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Discrete torsion

Eric Sharpe*
Department of Physics, Box 90305, Duke University, Durham, North Carolina 27708, USA

~Received 2 January 2001; published 16 December 2003!

In this article we explain discrete torsion. Put simply, discrete torsion is the choice of orbifold group action
on theB field. We derive the classificationH2

„G,U(1)…, the twisted sector phases appearing in string loop
partition functions, Douglas’s description of discrete torsion for D-branes in terms of a projective representa-
tion of the orbifold group, and outline how the results of Vafa and Witten fit into this framework. In addition,
we observe that additional degrees of freedom~known as shift orbifolds! appear in describing orbifold group
actions onB fields, in addition to those classified byH2

„G,U(1)…, and explain how these degrees of freedom
appear in terms of twisted sector contributions to partition functions and in terms of orbifold actions on
D-brane worldvolumes. This paper represents a technically simplified version of prior papers by the author on
discrete torsion. We repeat here technically simplified versions of results from those papers, and have included
some new material.
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I. INTRODUCTION

Historically discrete torsion has been a rather mysteri
aspect of string theory. Discrete torsion was originally d
covered@1# as an ambiguity in the choice of phases to ass
to twisted sectors of string orbifold partition functions. A
though other work has been done on the subject~see, for
example,@2–4#!, no work done prior to@5,6# has succeeded
in giving any sort of genuinely deep understanding of d
crete torsion. In fact, discrete torsion as sometimes been
ferred to has an inherently stringy degree of freedom, w
out any geometric analogue.

In this paper~a followup to @5,6#! we shall describe a
purely mathematical way of understanding discrete tors
and will show explicitly how our description gives rise
Vafa’s phases in twisted sector contributions to partit
functions, to projective representations of orbifold group
tions on D-branes, and to other physical manifestations
discrete torsion.

The description of discrete torsion we present here is
same as that we previously presented in@5,6#. This paper
differs in that we have vastly reduced the level of techni
complication that was present in@5,6#, we explicitly work
out the details of some computations merely referred to
@5,6#, and also work out some new results not presen
@5,6#, such as a derivation of the projectivized group actio
used by@3,4# to describe orbifold group actions on D-bran
with discrete torsion.

What is discrete torsion? In a nutshell,discrete torsion is
the choice of orbifold group action on the Bfield.

More generally, in any theory possessing fields w
gauge invariances, defining the orbifold group action on
base space does not suffice to define the orbifold group
tion on the fields of the theory—one can combine the act
of the orbifold group with gauge transformations to get ne
distinct, actions of the orbifold group. ForU(1) gauge fields,
this gives rise to orbifoldU(1) Wilson lines. ForB fields,
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this gives rise to discrete torsion, as we shall work through
detail in this paper. Now, string theory has other fields w
gauge invariances—for example, in eleven-dimensional
pergravity there is a three-form potential with a gauge inva
ance analogous to that of theB field, and so one expects t
have orbifold degrees of freedom associated to that fi
also. We shall discuss analogues of discrete torsion for
other tensor-field potentials of string theory in@7#. In another
upcoming paper@8# we shall discuss discrete torsion in pe
turbative heterotic strings.

It should be emphasized that we have presented a fi
principlesexplanationof discrete torsion in@5,6# and in this
paper—not some observations on discrete torsion, not s
calculations related to discrete torsion, but an explanation
should also be emphasized that this explanation is pu
mathematical in nature—although we can certainly che
physical consequences, at its heart discrete torsion is a n
ral mathematical consequence of havingB fields. Discrete
torsion has nothing at all to do with string theoryper se, and
is not ‘‘inherently stringy’’ in any sense.

We begin in Sec. II with a discussion of orbifoldU(1)
Wilson lines—i.e., a discussion of counting orbifold grou
actions onU(1) gauge fields. Although the technical deta
for orbifold group actions onB fields are considerably mor
complicated and subtle, the basic principles are the same
B fields as forU(1) gauge fields, and our treatment ofB
fields parallels our treatment ofU(1) gauge fields. In par-
ticular, Sec. II provides a simplified context in which to s
the main ideas at work.

Next in Sec. III we study orbifold group actions onB
fields, and explain how the group cohomology gro
H2

„G,U(1)… arises. In addition toH2
„G,U(1)…, we also find

additional orbifold group actions; we explain why, in hind
sight, such additional actions should be expected. The g
eral methods used are the same as for studying orbi
group actions onU(1) gauge fields, although the technic
details are more complicated.

In Sec. IV we derive the twisted sector phases origina
described in@1#. We calculate the phases at one-loop, a
also check factorization at higher loops~an explicit calcula-
©2003 The American Physical Society03-1



i

n

u
te
si
d
th

ee
n

u

n

ou
t

d
ta
n

oi
d
ld
e
t

s

to

m
n
rs
ic

r-
k
up
n
u

r

ld
ite
n

n

by

p
nd
ac-

cks
s
e-

t is
p.

n
ents
st

or-
he
-
e
t

-

fine
e is
p.

ng

d

a-

ng,
,

ERIC SHARPE PHYSICAL REVIEW D 68, 126003 ~2003!
tion is done at two-loops, from which the general result
obvious!.

In Sec. V we derive Douglas’s description@3,4# of dis-
crete torsion for D-branes, as a projective representatio
the orbifold group.

In Sec. VI we outline how results of Vafa and Witten@2#
on the interplay of discrete torsion and Calabi-Yau mod
are naturally understood in the context we have presen
This discussion frequently refers to reflexive sheaves on
gular varieties, and as such ideas are not frequently use
the physics literature, we have included an appendix on
subject.

Finally in Sec. VII we very briefly mention local orbifold
degrees of freedom, as distinct from global orbifold degr
of freedom, a topic usually neglected in physics treatme
of orbifolds.

Readers who wish to study this paper in detail are enco
aged to first work through Sec. II on orbifoldU(1) Wilson
lines, despite the fact that it might not sound wholly releva
Our approach to thinking aboutB fields and discrete torsion
is very closely related to orbifoldU(1) Wilson lines, and the
mathematical techniques we shall use to study orbifold gr
actions onB fields are precise analogues of those used
classify orbifoldU(1) Wilson lines. Mathematicians shoul
note that although these mathematical techniques are a s
of the relevant part of the mathematics literature, they are
widely used in the physics literature.

II. REVIEW OF ORBIFOLD U„1… WILSON LINES

In this paper we shall describe discrete torsion as a ch
of orbifold group action onB fields. In order to understan
how this works, however, we shall first present orbifo
U(1) Wilson lines. We will work through this simpler cas
in detail because it is an exact model for our approach
understanding orbifold group actions onB fields—the details
are much more subtle, but the basic ideas are the same a
orbifold U(1) Wilson lines.

In particular, our approach to understanding discrete
sion is closely modelled on understanding orbifoldU(1)
Wilson lines mathematically, involving techniques not co
monly used in the physics literature. In order to understa
later sections of this paper, therefore, it is important to fi
get a solid handle on the basic ideas, in a context in wh
the details are easy to work out.

Orbifold U(1) Wilson lines are precisely a choice of o
bifold group action onU(1) gauge fields. We shall first wor
out a description of elements of the set of orbifold gro
actions onU(1) gauge fields, then we shall argue that a
two elements of the set differ by an element of the gro
H1

„G,U(1)….
Our analysis does not rely on the orbifold groupG acting

freely—whetherG has fixed points is entirely irrelevant fo
our analysis. Similarly, whetherG is Abelian is equally irrel-
evant.

It should also be mentioned that our analysis of orbifo
actions onU(1) gauge fields is not new, but is rather qu
standard in the mathematics literature. The earliest refere
of which we are aware is@9#, Sec 1.13.
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For simplicity, we shall work at the level of transitio
functions. A line bundle with connection@i.e., a set of local
U(1) gauge fields# can be described by pairs (Aa,gab)
where Aa is a vector field on an elementUa of an open
cover, andgab are transition functions. These are related

Aa2Ab5d loggab . ~1!

A. Orbifold group actions on vector fields

In this section we shall study the set of orbifold grou
actions on vector fields, in terms of transition functions a
data defined on local coordinate patches. To describe the
tion of the orbifold group on such data, one relates pullba
g* gab , for example, to the original transition function
gab . So, in this section we shall work out relationships b
tween pullbacks of transition functionsg* gab and gauge
fieldsg* Aa, and original transition functionsgab and gauge
fields Aa.

For convenience, we shall choose an open cover tha
well behaved with respect to the action of the orbifold grou
Specifically, let$Ua% be a ‘‘good invariant’’ cover, meaning
that eachgPG maps eachUa back into itself~i.e., g: Ua
→Ua), and eachUa is a union of disjoint contractible ope
sets. Such a cover is not a good cover, because the elem
Ua will not be contractible in general, but is the next be
thing, and suffices for our purposes.

To begin, we need to demand that the bundle is isom
phic to itself under pullback by group elements, i.e., t
bundle itself is ‘‘symmetric’’ with respect to the group ac
tion. Given this constraint, we will derive the form of th
pullback of theU(1) gauge field from self-consistency. A
the level of transition functions, this is the statement

g* gab5~ha
g !~gab!~hb

g !21 ~2!

for some Čech cochainsha
g . ~Such cochains define an iso

morphism from the bundle itself to its pullback byg.! If such
a statement were not true, one could not even begin to de
an orbifold group action, as it would mean that in no sens
the bundle well behaved with respect to the orbifold grou

Next, we need to determine howha
g1g2 is related toha

g1

and ha
g2 . We can find such a constraint by expandi

(g1g2)* gab in two different ways:

~g1g2!* gab5H ~ha
g1g2!~gab!~hb

g1g2!21

g2* @~ha
g1!~gab!~hb

g1!21#

5~g2* ha
g1!~ha

g2!~gab!~hb
g2!21~g2* hb

g1!21.

From self-consistency, we see that it is natural to deman

ha
g1g25~g2* ha

g1!~ha
g2!. ~3!

We should take a moment to comment on this ‘‘deriv
tion.’’ All we really know is that the Cˇ ech coboundary of the
ha

g satisfies an equation of the form above—strictly speaki
it is not quite true that Eq.~3! necessarily follows. However
we are looking for constraints of the general form of Eq.~3!,
3-2
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DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
and from the previous algebra Eq.~3! emerges quite natu
rally. If the reader prefers, it might be slightly more fair
say that we are using self-consistency to bootstrap an an
We shall use similar methods many more times, both h
and in working out orbifold group actions onB fields.

In addition, in this special case, there is an additio
concern that the reader might have. In principle, we co
multiply one side of Eq.~3! by ana-independent phase, an
the result would still be consistent. We are implicitly impo
ing a slightly stronger constraint than strictly necessary
namely, that the orbifold group action be honestly rep
sented. This choice is precisely the choice that leads to
calculation of orbifold Wilson lines, for example.

In passing, note that Eq.~3! can be viewed as the state
ment that the map from the orbifold groupG to bundle iso-
morphisms~as defined by Cˇ ech cochainsha

g) is a group ho-
momorphism.

At this point we have derived the form of an equivaria
structure on the principalU(1) bundle itself, but have no
mentioned the connection on the bundle. Without loss
generality, definewg

a by

g* Aa5Aa1wg
a .

Certainly, regardless ofg* Aa, we can write this for some
wg

a , so all we have done is definewg
a , not place any sort of

constraint on the connectionAa. By expanding (g1g2)* Aa

in two different ways, one quickly finds

wg1g2

a 5wg2

a 1g2* wg1

a .

By pulling back Eq.~1! by g, one finds

wg
a5d logha

g . ~4!

So far we have worked out how to describe the action
an orbifold groupG on a principalU(1) bundle with con-
nection@a set ofU(1) gauge fields, if the reader prefers#. To
summarize our results so far, we can describe this actio
the level of transition functions as

g* Aa5Aa1d logha
g

g* gab5~ha
g !~gab!~hb

g !21,

ha
g1g25~ha

g2!~g2* ha
g1!

for some Čech cochainsha
g , which define the orbifold group

action.
We have described the action of the orbifold group

terms of transition functions and data on local charts, but
can also describe the same orbifold group action more
egantly in terms of an action on the total space of a bun
See for example@5# where this approach is reviewed.

B. Differences between orbifold group actions

In the previous section we described elements of the se
orbifold group actions onU(1) gauge fields@more properly,
principal U(1) bundles with connection#. We have not used
12600
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the term set loosely—in general, there is no natural way
place a group structure, for example, on this set. In this s
tion we shall point out that any two such actions~i.e., any
two elements of the set! differ by a constant gauge transfo
mation, and those constant gauge transformations lea
H1

„G,U(1)….
Let ha

g be one set of Cˇ ech cochains describing an orbifol

action on a set ofU(1) gauge fields, and leth̄a
g be a distinct

orbifold action on the same set ofU(1) gauge fields.
Define Čech cochainsfa

g by

fa
g5

ha
g

h̄a
g

.

From writing g* gab in terms of the two orbifold actions
we find a constraint on thefa

g :

g* gab5H ~ha
g !~gab!~hb

g !21

~ h̄a
g !~gab!~ h̄b

g !21.

Dividing these two lines we find thatfa
g5fb

g on UaùUb ,
i.e., thefa

g define a function, which we shall denotefg.
Next, write g* Aa in terms of the two orbifold group ac

tions to find an additional constraint:

g* Aa5H Aa1d logha
g

Aa1d log h̄a
g .

Subtracting these two lines, we find that

d logfg50.

In other words,fg is a constant function.
Finally, from

ha
g1g25~ha

g2!~g2* ha
g1!

h̄a
g1g25~ h̄a

g2!~g2* h̄a
g1!

we find that

fg1g25fg2g2* fg1. ~5!

Assuming the covering space of the orbifold is connect
we see that thef define a group homomorphismG
→U(1).

In other words, the difference between any two orbifo
group actions onU(1) gauge fields, on a connected space
defined by an element ofH1

„G,U(1)….

C. General analysis

In the previous two sections we did two things—w
worked out the structure of an orbifold group action on a
of U(1) gauge fields, and then we argued that any two o
fold group actions differ by a~constant! gauge transforma-
tion, defining an element ofH1

„G,U(1)….
One point mentioned earlier, and worth emphasizing

that our derivation of the groupH1
„G,U(1)… did not rely
3-3
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upon G being freely acting—the derivation is the same
gardless of whether or not the action of the orbifold groupG
has fixed points. The same statement will be true of
derivation of H2

„G,U(1)… in understanding orbifold group
actions onB fields in the next section—our derivation hold
regardless of whether or notG acts freely.

Another point worth mentioning is that we have not a
sumed thatG is Abelian—our derivation ofH1

„G,U(1)… is
the same regardless of whetherG is Abelian or non-Abelian.

We should also note that we have not assumed that
principal U(1) bundle on which we have defined the orb
fold group action is trivial. If the bundle is nontrivial, the
one does not expect to always be able to define an orbi
group action, even on the topological bundle, much less
the bundle with connection. For example, consider the H
fibration of S3 over S2, viewed as a principalU(1) bundle
overS2. Consider aU(1) acting on theS2 by rotations about
some fixed axis. A 2p rotation of theS2 is the same as the
identity action onS2; however, a 2p rotation of theS2 does
not lift to the action of the identity onS3—one must rotate
the S2 by a multiple of 4p instead, as is discussed in mo
elementary quantum mechanics textbooks in the contex
spin. See for example@5# for further explanation of the stan
dard well-known fact that group actions on base spaces
not always lift to nontrivial bundles. Assuming that grou
actions on the bundle exist, the difference between any
group actions on a principalU(1) bundle with connection is
defined by an element ofH1

„G,U(1)….

D. The set of orbifold group actions is aset

It should be emphasized that the set of orbifold gro
actions on a principalU(1) bundle with connection is aset,
and in general does not naturally have a group struct
Often in the physics literature, calculations boil down to c
culating some cohomology group—by contrast, possible
bifold group actions do not~in general! have a group struc
ture, and certainly cannot be understood in terms o
calculation of a cohomology group.

Now, in special cases, it is possible to put a group str
ture on the set of orbifold group actions. For example, if
principalU(1) bundle is topologically trivial, then there is
natural notion of a trivial action—since the base and the fi
can be globally split, one could take the orbifold group to
on the base only. In this special case, we can describe
other orbifold group action in terms of the trivial action plu
an element ofH1

„G,U(1)…—this is the precise technica
meaning of ‘‘combining the action of the orbifold group wit
a gauge transformation,’’ as is often mentioned in the
string orbifold literature.

In general, however, there will be no natural notion o
‘‘trivial’’ action—all the orbifold group actions will have
some nontrivial action on the fibers of the bundle, and so
set of orbifold group actions is no more than a set.1 To be
blunt, anyone who tries to understand orbifold group actio

1A set naturally acted on by the groupH1
„G,U(1)…, but a set

nonetheless.
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on any gauge field in terms of any~cohomology! group at
almost any level of generality will not get far.

A simple example of these notions is provided by li
bundles on toric varieties. Specifying a specific toric divis
is the same as specifying an action of the algebraic to
underlying the toric variety on the line bundle~see@10# and
references therein!. For example, considerP2 as a toric va-
riety, with toric divisors generated byDx , Dy , andDz . Pos-
sible toric divisors for a degree 0 bundle onP2 include Dx

2Dy , 2Dz2Dx2Dy , and so forth—countably many
counted by2 H1

„(C3)n,C3
…5Zn. For a degree 0 line bundle

one can put a group structure on the set of degre
divisors—take the identity to be the toric divisor 0. Now
consider a degree 1 line bundle. Possible toric divisors
clude Dx , Dy , 3Dx22Dz , and so forth—countably many
counted byH1

„(C3)n,C3
…5Zn. However, here there is no

natural divisor to associate with the identity—the set do
not have a group structure in any natural way. So, we
here explicitly that in general the set of orbifold group a
tions is only a set.

In special cases, such as when the bundle is topologic
trivial, there is a canonical trivial orbifold group action, an
in such cases we can put a group structure on the se
orbifold group actions, which becomes the gro
H1

„G,U(1)…. As luck would have it, such special cases a
the only ones ever usually considered by physicists, so m
of the subtleties of the general case are omitted from typ
physics discussions. These matters are discussed in mor
tail in @5#.

In the next section we shall perform a closely analogo
computation forB fields. We shall first study elements of th
set of orbifold group actions on theB fields, then we shall
study how different elements of this set are related. The te
nical details forB fields are much more complicated, but th
basic approach is the same.

III. DERIVATION OF H 2
„G,U„1……

In this section we shall explain how the group cohom
ogy group H2

„G,U(1)… appears when describing orbifol
group actions onB fields. Our methods will closely mirror
standard methods used to study orbifoldU(1) Wilson lines,
so readers are encouraged to study Sec. II before reading
section. To be brief, we first derive the structure of eleme
of the set of orbifold group actions onB fields, and then
study the difference between any two elements of this
The difference is a gauge transformation ofB fields, just as
the difference between two orbifold group actions on a se
U(1) gauge fields is a gauge transformation.

A gauge transformation of aB field is defined by a prin-
ciple U(1) bundle with connection—a set ofU(1) gauge
fields, if the reader prefers. So, to each elementg of the
orbifold groupG, the difference between any two orbifol

2For holomorphic line bundles, rather than principalU(1) bundles
with connection, there is a closely analogous argument relating
ferent choices of actions of algebraic groups. The result is es
tially the same, modulo replacingU(1) with C3.
3-4
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DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
group actions on a set ofB fields is defined by a principa
U(1) bundle with connection, call itTg. @In fact, the con-
nection onTg is constrained to be flat, just as the differen
between any two orbifold group actions onU(1) gauge
fields was a constant gauge transformation.# We must also
specify isomorphismsvg,h betweenTgh and3 Th

^ h* Tg for
eachg,hPG, just as for orbifold Wilson lines, the gaug
transformations fg were constrained to obeyfg1g2

5fg2
•g2* fg1.

This description is not complete—there are ‘‘residu
gauge invariances,’’ specifically, only the isomorphism cla
of Tg is actually relevant. To get a precise counting, one m
fix this residual gauge invariance.

Elements ofH2
„G,U(1)… arise from taking the bundleTg

to be topologically trivial, with a connection that is gaug
equivalent to zero. Using residual gauge invariances, we
replaceTg with the canonical trivial bundle with identically
zero connection, and the mapsvg,h become constant gaug
transformations defining elements ofH2

„G,U(1)….

A. Orbifold group actions on B fields

In this section we shall work out a description of eleme
of the set of orbifold group actions onB fields. As forU(1)
gauge fields, orbifold group actions onB fields can be deter
mined by specifying how pullbacks are related to origin
data, so we shall be studying pullbacks.

It is important to emphasize at the start that we really
mean to use the word set—the set of orbifold group actio
in general, cannot canonically be given any group struct
Most mathematically oriented physics papers calculate co
mology groups or generalized cohomology groups—here
contrast, we shall begin by calculating a set, which canno
understood as a group in general, much less any sort of~gen-
eralized! cohomology group. After we have worked out th
set, in the next section we shall argue that elements of
set differ by gauge transformations ofB fields, which will
lead us to discoverH2

„G,U(1)….
Let $Ua% be a ‘‘good invariant’’ cover, as before. Then,

two-form field potential is described as a collection of tw
formsBa, one for each open setUa , related by gauge trans
formation on overlaps.

We assume that theB field has no magnetic source
~meaning, that the exterior derivative of its curvatureH van-
ishes!, and that the curvatureH is ~the image of! an element
of integral cohomologyH3(Z). SuchB fields on a smooth
spaceX are described on the open cover$Ua% by @11,12#
two-forms Ba on Ua , one-formsAab on UaùUb5Uab ,
andU(1)-valued functionshabg on Uaùbùg5Uabg , satis-
fying

Ba2Bb5dAab

Aab1Abg1Aga5d loghabg

d~habg!51.

3We will explain the meaning of̂ for principal U(1) bundles
later in this section.
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We should mention that in writing the above we are n
putting any more structure onB fields than is already presen
in string theory. For example, the reader might be concer
at the appearance of vector fieldsAab; such a reader should
be reminded that if we defineB fields in open patches, the
on overlaps theB fields will differ by some gauge transfor
mation. By specifying theAab we have merely made th
gauge transformations on overlaps explicit, no more.

In this section we shall work out how to describe orbifo
group actions onB fields, in terms of the data above. T
begin, demand that the Cˇ ech cocycleshabg are preserved by
the orbifold group, up to coboundaries. Specifically, dema

g* habg5habgnab
g nbg

g nga
g ~6!

for some Čech cochainsng, for eachgPG.
Next, we shall derive a constraint on the coboundariesng

from self-consistency of Eq.~6!. Specifically,

~g1g2!* habg

5H habgnab
g1g2nbg

g1g2nga
g1g2

g2* ~habgnab
g1 nbg

g1 nga
g1 !

5habg~nab
g2 g2* nab

g1 !~nbg
g2 g2* nbg

g1 !~nga
g2 g2* nga

g1 !

from which we see that

nab
g1g25nab

g2 g2* nab
g1 ~ha

g1 ,g2!~hb
g1 ,g2!21 ~7!

for some Čech cochainshg1 ,g2.
By applying Eq.~7! to expandng1g2g3 in two different

ways, we can derive

~ha
g1 ,g2g3!~ha

g2 ,g3!5~g3* ha
g1 ,g2!~ha

g1g2 ,g3!. ~8!

Next, consider the formsBa andAab. Define two-forms
B(g)a and one-formsA(g)a by

g* Ba5Ba1B~g!a

g* Aab5Aab1A~g!ab.

We shall use self-consistency to work out meaningful expr
sions forB(g)a andA(g)ab.

From the expression

g* ~Ba2Bb!5g* dAab

one can derive

B~g!a2B~g!b5dA~g!ab. ~9!

Furthermore, by expanding both sides of the expression

g* ~Aab1Abg1Aga!5g* d loghabg

we find

A~g!ab5d lognab
g 1L~g!a2L~g!b ~10!
3-5
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for some one-formsL(g)a defined on open setsUa . Com-
paring Eqs.~9! and ~10!, we find

B~g!a5dL~g!a. ~11!

By expanding (g1g2)* Ba in two different ways, we find

L~g1g2!a5L~g2!a1g2* L~g1!a1dL (2)~g1 ,g2!a ~12!

for some real-valued functionsL (2)(g1 ,g2)a defined on the
open setsUa .

Finally, by expanding (g1g2)* Aab in two different ways,
we find that

dL (2)~g1 ,g2!a52d logha
g1 ,g2 .

We can summarize the results of these computation
follows:

g* Ba5Ba1dL~g!a

g* Aab5Aab1d lognab
g 1L~g!a2L~g!b

L~g1g2!a5L~g2!a1g2* L~g1!a2d logha
g1 ,g2

g* habg5habgnab
g nbg

g nga
g

nab
g1g25~nab

g2 !~g2* nab
g1 !~ha

g1 ,g2!~hb
g1 .g2!21

~ha
g1 ,g2g3!~ha

g2 ,g3!5~g3* ha
g1 ,g2!~ha

g1g2 ,g3!

whereL(g)a, nab
g , andha

g1 ,g2 are structures introduced t
define the action of the orbifold group on theB field.

We have defined orbifold group actions onB fields in
terms of the transition functions and other local data defin
the B field. More formally, aB field can also be understoo
as a connection on a ‘‘1-gerbe,’’ a special kind of stack,
~loosely! sheaf of categories. We discussed such object
@6#, together with a discussion of how one defines orbifo
group actions on them. Our discussion in@6# is adapted from
@14#, which discussesB fields in the language of stacks.

B. Differences between orbifold group actions

In describing orbifold U(1) Wilson lines, the group
H1

„G,U(1)… arises as differences between orbifold group
tions; similarly, in describing discrete torsion,H2

„G,U(1)…
arises in describing the differences between orbifold gro
actions. In both cases, one can get any action from any o
action by combining the action with a set of gauge transf
mations; in the former case,H1

„G,U(1)… counts those gaug
transformations, and in the latter case,H2

„G,U(1)… counts
some of the gauge transformations.

One unusual matter we shall discover in this section
that, in addition to elements ofH2

„G,U(1)…, one sometimes
has additional actions of the orbifold group on theB fields—
sometimes, there may be more to ‘‘discrete torsion’’ than j
H2

„G,U(1)…. We shall show in a later section that, at t
level of twisted sector contributions to partition function
these additional contributions can do more than merely m
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tiply contributionsZ(g,h) by a phase; they significantly alte
the Z(g,h) themselves. We shall discuss these elements
much greater detail later in this section.

Consider two distinct orbifold group actions on theB
fields. Denote one orbifold group action as in the last sect
and denote the second action with a bar, e.g.,n̄ab

g rather than
nab

g .
Define

Tab
g 5

nab
g

n̄ab
g

. ~13!

From dividing the expressions

g* habg5H ~habg!~nab
g !~nbg

g !~nga
g !

~habg!~ n̄ab
g !~ n̄bg

g !~ n̄ga
g !

we see that

Tab
g Tbg

g Tga
g 51

meaning that theTg are transition functions for a principa
U(1) bundle.

The fact that we are seeing principalU(1) bundles at the
same place where gauge transformations appeared in
scribing orbifoldU(1) Wilson lines is no accident—a gaug
transformation of a set ofB fields is defined by a~n equiva-
lence class of! principal U(1) bundles with connection@6#.
So, just as for orbifold Wilson lines, we are already see
that the difference between two lifts is defined by a gau
transformation—the only difference being that forB fields, a
‘‘gauge transformation’’ is defined by a bundle.

Next, define

va
g,h5

ha
g,h

h̄a
g,h

. ~14!

From dividing the expressions

nab
gh 5~nab

h !~h* nab
g !~ha

g,h!~hb
g,h!21

n̄ab
gh 5~ n̄ab

h !~h* n̄ab
g !~ h̄a

g,h!~ h̄b
g,h!21

we find that

Tab
gh 5~Tab

h !~h* Tab
g !~va

g,h!~vb
g,h!21 ~15!

which means that theva
g,h are local-coordinate realization

@13#, Sec. 5.5 of a mapvg,h between bundles:

vg,h: Th
^ h* Tg→Tgh. ~16!

We should take a moment to carefully explain what w
mean by^ , since we have been describing the bundlesTg as
principal bundles, not vector bundles. One way to underst
^ is to think of it as the product of Abelian torsors, follow
ing @14#, Sec. 5.1. Alternatively, one could think of theTg as
complex line bundles with Hermitian fiber metrics. Perha
the easiest way to understand̂ in the present context is
3-6
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simply as the bundle whose transition functions are the pr
uct of the transition functions of the bundles appearing in
product.

Next, from

~ha
g1 ,g2g3!~ha

g2 ,g3!5~g3* ha
g1 ,g2!~ha

g1g2 ,g3!

we derive the commutivity condition

Tg3^ g3* ~Tg2^ g2* Tg1! vg1 ,g2

——→ Tg3^ g3* Tg1g2

vg2 ,g3↓ ↓vg1g2 ,g3

Tg2g3^ ~g2g3!* Tg1 vg1 ,g2g3

——→ Tg1g2g3.

To summarize our results so far, we have found that
two orbifold group actions on the same set ofB fields differ
by a set of principalU(1) bundlesTg together with bundle
morphismsvg1 ,g2: Tg2^ g2* Tg1→Tg1g2. As mentioned be-
fore, this is to say that any two orbifold group actions onB
fields differ by a gauge transformation, as a principalU(1)
bundle defines a gauge transformation ofB fields.

Next, define

J~g!a5L̄~g!a2L~g!a. ~17!

From subtracting the expressions

g* Aab5H Aab1d lognab
g 1L~g!a2L~g!b

Aab1d log n̄ab
g 1L̄~g!a2L̄~g!b

we find that

J~g!a2J~g!b5d logTab
g . ~18!

In other words, the local one-formsJ(g)a define a connec-
tion on the bundleTg.

From subtracting

g* Ba5H Ba1dL~g!a

Ba1dL̄~g!a

we see that

dJ~g!a50. ~19!

In other words, the connectionJ(g)a is not just any connec
tion on the principalU(1) bundleTg, but must be a flat
connection. The analogous statement in studying orbif
group actions onU(1) gauge fields is that any two orbifol
group actions differ by a constant gauge transformation.

From subtracting

L~g1g2!a5L~g2!a1g2* L~g1!a2d logha
g1 ,g2

L̄~g1g2!a5L̄~g2!a1g2* L̄~g1!a2d log h̄a
g1 ,g2

we find that
12600
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J~g1g2!a5J~g2!a1g2* J~g1!a1d logva
g1 ,g2 ~20!

which means that the bundle morphismvg1 ,g2: Tg2^ g2* Tg1

→Tg1g2 is constrained to preserve the connection on
bundles.

To summarize our progress so far, we have found that
two orbifold group actions on a set ofB fields differ by a
collection of principalU(1) bundlesTg with flat connection
J(g), together with connection-preserving bundle mo
phismsvg1 ,g2: Tg2^ g2* Tg1→Tg1g2, such that the following
diagram commutes:

Tg3^ g3* ~Tg2^ g2* Tg1! vg1 ,g2

——→ Tg3^ g3* Tg1g2

vg2 ,g3↓ ↓vg1g2 ,g3

Tg2g3^ ~g2g3!* Tg1 vg1 ,g2g3

——→ Tg1g2g3. ~21!

We should be careful at this point. Although we have n
emphasized this point, it is only equivalence classes
bundlesTg with connectionJ(g) that are relevant. In a nut
shell, if L andL8 are two one-forms that differ by an exa
form, thenB1dL5B1dL8, so any two bundles with con
nection that differ by a gauge transformation~of the bundle!
define the same action on theB field. So, ifT8g is another set
of principal U(1) bundles with connectionJ8(g), and
kg : Tg→T8g are connection-preserving bundle isomo
phisms, then we can replace the data given above with
collection„T8g,J8(g),v8g1 ,g2

…, where thev8 are given by

v8g1 ,g2[kg1g2
+vg1 ,g2+~kg2

^ g2* kg1
!21 ~22!

to get an equivalent orbifold group action on theB fields.

C. H2
„G,U„1……

How do elements ofH2
„G,U(1)… arise? Take the bundle

Tg to be topologically trivial, and the connectionsJ(g) to
be gauge trivial. We can then map the bundlesTg to the
canonical trivial bundle~whose transition functions are a
identically 1), and gauge transform the connectionsJ(g) to
zero.

In this case, the bundle morphismsvg1 ,g2: Tg2^ g2* Tg1

become gauge transformations of the canonical triv
bundle. From the fact that thevg1 ,g2 must preserve the con
nection@i.e., Eq.~20!#, and assuming the covering space
connected, we see that the gauge transformationsvg1 ,g2

must be constant gauge transformations.
We have reduced the data describing this set ofB field

gauge transformations to a set of mapsv: G3G→U(1).
From commutivity of diagram~21!, we see that thev define
a group 2-cocycle, i.e.,

vg1 ,g2g3vg2 ,g35vg1g2 ,g3vg1 ,g2.

So far we have reduced the data describing this set oB
field gauge transformations to a group 2-cocycle. More c
be said: there is still a residual set of gauge transformati
that must be taken into account. We can perform a cons
3-7
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ERIC SHARPE PHYSICAL REVIEW D 68, 126003 ~2003!
gauge transformation on each of the bundlesTg; this will
preserve the connection on each bundle. From Eq.~22!, we
see that these constant gauge transformations simply ch
the group 2-cocyclevg1 ,g2 by a coboundary.

Thus, we find that this set ofB field gauge transforma
tions is classified by elements ofH2

„G,U(1)….
It should be emphasized that the appearance

H2
„G,U(1)… above holds regardless of whether or notG acts

freely—nowhere have we made any assumptions concer
how the orbifold groupG acts.

D. Detailed classification of orbifold group actions

In the previous section we showed how elements
H2

„G,U(1)… describe at least some differences between
bifold group actions. ForU(1) gauge fields, we found tha
all orbifold group actions differed by some element
H1

„G,U(1)…—to what extent can the analogous statemen
made here?

Do all orbifold group actions onB fields differ by such
data described byH2

„G,U(1)…? We shall argue that unde
special circumstances, all orbifold group actions onB fields
differ by elements ofH2

„G,U(1)…, but in general there can
be additional differences.

Suppose the covering spaceX is connected, simply con
nected, andH2(X,Z) has no torsion. Let„Tg,J(g),vg1 ,g2

…

be a set of data defining the difference between two orbif
group actions. We know that the connectionsJ(g) on the
bundlesTg are flat, which means that for eachg, c1(Tg)
must be a torsion element ofH2(X,Z). However, we have
assumed thatH2(X,Z) has no torsion—so the bundlesTg

must all be topologically trivial, i.e.,c1(Tg)50 in H2(X,Z).
In addition, we assumed the spaceX is simply connected. On
a simply connected space, the only flat connections o
topologically trivial bundle are gauge trivial~gauge equiva-
lent to the zero connection!. So, if X is simply connected and
H2(X,Z) has no torsion, then the bundlesTg are all topo-
logically trivial and the connectionsJ(g) are all gauge
trivial. As noted in the last section, such gauge transform
tions of B fields are classified byH2(X,Z).

Thus, if the covering spaceX is simply connected and
H2(X,Z) has no torsion, then any two orbifold group actio
on aB field differ by a set of gauge transformations classifi
by an element ofH2

„G,U(1)….
Suppose now that these criteria are not met—X is not

simply connected, orH2(X,Z) has torsion. Then not al
B-field gauge transformations need be described by topol
cally trivial bundles Tg with gauge trivial connections
J(g)—if X is not simply connected, then even on a top
logically trivial bundle one can have flat connections whi
are not gauge trivial, and ifH2(X,Z) has torsion, then one
can have topologically nontrivial bundles with flat conne
tions.

As a result, in general it appears that there can be a
tional orbifold group actions onB fields, beyond those clas
sified byH2

„G,U(1)….
In retrospect, we should not have been surprised. C

sider the special case in whichG is freely acting and theB
field is identically zero everywhere. We can compute
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homology of the quotientX/G from the Cartan-Leray spec
tral sequence@16#, Sec. VII.7:

Ep,q
2 5Hp„G,Hq~X,Z!…⇒Hp1q~X/G,Z!

so ~loosely ignoring differentials for simplicity! we see that
H2(X/G,Z) ultimately receives contributions from not onl
H2(G,Z) @which dualizes toH2

„G,U(1)…] and H2(X,Z),
but also fromH1(G,H1(X,Z))—so if X is not simply con-
nected, then one should expect additional contributions
yond those determined byH2

„G,U(1)… andH2(X,Z). „For a
lengthier discussion of such cohomology calculations, a
how H2

„G,U(1)… enters them, see@5#.…
How should such additional orbifold group actions sho

up physically? In terms of twisted sector contributions
one-loop partition functions, for example, the orbifold gro
actions classified byH2

„G,U(1)… merely multiply twisted-
sector contributionsZ(g,h) by phases. We shall argue late
that these additional orbifold group actions do more than
multiply Z(g,h) by a phase—these will deeply changeZ(g,h)
itself, by changing the weighting of individual sigma mod
map contributions toZ(g,h) in a winding-number-dependen
fashion.

In fact, we shall argue in much greater detail elsewh
@15# that these ‘‘new’’ degrees of freedom are actually so
very old degrees of freedom, the so-called ‘‘shift orbifold
that play an important role in asymmetric orbifolds, but a
rather more boring in symmetric orbifolds.

E. Commentary

So far we have described the set of orbifold group actio
on B fields, described differences between any two orbifo
group actions on a fixedB field, unveiledH2

„G,U(1)…, and
also discovered some new and more subtle orbifold gr
actions.

A few general comments are in order.
First, the results of this section do not depend uponG

being freely acting. Everything we have described is
same forG having fixed points as forG freely acting—the
details of the action ofG on the base space are entire
irrelevant.

Second, the results of this section do not depend u
whether or notG is Abelian. We get the same results ifG is
non-Abelian.

Third, the results of this section do not depend up
whether or not theB field is flat or topologically trivial. In
principle, precisely the same remarks hold regardless
whether H50 or HÞ0 in H3(Z) on the covering space
However, if theB fields are described by a nonzero eleme
of H3(Z)—if the 1-gerbe is not topologically trivial—then
one must check whether an orbifold group action actua
exists, just as for orbifoldU(1) Wilson lines.

Now, we have describedH2
„G,U(1)… as arising in the

differences between two orbifold group actions, but that
not quite how people usually discuss it—people speak
‘‘turning on’’ discrete torsion. This is because, just as f
orbifold U(1) Wilson lines, in almost every case in physi
where orbifolds are studied, theB fields are such that there i
3-8
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DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
a canonical trivial orbifold group action. For example, just
for orbifold U(1) Wilson lines, if theB field is topologically
trivial, then there is a notion of a canonical trivial action, a
so we can define any orbifold group action in terms of
difference from the trivial action. Thus, in this case, we c
indeed turn on discrete torsion.

In general, however, one cannot always expect to h
such a canonical trivial lift. This matter is discussed furth
in @5#.

IV. DERIVATION OF TWISTED SECTOR PHASES

In this section we shall derive the phases that appea
twisted sector contributions to partition functions, as ori
nally described in@1#.

These phases appear precisely because the string s
model has a term

E B.

On the covering space, a contribution to a twisted sector
polygon with sides identified under the group action. T
group action that identifies the sides lifts to an action on
B field; that action contributes a phase to

expS E BD
and so the twisted sector contribution to the partition fu
tion comes with a phase.

We shall begin in Sec. IV A by discussing a simpler an
logue of this behavior for orbifold Wilson lines. In Sec. IV
we shall derive Vafa’s twisted sector phases for string o
loop partition functions, and in Sec. IV C we shall derive t
twisted sector phases for string two-loop partition functio

A. Analogue for orbifold U„1… Wilson lines

To root ourselves, we shall begin by reviewing the an
logue of twisted sector phases for orbifold Wilson lines. Co
sider computing a Wilson loop in some gauge theory@for
simplicity, we shall assume aU(1) gauge theory# on the
quotient space. Suppose furthermore that such a loop
scends from an open loop on the covering space, whose
are identified by the action of some elementg of the orbifold
groupG, as shown in Fig. 1. For simplicity we shall assum
the bundle on which the connection lives is topologica
trivial, and so has a canonical trivial orbifold grou
action—so we can specify any other orbifold group action
terms of a set of gauge transformations.

How do we calculate the value of the Wilson loop

expS E AD

FIG. 1. Lift of closed loop to covering space.
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while working on the covering space?
In order to see what to do, first consider the problem

calculating the holonomy of a vector connection, in the ca
that Aa is only defined in patches along the loop. In such
case, one splits the loop into segments, each segment
pletely contained in a patch in whichAa is defined. Then, the
holonomy is given by the product of exp(*A) from each
patch, separated by factors of the transition functions~evalu-
ated at the borders of the segments!. At the end of the day,
one can check that this holonomy is independent of the p
cise splitting of the loop into segments.

Now, we shall return to the problem of calculating Wilso
loops on covering spaces. First, there is a contribution to
Wilson loop from integrating the vector fieldA along the
path fromx to gx, i.e., there is a factor

expS E
x

gx

AD . ~23!

However, this factor is not the end of the story. A Wilso
loop ~i.e., a Wilson line around a closed loop! on the quotient
space will be invariant under gauge transformations, wher
the factor~23! does not appear invariant at all. To fix matte
use the relationship between the gauge fieldA at x and atgx,
i.e.,

Agx5g* Ax5Ax1d logwg

where wg is a U(1)-valued function defining a gaug
transformation—rather, defining the action of the orbifo
group.

To close the loop, we need to include the gauge trans
mation relatingAgx andAx . The correct value of the Wilson
loop, as calculated on the covering space, is

wx
gexpS E

x

gx

AD . ~24!

We shall follow a similar procedure in analyzing th
phase factor exp(*B) in twisted sectors. The naive integral o
B over a polygon in the covering space is not sufficient;
must add gauge transformations along the boundary, wh
in this case are Wilson lines along the boundary. Furth
more, forB fields, those Wilson lines along the boundary a
still not quite sufficient—we also need to account for b
behavior at the corners of the polygon.

B. One loop

The string orbifold one-loop partition function receive
contributions not only fromT2’s in the covering space, bu
also from configurations of strings that formT2’s on the
quotient space, but only form open polygons on the cover
space, as illustrated in Fig. 2.

Just as orbifold Wilson loops received an extra pha
when edges are identified by group actions, so ‘‘orbifold W
son surfaces’’

expS E BD

3-9
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ERIC SHARPE PHYSICAL REVIEW D 68, 126003 ~2003!
get boundary contributions due to the orbifold action.
other words, naively integratingB over the region indicated
will not give the phase over the cycle on the quotie
space—we must also include contributions induced by ga
transformations of theB field occurring at the boundaries a
the edges are glued together.

Before we begin the analysis, let us briefly pause to
view how one calculates the holonomy of aB field over a
surface, in the event that there is no two-form defined eve
where over the surface, but insteadB is only defined on
patches. To calculate the holonomy in this case, first tile
surface, in such a way that each tile is contained withi
patch on whichBa is known, and each component of ea
tile boundary is contained within an overlap of patches. Th
the holonomy of theB field is a product of several factors

~1! For each tile, there is a factor of exp(*Ba), computed
using theB field associated to the patch in which the tile lie

~2! For each component of each tile boundary, there
factor of exp(*Aab), whereBa2Bb5dAab.

~3! Finally, one can check that in order for the resulti
holonomy to be independent of the choice of tiling, one m
add factors of4 habg , evaluated at each point where multip
boundary components intersect.

At the end of the day, the result is independent of
choice of tiling. ~Note that, when applied to Wess-Zumin
Witten ~WZW! models, this gives us a means of understa
ing the exponential of the Wess-Zumino term that does
involve appealing to bounding three manifolds—after all, t
exponential of the Wess-Zumino term is just the holonomy
the pullback of theB field on the group manifold. The fac
that the Wess-Zumino term can change by integral amo
comes from possible gauge transformations of theB field.!
After reflection, it is clear that a closely related procedu
will allow us to calculate the orbifold Wilson surface holon
mies, as we shall now demonstrate.

1. Basic analysis

To be specific, consider the regionD shown in Fig. 2.
Sides 1 and 3 are identified byhPG, and sides 2 and 4 ar

4WheredAab5d log habg .

FIG. 2. A twisted sector contribution to the one-loop partiti
function.
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identified bygPG. As a technical aside, note that, regardle
of whetherG is Abelian, one sums over contributions fro
commuting pairs (g,h) in describing twisted sectors, pre
cisely so that the square shown in Fig. 2 will close at t
upper right.

For simplicity we shall assume that5 B[0. In this case,
since there is a canonical trivial action of the orbifold gro
on theB fields, we can define any other action of the orbifo
group on theB fields entirely in terms of the gauge transfo
mations that distinguish it from the canonical trivial actio
Let such a set of gauge transformations be denoted
bundlesTg with connectionL(g), and connecting bundle
mapsvg1 ,g2.

For the moment, we shall assume that the bundlesTg are
the canonical trivial bundle~so the vg1 ,g2 are all merely
gauge transformations, not bundle morphisms!, and the con-
nectionsL(g) are all gauge equivalent to the zero conne
tion. We shall examine the more general case after exam
ing this case in detail.

Now, under a gauge transformation by a bundleT with
connection6 L, theB field locally transforms as

B°B1dL

and so the holonomy ofB over some surfaceS transforms as

expS E
S
BD °expS E

S
BD expS E

]S
L D .

As a result, one naively would expect that the integral oB
over regionD would receive a contribution

expS E
x

hx

L~g!2E
x

gx

L~h! D ~25!

from the gauge transformations of theB field at the bound-
aries.~Relative signs are determined by a choice of orien
tion.!

However, Eq.~25! cannot be the correct answer. We me
tioned earlier that we are free to gauge transform any of
bundlesTg—but expression~25! is not invariant under gauge
transformations of the bundles.

In order to fix Eq. ~25! so as to get a gauge-invarian
result, we need to consider the gauge transformations a
corners. For example, the right end of side 3 in Fig. 2
gauge transformed byg* Th, whereas the top end of side 4
gauge transformed byh* Tg, and as noted elsewhere, the
need not be identical. Phrased differently, we need to fi
factors to add to expression~25! that soak up the gaug
transformations of

5Also assume that the associated gerbe is topologically trivial
6Previously we denoted the connection on bundleTg by J(g),

and usedL(g) to denote data used to define the action of t
orbifold group on a B field. At this point we are changing
notation—we will useL(g) instead ofJ(g) to denote the connec
tion on bundleTg.
3-10
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L~g!hx2L~g!x2L~h!gx1L~h!x

5h* L~g!x2L~g!x2g* L~h!x1L~h!x .

To fix these corner contributions, consider the following e
pression relatingvg,h and theL(g)’s:

L~gh!5L~h!1h* L~g!1d logvg,h.

By substracting this expression from the expression invo
ing vh,g, we find that

@L~h!1h* L~g!#2@L~g!1g* L~h!#

5d@ logvh,g2 logvg,h#.

Using this it is clear that the corrected one-loop phase c
rection is given by

~vx
g,h!~vx

h,g!21expS E
x

hx

L~g!2E
x

gx

L~h! D . ~26!

Our derivation leaves an overall constant factor ambiguo
this factor can be fixed by e.g., comparing toB-field holono-
mies onTn5Rn/Zn.

Under gauge transformations of the individual bund
Tg,

L~g!°L~g!1d logfg,

logvg,h° logvg,h1 logfgh2 logfh2h* logfg,

and it is straightforward to check that Eq.~26! is indeed
invariant under these gauge transformations.

How do the phases in Eq.~26! compare to the phase
listed in @1#? It is straightforward to check that they are t
same. Recall that in order to explicitly recover representa
cocycles, one maps the topologically trivial bundlesTg to the
canonically trivial bundle and gauge transformations
gauge-trivial connectionsL(g) to the zero connection. Th
remainingvg1 ,g2 are then constant gauge transformations
we evaluate expression~26! in the described gauge, whic
we are free to do since expression~26! is gauge invariant, we
see immediately that the phases associated to twisted se
are given by

~vg,h!~vh,g!21 ~27!

which are precisely the phases listed in@1# for a twisted
sector contribution from a pair (g,h).

Since the phase in Eq.~27! depends only ong andh, and
is independent of all other details of the polygon~such as the
location of corners, winding numbers of the sides, and
forth!, it is the same for all contributions toZ(g,h) , and so
multipliesZ(g,h) by an overall phase, precisely as observed
@1#.

In passing, note that the phases~27! are invariant under
changing the group cocycles by a group coboundar
indeed, they must be, otherwise we could not meaningf
associate phases to elements ofH2

„G,U(1)….
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To summarize our progress so far, we have just succ
fully derived the twisted sector phases appearing at one-l
in @1#.

2. Invariant analysis

Next, we shall back up and redo this derivation somew
more invariantly. In order to derive these phases, we took
bundlesTg to not only be topologically trivial, but actually
the canonical trivial bundle, so that the bundle morphis
vg1 ,g2 would be gauge transformations, which we used i
plicitly in writing Eq. ~26!. These phases can also be d
scribed more invariantly, which we shall now do.

To describe the phases more invariantly, note that the W
son line

E
x

gx

L~h!

defines a mapTx
h→Tgx

h 5g* Tx
h , so we can think of this Wil-

son line as defining an element of

~Tx
h!~

^ ~g* Tx
h!

and we can think of the difference of Wilson lines in Eq.~25!
as an element of

@~Tx
g!~

^ ~h* Tx
g!# ^ @~Tx

h!~
^ ~g* Tx

h!#~ ~28!

which is mapped by the composition of bundle morphis
(vh,g)21+vg,h to a scalar. So, if we interpret the naive di
ference of Wilson lines~25! as an element in Eq.~28!, then
we can write theT2 (g,h) twisted sector phase as

~vh,g!21+~vg,h!F E
x

hx

L~g!2E
x

gx

L~h!G . ~29!

Note that expression~29! makes no assumptions concernin
the nature of the bundles or the connections on them, un
expression~26!, and is well-defined under bundle isomo
phisms.

3. Treatment of the shift orbifold degrees of freedom

In Sec. III, we argued that in addition to elements
H2

„G,U(1)…, if the covering spaceX is not simply con-
nected, or if there are torsion elements inH2(X,Z), then one
can get additional possible gauge transformations ofB fields,
beyond those classified by elements ofH2

„G,U(1)…. Using
the methods of this section, we can now see how such ga
transformations would appear in considering orbifold pa
tion functions.

SupposeX is not simply connected, and one of th
bundlesTg defining a gauge transformation of theB field is
topologically trivial, but has a connection with nontrivial ho
lonomy around some cycle. From Eq.~26!, we see that in a
(g,h) twisted sector, the phase will no longer be mere
vg,h(vh,g)21, but will also receive a winding-number
dependent contribution. In other words, instead of mer
multiplying the (g,h) partition functionZ(g,h) by a phase,
the partition functionZ(g,h) will itself be altered.
3-11
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ERIC SHARPE PHYSICAL REVIEW D 68, 126003 ~2003!
In other words, a more detailed analysis shows that
principle, there can be more degrees of freedom than th
found in @1#, which do more than just multiply twisted secto
contributions by phases, but alter those twisted sector co
butions.

We will argue in @15# that these degrees of freedom a
not new, but rather are precisely shift orbifolds, which pl
an important role in asymmetric orbifolds, but are less int
esting in symmetric orbifolds. In retrospect, one should h
guessed that shift orbifolds would appear in our analysi
after all, conventional lore attributes shift orbifold degrees
freedom to theB field, in addition to discrete torsion.

C. Two loops

In this section we shall check our calculation of one-lo
phase factors, by repeating the same calculation at the
loop level. In particular, we shall explicitly verify factoriza
tion of the phase factors for two loops into a product
phase factors for one-loop diagrams.

We shall briefly review factorization, then we shall mo
on to the two-loop calculation.

1. Review of factorization

There is an old notion@17# that higher-loop string ampli-
tudes are constrained by one-loop string amplitudes. T
notion, known as factorization, was used in@1# to write down
the phase factors for twisted sector contributions to high
loop partition functions, in terms of the phase factors
one-loop partition functions.

For two-loop partition functions, the general idea can
expressed rather briefly. Since genus two Riemann sur
can degenerate into a pair of genus one Riemann surfa
separated by a long thin tube, as sketched in Fig. 3, and s
the twisted sector phase is independent of the moduli of
Riemann surface, one finds that the twisted sector phase
two-loop diagram must be a product of the twisted sec
phases for each of the two one-loop diagrams appearin
the degeneration.

More specifically, ife(g1 ,h1 ;g2 ,h2) denotes the twisted
sector phase of a two-loop diagram determined
g1 ,h1 ,g2 ,h2PG, and this diagram can degenerate into
product of one-loop diagrams determined by (g1 ,h1),
(g2 ,h2), with twisted sector phasese(g1 ,h1) ande(g2 ,h2),
then @1#

e~g1 ,h1 ;g2 ,h2!5e~g1 ,h1!e~g2 ,h2!. ~30!

FIG. 3. Degeneration of a genus two Riemann surface.
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In the following section we shall verify this factorizatio
condition explicitly, by calculating the twisted sector pha
e(g1 ,h1 ;g2 ,h2) for a two-loop partition function, and
checking that if this can degenerate into a product of t
one-loop contributions, then Eq.~30! holds.

In order to perform the calculation in the following se
tion, we shall assumeB[0, as in the one-loop case, so th
the action on theB field is completely determined by th
gauge transformations~of B fields! distinguishing the action
from the trivial action, and furthermore we shall restrict
gauge transformations determined by canonically triv
bundlesTg with gauge-trivial connectionsL(g), i.e., those
which correspond to elements ofH2

„G,U(1)….

2. Two loop calculation

The string orbifold two-loop partition function receive
contributions not only from genus two Riemann surfaces
the covering space, but also from configurations of strin
that form genus two Riemann surfaces on the quotient sp
but only form open polygons on the covering space, as ill
trated in Fig. 4.

If two sides of the octagon in Fig. 4 are labeled with t
same group element, it indicates that the two sides are id
tified under the action of that group element. For examp
sides 1 and 3 are related byg1PG, with orientations as
indicated by the arrows.

In order for the sides of the octagon shown in Fig. 4
close ~i.e., in order to have an octagon!, we must demand
that

h1g1
21h1

21g15g2
21h2g2h2

21 . ~31!

In addition, we want to be able to deform this two-loop di
gram into a pair of orbifold one-loop diagrams, determin
by the pairs (g1 ,h1), (g2 ,h2), connected by a long thin tube
In order for those one-loop diagrams to be well defined~i.e.,
in order for the limit described to exist at all!, we must de-
mand that

g1h15h1g1 and g2h25h2g2 .

FIG. 4. A twisted sector contribution to the two-loop partitio
function.
3-12
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DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
Note that these constraints trivially satisfy Eq.~31!. Also
note that these constraints do not imply that every elemen
the set (g1 ,h1 ,g2 ,h2) need commute with every othe
element—we have not imposed any sort of commutivity c
dition relatingg1 andg2, or h1 andh2, for example.

Following the same procedure as for the one-loop ca
first note that theB fields on the sides are related by gluing

B35B11dL~g1!

B45B21dL~h1!

B75B51dL~g2!

B85B61dL~h2!.

From these identifications, we naively calculate that
phase defined by orbifold identifications is

expS E
x

g1
21h1

21g1x
L~g1!1E

g1
21h1

21g1x

h1
21g1x

L~h1!

1E
h1g1

21h1g1x

h2
21x

L~g2!1E
h2

21x

g2h2
21x

L~h2! D . ~32!

As for the one-loop case, this cannot be the correct res
simply because it is not invariant under gauge transform
tions of the bundlesTg1,Th1,Tg2,Th2.

As for the one-loop case, we need to determine wha
add to the expression above to correct the phases and fi
corner contributions. Specifically, the connections at the
points of the integrals in the naive phase calculation ab
are given by

~g1
21h1

21g1!* L~g1!x2L~g1!x1~h1
21g1!* L~h1!x

2~g1
21h1

21g1!* L~h1!x1~h2
21!* L~g2!x

2~g2
21h2g2h2

21!* L~g2!x1~g2h2
21!* L~h2!x

2~h2
21!* L~h2!x .

Definey5g1
21h1

21g1x andz5h2
21x, then we can rewrite the

connections at the integral endpoints as

L~g1!y2~g1
21h1g1!* L~g1!y1g1* L~h1!y2L~h1!y

1L~g2!z2~g2
21h2g2!* L~g2!z1g2* L~h2!z2L~h2!z .

Next, using the relation

L~g!1g* L~h!2L~h!2h* L~g!5d~ logvg,h2 logvh,g!

and the assumption thatg1h15h1g1 and g2h25h2g2, we
find that the naive expression can be corrected to give
gauge-invariant phase
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~vy
g1 ,h1!~vy

h1 ,g1!21~vz
g2 ,h2!~vz

h2 ,g2!21

3expS E
x

g1
21h1

21g1x
L~g1!1E

g1
21h1

21g1x

h1
21g1x

L~h1!

1E
h1g1

21h1g1x

h2
21x

L~g2!1E
h2

21x

g2h2
21x

L~h2! D .

To evaluate the corrected expression above for the t
loop phase, gauge transform the connectionsL(g) to be
identically zero, so the gauge transformationsvg,h become
constant ~assuming the covering space is connected,
course!. Then we find that the correct expression for t
two-loop phase is given by

~vg1 ,h1!~vh1 ,g1!21~vg2 ,h2!~vh2 ,g2!21. ~33!

This expression is precisely the product of the phases for
two one-loop contributions determined by (g1 ,h1) and
(g2 ,h2). Thus, we have explicitly verified factorization a
two loops, by explicitly calculating the twisted sector pha
and noticing, at the end, that it factors, as desired.

Moreover, it is now patently obvious that by repeating t
same calculation at any loop order, we will continue to fi
factorization—so our calculation of twisted sector phas
obeys factorization at all loops.

V. DERIVATION OF ORBIFOLD GROUP ACTIONS
ON D-BRANES

A description of discrete torsion for D-branes was pr
posed by Douglas and co-workers in@3,4#. Specifically, he
proposed that turning on discrete torsion in a D-brane o
fold could be understood as replacing the honest represe
tion of the orbifold group on the bundle on the D-brane, w
a projective representation. This description is extrem
natural—projective representations are classified by the s
group cohomology group as discrete torsion, nam
H2

„G,U(1)…—and the author further justified his propos
by, for example, showing how the twisted sector phases
@1# could be derived from these projective representatio
The association between discrete torsion and projective
resentations was further justified in@18#, which gave addi-
tional evidence for the relationship.

In this section we shall give a first-principles derivation
these projective representations proposed in@3,4#. We shall
also liberally use the conventions, notation, and gene
methods of Sec. III.

In a nutshell, because gauge transformationsB°B1dL
are accompanied byA°A1L on a D-brane worldvolume
in the presence of nontrivial gauge fields, the bundle on
worldvolume of the brane is twisted, and one is rapidly led
discover that orbifold group actions on such twisted bund
are ~appropriately! projectivized. Such twisting has bee
pointed out explicitly in @19#, and has also been used
describe K theory inB field backgrounds~Ref. @20#, Sec.
5.3!. See also@21# for another recent discussion of this twis
ing of D-brane gauge bundles by theB field. Twisted sheaves
have appeared in@22# as part of an attempt to work out a
3-13
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ERIC SHARPE PHYSICAL REVIEW D 68, 126003 ~2003!
appropriate version of the generalized McKay corresp
dence@23# in the presence of discrete torsion.

In terms of the description ofB fields involving stacks
~see for example@6#!, such twisted sheaves should be und
stood as special kinds of sheaves on stacks@24#. We shall not
use such methods here, however.

For simplicity, we shall assume that theB field back-
ground is topologically trivial~i.e., that the curvatureH is
zero in integral cohomology!. Our methods are very straigh
forward to generalize toHÞ0, but the results are messie
and we see no need to include the generalization in
paper.

A. General analysis

Recall that in Sec. III we describedB fields in terms of a
collection of data (Ba,Aab,habg), where

Ba2Bb5dAab

Aab1Abg1Aga5d loghabg

dhabg51.

As in Sec. III, we shall work on a ‘‘good invariant’’ cove
$Ua%, meaning a cover that is well behaved with respec
the action of the orbifold groupG.

Next, consider the gauge fields7 A on a set ofN coincident
D-branes. Recall that in D-branes, gauge transformation
the B field and of the gauge fields are linked:B°B1dL
inducesA°A1IL @whereI denotes the unit matrix, gene
ating the overallU(1) of U(N)].

In the present case, this means that since theB fields are
only defined on local charts, the gauge fieldsA must also
only be defined on local charts in general, with overla
partially determined by the same gauge transformations
lating theB fields on overlaps@19#. Specifically, to describe
the gauge fields on a D-brane in the presence ofB fields as
above, we supplement the data forB fields by data for local
U(N) gauge fieldsAa as

Aa2gabAbgab
212d loggab

215AabI ~34!

gabgbggga5habgI ~35!

following @19#. As before,I is the unit matrix, generating th
diagonalU(1) in U(N), gab is an invertibleN3N matrix
that would describe transition functions for the bundle if t
B field were completely trivial, andAa is a localU(N) gauge
field on the D-brane. Also note we are usingd loggab

21 as
shorthand forgabdgab

21 .

7Unfortunately, we shall useA to denote both the gauge field o
the N D-branes, as well as part of the Cˇ ech–de Rham cocycle
defining theB fields. These are distinct objects; our notation
unfortunate. The gauge fields will be associated with single
ments of the cover$Ua%, and so we shall usually denote the gau
fields by Aa. The Čech–de Rham cocycle elements live on inte
sectionsUaùUb5Uab , and so we shall denote them byAab.
Hopefully the reader will not become too confused by this.
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Now, ordinarily to describe how an orbifold groupG acts
on a bundle, we would demand

g* gab5~ga
g !~gab!~gb

g !21

for someN3N matricesga
g . However, because of Eq.~35!,

we have to be more careful. From studying the pullback
Eq. ~35! by an elementgPG, we find

g* @~gab!~gbg!~gga!#5~g* habg!I 5habgnab
g nbg

g nga
g I

where theng are Čech cochains tha tappeared in Sec. II D
describing the orbifold group action on theB fields them-
selves. From the above, we see that the most general ex
sion for g* gab is given by

g* gab5@~ga
g !~gab!~gb

g !21#@~nab
g !I # ~36!

where thega
g are some locally definedU(N) adjoints. In

short, we find that our naive expression forg* gab is twisted.
From expressing (g1g2)* gab in two different ways~fol-

lowing the general self-consistency bootstrap outlined
Sec. III!, we find a constraint on thegg:

~ha
g1 ,g2!~ga

g1g2!5~g2* ga
g1!~ga

g2!. ~37!

In fact, Eq.~37! above already tells us that ordinary lift
of orbifold group actions must be replaced by projective lif
as hypothesized in@3,4#, but we shall finish working out the
orbifold group action on the D-brane gauge fields before e
phasizing this point in detail.

Next, write

g* Aa5u~g!aAa@u~g!a#211A~g!a

for someU(N) adjointsu(g)a, A(g)a. This equation is not
a constraint—it is general enough to describe any poss
g* Aa, by varyingu(g)a andA(g)a. We are merely writing
g* Aa in a form that will yield more understandable resul
following the self-consistent bootstrap of Sec. III. By pullin
back both sides of Eq.~34! by gPG and examining the re-
sult, we can determine bothu(g)a andA(g)a:

u~g!a5ga
g ~38!

A~g!a5~ga
g !d~ga

g !211IL~g!a ~39!

whereL(g)a is a set of local one-forms that appeared in S
III in defining the action of the orbifold group on theB fields
themselves.

To summarize, we have found that the orbifold group a
tion on the U(N) gauge fields on the worldvolume of
D-brane is described by

g* Aa5~ga
g !Aa~ga

g !211~ga
g !d~ga

g !211IL~g!a

g* gab5~nab
g !@~ga

g !~gab!~gb
g !21#

~ha
g1 ,g2!~ga

g1g2!5~g2* ga
g1!~ga

g2!

-

3-14
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DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
whereL(g) andnab
g were defined in Sec. III, in defining th

action of the orbifold group on theB fields themselves.
As we shall work out explicitly below, the data abov

describes the projectivized orbifold group actions descri
in @3,4#, but in considerably greater generality.

B. Explicit comparison to results of Douglas

The result above is considerably more general than
appearing in@3,4#. For purposes of comparison, let us take
moment to specialize to their circumstances. The papers@3,4#
considered orbifolds of D-branes in backgrounds with v
ishingB fields, where the D-branes had support on some
spaceRn, and had a topologically trivial bundle on the
worldvolume. Since theB fields are completely trivial, we
can takeBa50, Aab50, andhabg51.

Since theB fields are completely trivial, it is meaningfu
to speak of an honest bundle on the worldvolume of
D-brane—transition functions close on overlaps, not just
to a phase. Another assumption made in@3,4# is that this
bundle on the D-brane worldvolume is topologically trivia
Since it is topologically trivial, we can take thegab51, and
replace the locally defined gauge fieldsAa with a single
global U(N) gauge fieldA. In addition,@3,4# make the fur-
ther assumption that the gauge fieldA is constant, so in de
fining the action of the orbifold group, it suffices to assum
that gg is constant.

Since theB fields are trivial~in fact, vanishing!, we can
describe any orbifold group action on theB fields by speci-
fying the difference between that action and the canon
trivial action. In other words, since theB field background is
trivial, we can talk about orbifold group actions specified
elements ofH2

„G,U(1)… ~whereas, in general, only the di
ference between two orbifold group actions could be
scribed in this fashion!.

An orbifold group action specified by an element
H2

„G,U(1)… can be specified by a set of topologically trivi
bundlesTg with gauge-trivial connectionL(g), and bundle
mapsvg1 ,g2. As noted earlier, without loss of generality w
can take all the bundlesTg to be the canonical trivial bundle
and all the connectionsL(g) to all be identically zero, so the
vg1 ,g2 become constant gauge transformations of the tri
bundle, satisfying the group 2-cocycle condition.

In terms of the data describing the orbifold group acti
on the D-brane worldvolume gauge fields, this means we
take thenab

g 51, and theha
g1 ,g2 to be functions, i.e.,

ha
g1 ,g25hb

g1 ,g2 on UaùUb

and in fact constant functions, satisfying the group 2-cocy
condition

~hg1 ,g2g3!~hg2 ,g3!5~hg1 ,g2!~hg1g2 ,g3!.

Since we assumed theB fields to be completely trivial, and
we are describing all lifts in terms of gauge transformatio
combined with the canonical trivial lift~that exists in this
case!, the functionshg,h coincide with constant functions w
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have labeledvg,h elsewhere—in other words, the 2-cocycl
hg,h are the same cocycles as those describing the rele
element ofH2

„G,U(1)….
We can now rewrite the action of the orbifold group o

the D-brane gauge fields, in this special case, as

g* A5~gg!A~gg!21

~hg1 ,g2!~gg1g2!5~gg1!~gg2!

which is precisely the projectivized orbifold group actio
described in@3,4#.

In recovering the form of the orbifold group action d
scribed in@3,4#, we made the same simplifying assumptio
that appeared in@3,4#—namely, that the D-branes reside o
Rn, and the bundle on the D-brane worldvolume is topolo
cally trivial, with constant gauge fieldA. However, our re-
sults from the preceding section apply in much more gen
circumstances than these. Put another way, we have
shown how to derive the description of discrete torsion
D-branes given in@3,4#, but our results apply in far greate
generality than that used in@3,4#.

C. Notes on shift orbifolds

In Sec. III we pointed out that there are additional orb
fold group actions onB fields, in addition to those classifie
by elements ofH2

„G,U(1)…, which correspond to the so
called shift orbifolds@15#. As noted in Sec. IV, these new
actions do considerably more than just multiply twisted s
tor partition functionsZ(g,h) by a phase; they multiply indi-
vidual contributions toZ(g,h) by distinct phases, and so the
deeply alterZ(g,h) .

How do these extra orbifold group actions appear
D-branes? The answer is implicit in the orbifold group acti
given at the end of Sec. V A above. Our results on D-bra
actions made no assumptions regarding the form of the o
fold group action on theB fields. In the special case of orb
fold group actions on trivialB fields arising from elements o
H2

„G,U(1)…, we re-derived the results of@3,4#; but our
methods apply in general. We will describe the resulti
group actions on D-branes in more detail in@15#.

VI. NOTES ON VAFA AND WITTEN’S WORK

In @2# Vafa and Witten analyzed the inter-relationship b
tween discrete torsion and Calabi-Yau moduli. Specifica
they considered deformations of the orbifoldsT6/(Z23Z2)
andT6/(Z33Z3) both with and without discrete torsion. I
both cases, turning on discrete torsion had the effect of
moving most elements ofHorb

1,1 from the massless spectrum
while adding new elements toHorb

2,1 . In both cases they con
struct certain8 families of Calabi-Yau deformations of th
orbifolds, in which the elements ofHorb

2,1 form a subset of the
possible polynomial deformations. Furthermore, they arg

8For a more comprehensive description of Calabi-Yau deform
tions and resolutions of such orbifolds than was provided in@2#, see
@26#, Sec. 6.
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that the ‘‘allowed’’ complex structure deformations~those
linked to elements ofHorb

2,1 ) cannot fully resolve the space
but always leave isolated singularities. Finally, they
tempted to make sense out of these results by conjectu
the existence of some sort of ‘‘discrete torsion for conifold
the isolated singularities left after desingularizing as much
possible.

How can one understand this behavior, in terms of
picture of discrete torsion? So far in this paper we have
scribed discrete torsion as the action of the orbifold group
the B fields. In order to understand Ref.@2# we need to un-
derstand quotients ofB fields, directly on singular space
and their behavior under deformation.

As always, there are many close analogues to prope
of orbifold Wilson lines. We begin in Sec. VI A by describ
ing the analogues of@2# in orbifold Wilson lines, where the
analysis is vastly simpler. Then, in Sec. VI B we outline,
general terms, how the results of@2# can be understood in th
framework we have presented, as~as always! an analogue for
B fields of behavior ofU(1) gauge fields.

We shall not attempt to give a detailed first-principl
derivation of the results in@2#, but rather shall only outline
general ideas. Detailed derivations are deferred to later w

A. Analogue for orbifold Wilson lines

In this paper we have often discussed orbifold Wils
lines on smooth covering spaces. Understanding orbi
Wilson lines on singular quotient spaces is considera
more subtle.

To begin, consider~@25#, Chap. 14! a trivial rankn com-
plex vector bundle onC2. Let Z2 act onC2 in the standard
fashion, and combine theZ2 action on the base with a gaug
transformation that maps fibers to minus themselves, i.e

~z1 ,z2 , . . . ,zn!°~2z1 ,2z2 , . . . ,2zn!.

Now, consider the quotient space. OverC2/Z2, we have
some fibration, the quotient of the total space of the triv
Cn vector bundle. Specifically, over smooth points
C2 /Z2, we recover the originalCn fiber, but over the singu-
larity on C2/Z2, the fiber isCn/Z2.

In other words, the quotient of a bundle is not a bundle
general. We can understand this matter in somewhat
technical terms also. Consider quotientingC2 as above. Con-
sider Wilson loops enclosing the origin inC2/Z2. At least for
those loops descending from open strings onC2 with ends
identified by theZ2, there will be a nontrivial holonomy
about the loop. However, as we contract the loop to the
gin, the holonomy remains nonzero—so something unus
must be going on at the origin. Since we started with a
connection on the cover, the connection must be flat on
quotient space~at least, on the smooth part of the quotien!.
SinceC2/Z2 is contractible, if there were an honest ever
where flat bundle on the space, any Wilson loop would
forced to be zero. Since there are nonzero Wilson loops,
are forced to conclude that our bundle must be behav
badly at the origin.
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In order to understand orbifold Wilson lines on singul
quotient spaces, one must work with more general obje
than mere bundles. On complex surfaces, the relevant ob
turn out to be reflexive, non-locally-free sheaves. On
smooth variety, a reflexive sheaf will be locally free up
complex codimension three, but on a singular variety, a
flexive sheaf can be locally free at lower codimension, p
vided the failure of local freedom occurs over the singula
ties. ~As reflexive sheaves are not used very widely in t
physics literature, we have included an appendix giving g
eral background information on reflexive sheaves, as wel
an example—a derivation of a reflexive rank 1 sheaf appe
ing as aZ2 quotient ofC2 with nontrivial orbifold Wilson
lines on the trivial line bundle overC2.!

If someone did not know about reflexive sheaves, a
tried to understand the objects living on singular spaces, t
would probably try to think of them as some analogue
orbifold Wilson lines. For example, there exist9 reflexive
non-locally-free sheaves at conifold singularities. Someo
not acquainted with reflexive sheaves might try to label su
objects as ‘‘orbifold Wilson lines for conifolds.’’

What happens to these reflexive sheaves when the s
is resolved? On a complex surface, a reflexive sheaf will
to a locally free sheaf, i.e., a bundle, on the resolved sp
The new bundle will typically have nonzero curvature~non-
zeroc1) associated with the exceptional divisor of the res
lution. This can be seen directly in the ADHM/ALE con
struction, and incidentally forms one way of understandin10

the classical McKay correspondence.
One can also understand this resolution in less techn

terms. Consider our previous example of a quotiented bun
overC2/Z2. We remarked earlier that we have nonzero W
son loops, when we naively would have expected all Wils
loops to be zero. Now, when we blow up the singularity, w
can lift the Wilson loops to the cover. If we were to have
everywhere flat bundle on the resolution, then sincep150
and H2(Z) has no torsion, no Wilson loop can b
nonzero—a contradiction. So, in order to avoid contradict
the existence of nonzero Wilson loops, we are forced to c
clude that there must be nonzero curvature at some pl
and as our connection was flat away from the singularity,
curvature must live on the exceptional divisor of the reso
tion. Phrased more naively, quotients of bundles will ha
nonzero curvature concentrated at curvature singularitie
one turns on orbifold Wilson lines.

9These exist mathematically, but whether they are relevant
physics is unknown.

10The classical McKay correspondence is a map from represe
tions ofG, a finite subgroup ofSU(2), to elements of the degree

cohomology ofC2/G̃. Here, we see that directly, a representation
G defines an action of the orbifold group on the trivial bundle
C2, and the corresponding element of degree 2 cohomology isc1 of
the bundle appearing as a lift of the reflexive sheaf on the quot
C2/G. This way of thinking about McKay is essentially due
@27,28#.
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B. B fields on singular spaces

We shall not attempt in this paper to give a thorou
derivation of the results of@2#, but in general terms, thei
results should now seem much more natural.

Just as a quotient of a bundle need not be a bundle,
quotient of a 1-gerbe~a formal structure, analogous t
bundles, for whichB fields are connections! need not be a
1-gerbe. Instead, on a singular variety, one would mer
expect to have algebraic stacks~analogues of sheaves! which
fail to be gerbes over certain quotient singularities.

For example, the discrete torsion for conifolds observ
by the authors of@2# surely corresponds to some algebra
stack on a conifold singularity that fails to be a gerbe loca
over the singularity, a precise analogue of the reflex
sheaves on conifolds that we labeled orbifold Wilson lin
for conifolds.

We can justify this claim in elementary terms as follow
Recall in studying our example onC2/Z2, we concluded that
because of the existence of nonzero Wilson loops on
quotient space, the resolved space must have nonzero c
ture supported at the exceptional divisor. Here, we hav
very similar situation. Here we have nonzero Wilson surfa
@i.e., exp(*B)] over Riemann surfaces in the quotient spac
C3/(Zn3Zn), as measured by the twisted sector pha
worked out in Sec. III. Just as for orbifold Wilson lines, th
is only sensible here because the spaces have singulariti
we resolve the singularities, in order to get a consistent
ture we must generate nonzero curvature.

Now, in very general terms, there are two general way
resolve singularities:

~1! We can deform the Ka¨hler structure, by blowing up o
making a small resolution.

~2! We can deform the complex structure.
In the first case, although we mentioned that we ne

nonzero curvature in order to make sense out of the Wil
surfaces present on the quotient, in general one does
generate any natural 3-cycle where the curvatureH could be
supported, since blowups and small resolutions add ev
dimensional cycles. Thus, we are naturally led to the con
sion that, in general terms, resolutions of this class mus
obstructed—we need to turn on curvatureH somewhere to
account for the nonzero Wilson surfaces, but typically o
does not have any natural options to do so. Indeed, in@2# it
was noted that nontrivial Ka¨hler deformations are remove
from the massless spectrum.

In the second case, one can often get 3-cycles. For
ample, if we smooth a conifold singularity by deforming th
complex structure, then we are typically led to a new 3-cyc
So, in this case one expects to typically be able to resolve
space without contradiction, and generate nonzero curva
H on new 3-cycles.

Now, nonzero curvatureH ~in de Rham cohomology! on a
Calabi-Yau is inconsistent with supersymmetry—if a def
mation involves turning onH, then that deformation will
break supersymmetry, and so that deformation is lifted fr
the moduli space of supersymmetric vacua. Indeed, in@2# it
was found that complex structure deformations which co
pletely resolved the space, and left no singularity, were a
obstructed.
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This explanation of how Calabi-Yau moduli of typeH2,1

could be obstructed was suggested in@2#, Sec. 2.3 as an
explanation of their results, though they had no idea whyH
should be generated. In the present context, this is natu
understood.

So, we see that if we try to deform an orbifold with no
zero discrete torsion~which implies nonzero Wilson surface
on the quotient!, then logical consistency and the demands
supersymmetry place strong constraints on the structur
the moduli space of vacua, which in general terms is con
tent with @2#.

As mentioned earlier, we shall not attempt a thorou
derivation of the results of@2# in this paper, but rather sha
defer such detailed considerations to future work. For
purposes of this paper, we are content to merely outline h
the results of@2# naturally fit into the general picture we hav
described.

VII. NOTES ON LOCAL ORBIFOLDS

A point usually glossed over in physics discussions
orbifolds is the possibility of local orbifold degrees of fre
dom, as distinct from global orbifold degrees of freedom. W
shall take a moment to very briefly discuss local orbifol
and discrete torsion, before concluding.

What are local orbifold degrees of freedom? Consid
forming a global orbifold, say,T4/Z2. In forming the global
orbifold, if we are doing physics, then we usually get
choose some number of degrees of freedom—orbifold W
son lines and discrete torsion, for example. Now, we can a
examine each singularity locally. In the present case, e
singularity is locallyC2/Z2. If we forget about the globa
structure of the orbifold and just work locally, then one is l
to associate orbifold degrees of freedom to the singulari
locally. We refer to such local degrees of freedom as lo
orbifold degrees of freedom.

How do local orbifold degrees of freedom differ from
global orbifold degrees of freedom? For simplicity, consid
a U(1) bundle with connection onT4, and quotient byZ2. If
we turn on the nontrivial orbifoldU(1) Wilson line, then we
find that eachC2/Z2 has a nontrivial ‘‘twist’’ ~technically,
locally we have a reflexive nonlocally-free rank 1 sheaf!. So,
the global orbifold gives rise to either a twist at every sing
larity, or no twists at any singularity.

However, there are additional options present if we co
sider the orbifold to be a local orbifold. We can consisten
twist at groups of eight of the sixteen singularities~techni-
cally, in addition to reflexive non-locally-free sheaves th
fail to be locally free at every singularity or nowhere, the
are also reflexive non-locally-free sheaves that fail to be
cally free at some but not all singularities!. ~See@29#, Sec.
VIII.5 or @30# for the mathematical result.!

One can now ask: does discrete torsion have local o
fold degrees of freedom? Previously, when discrete tors
was known merely as some mysterious discrete degre
freedom appearing in orbifolds, the answer was not know

Now that we have a purely mathematical understanding
discrete torsion, we can address this matter. In general te
it is now clear that there should exist local orbifold degre
3-17
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of freedom for discrete torsion. We shall not attempt a
counting of such local orbifold degrees of freedom here
rather, our purpose was merely to emphasize the impor
but usually neglected point that local orbifold degrees
freedom exist.

VIII. CONCLUSIONS

In this paper we have given a complete geometric exp
nation of discrete torsion, as the choice of orbifold gro
action on theB fields. Specifically, we have shown how th
group cohomology groupH2

„G,U(1)… arises, derived the
phases associated with twisted sector contributions to st
loop partition functions, derived Douglas’s description@3,4#
of orbifold group actions on D-branes as projective repres
tations of the orbifold group, and outlined how the results
Vafa and Witten@2# fit into this general framework. We hav
also briefly discussed shift orbifolds, which are degrees
freedom associated with theB field, beyond those classifie
by H2

„G,U(1)…, and explained how these appear physica
in terms of twisted sector contributions to partition functio
and in terms of D-brane actions.

Nowhere in all this did we assume that the orbifold gro
G acts freely; nor do we assume thatG is Abelian. We do not
even assume that the curvature of theB fields vanishes. Our
results hold in generality.

To put a different spin on these matters, we have give
completely geometric description of discrete torsion.A pri-
ori, discrete torsion has nothing to do with string theo
Discrete torsion is a property of defining orbifold group a
tions onB fields, and can be understood in a purely ma
ematical context, without any reference to string theo
Now, at the end of the day, we can calculate twisted se
contributions to partition functions, as well as check Do
glas’s proposed orbifold group action on D-branes, so we
certainly derive physical results. However, it should be e
phasized that discrete torsion is not some special, ‘‘inh
ently stringy’’ property of string theory or conformal fiel
theory, but rather has a straightforward and purely ma
ematical understanding.
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APPENDIX: REFLEXIVE SHEAVES ON QUOTIENT
SPACES

In Sec. VI A, we mentioned that when orbifolding a spa
with a bundle, the resulting object living on the quotie
space need not be a bundle, and in the context of com
algebraic geometry, will be a reflexive sheaf. In this app
dix we elaborate on these remarks, as reflexive sheave
not commonly understood in the physics literature. We be
with a short overview of reflexive sheaves, and then exp
itly derive the reflexive sheaf appearing in the specific
ample of the quotientC2/Z2.
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1. Technical notes on reflexive sheaves

In this appendix we shall give some technical notes
reflexive sheaves.

A reflexive sheaf is a sheafE which is isomorphic to its
bidual: E>E ~~. Reflexive sheaves include locally fre
sheaves~i.e., bundles! as a special subclass.

On smooth varieties, reflexive sheaves are locally free
to ~complex! codimension three. Thus, for example, on
smooth surface, all reflexive sheaves are locally free. A
on a smooth variety, all reflexive rank 1 sheaves are loc
free.

On singular varieties, both of the statements above f
On a singular surface, one can have reflexive non-loca
free sheaves; the sheaves fail to be locally free over the
gularities. One can also have reflexive non-locally-free ra
1 sheaves on singular varieties.

On Noetherian normal varieties~i.e., most of the varieties
that physicists are likely to encounter in practice!, we can
describe reflexive rank 1 sheaves in terms of divisors, jus
line bundles on smooth varieties can be described in term
divisors. Roughly speaking, a general divisor on a Noet
rian normal variety is known as a ‘‘Weil’’ divisor, whereas
divisor that defines, not just a reflexive rank 1 sheaf, bu
line bundle, is known as a ‘‘Cartier’’ divisor.11

For example, on the singular affine spaceC2/Z2, there is
precisely one~equivalence class of! Weil divisor that is not
Cartier. If we write

C2/Z25Spec C@x,y,z#/~xy2z2!

then the non-Cartier Weil divisor is$x5z50%. We shall de-
note this divisor byD. Then, the associated reflexive she
O(D) @and alsoO(2D)] is not locally free.

AlthoughD is not Cartier, it can be shown that the divis
2D is Cartier, so for example, the reflexive sheav
O(2D) and O(D) are related by tensoring with a~trivial!
line bundle, and so are in the same equivalence class of
divisors.

Similarly, the divisor$y5z50% is not Cartier, but it is
related toD by a Cartier divisor, and so lies in the sam
equivalence class of Weil divisors.

Reflexive rank 1 sheaves can be somewhat more su
than line bundles. For example, ifD1 and D2 are a pair of
Cartier divisors, then as everyone knows,

O~D1! ^ O~D2!5O~D11D2!.

In other words, the tensor products of the line bundles as
ciated to~Cartier! divisorsD1 , D2 is the line bundle associ
ated to~Cartier! divisor D11D2. However, ifD1 andD2 are
not both Cartier divisors, then this relation need not ho
~@31#, p. 283!. In other words, ifD1 and D2 are two Weil

11Experts will note we are being quite sloppy—our description
Cartier divisors really corresponds to the image of Cartier divis
in the space of Weil divisors. Our abbreviated description will s
fice for the purposes of this appendix.
3-18



re
c

by
I

ei
a

a

In

al

n

r

n
1

dis-

to

.
ee

DISCRETE TORSION PHYSICAL REVIEW D68, 126003 ~2003!
divisors, then in general the reflexive rank 1 sheavesO(D1),
O(D2) are not related toO(D11D2) as above:

O~D1! ^ O~D2!ÞO~D11D2!.

The essential difficulty is that the tensor product of two
flexive sheaves need not be reflexive—the tensor product
contain torsion, for example. We can fix this problem
bidualizing the left-hand side of the expression above.
other words, a statement that is true for all Weil divisorsD1 ,
D2, not just Cartier divisors, is

@O~D1! ^ O~D2!#~~5O~D11D2!.

A more detailed discussion of the relationship of W
versus Cartier divisors, in the context of toric varieties, c
be found in@10#.

2. Reflexive sheaves and orbifold Wilson lines

In the text we claimed that one can directly check th
possible quotients of the structure~trivial rank one! sheaf on
C2 are precisely the possible reflexive sheaves onC2/G.
Here we shall work this out in detail for the caseG5Z2.

Let R denote the ringC@x,y#, and letRG denote the ring
of G invariants, namely

RG5C@x2,y2,xy#.

Let M denote theR module defining the structure sheaf.
other words,M5R. ~The distinction between the moduleM
and the ringR shall be important when discussing nontrivi
lifts of G.!

First, consider the case of the trivial lift of theG5Z2
action fromC2 to the structure sheaf. Then the moduleMG

of G invariants is isomorphic~as anRG module! to the trivial
RG module, namely

MG5C@x2,y2,xy#.

In this case,MG defines the structure sheaf on the quotie
spaceC2/G. This sheaf is locally free.
,’’
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8
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Now, consider the nontrivial lift of theG5Z2 action from
C2 to the structure sheaf onC2. In order to describe the
action of this lift on the moduleM, view M as a freely gen-
eratedR module, and let the~single! generator ofM be de-
noted bya. For the trivial lift, we implicitly assumed thatG
mappeda°a. For the nontrivial lift, we takea°2a. The
RG module ofG invariants ofM is now a module with two
generators, namelyxa andya, and one relation

~xy!•~xa!5~x2!•~ya!.

The moduleMG is not freely generated, and in particula
does not define a locally free sheaf on SpecRG5C2/G. How-
ever, the moduleMG does define a reflexive rank 1 sheaf.

Thus, we see explicitly that the nontrivial orbifold Wilso
line on C2/Z2 describes a reflexive non-locally-free rank
sheaf onC2/Z2.

The reflexive, non-locally-free sheaf onC2/Z2 can be
~non-uniquely! lifted to a sheafS on the resolution ofC2/Z2,
such that~essentially! (p* S)~~ is the nontrivial reflexive
sheaf onC 2/Z2.

For those readers acquainted with toric varieties, the
cussion above can be understood torically. DescribeC2/Z2
by a cone with edges

v15~2,1!

v25~0,1!

and let D1 ,D2 denote the toric divisors corresponding
edgesv1 ,v2, respectively. One can then check explicitly~us-
ing, for example, methods discussed in@10#! that the mod-
ules describing the reflexive rank 1 sheavesO(6D1) and
O(6D2) are all isomorphic~as modules, ignoring theT
grading!, and in particular are isomorphic to the moduleMG

of invariants from the nontrivialZ2 lift, as described above
@Note that since there is only one reflexive non-locally-fr
sheaf, the sheavesO(1Di) and O(2Di) are necessarily
isomorphic.#
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