
PHYSICAL REVIEW D 68, 126006 ~2003!
Boundary states as exact solutions of„vacuum… closed string field theory

Isao Kishimoto,* Yutaka Matsuo,† and Eytoku Watanabe‡
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We show that the boundary states are idempotentB* B5B with respect to the star product of Hata-Itoh-
Kugo-Kunitomo-Ogawa-typeclosedstring field theory. Variations around the boundary state correctly repro-
duce the open string spectrum with the gauge symmetry. We explicitly demonstrate it for the tachyonic and
massless vector modes. The idempotency relation may be regarded as the equation of motion of closed string
field theory at a possible vacuum.
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I. INTRODUCTION

Study of the off-shell structure of string theory is an e
sential step in understanding its nonperturbative physics
recent years, Witten-type open string field theory@1# has
been intensively examined in this context. One of the goa
to understand D-branes as soliton solutions of open st
field theory. One of the promising discoveries was that
energy of the tachyon vacuum correctly reproduced the
sion of D-branes at least numerically@2#.

Inspired by the experiences of noncommutative fi
theory, it was conjectured by Rastelli, Sen, and Zwieba
that the D-branes may be understood as the solutions to
projector equation

C!C5C, ~1!

where! is the noncommutative and associative Witten-ty
star product for an open string field. It was conjectured t
this equation may be understood as the equation of motio
a string field expanded around the tachyon vacuum@the so-
called vacuum string field theory~VSFT! conjecture@3,4##.
In particular, a few examples of the projectors, the sliv
state or butterfly state, were examined as the candid
which describe the D-brane.

It turned out, however, that the treatment of D-branes
open string field theory is very delicate. One of the difficu
ties was the description of the closed string sector. In Witt
type open string field theory, the action does not include
closed string degrees of freedom at the tree level. If we n
to describe them in open string language alone, we hav
consider a singular state such as identity string field wh
the closed string vertex is inserted at the midpoint@4–6#.
The midpoint in open string field theory causes many sub
ties, for example, it causes the breakdown of the associat
@7# and we have to be very careful while handling such
degree of freedom.1 D-brane couples to the closed string se
tor ~for example, gravity! at the tree level, and we canno
escape from using such a singular description. The le

*Electronic address: ikishimo@hep-th.phys.s.u-tokyo.ac.jp
†Electronic address: matsuo@phys.s.u-tokyo.ac.jp
‡Electronic address: eytoku@hep-th.phys.s.u-tokyo.ac.jp
1Recently, a regularization method was proposed@8#.
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truncation regularization seems to handle it numerica
However, the analytic treatment of the problem remains a
real challenge.

In this paper, we change the viewpoint and start the an
sis of D-branes inclosed string field theory. We believe that
such a treatment is natural since the nature of D-brane
most precisely encoded in the boundary stateuB& which lives
in the Hilbert space of the closed string sector. In particu
we will prove that the boundary states~both for Neumann
and Dirichlet boundary conditions! satisfy an analogue o
Eq. ~1!,

uB&* uB&5uB& ~2!

up to a pure ghost prefactor.
Unlike the open string version, Eq.~2! has a natural geo

metrical meaning. The boundary state, as suggested b
name, describes the boundary condition of the string wo
sheet. Suppose there exist two holes with the same typ
boundary condition. If we merge these two holes by a clo
string star product, we expect to have the same bound
condition on the new hole~Fig. 1!.

To demonstrate this observation explicitly, we have to
specific about the choice of the star product. There are th
candidates of closed string field theory which were well e
amined so far.

The oldest one is the light-cone gauge approach@9#. This
is consistent in the sense that it produces the correct inte
tion range over the moduli parameter. However, for the
plication to our problem, it is not useful since the bounda
states have nontrivial dependence on the time coordinate
need covariant descriptions.

The second one is the closed string version of Witte
open string theory. A generalization of Witten-type midpo
interaction vertex to closed strings results in nonpolynom
string field theory@10,11#.2 The action contains infinitely
many terms to cover the moduli spaces for the Riema
surfaces corresponding to various interactions. This appro
contains many mathematically interesting features such
L` structure. Handling of the moduli parameters still rema
as a challenge, however, and it has not reached the c
pletely satisfactory level.

2See@12# for a review.
©2003 The American Physical Society06-1
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The third one is based on a split-joining-type verte
which was proposed about the same time as Witten-t
open string field theory and is now known as HIKKO
~Hata-Itoh-Kugo-Kunitomo-Ogawa! string field theory
@13,14#. It has exactly the same action as Witten’s open str
field theory, namely, the kinetic term and a three str
interaction.3 In HIKKO’s theory, it is necessary to introduc
a parameter called string lengtha to specify string interac-
tions, which has no analogue in Witten-type string field the
ries. It must be integrated in computing physical quantit
and might cause a divergence in loop amplitudes@15#. The
simplest way to resolve this difficulty is to just seta5p1,
but it breaks the covariance.

To summarize, there is no completely satisfactory clo
string field theory. In this paper, we adopt HIKKO’s st
product to explicitly demonstrate Eq.~2!. However, we ex-
pect it to hold even if we replace it with a Witten-type pro
uct. We will come back to prove it in our future paper@16#.
We would like to propose this relation as a universal char
terization of the boundary states in closed string field theo
which is independent of the specific proposals for the act
A merit to use HIKKO’s approach is the analogy of the a
tion with Witten’s open string field theory. If we want to hav
an analogy with VSFT proposal, this gives a good reason
start from it.

We note that HIKKO’s* product in Eq.~2! has different
properties compared with Witten’s star product in open str
field theory. It may be summarized as the following relatio

F* C52~21! uFuuCuC* F, ~3!

~F* C!* L1~21! uFu(uCu1uLu)~C* L!* F

1~21! uLu(uFu1uCu)~L* F!* C50, ~4!

Q~F* C!5QF* C1~21! uFuF* QC. ~5!

First of all, the product is~anti-!commutative~3!. While it
breaks associativity, it satisfies the analogue of Jacobi id
tity ~4!. In a sense, it has the same property as the com
tator of Witten-type open string produc
F* HIKKOC↔F!WittenC2(21)uFuuCuC!WittenF. Since
the nature of the product is different, we cannot interpret

3The action for open strings contains 3-string and 4-string vert
besides a kinetic term.

FIG. 1. * product of the boundary states.
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~2! as defining a projector. In the following, however, we w
continue to use the word ‘‘projector’’ to describe the sta
that satisfies Eq.~2! because of the similarity with the dis
cussion of the open string.

We conjecture that Eq.~2! gives a good characterizatio
of the conformal invariant boundary. For this purpose,
calculate an infinitesimal variation of the boundary state
the following form:

dVuB&5 R dsV~s!uB&, ~6!

whereV(s) is a vertex operator inserted at the boundary.
argue that the idempotency condition~2! requires the vertex
V to be marginal. We will prove this expectation for th
tachyonic state and the massless vector state. For such v
tions, this gives the mass-shell condition for these op
string modes. In a sense, the idempotency condition kn
the mass-shell condition of the open string while they are
equation for the closed string states.

We note that our argument is very similar to the discu
sion of vacuum string field theory. For example, use of
variation of Eq.~2! to derive the mass-shell condition for th
open string states was examined in the VSFT context
Hata-Kawano@17# and Okawa@18#. In particular, in the latter
approach, the marginal deformation was made over
whole boundary. This is basically the same variation as
~6!. The difference is, of course, the Hilbert space where
projector lives. In VSFT, to describe such an projector,
have to consider singular states. For example, the sliver s
is made by taking the infinite star products of the vacu
state. On the other hand, our closed string description d
not include such a singular manipulation. The boundary s
is a well-defined state in the boundary conformal field theo
In this way, we can escape from the subtleties of VSFT.

The paper is organized as follows. In Sec. II, we give t
explicit definitions of the boundary states and the 3-str
vertex which are discussed in this paper. We will then pres
our claims more precisely. The proof is given explicitly
the following sections which are rather technical. In Sec.
we prove the idempotency relation of the boundary sta
We need many properties of the Neumann coefficients wh
are summarized in Appendix C. In Sec. IV we investiga
infinitesimal variations around the boundary state and de
on-shell condition of open string on them. In Sec. V, w
discuss some issues of our results.

II. BOUNDARY STATE AND STAR PRODUCT
OF CLOSED STRING FIELD THEORY

A. Boundary states

The boundary statesuB(F)& which we are going to dis-
cuss are those for Dp-branes with constant field strengthFmn

@19#,

uB~F !&

5e2(n>1an
(1)†Oan

(2)†
expF (

n>1
~cn

(1)†c̄n
(2)†1cn

(2)†c̄n
(1)†!G

3upm50,xi&, ~7!
s
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BOUNDARY STATES AS EXACT SOLUTIONS OF . . . PHYSICAL REVIEW D 68, 126006 ~2003!
O n
m 5@~11F !21~12F !# n

m , m,n50,1, . . . ,p,
~8!

O j
i 52d j

i , i , j 5p11, . . . ,d21. ~9!

xm(m50,1, . . . ,p) are the coordinates along the Neuma
directions andxi( i 5p11, . . . ,d21) are along the Dirichlet
directions.4 We use the lettersM ,N (50, . . . ,d21) to rep-
resent all these directions. We putd526 since we are con
sidering bosonic string theory. These states satisfy the
lowing conditions:

ApXi~s!uB~F !&5xi uB~F !&, ~10!

S Pm~s!2Fmn

d

ds
Xn~s! D uB~F !&50, ~11!

pc~s!uB~F !&5p c̄~s!uB~F !&50. ~12!

The boundary states are invariant under Becchi-Rouet-St
Tyutin ~BRST! transformationQBuB(F)&50.5 O is orthogo-
nal OO T5O TO51 sinceFmn is antisymmetric. Along the
Dirichlet directions, this matrix becomes trivial in the sens
@(11O)/2# j

i 50, but zero modes have nonzero momentu
The oscillator representations of Eqs.~10!–~12! are summa-
rized in Appendix D.

B. Reflector and 3-string vertex

HIKKO’s star product for the closed string is a covaria
version of light-cone string field theory. It is defined by th
reflector^R̃u which maps a ket vector to a bra vector and t
3-string vertexuV(1,2,3)& which lives in the tensor produc
of three closed string Hilbert spaces:

uF1* F2&35E dc̄0
(1)dc̄0

(2)
1^F1u 2^F2uV~1,2,3!&, ~14!

4We summarize our notation of the oscillators and the vacu

state in Appendix A. In particular, we usec̄ to denote the antighos
~usually written asb) by following HIKKO’s convention@13,14#.
For ghost zero mode convention, we usepc

0-omitted formulation
~Sec. V B in Ref.@14#!.

5This property is essential to couple the boundary state as
external source to closed string field theory. The authors of R
@20# proposed such an action

Stot5
1

g2 H 1

2
F•QBF1

1

3
F•~F* F!J 1B~F !•F1I ~F !, ~13!

namely,QBuB(F)&50 is necessary to satisfy the gauge invarian

of Stot . This was the first example where the boundary state
peared essentially in closed string field theory. They used this ac
to derive open string action~Born-Infeld action! and proved their
gauge invariance through string field theory. An unsatisfactory p
was, however, that one needs to put the boundary state by
from outside. Our study starts from a hope toderive it within the
framework of closed string field theory.
12600
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2^Fu:5E dc̄0
(1)^R̃~1,2!uF&1 . ~15!

The reflector is defined by@14#

^R̃~1,2!u5E ddx(1)ddx(2)
da1da2

~2p!2 1^x
(1),a1u 2^x

(2),a2u

3expF2 (
6,n>1

~an
(6)(1)

•an
(6)(2)1cn

(6)(1)c̄n
(6)(2)

2 c̄n
(6)(1)cn

(6)(2)!Gdd~x(1)2x(2)!d~ c̄0
(1)2 c̄0

(2)!2p

3d~a11a2!. ~16!

The 3-string vertexuV(1,2,3)& is given explicitly in terms of
oscillators as6

uV~1,2,3!&5E d~1,2,3!@m~1,2,3!#2` (1)` (2)` (3)

3)
r 51

3 S 11
1

A2
wI

(r )c̄0
(r )D

3eF(1,2,3)up1 ,a1&1up2 ,a2&2up3 ,a3&3 , ~17!

F~1,2,3!5(
6

(
r ,s51

3

(
m,n>1

Ñmn
rs S 1

2
am

(6)(r )†
•an

(6)(s)†

1Ama rcm
(6)(r )†~Anas!

21c̄n
(6)(s)†D

1
1

2 (
6

(
r 51

3

(
n>1

Ñn
r an

(6)(r )†
•P2

t0

4a1a2a3
P2,

~18!

P:5a1p22a2p1 , ~19!

wI
(r )5

1

A2
(
6

(
s51

3

(
m>1

wm
rsascm

(6)(s)† ,

wm
rs5x rsmN̄m

s 1
1

a r
(
n51

m21

mN̄m2n,n
ss , ~20!

x rs5d r ,s

1

a r
~a r 212a r 11!1(

t51

3

e rst

(a4ªa1 , e123511), ~21!

m~1,2,3!5expS 2t0(
r 51

3
1

a r
D , t05(

r 51

3

a r logua r u, ~22!

he
f.

e

-
n

t
nd

6This is the same asuV8(1,2,3)& in Eq. ~5.15! in @14#, which is the
3-string vertex inpc

0-omitted formulation.
6-3
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E d~1,2,3!5E ddp1

~2p!d

ddp2

~2p!d

ddp3

~2p!d

da1

2p

da2

2p

da3

2p
~2p!d

3dd~p11p21p3!2pd~a11a21a3!, ~23!

` ( i )5 R du

2p
e2 iu(N1

( i )
2N2

( i )),

N65 (
n>1

n~an
(6)†

•an
(6)1cn

(6)†c̄n
(6)1 c̄n

(6)†cn
(6)!.

~24!

The coefficients Ñmn
rs are Neumann coefficients:Ñmn

rs

ªAmN̄mn
rs An, Ñm

r
ªAmN̄m

r . Their definitions and some for
mulas which they satisfy are given in Appendix C.` ( i ) is a
projector to impose the level matching conditionN15N2

on thei th string. Note that we can rewrite some of the abo
as

P5a1p22a2p15a2p32a3p25a3p12a1p3 ,

2
P2

4a1a2a3
5(

r 51

3 pr
2

4a r
~25!

in the presence ofd functions which imposep11p21p3
50 anda11a21a350.

The 3-string vertexuV(1,2,3)& is determined by the over
lap conditions~Fig. 2!

Q1X(1)~s1!1Q2X(2)~s2!2X(3)~s3!50, ~26!

Q1a1c(1)~s1!1Q2a2c(2)~s2!2a3c(3)~s3!50, ~27!

Q1a1
22c̄(1)~s1!1Q2a2

22c̄(2)~s2!2a3
22c̄(3)~s3!50,

~28!

Q1~s![u~pua1u2usu!, Q2~s![u~ usu2pua1u!,
~29!

FIG. 2. Overlapping configuration of three closed string
Strings with the labels 1,2,3 whose length parameters
ua1u,ua2u,ua3u(5ua1u1ua2u) are parametrized bys1 ,s2 ,s3(2p
<s r<p). s356p(b11) (bªa1 /a3) are interaction points on
string 3 which correspond tos156p,s250 on string 1 and 2,
respectively.
12600
e

s1~s!5
s

a1
, s2~s!5

s2sgn~s!pua1u
a2

,

s3~s!5
sgn~s!pua3u2s

2a3
, ~30!

where 2pua3u<s<pua3u and a i ( i 51,2,3) are real pa-
rameters with the constrainta11a21a350. In light-cone
string field theory, they are interpreted as the light-cone m
menta which are preserved at the interaction. In the covar
theory, they become the external parameters which cha
terize the overlap conditions~26!–~28!. We note that the
above conditions are for the particular caseua3u5ua1u
1ua2u and we need some modifications for other choices

C. Main results

At this point, it is possible to make a precise statemen
our results, given as follows.

~1! We slightly redefine the boundary stateuB(F)& ~i! by
multiplying c̄0 to obtain the correct ghost number of clos
string field in the physical sector in gauge-fixed action@14#
and ~ii ! by including the string-length parameter (a param-
eter!

uFB~a!&5e2a(1)†Oa(2)†
ec(1)†c̄(2)†1c(2)†c̄(1)†

c̄0upm50,xi ,a&.

~31!

We claim that it satisfies the following relation~‘‘projec-
tor equation’’ with the ghost insertion!:

uFB~a1!* FB~a2!&5cBuFB~a11a2!&,

sgn~a1!sgn~a2!.0, ~32!

cB[Vd2p21c
]

] c̄0

, ~33!

c[expF22~b21b11!S logubu
b11

2
logub11u

b D G
3@det~12r 2!#2(d22)/2,

b[2
a1

a11a2
. ~34!

Vd2p21 is the volume of the Dirichlet directions. The matr
r is given by

r mn5
b~b11!~mn!3/2

m1n
f̄ m

(3) f̄ n
(3) ,

f̄ m
(3)5

G~2mb!em[b logubu2(b11)logub11u]

m!G~2mb112m!
. ~35!

.
re
6-4
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BOUNDARY STATES AS EXACT SOLUTIONS OF . . . PHYSICAL REVIEW D 68, 126006 ~2003!
c depends on the ratio ofa parameters.7

~2! We consider the infinitesimal variations ofFB of the
following form:8

dTuFB~a!&5 R ds

2p
eikmApXm(s)uFB~a!&, ~37!

dVuFB~a!&5 R ds

2p
~Apzn]sXn!eiApkmXm(s)uFB~a!&.

~38!

The first ~second! one corresponds to the tachyonic mo
~vector particle! of the open string. The infinitesimal varia
tion of Eq. ~32!,

duFB~a1!&* uFB~a2!&1uFB~a1!&* duFB~a2!&

5cBduFB~a11a2!& ~39!

gives the following constraints:

kmGmnkn52 for d5dT ; kmGmnkn50 for d5dV ,
~40!

where

Gmn
ªF11O

2

11O T

2 Gmn

5@~11F !21h~12F !21#mn

~41!

is the ‘‘open string metric’’ on the Dp brane. These are pre
cisely the mass-shell conditions for the tachyon and the v
tor particles. There are no further constraints fordV ; namely,
the transversality conditionknzn50 is not reproduced at th
level of the ‘‘equation of motion,’’ Eq.~39!.

We note, however, that the variation~38! is invariant un-
der the gauge transformation; namely, if we change

zm→zm1ekm ~42!

in Eq. ~38!, dVuFB(a)& is not affected at all since the chang
can be written as the total derivative with respect tos and it
drops out after the integration,

7While we have not succeeded in determining it analytically,
can numerically evaluate it by truncating the matrixr to L3L. We
find that a good fit of this coefficient is

log~c!;3 log~L !17.07

10.866~b21b11!S logubu
b11

2
logub11u

b D . ~36!

At L5100, the error is about60.02. This estimate shows thatc/L3

is a finite and well-behaved function ofb.
8Normal ordering which is necessary here is defined in A

endix D.
12600
c-

R ds

2p
~Apkn]sXn!eikmApXm(s)uFB~a!&

52 i R ds

2p
]s~eikmApXm(s)!uFB~a!&50. ~43!

In this sense, the gauge symmetry is automatically enco
in the vector particle.

One may give an intuitive proof of the projector equati
~32!. We note that the boundary conditions~10!–~12! for
uB(F)& and the overlap conditions~26!–~28! for uV(1,2,3)&
are the local requirements on the boundary, namely, they
defined for eachs. Therefore, if we impose the same boun
ary conditions foruB1& anduB2&, they are translated into th
same boundary conditions foruB1* B2& of the corresponding
point. Since the boundary state can be determined from
boundary conditions up to the normalization,uB1* B2& must
be proportional to the same boundary state. More exp
proof of this identity in terms of the Neumann coefficien
becomes, as we see below, rather lengthy while it is mo
straightforward. We have to use many nontrivial identities
the Neumann coefficients. In this sense the computation
minates a special role played by the boundary state.

III. PROOF OF THE IDEMPOTENCY
OF THE BOUNDARY STATES

In the following sections, we give the technical details
the proof of Eqs.~32!, ~40!. We first derive the star produc
of the boundary state which includes the additional line
term in the exponential. It will be used to give the sour
term to derive the variation of the boundary state.

We consider a tensor product of the boundary states,

uF1& ^ uF2&5e1/2a†Ma†2la†
e2c†Mgc̄†

c̄0
(1)up1 ,a1&

^ c̄0
(2)up2 ,a2&, ~44!

where we used abbreviated notation,

a†5S a(1)†

a(2)†D ,

a(6)†5S an
(1)(6)m†

an
(2)(6)m†D , similar notation forc,c̄, ~45!

M5S 0 2OMNdmnd rs

2O MN
T dmnd rs 0 D ,

Mg5S 0 2Ogdmnd rs

2Ogdmnd rs 0 D , ~46!

l5~l (1), l (2)!, l (6)5~ln m
(1)(6) , ln m

(2)(6)!,

r ,s51,2; m,n51,2, . . . ,̀ . ~47!
-

6-5



e
a
n

th

rin
e

u-

a-
e
zed

cu-
nts,

ce

e

-

KISHIMOTO, MATSUO, AND WATANABE PHYSICAL REVIEW D 68, 126006 ~2003!
We note thatOg51 for the conventional boundary state. W
include this extra degree of freedom since there exists
other choiceOg521 which satisfies the projector equatio
as we will see later.

The corresponding bra state is obtained by applying
reflector and projectors,

^F1u` ^ ^F2u`5 R du1

2p

du2

2p
^2p1 ,2a1uc̄0

(1)

^ ^2p2 ,2a2uc̄0
(2)e1/2aMa1luaecMgc̄,

~48!

where9

lu5~l (1)u,l (2)u!,

l (6)u5~e7 inu1ln
(1)(6) , e7 inu2ln

(2)(6)!. ~49!

We take the inner product between this state with the 3-st
vertex ~17!. For this purpose, it is convenient to rewrite th
factor in the exponential as

F~1,2,3!5
1

2
a†Na†1a†

•m1a(3)†Ñ33a(3)†2
t0

4a1a2a3
P2

1c†Ngc̄
†1c†

•r1s•c̄†1c3
(3)†C1/2Ñ33C21/2c̄(3)†,

~50!

where we introduced some notation,

N5hMNS n 0

0 nD , n5S Ñ11 Ñ12

Ñ21 Ñ22D ,

Ng5S ng 0

0 ng
D , ng5S Ñg

11 Ñg
12

Ñg
21 Ñg

22D , ~51!

Ñg
rs5a rC

1/2ÑrsC21/2as
21 , Cmn5mdmn , ~52!

m5S m (1)

m (2)D ,

m (6)5S Ñ13a(3)(6)†1
1

2
Ñ1P

Ñ23a(3)(6)†1
1

2
Ñ2P

D , ~53!

r5S r (1)

r (2)D ,

9The elements ofM ,Mg do not change bỳ because of the form
~46!.
12600
n-

e

g

r (6)5S Ñ13c̄n
(3)(6)†

Ñ23c̄n
(3)(6)†D , ~54!

s5~s (1), s (2)!,

s (6)5~c(3)(6)†Ñg
31, c(3)(6)†Ñg

32!. ~55!

By taking the inner product with the aid of the useful form
las, Eqs.~B2!, ~B4!, in Appendix B, we can arrive at the
following general formula after some calculation:10

uF1* F2&5c` R du1

2p

du2

2p
eHmCeHgc̄0up11p2 ,a11a2&,

~56!

c5@m~1,2,3!#2det21/2~12MN!det~11NgMg!,

~57!

Hm5
1

2
a†Ñ33a†1

1

2
Ñ3~a(1)†1a(2)†!P

2
t0

4a1a2a3
P21

1

2
mM ~12NM!21m

1lu~12NM!21m1
1

2
luN~12MN!21lu, ~58!

Hg5c†C1/2Ñ33C2(1/2)c̄†2s~11MgNg!21Mgr,
~59!

C5
]

] c̄0

1
1

2 (
n51

`

a3~cn
(1)†1cn

(2)†!

3S wn
331 (

r ,s51,2
$C1/2Ñ3rC21/2a r

21

3@~12OgNg!21Og# rsasw
3s%nD . ~60!

In the derivation of this formula, we do not use the inform
tion of the particular form ofM. In this sense, this gives th
general formula for the star product of the generic squee
states of the form~44!.

This expression looks hopelessly complicated. In parti
lar, the appearance of the inverse of Neumann coefficie
(12NM)21 or (11NgMg)21 in Hm andHg , looks unman-
ageable and even singular for genericM.

A major simplification occurs, however, when we repla
the matricesM ,Mg with those of the form~46!. In this case,
one may use

10In this expression and in the computation in the following, w
omit the suffix (3) in the oscillators. The vectora† should be inter-
preted as (an

m(3)(1)† ,an
m(3)(2)†)T. The same convention is also ap

plied to c and c̄.
6-6
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BOUNDARY STATES AS EXACT SOLUTIONS OF . . . PHYSICAL REVIEW D 68, 126006 ~2003!
~12NM!215S 1 nO
nO T 1 D 21

5S ~12n2!21 2On~12n2!21

2O Tn~12n2!21 ~12n2!21 D ,

~61!

and a similar one for the ghost sector. We note thatO andn
commute with each other since the matrixO acts on the
Lorentz indices while the Neumann coefficients act on o
the level index. The problem is reduced to deriving the
verse (12n2)21. At first look, this is singular since the re
lation ~C5! among Neumann coefficients implies

~12n2!nm
rs 5(

,
Ñn,

r3Ñ,m
3s ~r ,s51,2!. ~62!

On the left hand side, the size of the matrix with respec
the indices$(r ,n),(s,m)% is ‘‘2 3` ’’ whereas the summation
on the right hand side is taken over the ‘‘` ’’ set. If we na-
ively regularize the Neumann matricesÑr3,Ñ3s (r ,s51,2)
by truncating their size toL respectively, the rank of (1
2n2) becomesL while its size is 2L.

It is surprising that, contrary to this naive expectation
has a well-defined inverse. This is a specialty of the infin
dimensional matrices. For the explicit computation, we ne
detailed forms of the Neumann coefficients

Ñmn
rs 5d rsdmn22~A(r )TG21A(s)!mn , Ñm

r 52~A(r )G21B!m ,

~63!

Amn
(1)52

2

p
Amn~21!m1n

bsin~mpb!

n22m2b2
,

Amn
(2)52

2

p
Amn~21!m

~b11!sin~mpb!

n22m2~b11!2
, ~64!

Amn
(3)5dmn , Bm52

2a3

pa1a2
m23/2~21!msin~mpb!,

Gmn5dmn1 (
r 51,2

~A(r )A(r )T!mn . ~65!

A(r ) and B describe the overlap of Fourier basis of thr
strings at the vertex. A crucial property ofA(r ) for r 51,2 is
that they have an inverse, which was proved in@21#,

(
r 51,2

A(r )D (r )51, D (r )A(s)5d rs ,

Dmn
(r )[2

a3

a r
CA(r )TC21 ~r ,s51,2!. ~66!

By using this inverse, one obtains the inverse of 12n2,
12600
y
-

o

t
e
d

~12n2!rs54A(r )TG22A(s)

⇒ @~12n2!21# rs5
1

4
D (r )G2D (s)T. ~67!

With this remark, we derive the following relations whic
are essential to show the idempotency of the boundary s

Ñ331 (
r ,s,t51,2

Ñ3rnrt@~12n2!21# tsÑs350,

(
r ,s51,2

Ñ3r@~12n2!21# rsÑs351. ~68!

We list many other formulas for Neumann coefficients
Appendix C.

In the next section, we will need to cut off the range of t
lower indices of the Neumann coefficients to obtain a fin
result. We need to impose the condition that(,Ñp,

r3 Ñ,q
3s ~62!

has the inverse even in the finite size truncation. For t
purpose, the matricesÑ’s should be rectangular, namely, th
index p,q run from 1 toL, while the other index, runs to
2L. This observation will have an important consequen
later.

Now we come back to the computation of* product. By
using the relations~68!, we can simplify the Gaussian part o
Eq. ~56!. We neglect thel dependence for the moment sinc
they are not relevant in the proof of the idempotency of
boundary states. The exponents~58! and ~59! are

Hm5
1

2
a†Ma†2

1

2 S a(1)†
11O

2
1a(2)†

11O T

2 DBP

2
1

8
P

11O
2

PBTB

1
1

2
mT

N

~12NM!~12N2!
~M221!m ~69!

for the matter sector and

Hg52c†Mgc̄†1~O g
221! c†C1/2Ñg

3r

3S Ng

~11MgNg!~12Ng
2! D

rs

Ñg
s3C21/2c̄† ~70!

for the ghost sector. These expressions are further simpl
by the following conditions:

M251, Mg
251,

11O T

2
P5

11O
2

P50 ~71!

↔ O TO51, Og561,
11O

2
~a1p22a2p1!50 ~72!

which are satisfied automatically for the conventional bou
ary state~31!. After we use these relations, we arrive at t
final result
6-7
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Hm1Hg5
1

2
a†Ma†2c†Mgc̄†. ~73!

We note that commutativity@M ,N#5@Mg ,Ng#50 which
follows from Eq. ~46! and unipotency ofM ,Mg ~71! are
sufficient conditions to derive this form.

The ghost prefactorC in Eq. ~56! becomes

C5
]

] c̄0

1
1

2
a3@w331w3sO gC21/2

„~12Ogn!21
…

srÑr3C1/2#

3~c(1)†1c(2)†!. ~74!

It is simplified further forOg511,

C15
]

] c̄0

1
1

2
a3S w332(

r 51

2

w3rC21/2D (r )C1/2D
3~c(1)†1c(2)†!5

]

] c̄0

, ~75!

and for Og521,

C25
]

] c̄0

1
1

2
a3S w331(

r 51

2

w3rC21/2A(r )TC1/2D
3~c(1)†1c(2)†! ~76!

5
]

] c̄0

1 (
n51

`

cos@np~b11!#~cn
(1)†1cn

(2)†!.

~77!

At the final stage in Eqs.~75!, ~77!, we have used relation
@13#

wm
rs5mS x rsN̄m

s 1
1

a r
(
n51

m21

N̄m2n,n
ss D

5
1

a r
S d r ,scosms r2m(

n51

`

N̄mn
sr cosns r D ~r ,s51,2,3!,

where s15p, s250, s35p~b11!. ~78!

After computing, the normalization factorc is

c5@m~1,2,3!#2@det~12n2!#2(d22)/2

5expF22~b21b11!S logubu
b11

2
logub11u

b D G
3@det~4A(r )TG22A(s)!r ,s51,2#

2(d22)/2. ~79!

The second factor is simplified b
det@4(( r 51

2 A(r )A(r )T)G22#5det@4(G21)G22#. After we

use the expressionÑ335122G21 and the relations~C1!–
~C3! in Appendix C, we obtain Eq.~34!.

Thus far, for the string field
12600
uF0~p,a!&5e2a(1)†Oa(2)†1Og(c(1)†c̄(2)†1c(2)†c̄(1)†)c̄0up,a&,

O TO51, Og561, ~80!

we have derived

uF0~p1 ,a1!* F0~p2 ,a2!&5c`C6uF0~p11p2 ,a11a2!&

~81!

with nonvanishing momentum only along Dirichle
directions11 where c,C6 are given by Eqs.~34!, ~75!, ~77!,
respectively.

In the case ofOg511, the final result, Eq.~32!, with the
volume factor is obtained by Fourier transformation alo
the Dirichlet direction (xi),

uxi&5E dd2p21p

~2p!d2p21
e2 ipix

i
upi&, ~82!

E dd2p21p1

~2p!d2p21

dd2p21p2

~2p!d2p21

dd2p21p3

~2p!d2p21

3 1^x
i u 2^x

i u~2p!d2p21dd2p21~p11p21p3!

3up1&1up2&2up3&3

5Vd2p21E dd2p21p

~2p!d2p21
eipix

i
u2p&3

5Vd2p21uxi&3 . ~83!

Finally we make a few comments on the analogy w
VSFT. We note that there exists an extra solution of idem
tency relation, theuF0& ~80! with Og521. The ghost pref-
actorC2 can be rewritten as

C2uF0&5
Ap

2
$ ip c̄@p~b11!#1 ip c̄@2p~b11!#%uF0&,

~84!

where s356p(b11) are the interaction points of th
string r 53. It has a similar form to BRST operator in VSF
@4#: c(p/2) in Witten-type open string field theory; namel
if we regard the projector equation~81! as an analogue of the
equation of motion of VSFT, the string fielduF0& with Og
521 corresponds to Hata-Kawano’s ‘‘sliverlike’’ solutio
of VSFT @22#. On the other hand, in the case ofOg511,
uF0& corresponds to ‘‘identitylike’’ solution of VSFT@23#

with the same analogy ofC15]/] c̄0;c0. Although there are
two choices for ghost sector:Og561 for Eq. ~81!, only
uF0& with Og511 relates to the boundary states~7! which
have conventional BRST invariance. In the following se
tion, we discuss onlyuFB& ~31! with Og511.

11The condition for momentum comes from@(11O)/2#(a1p2

2a2p1)50 in Eq. ~72!.
6-8
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BOUNDARY STATES AS EXACT SOLUTIONS OF . . . PHYSICAL REVIEW D 68, 126006 ~2003!
IV. FLUCTUATION AROUND PROJECTORS

In this section we consider two types of fluctuations E
~37!, ~38! arounduFB& and demonstrate explicitly that th
idempotency condition~39! produces the on-shell condition
~40! for these particles. We note that the variations of
type

udFB&5 R ds

2p
V~s!uFB& ~85!

correspond to the open string modes on the D-brane~see, for
example@19#!. We conjecture that the equation of motio
Eq. ~81!, will produce the on-shell condition for all of them
namely, they should be the marginal deformation on
boundary. We pick the simplest two examples to illustr
this idea explicitly.

Before we start the computation for these cases, we gi
few technical remarks.

~1! By using Eq.~56! with nonzerol as the generating
functional, we will compute the left hand side of Eq.~39!.
Explicitly, for a fluctuation

udFB&5an1

(6)†
•••anl

(6)†e2l0a†
uFB&, ~86!

we can compute* product as

udFB* FB&5F S 2
]

]ln1

6 D •••
3S 2

]

]lnl

6D u~e2la†
FB!* FB&G

l5l0

,

~87!

and uFB* dFB& similarly.
~2! From the definition of the tensor product of the boun

ary states, Eq.~44!, we can define projection matricesP6

as12

P65
17M

2
, ~88!

which satisfy

P 6
2 5P6 , P 6

T 5P6 , P6P750, P11P251, ~89!

because of Eqs.~72!. These projection operators are use
for classifying the external source term into odd and/or e
parts under the reflection at the boundary and for simplify
the computations.

~3! l-dependent terms of the exponent in Eq.~56! can be
simplified by using the identities of Neumann coefficien
~Appendix C 3!13

12M in the following should be interpreted as Eq.~46! with d rs

dropped.
13We denote l (r )ur5(l (r )(1)ur,l (r )(2)ur)5(e2 inurln

(r )(1) ,
einurln

(r )(2)), r 51,2.
12600
.

e

e
e

a

-

l
n
g

1

2
luN~12MN!21lu

5
1

4 (
r ,s51

2

l (r )urP1~d r ,s2A(r )TA(s)!P1l (s)us

2
1

4 (
r ,s51

2

l (r )urP2~d r ,s2D (r )D (s)T!P2l (s)us,

~90!

lu~12NM!21m

52(
r 51

2

l (r )urP1A(r )TP1a†2(
r 51

2

l (r )urP2D (r )P2a†

2
1

4 (
r 51

2

l (r )urP1A(r )TBS 11O
2

11O T

2

D P

2
1

4 (
r 51

2

l (r )urP2D (r )BS 12O
2

12O T

2

D P. ~91!

A. Tachyon-type fluctuation

We consider tachyon-type fluctuation of the form of E
~37!. After we use the identification of the oscillators on th
boundary state~D1!–~D3!, ~D13!, the variation takes the fol-
lowing form:

udTFB~a!&5 R ds

2p
VT~s!uFB~a!&

5eikix
i R ds

2p
e2a(1)†Oa(2)†2lsa†

3ec(1)†c̄(2)†1c(2)†c̄(1)†
c̄0ukm ,xi ,a&, ~92!

ln
s52kmF S 11O T

2 D
n

m e2 ins

An
, S 11O

2 D
n

m eins

An
G

52k~cosns!C21/2~1,1!P1

1 ik~sinns!C21/2~1,21!P2 , ~93!

l i
s50. ~94!

We need some explanations on our notation. The bra ve
(cosns) @or (sinns)] has only the level indexn and whose
nth component is cosns ~or sinns). In this notation, we may
also write, for example@cos(ns)/An#[@cos(ns)#C21/2 and
so on. The other bra vector (1,1) has the index6 which
6-9
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distinguishes the left and right movers. FinallyP6 have the
indices of Lorentz and left/right6 as was defined in Eqs
~88!, ~46!.

The integration with respect tos appears automatically
because of the projectioǹ in the definition of the* product
~56!.

We investigate ‘‘on-shell’’ condition which is imposed b
Eq. ~39!. We evaluate the* products

u@VT~s!FB~a1!#* FB~a2!&

5cB`eikix
i R du1

2p
eE1ec(1)†c̄(2)†1c(2)†c̄(1)†

c̄0

3ukm ,xi ,a11a2&, ~95!

uFB~a1!* @VT~s!FB~a2!#&

5cB`eikix
i R du2

2p
eE2ec(1)†c̄(2)†1c(2)†c̄(1)†

c̄0

3ukm ,xi ,a11a2&. ~96!

The calculation ofE1 ,E2 is reduced to that ofHm in the
previous section, Eq.~58!. We have already evaluated fir
four terms while we need to keep the nontrivialk depen-
dence. The last two terms are simplified in Eqs.~90!, ~91!. In
the computation ofE1 we putl (2)50:

E15E1
[2]1E1

[1]1E1
[0] , ~97!

E1
[2]52a(1)†Oa(2)†, ~98!

E1
[1]52

1

2 S a(1)†
11O

2
1a(2)†

11O T

2 Da2Bk

2ls1u1P1A(1)TP1a†2ls1u1P2D (1)P2a†,

~99!

E1
[0]52

a2
2

8
BTBk

11O
2

k

2
1

4
ls1u1P1A(1)Ta2BS 11O

2

11O T

2

D k

2
1

4
ls1u1P2D (1)a2BS 12O

2

12O T

2

D k

1
1

4
ls1u1P1~12A(1)TA(1)!P1ls1u1
12600
2
1

4
ls1u1P2~12D (1)D (1)T!P2ls1u1. ~100!

The quadratic part in the oscillatorE1
[2] is the same as the

boundary state. To calculateE1
[1] andE1

[0] , we need to evalu-
ate the inner products between the vectors (cosns)C21/2 or
(sinns)C21/2 with matricesAT(r ) andD (r ). They are reduced
to the calculation of Fourier transformation which we e
plain in detail in Appendix C, Eqs.~C30!–~C46!. They sim-
plify the linear part dramatically to

E1
[1]52l2b(s1u1)1pa†. ~101!

This is identical to the linear part coming from the tachy
vertex. The constant part is similarly computed, as follow

E1
[0]5

1

2
k

11O
2

kF2
a2

2

4
BTB1

4

p2

3 (
m51

` S sin2mpb

2m3b2 2
p

2m2b
sinmpb cosmb~s1u1! D

1 (
m,n51

`

cosm~s1u1!cosn~s1u1!

3S dm,n

m
2

4b2

p2 (
p51

`
~21!m1np sin2ppb

~m22p2b2!~n22p2b2!
D

1 (
m,n51

`

sinm~s1u1!sinn~s1u1!

3S dm,n

m
2

4mn

p2 (
p51

`
~21!m1nsin2ppb

p~m22p2b2!~n22p2b2!
D G .

~102!

The overall factor ofE1
[0] becomes

1

2
k

11O
2

k5
1

2
kmGmnkn ,

Gmn
ªF11O

2

11O T

2 Gmn

5@~11F !21h~12F !21#mn.

~103!

Gmn is open string metric on the Dp-brane.
We evaluate the numerical factor@•••# in Eq. ~102!. The

quantities in the first line are convergent. On the other ha
the evaluation of the terms in the second and third lines
very subtle. Two terms withdmn can be summed to give
(m51

` 1/m which diverges logarithmically. The summation o
the other two terms, if we first perform(m,n51

` using Eqs.
~C30!, ~C31!, gives again2(p51

` 1/p, which is divergent but
with negative sign:
6-10
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(
m,n51

`

cosm~s1u1!cosn~s1u1!

3S 2
4b2

p2 (
p51

`
~21!m1np sin2ppb

~m22p2b2!~n22p2b2!
D

1 (
m,n51

`

sinm~s1u1!sinn~s1u1!

3S 2
4mn

p2 (
p51

`
~21!m1nsin2ppb

p~m22p2b2!~n22p2b2!
D

52
4

p2 (
p51

`

sin2ppbFpS 1

2p2b2 2
p cospb~s1u1!

2pb sinppb D 2

1
1

pS p sinpb~s1u1!

2 sinppb D 2G
5 (

p51

` S 2
sin2ppb

p2p3b2 1
2 sinppb cospb~s1u1!

pp2b
2

1

pD .

~104!

The summation of the first two terms are finite and exac
cancel with the first line of Eq.~102!. As for the third term,
we encounter subtle cancellation of the form@•••#
5(m51

` (1/m)2(p51
` 1/p5`2`. We need some regulariza

tion to obtain a finite result.14 For this purpose, we cut off the
infinite dimensional matrix forA(r ). As we commented in the
previous section, in order thatA(r ) has the inverseD (r ) in the
sense, Eq.~66!, we should regardAmn

(r ) (r 51,2) as 2L3L
matrices with respect to indicesm,n. With this regulariza-
tion, we obtain

@•••#5 lim
L→`

S (
m51

L
1

m
2 (

p51

2L
1

pD 52 log 2. ~105!

We have obtained a very compact result forE1,

E152a(1)†Oa(2)†2l2b(s1u1)1pa†2
log 2

2
kmGmnkn .

~106!

We can deriveE2 similarly,

14There was a similar subtlety of the tachyon mass around
sliver solution in the oscillator approach of VSFT which was p
posed in@17#. As was shown in@24,25#, the correct mass was re
produced using a regularization of the Neumann matrices altho
it becomes divergent if one uses relations among them naively
12600
y

E252a(1)†Oa(2)†2l2(b11)(p2s2u2)a†2
log 2

2
kmGmnkn .

~107!

Coming back to Eqs.~95!, ~96!, ~106!, ~107!,

udTFB~a1!* FB~a2!&

5cB R ds

2p
22(1/2)kmGmnkn` eikix

i

3 R du1

2p
e2a(1)†Oa(2)†2l2b(s1u1)1pa†

3ec(1)†c̄(2)†1c(2)†c̄(1)†
c̄0ukm ,xi ,a11a2&

5cB 22(1/2)kmGmnkneikix
i

3 R du3

2p

ds8

2p
e2a(1)†Oa(2)†2l2bs81p1u3a†

3ec(1)†c̄(2)†1c(2)†c̄(1)†
c̄0ukm ,xi ,a11a2&

522(1/2)kmGmnkncB udTFB~a11a2!&, ~108!

and similarly uFB(a1)* dTFB(a2)&522(1/2)kmGmnkncB
udTFB(a11a2)&. By putting these two equations into Eq
~39!, our proof, Eq.~40!, is finished:

udTFB~a1!* FB~a2!&1uFB~a1!* dTFB~a2!&

5cBudTFB~a11a2!& ↔ kmGmnkn52. ~109!

This is exactly the on-shell condition of open string tachy
on the Dp-brane.15

B. Vector-type fluctuation

Next, we consider a vector-type fluctuation of the form
Eq. ~38!, which after using the properties of the bounda
state~D14!, is equivalent to

udVFB~a!&5R ds

2p
~ds

•a†! VT~s!uFB~a!&, ~110!

where andds is given byzm as

ds5zS 2
11O T

2
e2 ins,

11O
2

einsDC1/2

5z„i ~sinns!C1/2~1,1!P12~cosns!C1/2~1,21!P2….

~111!

We can compute the* product ofdVFB and FB using the
technique of Eq.~87!:e

-

gh15The on-shell condition of the perturbativeclosedtachyon isp2

58 in our convention after@14#.
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u~dVFB~a1!!* FB~a2!&

5R ds

2p S 2ds
]

]l
ue2la†

FB~a1!* FB~a2!& D
l5ls

5cB` R ds

2p R du1

2p
22(1/2)kmGmnkn

3D 1e2l2b(s1u1)1pa†
uFB~a11a2!&, ~112!

uFB~a1!* @dVFB~a2!#&

5R ds

2p S 2ds
]

]l
uFB~a1!* e2la†

FB~a2!& D
l5ls

5cB` R ds

2p R du2

2p
22(1/2)kmGmnkn

3D2 e2l2(b11)(p2s2u2)a†
uFB~a11a2!&, ~113!

wherels is given by Eq.~93!.
There are three terms which contribute toD1:

D15ds1u1~••• !a†1ds1u1~••• !P1ds1u1~••• !ls1u1.
~114!

The main contribution comes from the first term:

D152b d2b(s1u1)1p
•a†1•••. ~115!

We show the details of computation and other terms in A
pendix E. Similarly, we obtainD2 in Eq. ~113! as

D25~b11!d2(b11)(p2s2u2)
•a†1•••. ~116!

Noting the integration over the interval 2p which is caused
by projection`, the sum of Eqs.~112! and ~113! becomes

u@dVFB~a1!#* FB~a2!&1uFB~a1!* @dVFB~a2!#&

5221/2kmGmnkn@2b1~b11!#cBudVFB~a11a2!&1•••

5221/2kmGmnkncBudVFB~a11a2!&1•••. ~117!

The remaining terms••• cancel each other~E8! and we have
obtained the on-shell condition for vector-type fluctuati
~110!:

u@dVFB~a1!#* FB~a2!&1uFB~a1!* @dVFB~a2!#&

5cBudVFB~a11a2!&↔kmGmnkn50. ~118!

This is the on-shell condition for massless vector on the
p-brane.

We note that we do not have transversality condit
kmzm50 from our equation of motion~39!. This is consistent
with our expectation that only the marginal transformation
the boundary state will keep the idempotency. We note
the polarization vector has nothing to do with the dimens
of the vertex operator. On the other hand, as we have see
Eq. ~43!, there exists a correct gauge symmetry in the ma
12600
-

f
at
n
in

s-

less mode. The transversality condition should be impose
order to fix this symmetry. This structure is similar to th
gauge theory.

It may be of some interest to compare it with the analy
in VSFT @17#. While our variationdVFB has a unique form
of ds ~111!, its counterpartdn

m @Eq. ~4.29! in Ref. @17## of
VSFT was arbitrary. Actually they are all gauge degrees
freedom in VSFT except for one@26#. As for the ordinary
gauge transformation, it is reproduced only after using re
larization @27#. While we have discussed a close analogy
our analysis with VSFT, the gauge structure is very differe

The analysis of higher modes will be more complicat
because of the treatment of the interaction point. It will gi
a very nontrivial test of our scenario that the idempoten
condition of closed string field would give the correct spe
trum and symmetry of the open string.

V. DISCUSSION

We have seen that the ‘‘vacuum version’’ of closed stri
field theory embodies the basic goals of the VSFT propo
namely it has a family of exact solutions that correspond
various D-branes. In our case, all of the basic types
boundary states in the flat background~Dp-brane with the
flux! appear as the exact solutions. Furthermore, the infi
tesimal variation of the solutions produces the correct sp
trum of the open string living on the D-brane~at least lower
lying modes! with the correct gauge symmetry.

What is the vacuum version of closed string field theor
Resemblance of the action of HIKKO’s string field theory

S5
1

2
F•QF1

1

3
F•~F* F! ~119!

with Witten’s open string field theory is one of the encou
aging points to suspect the existence of such a theory.
computation of the tachyon vacuum is parallel to the op
string case@2# and will be possible at least numerically. As
the VSFT proposal, one may conjecture that the equation
motion at this ‘‘vacuum’’ may be written as Eq.~32!. We
have observed the close analogies of the structure of the
ghost kinetic term at the end of Sec. III. At this vacuum
there would be no propagating degree of freedom both in
closed and open string sectors. There exist, however,
nonperturbative solutions—the boundary states.

It is tempting to conjecture that, as in the VSFT propos
the reexpansion of the theory around the solution produ
open string field theory. By the assumption of the vacu
theory, there is no closed string propagation at the tree le
On the other hand, the open string becomes physical.
BRST charge at the new vacuum would be

QuF&5â2
]

] c̄0

uF&22uF̂B* F&,

F̂B5 lim
a→0/̀

a2

cb521/2Vd2p21
FB~a!, ~120!
6-12
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which is formally nilpotent by the Jacobi identity.â2 factor
in front of c̄0 derivative is needed to make this part a de
vation. Here we need to take the limita→0 or ` sincea
parameter is preserved by the star product. More deta
examination of this scenario will be presented in the fut
study.

The use of the closed string degree of freedom has a d
nite advantage in describing the physical process involv
the D-brane, for example, in the time dependent solution
the D-brane decay. In such a situation, the role of the clo
strings seems more important than the open strings@28#. If
we use the open string fields alone, the treatment of clo
strings becomes singular while in our approach it is enco
as the fundamental degrees of freedom. Of course, to
ceed in this direction, we need to understand how the pro
gating degrees of freedom appear in the closed string se
which would be the most important issue in our proposa

We describe our scenario as a possible physical inter
tation of the idempotency equation of the boundary sta
We do not deny the other possibilities at this point. Since
~32! is a mathematically rigorous statement, it will play
fundamental roˆle even if our scenario might not be so acc
rate.

Finally we have obtained the boundary states which
isfy the idempotency relation, Eq.~32! rather than the equa
tion of motion of full string field theory,

QF1F* F50. ~121!

For example, in@29#, it was argued that the asymptotic b
havior of @1/(L01L̄0)#uB& coincides with the supergravit
solution at the linear level. However, at the nonlinear leve
is easy to see that it fails to be the solution of HIKKO
equation of motion. The settlement of this apparent confl
is another good challenge in the future.

ACKNOWLEDGMENTS

We would like to thank K. Ohmori for valuable discus
sions and comments. I.K. would like to thank H. Hata,
Imai, T. Kawano, and H. Kogetsu for useful conversatio
I.K. is supported in part by the JSPS. Y.M. is supported
part by Grant-in-Aid~Grant 13640267! from the Ministry of
Education, Science, Sports and Culture of Japan.

APPENDIX A: NOTATIONS AND CONVENTIONS

We give a summary of our convention of the oscillato
and the vacuum used in the text. The mode expansion
basic oscillators are given as follows@14#:

XM~s!5
1

Ap
H xM1

i

2(
nÞ0

1

n
~an

(1)M2a2n
(2)M !einsJ ,

PM~s!5
1

2Ap
H pM1hMN(

nÞ0
~an

(1)N1a2n
(2)N!einsJ ,
12600
-

d
e

fi-
g
of
d

ed
d
o-
a-
or,

e-
s.
.

t-

it

t

.

.
n

of

c̄~s!5
1

2Ap
H c̄01 (

nÞ0
~ c̄n

(1)1 c̄2n
(2)!einsJ ,

ip c̄~s!5
1

2Ap
H 2

]

] c̄0

1 (
nÞ0

~cn
(1)1c2n

(2)!einsJ ,

c~s!52
1

2Ap H i
]

]p c̄
0 1 (

nÞ0
~cn

(1)2c2n
(2)!einsJ ,

ipc~s!52
1

2Ap
H 22ipc

01 (
nÞ0

~ c̄n
(1)2 c̄2n

(2)!einsJ .

~A1!

We note thatc̄(s) is written more often asb(s) in the
literature.

Commutation relations of nonzero modes are

@am
(6)M ,an

(6)N#5mdm1n,0h
MN, $cm

(6) ,c̄n
(6)%5dm1n,0 .

~A2!

We often use the notation

an
(6)M5Anan

(6)M ,a2n
(6)M5Aunuan

(6)M† ,

cm
(6)†5c2m

(6) , c̄m
(6)†5 c̄2m

(6) , ~m,n.0!, ~A3!

which satisfy

@am
(6)M ,an

(6)N†#5dm,nhMN,

$cm
(6) ,c̄n

(6)†%5$cm
(6)† ,c̄n

(6)%5dm,n . ~A4!

Matter zero modes are represented byâ0 ,â0
† as

x̂M5
i

2
~ â0

M2â0
M†!, p̂M5hMN~ â0

N1â0
N†!,

@ x̂M,p̂N#5 idN
M , @ â0

M ,â0
N†#5hMN, ~A5!

and their eigenstates are given by

^xu5^0ue(1/2)â0
2
12ixâ02x2

~2/p!d/4,

ux&5~2/p!d/4e1/2â0
†2

22ixâ0
†
2x2

u0&, ~A6!

^xux̂M5^xuxM, x̂Mux&5xMux&, ^xux8&5dd~x2x8!,
~A7!

^pu5^0ue21/2â0
2
1â0p21/4p2

~2p!d/4,

up&5~2p!d/4e2(1/2)â0
†2

1â0
†p2(1/4)p2

u0&, ~A8!

^pu p̂M5^pupM, p̂Mup&5pMup&,

^pup8&5~2p!ddd~p2p8!, ~A9!
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^pux&5e2 ipx, ^xup&5eipx, ^0uâ0
†50, â0u0&50.

~A10!

Similarly a-dependent part is treated as an analogue of m
ter zero modes,

âua&5aua&, ^auâ5^aua, ^aua8&5~2p!d~a2a8!.

~A11!

On the ghost zero mode, the bra-ket convention is

]

] c̄0

u0&50, ^0u
]Q

] c̄0

50. ~A12!

APPENDIX B: GAUSSIAN FORMULAE

In string field theories using oscillator representation,
often encounter computations of the formeaMaea†Na†

u0&.
We show useful formulas for this type of computation
These are proved by inserting coherent states and perform
Gaussian integration.

For the matter sector with bosonic oscillators

@am ,an
†#5dmn , anu0&50, n>1, ~B1!

we have

expS 1

2
aMa1laDexpS 1

2
a†Na†1ma†D u0&

5
1

Adet~12MN!
expS 1

2
lN~12MN!21l

1
1

2
mM ~12NM!21m1l~12NM!21m D

3expS ~lN1m!~12MN!21a†

1
1

2
a†N~12MN!21a†D u0&, ~B2!

whereM ,N are symmetric matrices.
For the ghost sector with fermionic oscillators

$cn ,bm%5dn1m,0 ,

cnu1&50, n>0, bnu1&50, n>1;

cn
†
ªc2n , bn

†
ªb2n , n>1, ~B3!

we have

exp~cAb1c0ab1cm1nb1c0g!exp~c†Bb†1c†bb01c†r

1sb†1db0!u1&5det~11BA!detD•eE11E0u1&,

~B4!

where
12600
t-

e

.
ng

D511a~11BA!21b,

E15c†~11BA!21Bb†1c†~11BA!21~r2Bm!1~nB1s!

3~11AB!21b†1n~11BA!21~r2Bm!

2s~11AB!21~Ar1m!,

E052c†~11BA!21bD21@a~11BA!21Bb†2b0#

2c†~11BA!21bD21@a~11BA!21~r2Bm!1g#

2@~n2sA!~11BA!21b1d#D21

3@a~11BA!21Bb†2b0#2@~n2sA!~11BA!21b

1d#D21@a~11BA!21~r2Bm!1g#. ~B5!

In particular, if there are no terms dependent on zero mo
the above formula is simplified asD51, E050. In the com-
putation of Eq.~56!, we use it fora5m5n5g50 case.

APPENDIX C: RELATIONS AMONG NEUMANN
COEFFICIENTS OF LIGHT-CONE-TYPE

STRING FIELD THEORY

1. Definitions of Neumann coefficients

Neumann coefficients are used to define 3-string ver
uV(1,2,3)& which represents connection conditions of stri
world sheets and encodes string interactions.

In Eq. ~17!, we used light-cone-type Neumann coef
cientsN̄mn

rs ,N̄m
r which are explicitly given by@21,13,14#

N̄mn
rs 52a1a2a3S a r

m
1

as

n D 21

N̄m
r N̄n

s , ~C1!

N̄m
r 5

1

a r
f m~2a r 11 /a r !e

mt0 /ar ~a4ªa1!, ~C2!

f n~x!5
G~nx!

n!G~nx2n11!
. ~C3!

We also use the notation

Ñmn
rs
ªAmN̄mn

rs An, Ñm
r
ªAmN̄m

r . ~C4!

They satisfy relations@30#

(
t51

3

(
p51

`

Ñmp
rt Ñpn

ts 5d r ,sdm,n ,

(
t51

3

(
p51

`

Ñmp
rt Ñp

t 52Ñm
r ,

(
t51

3

(
p51

`

Ñp
t Ñp

t 5
2t0

a1a2a3
. ~C5!

It is convenient to rewrite them using matrix representatio
as
6-14
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Ñmn
rs 5~C1/2N̄rsC1/2!mn5dm,nd r ,s22~A(r )TG21A(s)!mn ,

~C6!

Ñm
r 5~C1/2N̄r !m52~A(r )TG21B!m , ~C7!

where, forua1u1ua2u5ua3u, they are given by

Amn
(1)52An

m
~21!m

1

pa1
E

0

pa1
dscos

ns

a1
cos

ms

a3

52
2

p
Amn~21!m1n

bsinmpb

n22m2b2 , ~C8!

Amn
(2)52An

m
~21!m

1

pa2
E

pa1

p(a11a2)

ds

3cos
n~s2pa1!

a2
cos

ms

a3
~C9!

52
2

p
Amn~21!m

~b11!sinmpb

n22m2~b11!2 , ~C10!

Amn
(3)5dm,n , ~C11!

Gmn5dm,n1(
r 51

2

~A(r )A(r )T!mn5Gnm , ~C12!

Bm52
2

p

a3

a1a2
m23/2~21!msinmpb, ~C13!

Cmn5mdm,n . ~C14!

Here we used the notation

b5
a1

a3
, b1152

a2

a3
, for a11a21a350.

~C15!

We note that21,b,0 in this case.

2. Relations among overlap coefficientsA, B

We list some relations between the coefficientsA and B
which were proved in@21#.

2
a r

a3
~C21A(r )TCA(s)!mn5d r ,sdm,n ~r ,s51,2!,

~C16!

~A(r )TCB!m50 ~r 51,2!, ~C17!

1

2
a1a2BTCB51, ~C18!

~G21C21A(r )!mn5~C21A(r )!mn1
a r

a3
~G21A(r )C21!mn

~r 51,2!, ~C19!
12600
a3

m
dm,n1(

r 51

2

a r~A(r )C21A(r )T!mn5
1

2
a1a2a3BmBn ,

~C20!

~GC21G!mn5~C21G!mn1~GC21!mn2
1

2
a1a2BmBn ,

~C21!

~C21!mn2~C21G21!mn2~G21C21!mn

1
1

2
a1a2~G21B!m~G21B!n50, ~C22!

1

2
a1a2a3~A(r )TG21B!m~A(s)TG21B!n

52a r~C21!mnd r ,s1S a r

m
1

as

n D ~A(r )TG21A(s)!mn

~r ,s51,2,3!, ~C23!

@~12ATG21A!21#mn
rs 5d r ,sdm,n1~A(r )TA(s)!mn

~r ,s51,2!, ~C24!

@~ATG21A!21#mn
rs 5d r ,sdm,n1

a3
2

a ras
~CA(r )TC22A(s)C!

~r ,s51,2!, ~C25!

BTG21B5
2t0

a1a2a3
. ~C26!

In particular, the infinite matrices (Amn
(1) ,Amn

(2)) are
invertible:16 namely, we can find an inverse matrix

Dmn
(r ) 52

a3

a r
~CA(r )TC21!mn . ~C27!

In fact, we can prove

(
k51

`

Dmk
(r )Akn

(s)5dm,nd r ,s ~r ,s51,2!,

(
r 51

2

(
k51

`

Amk
(r )Dkn

(r )5dm,n ~C28!

directly. These relations are mainly based on the Fourier
pansion@21#

16One might think2(a r /a3)(C21A(r )TC)mn is also an ‘‘inverse’’
from Eq. ~C16!. However, this matrix has zero mode~C17!. This
kind of subtlety was noticed in Ref.@8# for Witten’s open string
field theory.
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(
n52`

`
~21!neiny

n1a
5

p

sinpa
e2 iay ~2p,y,p!

~C29!

or

1

a
22a (

n51

`
~21!ncosny

n22a2 5
p cosay

sinpa
~2p,y,p!,

~C30!

(
n51

`

~21!n
2n sinny

n22a2 52
p sinay

sinpa
~2p,y,p!.

~C31!

3. List of useful formulas related to matrix n and Ñr3

We collect useful formulas associated with the Neuma
coefficientsn and Ñr3 @see Eq.~51!#:

@~12n2!21# (rs)5
1

4
D (r )G2D (s)T

5
1

4
~D (r )D (s)T1A(r )TA(s)12d (rs)!,

~C32!

@~12n!21# (rs)5
1

2
~d (rs)1D (r )D (s)T!,

~C33!

@~11n!21# (rs)5
1

2
~d (rs)1A(r )TA(s)!,

~C34!

@n~12n!21# (rs)5
1

2
~D (r )D (s)T2d (rs)!,

~C35!

@n~11n!21# (rs)52
1

2
~A(r )TA(s)2d (rs)!,

~C36!

(
s

@~12n!21# (rs)Ñ(s3)52D (r ), ~C37!

(
s

@~11n!21# (rs)Ñ(s3)52A(r )T. ~C38!

4. Some formulas associated with„cosns…, „sin ns…, and
A „r …, D „r …

We list some more formulas which we use in compu
tions in Sec. IV. For the interval2p,s,p,
12600
n

-

@~cosns!C21/2A(1)T#m5
1

2
a2Bm1

~21!m

Am
cosmbs,

~C39!

@~sinns!C21/2D (1)#m52
~21!m

Am
sinmbs,

~C40!

@~sinns!C1/2A(1)T#m5bAm~21!msinmbs,
~C41!

@~cosns!C1/2D (1)#m

52bAm~21!mcosmbs

1S (
n51

`

~21!ncosns1
1

2D ~21!m2

Amp
sinmpb

52bAm~21!mcosmbs

2S (
n51

`

~21!ncosns1
1

2Da2bBmm. ~C42!

For the interval2p,p2s,p,

@~cosns!C2 1/2A(2)T#m

52
1

2
a1Bm1

1

Am
cos@m~b11!~p2s!#,

~C43!

@~sinns!C2 1/2D (2)#m52
1

Am
sin@m~b11!~p2s!#,

~C44!

@~sinns!C1/2A(2)T#m52~b11!Amsin@m~b11!~p2s!#,

~C45!

@~cosns!C1/2D (2)#m

5~b11!Amcos@m~b11!~p2s!#

2S (
n51

`

~21!ncosn~p2s!1
1

2D ~21!m2

Amp
sinmpb

5~b11!Amcos@m~b11!~p2s!#

2S (
n51

`

~21!ncosn~p2s!1
1

2Da1~b11!Bmm.

~C46!

APPENDIX D: OSCILLATORS
ON THE BOUNDARY STATE

The conditions, Eqs.~10!, ~11!, ~12!, of the boundary state
uB(F)& corresponding to the Dp-brane can be rewritten in
terms of the oscillators as follows.
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~1! Nonzero modes:

~an
(1) i2a2n

(2) i !uB~F !&50, ~D1!

~an
(1)m1O n

ma2n
(2)n!uB~F !&5~an

(2)m1~O T!n
ma2n

(1)n!uB~F !&

50, ~D2!

~cn
(1)1c2n

(2)!uB~F !&5~ c̄n
(1)2 c̄2n

(2)!uB~F !&50. ~D3!

~2! Zero mode:

~ x̂i2xi !uB~F !&5 p̂muB~F !&50,
]

] c̄0

uB~F !&50. ~D4!

It is convenient to define new oscillatorsan8 on the bound-
ary stateuB(F)& to consider vertex operators on it:17

an8
(1)m

ª

1

A2
@an

(1)m1e~n!O n
m a2n

(2)n#,

an8
(2)m

ª

1

A2
@an

(2)m1e~n!~O T! n
m a2n

(1)n#,

~D5!

an8
(1) i

ª

1

A2
@an

(1)m2e~n!a2n
(2) i #,

an8
(2) i

ª

1

A2
@an

(2) i2e~n!a2n
(1) i #, ~D6!

@am8
(6)M ,an8

(6)N#5mdm1n,0h
MN, an8

(6)MuB~F !&50,
12600
n>1. ~D7!

In terms ofan8 we can rewriteXM(s),PM(s) as

Xm~s!5
1

Ap
H xm1

i

A2
(
nÞ0

1

n F S 12e~n!O T

2 D
n

m

an8
(1)n

2S 11e~n!O
2 D

n

m

a2n8(2)nGeinsJ , ~D8!

Xi~s!5
1

Ap
Fxi1

i

A2
(
n51

`
1

n
~an8

(1) ieins1an8
(2) ie2 ins!G ,

~D9!

Pm~s!5
1

2Ap H pm1A2 (
nÞ0

F S 11e~n!O T

2 D
n

m

an8
(1)n

1S 12e~n!O
2 D

n

m

a2n8(1)nGeinsJ , ~D10!

Pi~s!5
1

2Ap
Fpi1A2(

n51

`

~a2n8(1) ie2 ins1a2n8(2) ieins!G .

~D11!

We can define the normal ordering of tachyon vertex w
respect to the new oscillatorsan8

(6)
ªan8

(6)/An, an8
(6)†

ªa2n8(6)/An, (n>1) as
VT~s!5N:eikMApXM(s):5N expFkm (
n51

`
1

A2n
S 11O T

2
an8

(1)†e2 ins1
11O

2
an8

(2)†einsD mGeikMx̂M

3expF2km (
n51

`
1

A2n
S 12O T

2
an8

(1)eins1
12O

2
an8

(2)e2 insD mGexpS 2ki (
n51

`
1

A2n
~an8

(1)eins1an8
(2)e2 ins! i D .

~D12!

Then we have

VT~s!uB~F !&5N expFkm (
n51

`
1

A2n
S 11O T

2
an8

(1)†e2 ins1
11O

2
an8

(2)†einsD mGeikMx̂M
uB~F !&

5expFkm (
n51

`
1

An
S 11O T

2
an

(1)†e2 ins1
11O

2
an

(2)†einsD mGeikMx̂M
uB~F !&. ~D13!

17Here we defined

e~n!5H11 ~n.0!

21 ~n,0!
.
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In the last equation we rewrote again in terms of original oscillators. Here, we have chosen the normalization con

N4exp@ 1
2k(11O/2)k(n51

` (1/n)#.
Similarly, we can consider the vector vertex on the boundary state as follows:

VV~s!uB~F !&5N:zMAp]sXM~s!eikNApXN(s):uB~F !&

5Nzm

21

A2
(
n51

`

AnF11O T

2
an8

(1)†e2 ins2
11O

2
an8

(2)†einsGm

3expFkm (
n51

`
1

A2n
S 11O T

2
an8

(1)†e2 ins1
11O

2
an8

(2)†einsD mGeikMx̂M
uB~F !&

52zm (
n51

`

AnF11O T

2
an

(1)†e2 ins2
11O

2
an

(2)†einsGm

3expFkm (
n51

`
1

An
S 11O T

2
an

(1)†e2 ins1
11O

2
an

(2)†einsD mGeikMx̂M
uB~F !&. ~D14!

We used]sX above instead of]tX because we consider ‘‘open string vertex’’ in terms of a closed string.
We note that there are no excitations along Dirichlet directions onuB(F)& in Eqs.~D13!, ~D14!.

APPENDIX E: COMPUTATION OF VECTOR-TYPE FLUCTUATION

Here we present details of computations in Sec. IV B.
We first evaluate the quantityD1 ~114! using Eqs.~C30!–~C42!. For theds1u1(•••)a† term in Eq.~91!, we have

ds1u1@P1A(1)TP11P2D (1)P2#a†52bd2b(s1u1)1pa†

1S (
n51

`

~21!ncosn~s1u1!1
1

2Da1a2

a3
BTCzmS 11O T

2
a(1)†2

11O
2

a(2)†D m

.

~E1!

For theds1u1(•••)P term, we replacea† appropriately:

ds1u1@P1A(1)TP11P2D (1)P2#
a2

4
BS 1

1D k

52 i zmGmnkn (
m51

`
sinmb~s1u1! sinmpb

pm
2zmS ~O T2O

2 D mn

kn

3F (
m51

`
cosmb~s1u1! sinmpb

2pm
1

1

2
~b11!S (

n51

`

~21!ncosn~s1u1!1
1

2D G . ~E2!

In Eq. ~90!, we can compute theds1u1(•••)ls1u1 term using

~sinns!C1/2~12A(1)TA(1)!C21/2~cosns!

5 (
m51

`
sin 2ms

2
1 (

p51

`
sinppb sinpbs

pp
2b (

p51

`
sin 2pbs

2
, ~E3!

~cosns!C1/2~12D (1)D (1)T!C21/2~sinns!

5 (
m51

`
sin 2ms

2
1

2

p S (
m51

`

~21!mcosms1
1

2D (
p51

`
sinppb sinpbs

p
2b (

p51

`
sin 2pbs

2
. ~E4!

Then Eq.~114! becomes
126006-18
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D152bd2b(s1u1)1pa†1S (
n51

`

cosn~p2s2u1!1
1

2D a1a2

a3
BTCzmS 11O T

2
a(1)†2

11O
2

a(2)†D m

2 i zmGmnknF 2

pS (
m51

`

cosm~p2s2u1!1
1

2D (
p51

`
sinppb sinpb~s1u1!

p G
2zmS O T2O

2 D mn

knF (
m51

`
cosmb~s1u1! sinmpb

2pm
1

1

2
~b11!S (

n51

`

cosn~p2s2u1!1
1

2D G
52bd2b(s1u1)1pa†1d~p2s2u1!p

a1a2

a3
BTCzmS 11O T

2
a(1)†2

11O
2

a(2)†D m

2 i zmGmnknF2d~p2s2u1! (
p51
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sin2ppb

p G2zmS O T2O
2 D mn

knF2
b11

4
1

p

2
~b11!d~p2s2u1!G ~2p,s1u1<p!

~E5!

where we used formulas

1

2p
1

1

p (
n51

`

cosnx5 (
n52`

`

d~x22np!,

(
n51

`
sinnx cosny

n
5H 2x/2 ~0<x,y!

~p2x!/2 ~y,x<p!.
~E6!

Similarly, we can evaluateD2 as

D25~b11!d2(b11)(p2s2u2)a†2d~s1u2!p
a1a2

a3
BTCzmS 11O T

2
a(1)†2

11O
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1 i zmGmnknF2d~s1u2! (
p51

`
sin2pbp

p G1zmS O T2O
2 D mn

knF2
b

4
1

p

2
bd~s1u2!G ~2p,p2s2u2<p!. ~E7!

From Eqs.~112!, ~113!, ~E5!, ~E7!, we have obtained

u@dVFB~a1!#* FB~a2!&1uFB~a1!* @dVFB~a2!#&

522(1/2)kmGmnkncBudVFB~a11a2!&1
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2
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p
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2pds8

2p
d~s8!Fp

a1a2

a3
zBTCS 11O T

2
a(1)†2

11O
2

a(2)†D 22i zmGmnkn (
p51

`
sin2ppb

p

2zmS O T2OD mn

kn

p
bGe2l2(b11)(p2s8)a†

uFB~a11a2!&

2 2
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Here we adjusted the 2p interval of integration to validate summation formulas which we used in computations. After al
first terms in Eqs.~E5!, ~E7! only contribute to this summation.
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