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In this article we explain discrete torsion. Put simply, discrete torsion is the choice of orbifold group action
on theB field. We derive the classificatiod?(I",U(1)), the twisted sector phases appearing in string loop
partition functions, Douglas’s description of discrete torsion for D-branes in terms of a projective representa-
tion of the orbifold group, and outline how the results of Vafa and Witten fit into this framework. In addition,
we observe that additional degrees of freedémown as shift orbifoldsappear in describing orbifold group
actions onB fields, in addition to those classified ?(I',U(1)), and explain how these degrees of freedom
appear in terms of twisted sector contributions to partition functions and in terms of orbifold actions on
D-brane worldvolumes. This paper represents a technically simplified version of prior papers by the author on
discrete torsion. We repeat here technically simplified versions of results from those papers, and have included
some new material.
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[. INTRODUCTION this gives rise to discrete torsion, as we shall work through in
detail in this paper. Now, string theory has other fields with
Historically discrete torsion has been a rather mysteriougiauge invariances—for example, in eleven-dimensional su-
aspect of string theory. Discrete torsion was originally dis-pergravity there is a three-form potential with a gauge invari-
covered 1] as an ambiguity in the choice of phases to assigrance analogous to that of tlifield, and so one expects to
to twisted sectors of string orbifold partition functions. Al- have orbifold degrees of freedom associated to that field
though other work has been done on the subjset, for also. We shall discuss analogues of discrete torsion for the
example,[2—4]), no work done prior td5,6] has succeeded other tensor-field potentials of string theory{ifl. In another
in giving any sort of genuinely deep understanding of dis-upcoming papef8] we shall discuss discrete torsion in per-
crete torsion. In fact, discrete torsion as sometimes been rédrbative heterotic strings.
ferred to has an inherently stringy degree of freedom, with- It should be emphasized that we have presented a first-
out any geometric analogue. principlesexplanationof discrete torsion if5,6] and in this
In this paper(a followup to[5,6]) we shall describe a paper—not some observations on discrete torsion, not some
purely mathematical way of understanding discrete torsiongalculations related to discrete torsion, but an explanation. It
and will show explicitly how our description gives rise to should also be emphasized that this explanation is purely
Vafa’s phases in twisted sector contributions to partitionmathematical in nature—although we can certainly check
functions, to projective representations of orbifold group acphysical consequences, at its heart discrete torsion is a natu-
tions on D-branes, and to other physical manifestations ofal mathematical consequence of haviBdfields. Discrete

discrete torsion. torsion has nothing at all to do with string thegrgr se and
The description of discrete torsion we present here is thés not “inherently stringy” in any sense.
same as that we previously presented%6]. This paper We begin in Sec. Il with a discussion of orbifold(1)

differs in that we have vastly reduced the level of technicaWilson lines—i.e., a discussion of counting orbifold group
complication that was present [15,6], we explicitly work  actions onU(1) gauge fields. Although the technical details
out the details of some computations merely referred to irfor orbifold group actions o fields are considerably more
[5,6], and also work out some new results not present ircomplicated and subtle, the basic principles are the same for
[5,6], such as a derivation of the projectivized group actionsB fields as forU(1) gauge fields, and our treatment Bf
used by[3,4] to describe orbifold group actions on D-branesfields parallels our treatment &f(1) gauge fields. In par-

with discrete torsion. ticular, Sec. Il provides a simplified context in which to see
What is discrete torsion? In a nutsheliscrete torsion is  the main ideas at work.
the choice of orbifold group action on theftld. Next in Sec. Ill we study orbifold group actions d

More generally, in any theory possessing fields withfields, and explain how the group cohomology group
gauge invariances, defining the orbifold group action on the42(I",U(1)) arises. In addition t&12(I",U(1)), we also find
base space does not suffice to define the orbifold group aadditional orbifold group actions; we explain why, in hind-
tion on the fields of the theory—one can combine the actiorsight, such additional actions should be expected. The gen-
of the orbifold group with gauge transformations to get new,eral methods used are the same as for studying orbifold
distinct, actions of the orbifold group. Foi(1) gauge fields, group actions orJ(1) gauge fields, although the technical
this gives rise to orbifoldJ(1) Wilson lines. ForB fields,  details are more complicated.

In Sec. IV we derive the twisted sector phases originally
described in[1]. We calculate the phases at one-loop, and
*Email address: ersharpe@cgtp.duke.edu also check factorization at higher loofen explicit calcula-
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tion is done at two-loops, from which the general result is For simplicity, we shall work at the level of transition

obvious. functions. A line bundle with connectidi.e., a set of local
In Sec. V we derive Douglas's descripti¢8,4] of dis- U(1) gauge fields can be described by pairsA{,g,)

crete torsion for D-branes, as a projective representation afhere A“ is a vector field on an elemetd, of an open

the orbifold group. cover, andg, s are transition functions. These are related by
In Sec. VI we outline how results of Vafa and WittgR]

on the interplay of discrete torsion and Calabi-Yau moduli A“—AP=dlogg,g. 1)

are naturally understood in the context we have presented.

This discussion frequently refers to reflexive sheaves on sin- A. Orbifold group actions on vector fields

gular varieties, and as such ideas are not frequently used in

the physics literature, we have included an appendix on the In this section we Sh"?‘“ study the set.c.)f Orb'fOI.d group
subject. actions on vector fields, in terms of transition functions and

Finally in Sec. VIl we very briefly mention local orbifold data defined on local coordinate patches. To describe the ac-

degrees of freedom, as distinct from global orbifold degreedOn Of the orbifold group on such data, one relates pullbacks
of freedom, a topic usually neglected in physics treatmentd Jas: fqr examp'e: to the original transition fun_ctlons
of orbifolds. Jap- SO, in this section we shall work out relationships be-
Readers who wish to study this paper in detail are encourVeen Pullbacks of transition functiong*g.s and gauge
aged to first work through Sec. Il on orbifold(1) Wilson f!eldsgaA“, and original transition functiong,; and gauge
lines, despite the fact that it might not sound wholly relevant fields A®. _ ,
Our approach to thinking abo@ fields and discrete torsion  FOr convenience, we shall choose an open cover that is
is very closely related to orbifolt (1) Wilson lines, and the Well behaved with respect to the action of the orbifold group.
mathematical techniques we shall use to study orbifold groupPecifically, le{U .} be a “good invariant” cover, meaning
actions onB fields are precise analogues of those used t¢hat €achge I' maps eact,, back into itself(i.e., g: U,
classify orbifoldU(1) Wilson lines. Mathematicians should —Y), and eactU,, is a union of disjoint contractible open
note that although these mathematical techniques are a stapigtS- Such a cover is not a good cover, because the elements

of the relevant part of the mathematics literature, they are ndf « Will not be contractible in general, but is the next best
widely used in the physics literature. thing, and suffices for our purposes. o
To begin, we need to demand that the bundle is isomor-

phic to itself under pullback by group elements, i.e., the
Il. REVIEW OF ORBIFOLD  U(1) WILSON LINES bundle itself is “symmetric” with respect to the group ac-
gon. Given this constraint, we will derive the form of the

In this paper we shall describe discrete torsion as a choic ; )
of orbifold group action orB fields. In order to understand pullback of theU(1) gauge field from self-consistency. At
the level of transition functions, this is the statement

how this works, however, we shall first present orbifold
U(1) Wilson lines. We will work through this simpler case Xy — (RO gy-1
in detail because it is an exact model for our approach to 0% 9ap=(Na)(Gap) (Np) @
understanding orbifold group actions Brfields—the details o some @ch cochaind?. (Such cochains define an iso-
are much more subtle, but the basic ideas are the same as {yphism from the bundle itself to its pullback by If such
orbifold U(1) Wilson lines. o a statement were not true, one could not even begin to define

_In particular, our approach to understanding discrete toran orpifold group action, as it would mean that in no sense is
sion is closely modelled on understanding orbifd}d1)  the pundle well behaved with respect to the orbifold group.
Wilson lines mathematically, involving techniques not com- Next. we need to determine ho?%2 is related tohd:
monly used in the physics literature. In order to understand 92’ ) @ i a
later sections of this paper, therefore, it is important to firs@nd h,*- We can find such a constraint by expanding
get a solid handle on the basic ideas, in a context in which9192)* d.p in two different ways:
the details are easy to work out. 910 910 —1

Orbifold U(1) Wilson lines are precisely a choice of or- (hy! )(gaﬁ)(h,el )

bifold group action orJ(1) gauge fields. We shall first work o _ *r w01 91y-1

out a description of elements of the set of orbifold group (0192)" Gap= | 92L(Ne)(Gup) (Ng) 7]

actions onU(1) gauge fields, then we shall argue that any =(g% hil)(hiz)(gaﬁ)(hzz)‘l(g’g hgl)‘l.

two elements of the set differ by an element of the group

HY(T,U(1)). From self-consistency, we see that it is natural to demand
Our analysis does not rely on the orbifold groipacting

freely—whether" has fixed points is entirely irrelevant for hd192= (g% h%)(h%). ©)

our analysis. Similarly, whethd? is Abelian is equally irrel-

evant. We should take a moment to comment on this “deriva-

It should also be mentioned that our analysis of orbifoldtion.” All we really know is that the @ch coboundary of the
actions onU(1) gauge fields is not new, but is rather quite h? satisfies an equation of the form above—strictly speaking,
standard in the mathematics literature. The earliest referendeis not quite true that Eq.3) necessarily follows. However,
of which we are aware if9], Sec 1.13. we are looking for constraints of the general form of Eg),
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and from the previous algebra E(B) emerges quite natu- the term set loosely—in general, there is no natural way to
rally. If the reader prefers, it might be slightly more fair to place a group structure, for example, on this set. In this sec-
say that we are using self-consistency to bootstrap an ansation we shall point out that any two such actiofi®., any

We shall use similar methods many more times, both heréwo elements of the setiffer by a constant gauge transfor-
and in working out orbifold group actions dhfields. mation, and those constant gauge transformations lead to

In addition, in this special case, there is an additionaH(I",U(1)).

concern that the reader might have. In principle, we could Leth? be one set of €ch cochains describing an orbifold
multiply one side of Eq(3) by ana-independent phase, and 4ction on a set ob(1) gauge fields, and Iét be a distinct

the result would still be consistent. We are implicitly impos- ,hifold action on the same set bi(1) gauge fields.
ing a slightly stronger constraint than strictly necessary— Define Gach cochaings? by

namely, that the orbifold group action be honestly repre-
sented. This choice is precisely the choice that leads to the ho
calculation of orbifold Wilson lines, for example. Pd=—=.

In passing, note that Eq3) can be viewed as the state- hd
ment that the map from the orbifold grodipto bundle iso- - . ) ) )
morphisms(as defined by €ch cochaing?) is a group ho- From writingg Gap I terms of the two orbifold actions,
momorphism. we find a constraint on the? :

At this point we have derived the form of an equivariant (h9)(g..g)(h9) 2
structure on the principdl (1) bundle itself, but have not 9* Q= o ap ok
mentioned the connection on the bundle. Without loss of “p (hg)(gaﬁ)(h%)_l_
generality, definepy by

Dividing these two lines we find thap? = #% on U,NUy,
gr*A“=A"+¢g . i.e., theg? define a function, which we shall denofé.
Next, write g* A“ in terms of the two orbifold group ac-

Certainly, regardless of* A”, we can write this for some ions to find an additional constraint:

¢g, so all we have done is defing], not place any sort of

constraint on the connectioh“. By expanding §,9,)* A* A*+dlogh?
in two diff t , ickly find A= —
in two different ways, one quickly finds g A+ dloghd.
(23 — a + * o . . . )
a,9,~ Pg, T 92 Py, Subtracting these two lines, we find that
By pulling back Eq.(1) by g, one finds dlog ¢9=0.
¢g=dlogh]. 4 In other words,¢? is a constant function.
Finally, from
So far we have worked out how to describe the action of naty
an orbifold groupl’ on a principalU(1) bundle with con- h9192= (h92)(gx h9)
nection[a set ofU(1) gauge fields, if the reader prefgr$o “ “ “
summarize our results so far, we can describe this action at Hglgzz(ﬁgz)( *Fgl)
the level of transition functions as @ o927,
g* A= A%+d logh? we find that
~ ¢9192: qggzg; d)gl_ (5)
9*9ap= () (9up)(hD T,
Assuming the covering space of the orbifold is connected,
h%192= (h%)(g3hd1) we see that the¢ define a group homomorphisnit
. —U(1).

for some @ch cochain$?, which define the orbifold group In other words, the difference between any two orbifold
action. group actions otJ (1) gauge fields, on a connected space, is

We have described the action of the orbifold group indefined by an element ¢4(I",U(1)).
terms of transition functions and data on local charts, but one
can also describe the same orbifold group action more el- C. General analysis
egantly in terms of an action on the total space of a bundle.

See for examplé5] where this approach is reviewed. In the previous two sections we did two things—we

worked out the structure of an orbifold group action on a set
of U(1) gauge fields, and then we argued that any two orbi-
fold group actions differ by dconstant gauge transforma-

In the previous section we described elements of the set dfon, defining an element dfi(I",U(1)).
orbifold group actions otJ (1) gauge field§more properly, One point mentioned earlier, and worth emphasizing, is
principal U(1) bundles with connectidnWe have not used that our derivation of the groupi(I',U(1)) did not rely

B. Differences between orbifold group actions
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uponI being freely acting—the derivation is the same re-on any gauge field in terms of arfgohomology group at
gardless of whether or not the action of the orbifold gréup almost any level of generality will not get far.

has fixed points. The same statement will be true of our A simple example of these notions is provided by line
derivation of H?(I',U(1)) in understanding orbifold group bundles on toric varieties. Specifying a specific toric divisor
actions onB fields in the next section—our derivation holds is the same as specifying an action of the algebraic torus
regardless of whether or nbt acts freely. underlying the toric variety on the line bundlgee[10] and

Another point worth mentioning is that we have not as-references thereinFor example, conside?? as a toric va-
sumed thaf” is Abelian—our derivation oH*(I",U(1)) is  riety, with toric divisors generated Hy,, D, andD,. Pos-
the same regardless of whetfigis Abelian or non-Abelian.  sible toric divisors for a degree 0 bundle B4 include D,

We should also note that we have not assumed that the D,, 2D,—D,—D,, and so forth—countably many,
principal U(1) bundle on which we have defined the orbi- counted by H((C*)",C*)=Z". For a degree 0 line bundle,
fold group action is trivial. If the bundle is nontrivial, then one can put a group structure on the set of degree O
one does not expect to always be able to define an orbifoldivisors—take the identity to be the toric divisor 0. Now,
group action, even on the topological bundle, much less ogonsider a degree 1 line bundle. Possible toric divisors in-
the bundle with connection. For example, consider the Hoptlude D, Dy, 3D4x—2D,, and so forth—countably many,
fibration of S* over S, viewed as a principall (1) bundle  counted byH((C*)",C*)=Z". However, here there is no
overS%. Consider aJ(1) acting on theS? by rotations about natural divisor to associate with the identity—the set does
some fixed axis. A Z rotation of theS? is the same as the not have a group structure in any natural way. So, we see
identity action onS?; however, a 2 rotation of theS? does  here explicitly that in general the set of orbifold group ac-
not lift to the action of the identity oi$>—one must rotate tions is only a set.
the S? by a multiple of 47 instead, as is discussed in most  In special cases, such as when the bundle is topologically
elementary quantum mechanics textbooks in the context dfivial, there is a canonical trivial orbifold group action, and
spin. See for exampls] for further explanation of the stan- in such cases we can put a group structure on the set of
dard well-known fact that group actions on base spaces dorbifold group actions, which becomes the group
not always lift to nontrivial bundles. Assuming that group HX(I",U(1)). As luck would have it, such special cases are
actions on the bundle exist, the difference between any twehe only ones ever usually considered by physicists, so most
group actions on a princip&l (1) bundle with connection is of the subtleties of the general case are omitted from typical

defined by an element ¢43(I",U(1)). physics discussions. These matters are discussed in more de-
tail in [5].
D. The set of orbifold group actions is aset In the next section we shall perform a closely analogous

computation foB fields. We shall first study elements of the
i incinall (1) bundle with o i Pset of orbifold group actions on the fields, then we shall
actions on a principall(1) bundle with connection is se{ study how different elements of this set are related. The tech-

and In general dpes_ not naturally ha_ve a group structurenical details forB fields are much more complicated, but the
Often in the physics literature, calculations boil down to cal—baSiC approach is the same

culating some cohomology group—by contrast, possible or-
bifold group actions do nafin general have a group struc-
ture, gnd F<):ertainly cannot be understood in terms of a lll. DERIVATION OF - HX(T',U(1))

calculation of a cohomology group. In this section we shall explain how the group cohomol-

Now, in special cases, it is possible to put a group strucegy group H2(I',U(1)) appears when describing orbifold
ture on the set of orbifold group actions. For example, if thegroup actions orB fields. Our methods will closely mirror
principal U(1) bundle is topologically trivial, then there is a standard methods used to study orbifal¢l) Wilson lines,
natural notion of a trivial action—since the base and the fibeso readers are encouraged to study Sec. Il before reading this
can be globally split, one could take the orbifold group to actsection. To be brief, we first derive the structure of elements
on the base only. In this special case, we can describe arof the set of orbifold group actions oB fields, and then
other orbifold group action in terms of the trivial action plus study the difference between any two elements of this set.
an element ofH(I',U(1))—this is the precise technical The difference is a gauge transformationBfields, just as
meaning of “combining the action of the orbifold group with the difference between two orbifold group actions on a set of
a gauge transformation,” as is often mentioned in the oldU(1) gauge fields is a gauge transformation.
string orbifold literature. A gauge transformation of B field is defined by a prin-

In general, however, there will be no natural notion of aciple U(1) bundle with connection—a set &f(1) gauge
“trivial” action—all the orbifold group actions will have fields, if the reader prefers. So, to each elemgnif the
some nontrivial action on the fibers of the bundle, and so therbifold groupI’, the difference between any two orbifold
set of orbifold group actions is no more than a’s&b be
blunt, anyone who tries to understand orbifold group actions——

2For holomorphic line bundles, rather than principéll) bundles
with connection, there is a closely analogous argument relating dif-
IA set naturally acted on by the group'(T',U(1)), but a set ferent choices of actions of algebraic groups. The result is essen-
nonetheless. tially the same, modulo replacind(1) with C*.

It should be emphasized that the set of orbifold grou
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group actions on a set @ fields is defined by a principal We should mention that in writing the above we are not
U(1) bundle with connection, call it9. [In fact, the con- putting any more structure dfields than is already present
nection onTY is constrained to be flat, just as the differencein string theory. For example, the reader might be concerned
between any two orbifold group actions dm(1) gauge at the appearance of vector field&?; such a reader should
fields was a constant gauge transformafiofie must also be reminded that if we definB fields in open patches, then
specify isomorphism&9" betweenT9" and T"@h*T9 for  on overlaps the fields will differ by some gauge transfor-
eachg,heT, just as for orbifold Wilson lines, the gauge mation. By specifying theA®” we have merely made the
transformations ¢9 were constrained to obey$992  gauge transformations on overlaps explicit, no more.
= ¢92. g3 1. In this section we shall work out how to describe orbifold
This description is not complete—there are “residualgroup actions orB fields, in terms of the data above. To
gauge invariances,” specifically, only the isomorphism clasegin, demand that theeCh cocycles$,,;, are preserved by
of T9 is actually relevant. To get a precise counting, one musthe orbifold group, up to coboundaries. Specifically, demand
fix this residual gauge invariance.
Elements oH?(I",U(1)) arise from taking the bundI&? 9" Napy=NapyVapViyye ©
to be topologically trivial, with a connection that is gauge
equivalent to zero. Using residual gauge invariances, we cal
replaceT? with the canonical trivial bundle with identically
zero connection, and the mapé'" become constant gauge
transformations defining elements laf(I",U(1)).

aior some ‘@ch cochains9, for eachgeT.
Next, we shall derive a constraint on the coboundarfes
from self-consistency of Eq6). Specifically,

(9192)*h,py
A. Orbifold group actions on B fields haﬂyyilﬁg? ,981;’2 %92

In this section we shall work out a description of elements —{ ¥ (hyg, % p%1 91y
of the set of orbifold group actions dfields. As forU(1) 28 abr¥ap” sy " va
gauge fields, orbifold group actions &fields can be deter- =hyp,( aﬁgz Vaﬂ)(vﬁygz vﬁy)(v@’2 a5 ygl)
mined by specifying how pullbacks are related to original
data, so we shall be studying pullbacks. from which we see that

It is important to emphasize at the start that we really do
mean to use the word set—the set of orbifold group actions, Vilﬁgzz vords uaﬁ(hgl gz)(hgl 92y-1 (7)

in general, cannot canonically be given any group structure.

Most mathematically oriented physics papers calculate cohder some ‘@ch cochain$i¥1 92,

mology groups or generalized cohomology groups—here, by By applying Eq.(7) to expand»99293 in two different
contrast, we shall begin by calculating a set, which cannot bevays, we can derive

understood as a group in general, much less any sdgeofi

eralized cohomology group. After we have worked out this (h91:9293)(n92:93) — (g% n91:92) (n9192:93) (8
set, in the next section we shall argue that elements of this
set differ by gauge transformations Bffields, which will Next, consider the formB® and A*A. Define two-forms
lead us to discover ?(I',U(1)). B(g)® and one-formsA(g)® by
Let{U,} be a “good invariant” cover, as before. Then, a
two-form field potential is described as a collection of two- g*B*=B“+B(g)”
formsB¢, one for each open skt,, related by gauge trans-
formation on overlaps. g*A%B= AP+ A\(g)*h.

We assume that th® field has no magnetic sources
(meaning, that the exterior derivative of its curvatirean- ~ We shall use self-consistency to work out meaningful expres-
isheg, and that the curvaturi is (the image of an element  sions forB(g)® and A(g)*~.

of integral cohomologyH3(Z). SuchB fields on a smooth From the expression
spaceX are described on the open covgy,} by [11,12]
two-forms B on U,,, one-formsA® on U,NUz=U 4, g* (B*—BFf)=g*dA"’
%r;rc]igu(l)-valued functions .5, onU 4 5n,=U .5, Satis- one can derive
B*—BA=dA* B(9)“—B(g) =dA(g)**. )
A“B+ ABY 4+ AY?=d |og Nugy Furthermore, by expanding both sides of the expression
(Napy)=1. g* (A“F+ APY+ A7) =g*d logh,,
we find
i it e meaning of for prncial V() bunces AQ)P=dlogrly+ M)~ A()?  (10)

126003-5



ERIC SHARPE PHYSICAL REVIEW D 68, 126003 (2003

for some one-forms\ (g)“ defined on open setd,. Com- tiply contributionsZ ) by a phase; they significantly alter

paring Egs.(9) and (10), we find the Z4n) themselves. We shall discuss these elements in
" " much greater detail later in this section.
B(9)“=dA(g)“. (1D Consider two distinct orbifold group actions on tige

fields. Denote one orbifold group action as in the last section,
and denote the second action with a bar, e:gs, rather than

A(9102)*=A(g2)“+ 953 A(g)“+dAPN(gy,0,)% (12 vgp.

By expanding ¢,9,)* B in two different ways, we find

Define
for some real-valued functions®)(g;,g,)* defined on the
open setdJ,, . Vgﬁ
Finally, by expandingd;g,)* A“? in two different ways, Tos== (13
we find that Vap
dA(Z)(g 9,)= —dlog ho1:92 From dividing the expressions
1,92) — a .
¢] ¢] g
We can summarize the results of these computations as g*h, . = (haﬁy)(i“ﬁ)(i“)(iw)
follows: BT (M) (V8 (18 ) (1)
g*B*=B*+dA(g)“ we see that
g*A*P=A**+dlogvds+A(9)“—A(g)” TosT%,79,=1
A az A apgtA @_dlogh%92 meaning that th&'9 are transition functions for a principal
(9192) (92)*+ 93 A(91) gn, U(1) bundle.
g*h.s=h. s 19 19 » The fact that we are seeing princigd(1) bundles at the
aBy aByapT By ye same place where gauge transformations appeared in de-

scribing orbifoldU (1) Wilson lines is no accident—a gauge
transformation of a set d fields is defined by @ equiva-
lence class ofprincipal U(1) bundles with connectiof6].
(hgH92%) (h29%) = (g3 ht %) (h3192%) So, just as for orbifold Wilson lines, we are already seeing
010 _ that the difference between two lifts is defined by a gauge
where A(g)“, »35, andh !™? are structures introduced to transformation—the only difference being that ®fields, a

9192_(V )(g* 91)(h91 92)(h91 92) 1

define the action of the orbifold group on tBefield. “gauge transformation” is defined by a bundle.
We have defined orbifold group actions @fields in Next, define
terms of the transition functions and other local data defining
the B field. More formally, aB field can also be understood ah hoh
as a connection on a “l-gerbe,” a special kind of stack, or Wy :W . (14)

(loosely sheaf of categories. We discussed such objects in
[6], together with a discussion of how one defines orbifold

From dividing the expressions
group actions on them. Our discussior &} is adapted from g P

[14], which discussesB fields in the language of stacks. ng%:(yzﬁ)(h* ,,gﬁ)(hg,h)(h%h)—l
B. Differences between orbifold group actions 7%%:(;ftlﬁ)(h*;gﬁ)(ﬁg,h)(ﬁ%h)—l

In describing orbifold U(1) Wilson lines, the group

H(I",U(1)) arises as differences between orb|2fold group ac-
tions; similarly, in describing discrete torsioR,“(I',U (1)) gh _ rh *Tg g.hy, g,hy -1
arises in describing the differences between orbifold group Tap=(Tap) (" Tap) (@) (g7 (15
actions. In both cases, one can get any action from any othef.-h means that the? h
action by combining the action with a set of gauge transfor
mations; in the former case|'(I',U(1)) counts those gauge
transformations, and in the latter cas¢?(I',U(1)) counts »%" Theh* 79— T9h, (16)
some of the gauge transformations.

One unusual matter we shall discover in this section is We should take a moment to carefully explain what we
that, in addition to elements ¢12(I',U(1)), one sometimes mean by®, since we have been describing the bundigss
has additional actions of the orbifold group on Béelds—  principal bundles, not vector bundles. One way to understand
sometimes, there may be more to “discrete torsion” than just® is to think of it as the product of Abelian torsors, follow-
H2(I",U(1)). We shall show in a later section that, at theing[14], Sec. 5.1. Alternatively, one could think of tA& as
level of twisted sector contributions to partition functions, complex line bundles with Hermitian fiber metrics. Perhaps
these additional contributions can do more than merely multhe easiest way to understard in the present context is

we find that

are local-coordinate realizations
13], Sec. 5.5 of a ma@?" between bundles:
@
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simply as the bundle whose transition functions are the prod- 2(9192)=E(9,) "+ 05 E(g)*+dlogw®9 (20
uct of the transition functions of the bundles appearing in the “
product. which means that the bundle morphissfi1-92: T92@ g% T9

Next, from
(hgl 19293)(h92 193) - (gg h9 ’92)(h9192 v93)
we derive the commutivity condition
Thegh(TRegiTo) "% ThggyTus

w9293 | | 09192195

919293

T9293® (g,g5)* TOL T919293,

_

—T9%9 js constrained to preserve the connection on the
bundles.

To summarize our progress so far, we have found that any
two orbifold group actions on a set & fields differ by a
collection of principalU(1) bundlesT? with flat connection
E(g), together with connection-preserving bundle mor-
phismsw91:92: T92@ g3 T91—T9192, such that the following
diagram commutes:

w9192

To summarize our results so far, we have found that any

two orbifold group actions on the same setBofields differ
by a set of principalJ(1) bundlesT? together with bundle
morphismsw91:92; T92@ g3 T91—T9%9, As mentioned be-
fore, this is to say that any two orbifold group actions®n
fields differ by a gauge transformation, as a principdll)
bundle defines a gauge transformatiorBofields.

Next, define

E(9)*=A(9)"—Ag)". (17
From subtracting the expressions
ap g a_ B
g A= A*"+d Iogia;# /i(g) ﬁ(g)
A*P+dlogvdz+A(g)“—A(9)”
we find that

E(g)*~E(g)P=dlogTl,. (18

In other words, the local one-fornE(g)* define a connec-
tion on the bundlerse.
From subtracting

B*+dA(g)”
g* B¥= o
B*+dA(g)”
we see that
d=(g)“=0. (19

In other words, the connectidg(g)“ is not just any connec-
tion on the principalU(1) bundleT9, but must be a flat

T93®g§(T92® g; Tgl) T93®g"’3‘Tgng
w92v93l l 919293
®91:9293
T9293% (gzga)* T9 T919293, (21)

We should be careful at this point. Although we have not
emphasized this point, it is only equivalence classes of
bundlesT? with connectionZ(g) that are relevant. In a nut-
shell, if A and A’ are two one-forms that differ by an exact
form, thenB+dA =B+dA’, so any two bundles with con-
nection that differ by a gauge transformati@i the bundi¢
define the same action on tBdfield. So, if T'9 is another set
of principal U(1) bundles with connectiorE’(g), and
kq: T9—=T'9 are connection-preserving bundle isomor-
phisms, then we can replace the data given above with the
collection(T'9,E'(g),w’91:92), where thew’ are given by

w'91:92= KglgzowgvaZO(ng® g3 Kgl)*l (22
to get an equivalent orbifold group action on tBdields.

C. HATI',U(1)

How do elements oH?(I",U(1)) arise? Take the bundles
T9 to be topologically trivial, and the connectio&(g) to
be gauge trivial. We can then map the bundiésto the
canonical trivial bundlewhose transition functions are all
identically 1), and gauge transform the connectig{g) to
zero.

In this case, the bundle morphisnag92;: T92¢ g} T9
become gauge transformations of the canonical trivial
bundle. From the fact that the9:-92 must preserve the con-
nectionli.e., Eq.(20)], and assuming the covering space is
connected, we see that the gauge transformatio#is®2
must be constant gauge transformations.

connection. The analogous statement in studying orbifold We have reduced the data describing this seBdfeld
group actions orJ(1) gauge fields is that any two orbifold gauge transformations to a set of mapsI'XT'—U(1).

group actions differ by a constant gauge transformation.
From subtracting

A(91092)=A(92)“+g5 A(gy)“—d logh?:9

A(9192)=A(g)“+ 05 A(gy)* —dloghd* %

we find that

From commutivity of diagrani21), we see that the define
a group 2-cocycle, i.e.,

091:9293,,92,93 = (,9192.93,91.92

So far we have reduced the data describing this sé& of
field gauge transformations to a group 2-cocycle. More can
be said: there is still a residual set of gauge transformations
that must be taken into account. We can perform a constant
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gauge transformation on each of the bundi@s this will homology of the quotienk/I" from the Cartan-Leray spec-
preserve the connection on each bundle. From(E#2), we tral sequenc¢l6], Sec. VII.7:
see that these constant gauge transformations simply change

the group 2-cocycle»9192 by a coboundary. Efq=Hp( Ho(X,2))=Hp, (XIT,2)
Thus, we find that this set d field gauge transforma-
tions is classified by elements b*(I',U(1)). so (loosely ignoring differentials for simplicifywe see that

It should be emphasized that the appearance o ,(X/I',Z) ultimately receives contributions from not only
H2(I",U(1)) above holds regardless of whether or Rodcts H,(I",Z) [which dualizes toH?(I",U(1))] and H,(X,Z),
freely—nowhere have we made any assumptions concerningut also fromH,(I",H,(X,Z))—so if X is not simply con-
how the orbifold groud™ acts. nected, then one should expect additional contributions be-
yond those determined by?(I",U(1)) andH,(X,Z). (For a
lengthier discussion of such cohomology calculations, and
_ _ how H2(I",U(1)) enters them, ses].)

In the previous section we showed how elements of How should such additional orbifold group actions show
H?(I',U(1)) describe at least some differences between oryp physically? In terms of twisted sector contributions to
bifold group actions. FotJ(1) gauge fields, we found that one-loop partition functions, for example, the orbifold group
all orbifold group actions differed by some element of actions classified by12(I',U(1)) merely multiply twisted-
H(I",U(1))—to what extent can the analogous statement beector contribution&Z 4 1y by phases. We shall argue later
made here? . _ _ that these additional orbifold group actions do more than just

Do all orbn‘old ggoup actions o8 fields differ by such  myltiply Z (o by a phase—these will deeply changg, p,
data described byi“(I',U(1))? We shall argue that under jtself, by changing the weighting of individual sigma model
special circumstances, all orbifold group actionsBfields  map contributions t&gn in @ winding-number-dependent
differ by elements oH?(I',U(1)), but in general there can tashion. ’
be additional differences. In fact, we shall argue in much greater detail elsewhere

Suppose the covering spaXeis connected, simply con- [15] that these “new” degrees of freedom are actually some
nected, anH?(X,Z) has no torsion. Le€T9,5(g),w%%)  very old degrees of freedom, the so-called “shift orbifolds”
be a set of data dEfining the difference between two Orbif0|qhat p|ay an important role in asymmetric 0rbifo|ds' but are
group actions. We know that the connectidg¢g) on the  rather more boring in symmetric orbifolds.
bundlesT? are flat, which means that for eadh c,(T9)
must be a torsion element &f?(X,Z). However, we have
assumed thaH?(X,Z) has no torsion—so the bundld¥
must all be topologically trivial, i.eG;(T% =0 in H3(X,Z). So far we have described the set of orbifold group actions
In addition, we assumed the spaXés simply connected. On on B fields, described differences between any two orbifold
a simply connected space, the only flat connections on group actions on a fixeB field, unveiledH?(I",U(1)), and
topologically trivial bundle are gauge trividhauge equiva- also discovered some new and more subtle orbifold group
lent to the zero connectipnSo, if X is simply connected and actions.

D. Detailed classification of orbifold group actions

E. Commentary

H2(X,Z) has no torsion, then the bundI&§ are all topo- A few general comments are in order.

logically trivial and the connection&(g) are all gauge First, the results of this section do not depend upon
trivial. As noted in the last section, such gauge transformabeing freely acting. Everything we have described is the
tions of B fields are classified bid?(X,Z). same forl" having fixed points as fof freely acting—the

Thus, if the covering spac¥ is simply connected and details of the action of’ on the base space are entirely
H2(X,Z) has no torsion, then any two orbifold group actionsirrelevant.
on aB field differ by a set of gauge transformations classified Second, the results of this section do not depend upon

by an element oH?(I",U(1)). whether or nofl” is Abelian. We get the same resultdfis
Suppose now that these criteria are not mxtis not  non-Abelian.
simply connected, oH?(X,Z) has torsion. Then not all Third, the results of this section do not depend upon

B-field gauge transformations need be described by topologiwhether or not theB field is flat or topologically trivial. In
cally trivial bundles T¢ with gauge trivial connections principle, precisely the same remarks hold regardless of
E(g)—if X is not simply connected, then even on a topo-whetherH=0 or H#0 in H3(Z) on the covering space.
logically trivial bundle one can have flat connections whichHowever, if theB fields are described by a nonzero element
are not gauge trivial, and ?(X,Z) has torsion, then one of H3(Z)—if the 1-gerbe is not topologically trivial—then
can have topologically nontrivial bundles with flat connec-one must check whether an orbifold group action actually
tions. exists, just as for orbifoldJ (1) Wilson lines.

As a result, in general it appears that there can be addi- Now, we have describeti?(I',U(1)) as arising in the
tional orbifold group actions oB fields, beyond those clas- differences between two orbifold group actions, but that is
sified by H2(I",U(1)). not quite how people usually discuss it—people speak of

In retrospect, we should not have been surprised. Confturning on” discrete torsion. This is because, just as for
sider the special case in whidhis freely acting and th&  orbifold U(1) Wilson lines, in almost every case in physics
field is identically zero everywhere. We can compute thewhere orbifolds are studied, ti&fields are such that there is
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gXx while working on the covering space?
X'/\/. In order to see what to do, first consider the problem of
calculating the holonomy of a vector connection, in the case
FIG. 1. Lift of closed loop to covering space. that A® is only defined in patches along the loop. In such a
) o ] ) ] case, one splits the loop into segments, each segment com-
a canonical trivial orbifold group action. For example, just aSpletely contained in a patch in whidkf* is defined. Then, the
for orbifold U (1) Wilson lines, if theB field is topologically holonomy is given by the product of exi#) from each
trivial, then there is a notion of a canonical trivial action, andpatch, separated by factors of the transition functi@valu-
so we can define any orbifold group action in terms of itSzteq at the borders of the segmeéntst the end of the day,
difference from the trivial action. Thus, in this case, we cangne can check that this holonomy is independent of the pre-
indeed turn on discrete torsion. cise splitting of the loop into segments.
In general, however, one cannot always expect to have Now, we shall return to the problem of calculating Wilson
such a canonical trivial lift. This matter is discussed further|Oops on covering spaces. First, there is a contribution to the
in [5]. Wilson loop from integrating the vector field along the

path fromx to gx, i.e., there is a factor
IV. DERIVATION OF TWISTED SECTOR PHASES

gx

In this section we shall derive the phases that appear in exp( f Al. (23
twisted sector contributions to partition functions, as origi- x

nally described irf1].

. : . However, this factor is not the end of the story. A Wilson
mozrelzleieaspgi?;; appear precisely because the string Slg%%p (i.e., a Wilson line around a closed Igopn the quotient

space will be invariant under gauge transformations, whereas

the factor(23) does not appear invariant at all. To fix matters,
f B. use the relationship between the gauge fielt x and atgx,

ie.,

On the covering space, a contribution to a twisted sector is a Agx=0*A=A+d log ¢?
polygon with sides identified under the group action. The
group action that identifies the sides lifts to an action on thevhere ¢? is a U(1)-valued function defining a gauge
B field; that action contributes a phase to transformation—rather, defining the action of the orbifold
group.
To close the loop, we need to include the gauge transfor-
exp< j B mation relatingAy, andA, . The correct value of the Wilson
loop, as calculated on the covering space, is
and so the twisted sector contribution to the partition func-
tion comes with a phase. g ngA 24
We shall begin in Sec. IV A by discussing a simpler ana- PxEX . ' (4
logue of this behavior for orbifold Wilson lines. In Sec. IV B
we shall derive Vafa’'s twisted sector phases for string one- We shall follow a similar procedure in analyzing the
loop partition functions, and in Sec. IV C we shall derive thephase factor exgB) in twisted sectors. The naive integral of
twisted sector phases for string two-loop partition functionsB over a polygon in the covering space is not sufficient; we
must add gauge transformations along the boundary, which
A. Analogue for orbifold U(1) Wilson lines in this case are Wilson lines along the boundary. Further-
) . more, forB fields, those Wilson lines along the boundary are
To root ourselves, we shall begin by reviewing the anawy ot quite sufficient—we also need to account for bad
Io_gue of tW|st_ed sector phases fo_r orbifold Wilson lines. Con-yahavior at the corners of the polygon.
sider computing a Wilson loop in some gauge thedor
simplicity, we shall assume B/(1) gauge theoryon the
guotient space. Suppose furthermore that such a loop de- B. One loop
scends from an open loop on the covering space, whose ends The string orbifold one-loop partition function receives
are identified by the action of some elemgruf the orbifold  contributions not only froniT?’s in the covering space, but
groupl’, as shown in Fig. 1. For simplicity we shall assumealso from configurations of strings that forii¥’s on the
the bundle on which the connection lives is topologically quotient space, but only form open polygons on the covering
trivial, and so has a canonical trivial orbifold group space, as illustrated in Fig. 2.
action—so we can specify any other orbifold group action in  Just as orbifold Wilson loops received an extra phase
terms of a set of gauge transformations. when edges are identified by group actions, so “orbifold Wil-
How do we calculate the value of the Wilson loop son surfaces”
ot [ ok [
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hx 3 ghx identified byg e I'. As a technical aside, note that, regardless
of whetherI' is Abelian, one sums over contributions from
commuting pairs @,h) in describing twisted sectors, pre-
cisely so that the square shown in Fig. 2 will close at the

h 4

upper right.
For simplicity we shall assume tRaB=0. In this case,
2 A &4 since there is a canonical trivial action of the orbifold group

on theB fields, we can define any other action of the orbifold
group on theB fields entirely in terms of the gauge transfor-
mations that distinguish it from the canonical trivial action.
Let such a set of gauge transformations be denoted by
D bundlesT9 with connectionA(g), and connecting bundle
X 1 gX mapswgvaZ_

For the moment, we shall assume that the bundifeare
the canonical trivial bundlgso the »91'92 are all merely
gauge transformations, not bundle morphignasd the con-
nectionsA(g) are all gauge equivalent to the zero connec-
tion. We shall examine the more general case after examin-
ing this case in detalil.
Now, under a gauge transformation by a bund@levith
nnectiofi A, the B field locally transforms as

FIG. 2. A twisted sector contribution to the one-loop partition
function.

get boundary contributions due to the orbifold action. In
other words, naively integrating over the region indicated
will not give the phase over the cycle on the quotient
space—we must also include contributions induced by gaugg,
transformations of th® field occurring at the boundaries as
the edges are glued together.

Before we begin the analysis, let us briefly pause to re-
view how one calculates the holonomy ofBafield over a
surface, in the event that there is no two-form defined every@nd SO the holonomy @ over some surfactransforms as

where over the surface, but inste&lis only defined on
patches. To calculate the holonomy in this case, first tile the EX[{J'B»%EX%IB)GX[{f A)
surface, in such a way that each tile is contained within a s s s |
patch on whichB¢ is known, and each component of each
tile boundary is contained within an overlap of patches. Thems a result, one naively would expect that the integraBof
the holonomy of theB field is a product of several factors:  gyer regionD would receive a contribution

(1) For each tile, there is a factor of eXj*), computed
using theB field associated to the patch in which the tile lies. hx gx

exp(f A(g)—j A(h))
X X

B—B+dA

(2) For each component of each tile boundary, there is a
factor of exp(A*P), whereB*—Bf=dA*P,

(3) Finally, one can check that in order for the resulting ) _
holonomy to be independent of the choice of tiling, one mus{rom the gauge transformations of tBefield at the bound-
add factors d‘fhaﬁw evaluated at each point where multiple grles.(ReIatlve signs are determined by a choice of orienta-
boundary components intersect. tion.)

At the end of the day, the result is independent of the However, Eq(25) cannot be the correct answer. We men-
choice of tiling. (Note that, when applied to Wess-Zumino- tioned earlier that we are free to gauge transform any of the
Witten (WZW) models, this gives us a means of understandPundlesT?—but expressioii25) is not invariant under gauge
ing the exponential of the Wess-Zumino term that does notransformations of the bundles. o
involve appealing to bounding three manifolds—after all, the In order to fix Eq.(25) so as to get a gauge-invariant
exponential of the Wess-Zumino term is just the holonomy ofésult, we need to consider the gauge transformations at the
the pullback of theB field on the group manifold. The fact corners. For example, the right end of side 3 in Fig. 2 is
that the Wess-Zumino term can change by integral amount@auge transformed hy* T", whereas the top end of side 4 is
comes from possible gauge transformations of Bhiield)  gauge transformed by* T9, and as noted elsewhere, these
After reflection, it is clear that a closely related procedureneed not be identical. Phrased differently, we need to find
will allow us to calculate the orbifold Wilson surface holono- factors to add to expressiof25) that soak up the gauge
mies, as we shall now demonstrate. transformations of

(25

1. Basic analysis
- . . . ) SAlso assume that the associated gerbe is topologically trivial.
To be specific, consider the regidh shown in Fig. 2. 6preyiously we denoted the connection on buritifeby =(g),

Sides 1 and 3 are identified ty= I', and sides 2 and 4 are ang usedA(g) to denote data used to define the action of the
orbifold group on aB field. At this point we are changing
notation—we will useA (g) instead of=(g) to denote the connec-

“Where 5SA*¢=d log h tion on bundleT9.

aBy*
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A(@nx— A(Q)x— A(h) gyt A(h)y To summarize our progress so far, we have just success-
fully derived the twisted sector phases appearing at one-loop
=h*A(9)x—A(9)x—g* A(h)x+A(h)y. in [1].
To fix these corner contributions, consider the following ex- 2. Invariant analysis

- - g,h o
pression relating.®" and the (g)'s: Next, we shall back up and redo this derivation somewhat

A(gh)=A(h)+h*A(g)+d log w9, more invariantly. In order to derive these phases, we took the
bundlesT? to not only be topologically trivial, but actually

By substracting this expression from the expression involv{he canonical trivial bundle, so that the bundle morphisms

ing w9, we find that 9192 would be gauge transformations, which we used im-
plicitly in writing Eq. (26). These phases can also be de-
[A(h)+h*A(g)]-[A(g)+g*A(h)] scribed more invariantly, which we shall now do.
To describe the phases more invariantly, note that the Wil-
=d[log »™%~log %"]. son line

Using this it is clear that the corrected one-loop phase cor-

gx
rection is given by A(h)

X

(09" ("9~ lex thA(g)— ngA(h) . (20) Uefinesa maf;—Tg,=9* T}, so we can think of this Wil-
X X x x son line as defining an element of

Our derivation leaves an overall constant factor ambiguous; (THVe(g* TP
this factor can be fixed by e.g., comparingBdield holono- , . ] . .
mies onT"=R"/Z". and we can think of the difference of Wilson lines in E25)
Under gauge transformations of the individual bundles2s an element of
9
s [(TY e THI(Th @ TH] (@9

9
A(g)—~A(g)+dlog ", which is mapped by the composition of bundle morphisms

(0™9) " ow9" to a scalar. So, if we interpret the naive dif-
ference of Wilson lineg25) as an element in Eq28), then
we can write theT? (g,h) twisted sector phase as

K%@—f%m

log w9M—log w9 "+log ¢9"—log ¢"—h* log ¢9,

and it is straightforward to check that ER6) is indeed
invariant under these gauge transformations.

How do the phases in Eq26) compare to the phases (0™9) " Lo(wM)
listed in[1]? It is straightforward to check that they are the

same. Recall that in order to explicitly recover representatiw?\lote that expressiof29) makes no assumptions concermning
cocyc[es, one maps the topologically trivial bundTé’stQ the the nature of the bundles or the connections on them, unlike
canonically trivial bundle and gauge transformations theexpression(26) and is well-defined under bundle isomor-
gauge-trivial connectiona (g) to the zero connection. The phisms '

remainingw91°92 are then constant gauge transformations. If '

we evaluate expressiof26) in the described gauge, which
we are free to do since expressi@®) is gauge invariant, we

. (29

3. Treatment of the shift orbifold degrees of freedom

see immediately that the phases associated to twisted sectors!n Sec. Ill, we argued that in addition to elements of
are given by H2(I",U(1)), if the covering spaceéX is not simply con-
nected, or if there are torsion elementdHf(X,Z), then one
(09" (™91 (27)  can get additional possible gauge transformatior® fiélds,

beyond those classified by elementshA(I",U(1)). Using
which are precisely the phases listed[i] for a twisted the methods of this section, we can now see how such gauge

sector contribution from a pairg(h). transformations would appear in considering orbifold parti-
Since the phase in E§27) depends only oig andh, and  tion functions.
is independent of all other details of the polygench as the SupposeX is not simply connected, and one of the

location of corners, winding numbers of the sides, and sdundlesT? defining a gauge transformation of tBefield is
forth), it is the same for all contributions 8. ,), and so  topologically trivial, but has a connection with nontrivial ho-
multipliesZ 4 ) by an overall phase, precisely as observed inonomy around some cycle. From E@6), we see that in a
[1]. (g,h) twisted sector, the phase will no longer be merely

In passing, note that the phas@y) are invariant under %"(w™9 "1, but will also receive a winding-number-
changing the group cocycles by a group coboundary—dependent contribution. In other words, instead of merely
indeed, they must be, otherwise we could not meaningfullymultiplying the (g,h) partition functionZ ) by a phase,
associate phases to elementH3{(I",U(1)). the partition functionZ 4 ) will itself be altered.
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2 :
hghgx hx

FIG. 3. Degeneration of a genus two Riemann surface.

In other words, a more detailed analysis shows that, in

principle, there can be more degrees of freedom than those ghgx x

found in[1], which do more than just multiply twisted sector g

contributions by phases, but alter those twisted sector contri-

butions. FIG. 4. A twisted sector contribution to the two-loop partition

We will argue in[15] that these degrees of freedom are function.
not new, but rather are precisely shift orbifolds, which play
an important role in asymmetric orbifolds, but are less inter- In the following section we shall verify this factorization
esting in symmetric orbifolds. In retrospect, one should haveondition explicitly, by calculating the twisted sector phase
guessed that shift orbifolds would appear in our analysis—(91,h1;92,h,) for a two-loop partition function, and
after all, conventional lore attributes shift orbifold degrees ofchecking that if this can degenerate into a product of two
freedom to theB field, in addition to discrete torsion. one-loop contributions, then E¢B0) holds.

In order to perform the calculation in the following sec-
tion, we shall assumB=0, as in the one-loop case, so that
the action on theB field is completely determined by the

In this section we shall check our calculation of one-loopgauge transformation®f B fields) distinguishing the action
phase factors, by repeating the same calculation at the tw@rom the trivial action, and furthermore we shall restrict to
loop level. In particular, we shall explicitly verify factoriza- gauge transformations determined by canonically trivial
tion of the phase factors for two loops into a product ofpundlesT? with gauge-trivial connectiond (g), i.e., those

C. Two loops

phase factors for one-loop diagrams. which correspond to elements B (I',U(1)).
We shall briefly review factorization, then we shall move
on to the two-loop calculation. 2. Two loop calculation

The string orbifold two-loop partition function receives
contributions not only from genus two Riemann surfaces in
There is an old notio17] that higher-loop string ampli-  the covering space, but also from configurations of strings
tudes are constrained by one-loop string amplitudes. Thighat form genus two Riemann surfaces on the quotient space,
nOtion, known as factorization, was USGC[]ﬂ to write down but On|y form open po|ygons on the Covering space, as illus-
the phase factors for twisted sector contributions to higheryrated in Fig. 4.
loop partition functions, in terms of the phase factors for |f two sides of the octagon in Fig. 4 are labeled with the
one-loop partition functions. same group element, it indicates that the two sides are iden-
For two-loop partition functions, the general idea can beified under the action of that group element. For example,
expressed rather briefly. Since genus two Riemann surfacgdes 1 and 3 are related kg ', with orientations as
can degenerate into a pair of genus one Riemann surfacefgicated by the arrows.
separated by a long thin tube, as sketched in Fig. 3, and since |n order for the sides of the octagon shown in Fig. 4 to

the twisted sector phase is independent of the moduli of thg|ose (j.e., in order to have an octagorwe must demand
Riemann surface, one finds that the twisted sector phase forigat

two-loop diagram must be a product of the twisted sector
phases for each of the two one-loop diagrams appearing in hlgl’lhl’lglzgz’lhzgzhz’l. (31)
the degeneration.

More specifically, ife(g;,h1;92,h,) denotes the twisted | addition, we want to be able to deform this two-loop dia-
sector phase of a two-loop diagram determined bygram into a pair of orbifold one-loop diagrams, determined
91.h1.92,h2eT’, and this diagram can degenerate into apy the pairs §;,h;), (d,,h,), connected by a long thin tube.

1. Review of factorization

product of one-loop diagrams determined bg, 1),  In order for those one-loop diagrams to be well defifiel,
(92,h5), with twisted sector phasegg;,h;) ande(g,,h,),  in order for the limit described to exist at glwe must de-
then[1] mand that

€(01,h1:92,hy)=€(g1,h1)e(gz,hy). (30 g:h1=h19; and g;h,=h,g,.
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Note that these constraints trivially satisfy E@®1). Also (wglrhl)(whlvgl)—1(w927h2)(wh2v92)—1
note that these constraints do not imply that every element of y y z z
the set §,,h1,95,h,) need commute with every other g7 *hy Ygyx h; g.x
element—we have not imposed any sort of commutivity con- X ex f Y A(gl)+f —11 —, Ahy)
e . X g, "hy 791X
dition relatingg; andg,, or h; andh,, for example.
Following the same procedure as for the one-loop case, hy I 9sh; x
first note that thé fields on the sides are related by gluing as + J o Ao+ f =0 A(hy) .
h19; “h191x h, “x
Bs=B:+dA(g1) To evaluate the corrected expression above for the two-
loop phase, gauge transform the connectidi{g)) to be
B,=B,+dA(h;) identically zero, so the gauge transformatias®" become

constant (assuming the covering space is connected, of
_ cours@. Then we find that the correct expression for the
B7=Bs+dA(Q) two-loop phase is given by

Bg=Bgs+dA(hy). (9" (0"192) " Y(w92:2) ("2:92) "1, (33

From these identifications, we naively calculate that thel NS €xpression is precisely the product of the phases for the

phase defined by orbifold identifications is two one-loop contributions determined byg4(h;) and
(g,,h,). Thus, we have explicitly verified factorization at

14 1 two loops, by explicitly calculating the twisted sector phase
eXF( jgl "IN (g + f“l 9 A(hy) and noticing, at the end, that it factors, as desired.
x g7 thy togx Moreover, it is now patently obvious that by repeating the
same calculation at any loop order, we will continue to find
4| x A g2, 'x factorization—so our calculation of twisted sector phases
) (92) + ) A(hy)|. (32

197 thygix > X obeys factorization at all loops.

As for the one-loop case, this cannot be the correct result, V. DERIVATION OF ORBIFOLD GROUP ACTIONS
simply because it is not invariant under gauge transforma- ON D-BRANES
tions of the bundleg9:, T, T9% T"2, . _ .
As for the one-loop case, we need to determine what to A description of discrete torsion for D-branes was pro-
add to the expression above to correct the phases and fix tR9Sed by Douglas and co-workers[®,4]. Specifically, he

corner contributions. Specifically, the connections at the en§roPosed that turning on discrete torsion in a D-brane orbi-
points of the integrals in the naive phase calculation abovéPld could be understood as replacing the honest representa-
tion of the orbifold group on the bundle on the D-brane, with

are given by L ) . L
a projective representation. This description is extremely
1 _ natural—projective representations are classified by the same
(91 "1 "9)* A(@1)x= A(go)xt (hy "9 * A(hy)y group cohomology group as discrete torsion, namely
PR P B —1\* H<(I",U(1))—and the author further justified his proposal
(01 °hy 70" Aha)+ (hy )7 A(G2)s by, for example, showing how the twisted sector phases of
— (95 o050, H* A(ga)x+ (goh, H* A(hy), [1] could be derived from these projective representations.
., The association between discrete torsion and projective rep-
—(hy7)* A(hy)y. resentations was further justified ja8], which gave addi-
tional evidence for the relationship.
Definey= gilhi '9,x andz= h, 1x, then we can rewrite the In this section we shall give a first-principles derivation of
connections at the integral endpoints as these projective representations propose{Bid]. We shall

also liberally use the conventions, notation, and general
1 * * methods of Sec. Il
A(92)y= (91 71190)" Algo)y+ T Alhy)y = Alhy)y In a nutshell, because gauge transformatiBasB + dA
+A(92),— (95 *h292)* A(92),+ g5 A(hy),— A(hy),. are accompanied bf—A+A on a D-brane worldvolume,
in the presence of nontrivial gauge fields, the bundle on the
worldvolume of the brane is twisted, and one is rapidly led to
discover that orbifold group actions on such twisted bundles
. . B ah ho are (appropriately projectivized. Such twisting has been
A(9)+g*A(h)—A(h)—h*A(g)=d(log " —log &™) pointed out explicitly in[19], and has also been used to
describe K theory irB field backgroundgRef. [20], Sec.
and the assumption thaf;h,=h,g; and g,h,=h,g,, we  5.3). See als¢21] for another recent discussion of this twist-
find that the naive expression can be corrected to give thimg of D-brane gauge bundles by tBdield. Twisted sheaves
gauge-invariant phase have appeared if22] as part of an attempt to work out an

Next, using the relation
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appropriate version of the generalized McKay correspon- Now, ordinarily to describe how an orbifold grodpacts

dence[ 23] in the presence of discrete torsion. on a bundle, we would demand
In terms of the description oB fields involving stacks
(see for examplg6]), such twisted sheaves should be under- 9" 9ap= (¥ (Gap) (¥3) 1
stood as special kinds of sheaves on st@2k$ We shall not
use such methods here, however. for someNx N matricesy?. However, because of E(35),

For simplicity, we shall assume that ti field back- Wwe have to be more careful. From studying the pullback of
ground is topologically trivial(i.e., that the curvaturél is  Ed. (35) by an elemengeI’, we find
zero in integral cohomologyOur methods are very straight-
forward to generalize té1#0, but the results are messier,  9*[(9ap)(95,)(9ya) 1= (9" Nop)l =hop,vo g 19,

and we see no need to include the generalization in this y ) ) ]
paper. where ther? are Gech cochains tha tappeared in Sec. I D in

describing the orbifold group action on tifields them-
selves. From the above, we see that the most general expres-

A. General analysis ) * L
sion forg* g, is given by

Recall that in Sec. lll we describdglfields in terms of a
collection of data B*,A",h,,), where 0" 9up=[(72)(Gup) (¥) HL(¥Ip)1] (36)
a_npl— af . ..

B—B"=dA where theyd are some locally definetd (N) adjoints. In

@By ABYL AV short, we find that our naive expression §grg,; is twisted.

AT ATTEA dlogh,g, From expressingd;9,)* g, in two different ways(fol-
N g, =1. lowing the general self-consistency bootstrap outlined in

) ) ) Sec. ll)), we find a constraint on the?:
As in Sec. lll, we shall work on a “good invariant” cover

{U,}, meaning a cover that is well behaved with respect to (h3192)(y9192) = (g5 y21) (v2). (37)
the action of the orbifold group'. “ “ “ne
Next, consider the gauge fiefd& on a set oN coincident In fact, Eq.(37) above already tells us that ordinary lifts

D-branes. Recall that in D-branes, gauge transformations qff orbifold group actions must be replaced by projective lifts,
the B field and of the gauge fields are linkeBi=B+dA a5 hypothesized if8,4], but we shall finish working out the
inducesA—A+IA [wherel denotes the unit matrix, gener- orpjfold group action on the D-brane gauge fields before em-

ating the overallJ(1) of U(N)]. phasizing this point in detail.
In the present case, this means that sinceBliields are Next, write
only defined on local charts, the gauge fielsnust also
only be defined on local charts in general, with overlaps g*A%=u(g)“A“u(g)*] *+A(g)

partially determined by the same gauge transformations re-

lating theB fields on overlap$19]. Specifically, to describe for someU(N) adjointsu(g)“, A(g)“. This equation is not
the gauge fields on a D-brane in the presencB fields as a constraint—it is general enough to describe any possible
above, we supplement the data ®fields by data for local g*A¢, by varyingu(g)“ andA(g)“. We are merely writing

U(N) gauge fieldsA® as g* A% in a form that will yield more understandable results,
following the self-consistent bootstrap of Sec. Ill. By pulling
A= g.pAPg,5—dlogg,;=AI (34 back both sides of Eq34) by geI' and examining the re-
sult, we can determine botin(g)* andA(g)“:
gaﬁgﬁyg ya = haByl (35)
u(9)*=7va (38)

following [19]. As before|l is the unit matrix, generating the
diagonalU(1) in U(N), g,z is an invertibleN XN matrix A(9)*=(79)d(y%) "L+ 1A(g)® (39)
that would describe transition functions for the bundle if the “ “
B field were completely trivial, and“ is a localU(N) gauge  \hereA (g)“ is a set of local one-forms that appeared in Sec.
field on the D-brane. Also note we are usiddogg,; as ||l in defining the action of the orbifold group on tiR:fields
shorthand fom,,,dg, 5 . themselves.

To summarize, we have found that the orbifold group ac-

tion on the U(N) gauge fields on the worldvolume of a
"Unfortunately, we shall usa to denote both the gauge field on D-brane is described by

the N D-branes, as well as part of thee€h—de Rham cocycle

defining theB fields. These are distinct objects; our notation is g* A= (y)HAY YY) 1+ (9 d(y9) T+ 1A(g)*
unfortunate. The gauge fields will be associated with single ele-
ments of the covefU,}, and so we shall usually denote the gauge g* Gap=( Vgﬁ)[( 73)(%5)(7’%)_1]

fields by A“. The Gech—de Rham cocycle elements live on inter-
sectionsU ,NUg=U 4 ' and so we shall denote them Wﬂ. (hgl,gz)( 9192):( * 91)( 92)
Hopefully the reader will not become too confused by this. a Ve 927, )7,
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whereA (g) and Vgﬁ were defined in Sec. I, in defining the have labeled»9" elsewhere—in other words, the 2-cocycles
action of the orbifold group on thB fields themselves. h9M are the same cocycles as those describing the relevant

As we shall work out explicitly below, the data above element ofH?(I",U(1)).
describes the projectivized orbifold group actions described We can now rewrite the action of the orbifold group on
in [3,4], but in considerably greater generality. the D-brane gauge fields, in this special case, as

* A — (A0 gy—1
B. Explicit comparison to results of Douglas g A=A

The result above is considerably more general than that (h91:92) (y9192) = (991)(y92)
appearing i 3,4]. For purposes of comparison, letustakea = ) L _ )
moment to specialize to their circumstances. The pdief$ whlch_ is p_reC|ser the projectivized orbifold group action
considered orbifolds of D-branes in backgrounds with van-described ir{3,4]. , ,
ishing B fields, where the D-branes had support on some flat !N récovering the form of the orbifold group action de-
spaceR", and had a topologically trivial bundle on their SCribed in[3,4], we made the same simplifying assumptions
worldvolume. Since thd fields are completely trivial, we thft appeared ip3,4l—namely, that the D-branes reside on
can takeB*=0, A*#=0, andh,z,=1. R", an(_:i f[he bgndle on the D—brang worldvolume is topologi-

Since theB fields are completely trivial, it is meaningful Cally trivial, with constant gauge fiel&. However, our re-
to speak of an honest bundle on the worldvolume of the>Ults from the preceding section apply in much more general
D-brane—transition functions close on overlaps, not just uffircumstances than these. Put another way, we have just
to a phase. Another assumption made[3¥] is that this shown how. to d_erlve the description of dlscr_ete torsion for
bundle on the D-brane worldvolume is topologically trivial. D-Pranes given iri3,4], but our resuilts apply in far greater
Since it is topologically trivial, we can take thg,z=1, and generality than that used [13,4].
replace the locally defined gauge fields with a single

global U(N) gauge fieldA. In addition,[3,4] make the fur- C. Notes on shift orbifolds

ther assumption that the gauge figlds constant, so in de- | sec. IIl we pointed out that there are additional orbi-
fining the action of the orbifold group, it suffices to assumefo|q group actions oiB fields, in addition to those classified

that y9 is constant. by elements oH?(I",U(1)), which correspond to the so-

Since theB fields are trivial(in fact, vanishing, we can  cajled shift orbifolds[15]. As noted in Sec. IV, these new
describe any orbifold group action on tBefields by speci-  4ctions do considerably more than just multiply twisted sec-
fylr!g the'dlfference between .that actlpn and the cano'nlcailor partition functionsZ 4, by a phase; they multiply indi-
tr!v!al action. In other Words,_smce thgfield _backgrou_n_d IS vidual contributions t@ 4 by distinct phases, and so they
trivial, we can talk about orbifold group actions specified bydeeply alterZ gy 1) - ’
elements oH?(I",U(1)) (whereas, in general, only the dif- Loy do these extra orbifold group actions appear on
fergnce_betv_veen two orbifold group actions could be dep_pranes? The answer is implicit in the orbifold group action
scribed in this fashion . given at the end of Sec. V A above. Our results on D-brane

ZA” orbifold group action specified by an element of 5ctions made no assumptions regarding the form of the orbi-
H=(I",U(1)) can be specified by a set of topologically trivial o|q group action on th@ fields. In the special case of orbi-
bundlesT? with gauge-trivial connectior\ (g), and bundle  fo|q group actions on triviaB fields arising from elements of
mapsw?-92, As noted earlier, without loss of generality we H2(T,U(1)), we re-derived the results dB,4]; but our
can take all the bundl€E® to be the canonical trivial bundle, methods apply in general. We will describe the resulting

and all the connections(g) to all be identically zero, so the group actions on D-branes in more detail[ir5].
w9192 become constant gauge transformations of the triviafJ

bundle, satisfying the group 2-cocycle condition. V1. NOTES ON VAFA AND WITTEN'S WORK
In terms of the data describing the orbifold group action
on the D-brane worldvolume gauge fields, this means we can In [2] Vafa and Witten analyzed the inter-relationship be-

take theygﬁzl, and thehil'gz to be functions, i.e., tween discrete torsion and Calabi-Yau moduli. Specifically,
they considered deformations of the orbifold® (Z,X Z,)
h9r92-pd1%2  on Uy, N Ug and T%/(Z3% Z3) both with and without discrete torsion. In
¢ b both cases, turning on discrete torsion had the effect of re-
moving most elements dfil;} from the massless spectrum,

and in fact constant functions, satisfying the group 2-cocycle . .
condition fying group YCSuhile adding new elements #6821 . In both cases they con-

struct certaifi families of Calabi-Yau deformations of the
: : : 2,1

(hO1:9293) (92 95)  (91.92) (h9192.93). orblf(?lds, in WhICh' the eIemen'Fs ofg;, form a subset of the
possible polynomial deformations. Furthermore, they argue

Since we assumed the fields to be completely trivial, and

we are desc_ribing all lifts i.n term§ of gauge tfanSermaf[ionS 8For a more comprehensive description of Calabi-Yau deforma-

combined with the canonical trivial liftthat exists in this tions and resolutions of such orbifolds than was providd@]nsee

case, the functionsh?" coincide with constant functions we [26], Sec. 6.
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that the “allowed” complex structure deformatiorithose In order to understand orbifold Wilson lines on singular
linked to elements oﬂg}lb) cannot fully resolve the space, quotient spaces, one must work with more general objects
but always leave isolated singularities. Finally, they at-than mere bundles. On complex surfaces, the relevant objects
tempted to make sense out of these results by conjecturingirn out to be reflexive, non-locally-free sheaves. On a
the existence of some sort of “discrete torsion for conifolds,” smooth variety, a reflexive sheaf will be locally free up to
the isolated singularities left after desingularizing as much agomplex codimension three, but on a singular variety, a re-
possible. flexive sheaf can be locally free at lower codimension, pro-
How can one understand this behavior, in terms of oukjided the failure of local freedom occurs over the singulari-
picture of discrete torsion? So far in this paper we have deties. (As reflexive sheaves are not used very widely in the
scribeq discrete torsion as the action of the orbifold group Ohhysics literature, we have included an appendix giving gen-
the B fields. In order to understand R¢2] we need to Un-  oa) hackground information on reflexive sheaves, as well as
derstand quotients cB fields, directly on singular spaces, ap, example—a derivation of a reflexive rank 1 sheaf appear-

and their behavior under deformation. . ing as aZ, quotient of C? with nontrivial orbifold Wilson
As always, there are many close analogues to properties

o >
of orbifold Wilson lines. We begin in Sec. VI A by describ- ihes on the trivial line bundle ovec™)

ing the analogues dP] in orbifold Wilson lines, where the i I:; tsomedonetdu?j S}Ot kt?.OV\; a:pqut refle_xwel sheaves, ?r?d
analysis is vastly simpler. Then, in Sec. VI B we outline, in ried to understand the objects fiving on singuiar spaces, they

general terms, how the results[@f can be understood in the Would probably try to think of them as some analogue of
framework we have presented,(@s alwaysan analogue for orbifold Wilson lines. For example, there e??!sEerXIve
B fields of behavior oflU(1) gauge fields. non-locally-free sheaves at conifold singularities. Someone
We shall not attempt to give a detailed first-principles N0t acquainted with reflexive sheaves might try to label such
derivation of the results ifi2], but rather shall only outline ©objects as “orbifold Wilson lines for conifolds.”
general ideas. Detailed derivations are deferred to later work. What happens to these reflexive sheaves when the space
is resolved? On a complex surface, a reflexive sheaf will lift
to a locally free sheatf, i.e., a bundle, on the resolved space.
A. Analogue for orbifold Wilson lines The new bundle will typically have nonzero curvatren-
zeroc,) associated with the exceptional divisor of the reso-

lines on smooth covering spaces. Understanding orbil‘olI tion. This can be seen directly in the ADHM/ALE con-

Wilson lines on singular quotient spaces is considerabl)?trucnon’_and incidentally forms one way of understantiing
more subtle. the classical McKay correspondence.

To begin, considef[25], Chap. 14 a trivial rankn com- One can also understand this resolution in less technical
plex vector ’bundle orc2. i_et Z, act onC? in the standard terms. Consider our previous example of a quotiented bundle
fashion, and combine th&, action on the base with a gauge overC?/Z,. We remarked earlier that we have nonzero Wil-

transformation that maps fibers to minus themselves, i.e., Son loops, when we naively would have expected all Wilson
loops to be zero. Now, when we blow up the singularity, we

can lift the Wilson loops to the cover. If we were to have an
everywhere flat bundle on the resolution, then simge=0
and H2(Z) has no torsion, no Wilson loop can be
nonzero—a contradiction. So, in order to avoid contradicting
n e . the existence of nonzero Wilson loops, we are forced to con-
C" vector bundle. Specifically, over smooth points N clude that there must be nonzero curvature at some place
C,/Z,, we recover the originaC" fiber, but over the singu- . . - P '
: 2 . i and as our connection was flat away from the singularity, the
larity on C</Z,, the fiber isC"/Z,. ¢ i th tional divi fih |
In other words, the quotient of a bundle is not a bundle jpcurvature must live on the exceptional divisor ot the resolu-

general. We can understand this matter in somewhat ledion. Phrased more naively, quotients of bundlgs Wlll_havg
technical terms also. Consider quotient@gas above. Con- NONZero curvature conc.entrat.ed at curvature singularities if
sider Wilson loops enclosing the origin @/Z,. At least for ~ On€ turns on orbifold Wilson lines.

those loops descending from open strings@nwith ends

identified by theZ,, there will be a nontrivial holonomy

about the loop. However, as we contract the loop to the ori- 9These exist mathematically, but whether they are relevant for
gin, the holonomy remains nonzero—so something unusughysics is unknown.

must be going on at the origin. Since we started with a flat °The classical McKay correspondence is a map from representa-
connection on the cover, the connection must be flat on theons ofI', a finite subgroup 08U(2), to elements of the degree 2
quotient spaceat least, on the smooth part of the quotient ¢ohomology ofCZT. Here, we see that directly, a representation of
Since C?/Z, is contractible, if there were an honest every-T defines an action of the orbifold group on the trivial bundle on
where flat bundle on the space, any Wilson loop would bec?, and the corresponding element of degree 2 cohomology o6
forced to be zero. Since there are nonzero Wilson loops, wehe bundle appearing as a lift of the reflexive sheaf on the quotient
are forced to conclude that our bundle must be behavin@?/T. This way of thinking about McKay is essentially due to
badly at the origin. [27,28.

In this paper we have often discussed orbifold Wilson

(21,25, ...\ Z0)—>(—21,— 25, ... ,— Z,).

Now, consider the quotient space. OV@f/Z,, we have
some fibration, the quotient of the total space of the trivial
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B. B fields on singular spaces This explanation of how Calabi-Yau moduli of typ¢**

We shall not attempt in this paper to give a thoroughtould be obstructed was suggested[j, Sec. 2.3 as an
derivation of the results of2], but in general terms, their €xplanation of their results, though they had no idea why
results should now seem much more natural. should be generated. In the present context, this is naturally

Just as a quotient of a bundle need not be a bundle, thénderstood.
quotient of a 1-gerbela formal structure, analogous to  So, we see that if we try to deform an orbifold with non-
bundles, for whichB fields are connectiofnsieed not be a zero discrete torsiofwhich implies nonzero Wilson surfaces
1-gerbe. Instead, on a singular variety, one would merelpn the quotient then logical consistency and the demands of
expect to have algebraic stadksalogues of sheaveshich  supersymmetry place strong constraints on the structure of
fail to be gerbes over certain quotient singularities. the moduli space of vacua, which in general terms is consis-

For example, the discrete torsion for conifolds observedent with[2].
by the authors of2] surely corresponds to some algebraic ~ As mentioned earlier, we shall not attempt a thorough
stack on a conifold singularity that fails to be a gerbe locallyderivation of the results di2] in this paper, but rather shall
over the singularity, a precise analogue of the reflexivejefer such detailed considerations to future work. For the
sheaves on conifolds that we labeled orbifold Wilson |ineSpurposes of this paper, we are content to mere|y outline how

for conifolds. o the results of2] naturally fit into the general picture we have
We can justify this claim in elementary terms as follows. gescribed.

Recall in studying our example d®?/Z,, we concluded that

becguse of the existence of nonzero Wilson loops on the VIl. NOTES ON LOCAL ORBIFOLDS

guotient space, the resolved space must have nonzero curva-

ture supported at the exceptional divisor. Here, we have a A point usually glossed over in physics discussions of
very similar situation. Here we have nonzero Wilson surface®rbifolds is the possibility of local orbifold degrees of free-
[i.e., exp(B)] over Riemann surfaces in the quotient spaceglom, as distinct from global orbifold degrees of freedom. We
C3/(Z,XZ,), as measured by the twisted sector phaseshall take a moment to very briefly discuss local orbifolds
worked out in Sec. llI. Just as for orbifold Wilson lines, this and discrete torsion, before concluding.

is only sensible here because the spaces have singularities. If What are local orbifold degrees of freedom? Consider
we resolve the singularities, in order to get a consistent picforming a global orbifold, sayT*/Z,. In forming the global

ture we must generate nonzero curvature. orbifold, if we are doing physics, then we usually get to
Now, in very general terms, there are two general ways t¢hoose some number of degrees of freedom—orbifold Wil-
resolve singularities: son lines and discrete torsion, for example. Now, we can also
(1) We can deform the Kaer structure, by blowing up or examine each singularity locally. In the present case, each
making a small resolution. singularity is locallyC?/Z,. If we forget about the global
(2) We can deform the complex structure. structure of the orbifold and just work locally, then one is led

In the first case, although we mentioned that we needo associate orbifold degrees of freedom to the singularities
nonzero curvature in order to make sense out of the Wilsotocally. We refer to such local degrees of freedom as local
surfaces present on the quotient, in general one does notbifold degrees of freedom.
generate any natural 3-cycle where the curvakiieould be How do local orbifold degrees of freedom differ from
supported, since blowups and small resolutions add everglobal orbifold degrees of freedom? For simplicity, consider
dimensional cycles. Thus, we are naturally led to the concluaU(1) bundle with connection ofi*, and quotient byZ,. If
sion that, in general terms, resolutions of this class must bwe turn on the nontrivial orbifold) (1) Wilson line, then we
obstructed—we need to turn on curvatifesomewhere to find that eachC?/Z, has a nontrivial “twist” (technically,
account for the nonzero Wilson surfaces, but typically ondocally we have a reflexive nonlocally-free rank 1 she&D,
does not have any natural options to do so. Indeeffiit  the global orbifold gives rise to either a twist at every singu-
was noted that nontrivial Kder deformations are removed larity, or no twists at any singularity.
from the massless spectrum. However, there are additional options present if we con-

In the second case, one can often get 3-cycles. For exsider the orbifold to be a local orbifold. We can consistently
ample, if we smooth a conifold singularity by deforming the twist at groups of eight of the sixteen singularitigechni-
complex structure, then we are typically led to a new 3-cyclecally, in addition to reflexive non-locally-free sheaves that
So, in this case one expects to typically be able to resolve th&il to be locally free at every singularity or nowhere, there
space without contradiction, and generate nonzero curvatu@e also reflexive non-locally-free sheaves that fail to be lo-
H on new 3-cycles. cally free at some but not all singularitiegSee[29], Sec.

Now, nonzero curvaturl (in de Rham cohomologyn a  VIIL5 or [30] for the mathematical result.

Calabi-Yau is inconsistent with supersymmetry—if a defor- One can now ask: does discrete torsion have local orbi-
mation involves turning orH, then that deformation will fold degrees of freedom? Previously, when discrete torsion
break supersymmetry, and so that deformation is lifted fromwas known merely as some mysterious discrete degree of
the moduli space of supersymmetric vacua. Indeedi2jrit ~ freedom appearing in orbifolds, the answer was not known.

was found that complex structure deformations which com- Now that we have a purely mathematical understanding of
pletely resolved the space, and left no singularity, were alsdiscrete torsion, we can address this matter. In general terms,
obstructed. it is now clear that there should exist local orbifold degrees
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of freedom for discrete torsion. We shall not attempt any 1. Technical notes on reflexive sheaves

counting of such local orbifold degrees of freedom_ here— |, this appendix we shall give some technical notes on
rather, our purpose was merely to emphasize the importantfexive sheaves.

but usually neglected point that local orbifold degrees of A (afiexive sheaf is a sheaf which is isomorphic to its

freedom exist. bidual: £=£v'. Reflexive sheaves include locally free
sheavedi.e., bundles as a special subclass.
VIIl. CONCLUSIONS On smooth varieties, reflexive sheaves are locally free up
] ] ] to (complex codimension three. Thus, for example, on a
In this paper we have given a complete geometric explagmooth surface, all reflexive sheaves are locally free. Also,
nation of discrete torsion, as the choice of orbifold groupgn 5 smooth variety, all reflexive rank 1 sheaves are locally
action on theB fields. Specifically, we have shown how the e

2 H H . .. .
group cohomology grougi™(I',U(1)) arises, derived the  on singular varieties, both of the statements above fail.
phases associated with twisted sector contributions to stringy, g singular surface, one can have reflexive non-locally-
loop partition functions, derived Douglas’s descripti®4]  free sheaves; the sheaves fail to be locally free over the sin-
of orbifold group actions on D-branes as projective represengyarities. One can also have reflexive non-locally-free rank
tations of the orbifold group, and outlined how the results of] gheaves on singular varieties.

Vafa and Witter( 2] fit into this general framework. We have  op Noetherian normal varietidise., most of the varieties
also briefly discussed shift orbifolds, which are degrees ofyat physicists are likely to encounter in praclicere can
freedzom associated with ttifield, beyond those classified gescribe reflexive rank 1 sheaves in terms of divisors, just as
by H*(I',U(1)), and explained how these appear physicallyjine bundles on smooth varieties can be described in terms of
in terms of twisted sector contributions to partition functions gjyisors. Roughly speaking, a general divisor on a Noethe-
and in terms of D-brane actions. rian normal variety is known as a “Weil” divisor, whereas a

Nowhere in all this did we assume that the orbifold groupgjvisor that defines, not just a reflexive rank 1 sheaf, but a
I" acts freely; nor do we assume tliats Abelian. We do not  |ine pundle, is known as a “Cartier” divisdt-

even assume that the curvature of Biéelds vanishes. Our For example, on the singular affine spa¥Z,, there is

results hold in generality. . precisely onglequivalence class pf\eil divisor that is not
To put a different spin on these matters, we have given g artier. If we write

completely geometric description of discrete torsiénpri-

ori, discrete torsion has nothing to do with string theory. C?/Z,=Spec C[x,y,z]/(xy—z?)

Discrete torsion is a property of defining orbifold group ac-

tions onB fields, and can be understood in a purely math-, - o non-Cartier Weil divisor fx=2=0}. We shall de-

ematical context, without any reference to stri_ng theory'note this divisor byD. Then, the associated reflexive sheaf
Now, at the end of the day, we can calculate twisted sectob(D) [and alsoO(—D)] is not locally free

contributions to partition functions, as well as check Dou- AlthoughD is not Cartier, it can be shown that the divisor
glas’s proposed orbifold group action on D-branes, so we cagy g Cartier, so for e;<ample, the reflexive sheaves

certainly derive physical results. However, it should be em-,,, . . .
phasized that discrete torsion is not some special, “inher-o( D) and O(D) are related by tensoring with @ivial)

- . . . line bundle, and so are in the same equivalence class of Welil
ently stringy” property of string theory or conformal field divisors
theory, but rather has a straightforward and purely math- Similarly, the divisor{y=z=0} is not Cartier, but it is

ematical understanding. related toD by a Cartier divisor, and so lies in the same
equivalence class of Weil divisors.
ACKNOWLEDGMENTS Reflexive rank 1 sheaves can be somewhat more subtle
. . . than line bundles. For example, if, andD, are a pair of
We would like to thank P. Asplnwall, D. Ben-2vi, A. Cal- Cartier divisors, then as everyone knows,
dararu, A. Knutson, D. Morrison, and R. Plesser for useful

conversations.
O(D1)®O(Dy)=0(D1+D,).

APPENDIX: REFLEXIVE SHEAVES ON QUOTIENT )
SPACES In other words, the tensor products of the line bundles asso-

ciated to(Cartien divisorsD4, D, is the line bundle associ-

In Sec. VI A, we mentioned that when orbifolding a spaceated to(Cartiep divisor D, + D,. However, ifD, andD,, are
with a bundle, the resulting object living on the quotient not both Cartier divisors, then this relation need not hold
space need not be a bundle, and in the context of comple§31], p. 283. In other words, ifD; andD, are two Weil
algebraic geometry, will be a reflexive sheaf. In this appen-
dix we elaborate on these remarks, as reflexive sheaves are——
not commonly understood in the physics literature. We begin Ygxperts will note we are being quite sloppy—our description of
with a short overview of reflexive sheaves, and then explicCartier divisors really corresponds to the image of Cartier divisors
ity derive the reflexive sheaf appearing in the specific ex-in the space of Weil divisors. Our abbreviated description will suf-
ample of the quotien€?/Z,. fice for the purposes of this appendix.
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divisors, then in general the reflexive rank 1 shea®é®,), Now, consider the nontrivial lift of th& =Z, action from
O(D,) are not related t@(D,+D,) as above: C? to the structure sheaf o82. In order to describe the
action of this lift on the modulé/, view M as a freely gen-

O(D1)®O(Dy)#O(D1+Dy). eratedR module, and let thésingle) generator oM be de-

e . noted bya. For the trivial lift, we implicitly assumed thdt
The essential difficulty is that the tensor product of two r€-mappeda— . For the nontrivial lift, we takev— — a. The

flexive sheaves need not be reflexive—the tensor product CEA' module of " invariants ofM is now a module with two

contain torsion, for example. We can fix this problem by -
) - ' ; ' enerators, namelye andye«, and one relation
bidualizing the left-hand side of the expression above. Ing by yo

other words, a statement that is true for all Weil divisbDrs

. = 2 .
D,, not just Cartier divisors, is (xy)- (xa)=(x%) - (ya).

[O(D1)®@O(D,)]"W=0O(D,+D5,). The moduleM! is not freely generated, and in particular
does not define a locally free sheaf on Splee C%/T". How-
A more detailed discussion of the relationship of Weil ever, the moduléM! does define a reflexive rank 1 sheaf.
versus Cartier divisors, in the context of toric varieties, can Thus, we see explicitly that the nontrivial orbifold Wilson

be found in[10]. line on C%/Z, describes a reflexive non-locally-free rank 1
sheaf onC?/Z,.
2. Reflexive sheaves and orbifold Wilson lines The reflexive, non-locally-free sheaf oB?/Z, can be

In the text we claimed that one can directly check that(non-uniquelylifted to a sheafs on the resolution o€?/Z,,

possible quotients of the structufteivial rank one sheaf on such that(essentially (7, S)v" is the nontrivial reflexive

2
2 are precisely th ible reflexive sheavesGr. — Sheaf onc*/Zs. . o .
S erZ \?vepsi(;ﬁevv{)rtk ?hizojjtt?ne d eetaﬁ foretr? eec?asigim For those readers acquainted with toric varieties, the dis-

Let R denote the ringC[x,y], and letR" denote the ring cussion above can be understood torically. Desc@B&z,
- - e by a cone with edges
of I' invariants, namely

RI'=C[x2,y?,xy]. v1=(2,)

Let M denote theR module defining the structure sheaf. In v,=(0,1)
other wordsM =R. (The distinction between the modulé ’
and the ringR shall be important when discussing nontrivial
lifts of T".)

First, consider the case of the trivial lift of the=2,
action fromC? to the structure sheaf. Then the modiié
of I' invariants is isomorphi¢as anR! modulg to the trivial
R" module, namely

and letD,,D, denote the toric divisors corresponding to
edgew 1 ,v,, respectively. One can then check expliciths-
ing, for example, methods discussed[if]) that the mod-
ules describing the reflexive rank 1 sheaw&+D,) and
O(+D,) are all isomorphic(as modules, ignoring th&
grading, and in particular are isomorphic to the modiié
MT=C[x2,y2 xy]. of invariants from the nontriviak, lift, as described above.
[Note that since there is only one reflexive non-locally-free
In this caseM' defines the structure sheaf on the quotientsheaf, the sheave®(+D;) and O(—D,) are necessarily

spaceC?/T". This sheaf is locally free. isomorphic]
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