‘(—) k2" B el oyl e+ )

2

Y 7 do’ aa 1+07 1+0

+ 2~ (L2)k,G* kycspf E5(77_0,) et ngTC( aHt— a)t
, . sirfpmB oOT-0\"" =« et

~2i£,G*k, 3, - M( 5 Ky (B+1) e | Dg(art @)

p=1 p

Y 2ndg’ aa 1+07 1+0 “ sirfpw
— 2 (12K, C* kchgof ——d(c")| m——2¢B'C at— a0 | 2ig Grk, S, D P

o 2 2 2 p=1 p

OT-0\"" a7 —(B+1)(m—o') T
- M( ) “ } - | Dg(ay+ay))

2 vy B8
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oT-0\*

4 1 v 14 14
=2~ (12)k,G" k”CB|5v‘DB(a1+az)>+ Z§M< 2 ) kVZ_(l/Z)k”G# kVCB|5T(I)B(a1+ a2)>+2_(1/2)k”eﬂ kVCBz@

14
1 aja, o ®
=

X
2 a3

.
L+0T e 140
2 2

sirfpw B (OT—(’)
TP ~u 2

1
kvz(ﬁ—’_l)

—i g#GWkVp}:‘,l

1 a0
2

—(B+1)m+2
x e\ FromeE BTC

: - ) 1+0T 1+0
| Dg(ag+ay))—2” WKCE gy ( 2

(H)t— (=)
a a
2

N —(B+D)m T
et 2| Dg(astay))

sitprB (070 1
P _§“< 2 ) “af

—i,G "k, >,
p=1
:2_(1/2)k/-‘GﬂVkVCB|5V(I)B(C(l+ a2)> (E8)

Here we adjusted thes2interval of integration to validate summation formulas which we used in computations. After all, the
first terms in Eqs(E5), (E7) only contribute to this summation.
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