
PHYSICAL REVIEW D 68, 125011 ~2003!
Effective field theory and unification in AdS backgrounds
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This work is an extension of our previous work@Phys. Rev. Lett.89, 131601~2002!# which showed how to
systematically calculate the high energy evolution of gauge couplings in compact AdS5 ~five dimensional
anti–de Sitter! backgrounds. We first directly compute the one-loop effects of massive charged scalar fields on
the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk
masses~which generically are of the order of the Planck scale! enter only logarithmically in the corrections to
the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in
the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the
Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces
our previous calculation, which was based on AdS–conformal field theory duality. We also calculate the effects
of scalar fields satisfying nontrivial boundary conditions~relevant for orbifold breaking of bulk symmetries! on
the running of gauge couplings.
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I. INTRODUCTION

The long lifetime of the proton and the apparent conv
gence of the gauge couplings at a large scale has long
seen as strong evidence for an energy desert between
weak scale and an underlying UV scale. The drawback
this picture is the difficulty in generating and stabilizing t
requisite hierarchy of scales. A minimal supersymme
model seems to fit into such a paradigm, as it naturally
bilizes the hierarchy and leads to an even more compel
convergence of the gauge couplings. However, genera
the hierarchy necessitates some additional physics input

Whatever physics is responsible for stabilizing the hier
chy should, at least naively, remain weakly coupled if it is
preserve the predictions of grand unification. Thus it wo
seem that we should expect all the physics up to the
scale to be well described by perturbation theory. Here
instead explore the possibility that new strong dynamics m
arise at the TeV scale without spoiling the successful l
energy gauge coupling relations implied by grand unifi
theories~GUTs!. In particular, we are interested in makin
low energy coupling constant predictions for grand unifi
theories which are embedded in the Randall-Sundrum~RS!
scenario@1#. In this model the hierarchy is generated ge
metrically, via a 5D anti–de Sitter~AdS! metric, and can be
stabilized via a mechanism such as that of@2#. If one works
in conformal coordinates, the metric of the AdS5 spacetime
is given by

ds25
1

~kz!2 ~hmndxmdxn2dz2!, ~1!

where z parametrizes location in the bulk spacetim
bounded by a UV~or ‘‘Planck’’ ! brane atzUV51/k and an IR
~or ‘‘TeV’’ ! brane atzIR51/T, and xm denotes the four-
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dimensional Poincare coordinates parallel to the bounda
of the space. The AdS radius of curvature is given by 1k.
For applications to the hierarchy problem, we take all dime
sionful parameters to scale as appropriate powers of the
Planck scaleM. The weak scale is generated by the positi
of the IR brane,mW;1/zIR5T ~where we measure mas
scales in terms of the unit Minkowski metric,hmn).

We will imagine that at least the standard model gau
fields propagate in the background of Eq.~1!. Then a low
energy observer can only measure the effective coupling
the Kaluza-Klein~KK ! zero mode of 5D gauge fields. How
ever, recall that in compactified AdS backgrounds, the lo
lying KK modes of bulk fields have masses of the order
the scaleT. Thus T serves as an effective compactificatio
scale, and for the same reasons as in a compactified flat s
field theory, the zero mode gauge coupling observable
be rendered uncalculable by strong coupling effects near
scale~for instance, the effects of higher dimensional ope
tors give rise to corrections that go roughly asq2/T2).

These remarks would then lead one to believe that i
impossible to make any sense of effective field theory~EFT!
at scales above the KK scaleT. This seems to imply tha
gauge unification at a large scale, of the order of the cur
ture scalek, is not meaningful in a field theoretic context. I
reality, however, as we emphasized in a previous paper@8#,
this is not the case. In compactified AdS backgrounds,
strong coupling scale beyond which EFT breaks down
observable dependent. While zero mode observables ca
be reliably analyzed via local field theory at energies lar
thanT, a correlator whose external points are localized a
coordinatez in the bulk is perturbative up to an energy sca
roughly given by

p4;
M

kz
, ~2!
©2003 The American Physical Society11-1



to
a
st

o
th

o
tw
t

on
th
a

ila
ow
g

as

te
is

n
it

gy
u
er
ta
m

rg
f

ug

u
ho
d
in

e
-

e-

is-
the
ulk
are

hey

-
as

are
We

o-
of
gy

of

II A
in
is

be-
tion
on
the
s
tly
tor

de-
er-
in

ter-
eir
e to
b-
we
in

rm
r
r

s
ures

-

r
nts

tan-
la-re

W. D. GOLDBERGER AND I. Z. ROTHSTEIN PHYSICAL REVIEW D68, 125011 ~2003!
where p4 is a 4D energy scale. In particular, a correla
localized on the Planck brane is calculable up to moment
the order of the scaleM. Because of this, it is possible to te
unification at energies of orderk, since, using perturbative
field theory, one can directly compute gauge field correlat
whose external points lie on the Planck brane. When
momentum drops below the scaleT, the energy resolution is
insufficient to distinguish between the Planck brane c
relator and the zero mode correlator, and therefore the
become equal at low energies. It follows that one can use
Planck brane correlators to make low energy predicti
based on high energy GUT symmetry. By analyzing
Planck correlator of a 5D gauge field via the AdS conform
field theory~CFT! correspondence@3,4# as it applies to the
RS model@5–7#, we argued previously@8# that the momen-
tum dependence of this observable is quantitatively sim
to what one finds in a purely 4D gauge theory, leading to l
energy predictions as in 4D GUTs. The possibility that gau
couplings in AdS backgrounds evolve logarithmically w
first raised in@9#, and in@10# within the context of a solution
to the hierarchy problem.1 More recently, in Ref.@11#, the
zero mode correlator including a bulk mass was calcula
using a Pauli-Villars regulator with results which are cons
tent with our previous work@8#, as well as with our results
below. Coupling constant evolution in an AdS backgrou
was also considered from the point of view of supergrav
low energy effective Lagrangians in@12#.

In @8# we proposed an EFT calculation of low ener
gauge couplings based on integrating out fields that acq
masses due to GUT symmetry breaking at a scale of ordk.
In this paper, we describe our EFT approach in more de
However, we first present an alternative nondecoupling co
putation of the effects of massive fields on the low ene
gauge couplings~which is a technically trivial extension o
our previous zero mass calculation!. That is, we will directly
compute the one-loop corrections to the couplings of ga
field zero modes at momenta less thanT due to massive
charged bulk fields in a compactified AdS5 background~this
has also been done using a variety of methods in@9–12#!. In
this calculation, the information about the UV physics~for
instance physics around the GUT scale! is encoded in the
dependence of the 4D effective gauge couplings on the b
mass parameters of the heavy fields. In Sec. II we show
such a calculation is carried out in compactified 5D flat mo
els. For simplicity we will phrase much of our discussion
the context of a simple model with twoU(1) gauge fields
and two charged matter fields. In this toy example, aZ2
symmetry that exchanges the gauge fields plays the rol
GUT symmetry. By breakingZ2 either through nonsymmet
ric scalar masses or by boundary conditions~in the case of
field theories propagating on the flat 5D orbifoldR4

3S1/Z2), we obtain definite predictions for the relation b
tween the low energy gauge couplings of the twoU(1)
gauge fields.

1We disagree with both the methodology and the quantitative
sults of the authors of@10#, however.
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The results of the analogous AdS computation are d
cussed in Sec. III A. In contrast to flat 5D models, where
dependence of the low energy coupling on the heavy b
masses is linear, in AdS low energy gauge observables
only logarithmic functions of 5D mass scales, as long as t
are smaller than the curvature scalek ~this result was also
obtained in@11# using a Pauli-Villars regularization proce
dure!. Because the coefficient of the logarithm is the same
in a purely 4D theory, low energy predictions in ourZ2
model where symmetry is broken by bulk scalar masses
therefore the same as in the flat 4D version of the model.
also discuss the case in which theZ2 symmetry is broken by
nontrivial boundary conditions. When the symmetry is br
ken explicitly on the Planck brane only, large logarithms
the ratio ofAq2 to the curvature scale appear in low ener
predictions. No large logarithms appear when the source
symmetry breaking is the TeV brane.

Although formulas such as those presented in Sec. I
are sufficient for working out low energy predictions
warped GUTs, the physical origin of the large logarithms
somewhat obscure. Furthermore one might worry that
cause of the large one-loop corrections, ordinary perturba
is invalid for computing such quantities. For perturbati
theory to be sensible, there must be a way of employing
renormalization group~RG! to resum the large logarithm
into scale dependent couplings. In Sec. III B we explici
show how to calculate the two-point Planck gauge correla
for momenta larger than the KK scale. We use this to
scribe how the results presented in Sec. III A may be und
stood from an EFT perspective in terms of a procedure
which massive bulk fields are integrated out when the ex
nal momenta in the correlators become of the order of th
masses. In this approach, the large logarithms arise du
running of effective couplings. This result can also be o
tained by employing AdS/CFT ideas, along the lines that
used in@8#. A discussion of such an approach can be found
Sec. III C.

II. COUPLING CONSTANT EVOLUTION
IN FLAT SPACE MODELS

Before discussing gauge theories in AdS5 backgrounds, it
is useful to review the situation in flat 5D spaces of the fo
R43S1 or R43S1/Z2. In this paper we will take as ou
‘‘GUT’’ model a U(1)13U(1)2 gauge theory with scala
matter fields F i ( i 51,2) charged underU(1)i . In this
model, GUT symmetry is aZ2 symmetry that interchange
the two scalars as well as the two gauge fields, and ens
the equality of the twoU(1) couplings in the UV. By break-
ing Z2 either softly~through explicit symmetry breaking sca
lar mass terms! or through boundary conditions~in the case
of theories onR43S1/Z2) we obtain different predictions fo
how relations of the low energy effective coupling consta
~defined in a suitable way; see below! deviate fromZ2 sym-
metric values. While simplistic, thisZ2 model captures the
relevant field theoretic aspects in a clear way.

For the sake of completeness, let us first recall the s
dard calculation of the low energy coupling constant re
tions in four-dimensional theories using EFT@13#. Typically
-
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when calculating the evolution of couplings it is most co
venient to work within the framework of an EFT. By inte
grating out one scale at a time the calculation is greatly s
plified, and the evolution is accomplished by sequentia
running and matching across mass thresholds. Working in
EFT also allows the implementation of mass independ
subtraction schemes~e.g. MS) which leads to a significan
simplification of the solutions of the RG equations. For
stance, suppose that in our toy modelZ2 is softly broken by
the introduction of hierarchical scalar massesm1@m2. Then
for high energies, theZ2 ‘‘GUT’’ symmetry will be manifest.
To derive relations between low energy (E!m2) couplings
to leading logarithmic~LL ! approximation within an EFT
framework, we first integrate out the heavy fieldF1 at a
scalem;m1. To LL accuracy, this is accomplished by sim
ply removing the fieldF1 from the theory, and setting th
U(1) couplings to a common value at the scalem1. We then
run the couplings, by integrating the one-loop RG equati
derived in the effective theory below the scalem1. Finally,
below the scalem2 we removeF2 from the theory, at which
point the running of the couplings is completely frozen. F
lowing this procedure, one finds the standard result

1

g1
2~m!

2
1

g2
2~m!

5
1

24p2 ln
m2

m1

, ~3!

valid at LL order for allm,m2 .
Alternatively, in the original field theory, one could sim

ply calculate the low energy observable of interest, keep
the full particle content in the graphs. If one works in a ma
dependent scheme such as momentum subtraction, the
coupling of heavy modes occurs automatically, and ther
no need to work within an EFT. However, it is also possib
to calculate in the full theory using a mass independ
scheme. In this case decoupling will not be manifest. Nev
theless, because all physical predictions are independe
the specific scheme chosen to carry out the calculations,
can be assured of getting the correct result for low ene
quantities.

Recall how this works in theMS scheme. InMS, the RG
equations do not properly account for the decoupling
heavy fields, leading to spurious RG evolution of the co
plings at low energies. This unphysical running of the co
plings is compensated by logarithms of the heavy part
masses in low energy matrix elements. The two effects
actly conspire to properly decouple the heavy modes fr
low energy physics. As an explicit example of this consid
again theU(1)3U(1) model. If we define an effective
gauge coupling in terms of the 1PI gauge field two-po
correlator~doing so gives rise to a resummation of all lea
ing one-loop logarithms from the 1PI graphs!, we find, work-
ing in Euclidean signature

1

gi
2~q2!

5
1

gi
2~m!

2
1

16p2E
0

1

dx~122x!2

3 lnFmi
21x~12x!q2

m2 G , ~4!
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m
d

dm
gi~m!5

gi
3

48p2 . ~5!

We see that the running couplingsgi(m) do not properly
incorporate the decoupling of the charged fields at the thre
olds m1 , m2. However, the prediction for the difference i
the gauge forces atq2!m1

2 ~as measured, say by a Wilso
loop observable! is the same as in the EFT approach

1

g1
2~q2!

2
1

g2
2~q2!

5
1

16p2E
0

1

dx~122x!2lnFm2
21x~12x!q2

m1
21x~12x!q2G

5
1

24p2 ln
m2

m1

1O~q2/m2
2!, ~6!

where we used thatg1(m)5g2(m) due to theZ2 symmetry.
The logarithm ofm1 /m2 in this case is not from the runnin
of the gauge couplings, but rather from the infrared behav
of the 1PI correlator. Yet this result is equivalent to the E
prediction of Eq.~3!. In this paper, we will use dimensiona
regularization plusMS throughout. We will calculate low
energy predictions both in an EFT framework~in Sec. III B!,
and in a nondecoupling scheme in Sec. III A.

A. Bulk symmetry breaking in 5D models

Now consider our toy model propagating in a flat, fiv
dimensional ~Euclidean! space compactified either on
circle of radiusR or on a line intervalS1/Z2 of lengthpR.
We are interested in computing how five dimensional phys
manifests itself at energies smaller than the compactifica
scale. At such scales only the lowest KK eigenmodes of b
fields are accessible as asymptotic states in scattering
cesses. Consequently, the relevant observables are de
from the correlators of bulk field zero modes. In particular,
a higher dimensional GUT theory we are interested in de
ing relations between the gauge couplings as measured
low energy observer. Such gauge couplings can be define
a number of ways, for instance as the function that multipl
the explicit 1/qW 2 dependence of a Wilson loop whose perim
eter is longer than the compactification radius. Equivalen
one could define an effectiveq2-dependent coupling in term
of the coefficient of the quadratic term in the 1PI action f
the zero mode gauge field:

1

g2~q2!
5

1

g2 1P~q2!, ~7!

whereg is the tree-level coupling, andP(q2) encodes one-
loop effects~we show how to compute it by summing ove
the KK modes of bulk fields in Appendix A!. Throughout
most of our discussion, we will use the latter quantity as o
definition of the coupling constant measured by low ene
observers. Working in dimensional regularization, the o
loop vacuum polarization amplitude due to a charged
scalar~massm) on a flat space of the formR43S1 is given
by ~see Appendix A!
1-3
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PS1~q2;R!52
1

8p2E
0

1

dxxA12x2

3 ln@2 sinh~pRAq2x2/41m2!#, ~8!

which turns out to be finite. Because the 5D gauge coup
is dimensionful,@g5#521/2, no logarithmic divergences ar
possible at one loop. Rather, divergences must scale line
with an ultraviolet cutoff. However, such divergences a
simply set to zero in dimensional regularization, leading
our finite result. While there are no UV logarithms, in th
massless case finite logarithmic dependence can arise i
IR for q2R2!1

PS1~q2;R!.2
1

24p2F ln~2pRAq2!2
4

3
G

1analytic in q2R2. ~9!

Besides the logarithm ofAq2, all other momentum depen
dence forAq2R!1 is analytic inq2. This is exactly what we
expect in the low energy limit, where our 5D theory shou
be describable by a 4D theory that consists of a mass
scalar and aU(1) gauge field. In the four-dimensional lim
R→0, the logarithm in Eq.~9! becomes singular, reproduc
ing the usual one-loop UV logarithm of a 4D gauge theo
All other q2 dependence is analytic, which in a 4D EFT
encoded by the contribution of an infinite set of local ope
tors involving the massless 4D modes. It is also instructive
consider the limitAq2R@1 of Eq. ~8!. In this case, the be
havior of PS1(q2;R) is dominated by a nonanalytic powe
law term

PS1~q2;R!.2
Aq2R

256
. ~10!

Thus for large enoughq2, the one-loop correction to th
coupling has the same size as the tree level result. At
scale the effects of higher dimension operators are also
suppressed. This indicates that the 5D gauge theory beco
strongly coupled in the UV, and is no longer an adequ
description of the physics. WhenmÞ0, the low energy be-
havior of Eq. ~8! depends on the size ofm relative to the
compactification radius. Forq2,m2, andmR,1, we find

PS1~q2;R!.2
1

24p2 ln~2pRm!. ~11!

Imagine that in our toyU(1)3U(1), F1 acquires a mass
m1!R while F2 remains massless. Then the deviations fr
Z2 unification at low energy are found to be

1

g1
2~q2!

2
1

g2
2~q2!

.
1

24p2 lnSAq2

m1
D . ~12!

This is of course, what we expect to find if we decouple
tower of KK states by hand and compute the relative runn
of the gauge couplings in a 4D EFT that includes only
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lowest lying modes of the bulk fields. Although our comp
tation of PS1(q2;R) included the contribution of all the KK
excitations of bulk fields, we see that physics above the s
m1 effectively decouples from physical quantities. Then t
apparent ‘‘running’’ is due simply to the mismatch betwe
the zero mode and the lowest mode of the massive fi
Above the lowest mode, the KK spectra ofF1,2 essentially
match. On the other hand ifmR@1, the q2,m2 limit is
given by

PS1~q2!.2
mR

24p
1O~q2/m2!. ~13!

Then in theZ2 model withm1R@1 andm250, one predicts
for q2R2,1

1

g1
2~q2!

2
1

g2
2~q2!

.2
m1R

24p
, ~14!

where we have ignored the logarithm ofAq2R relative to the
power correction proportional tom1R. This result is directly
applicable to models with TeV compactification scale
where unification of theSU(3)3SU(2)3U(1) couplings at
a low scale is achieved through power law ‘‘running’’ of th
couplings@14#. From the point of view of Eq.~13!, this run-
ning is not due to the RG evolution of the couplings~indeed
for theories compactified on a circle, there are no logarithm
divergences and therefore in a mass independent schem
RG flows to speak of!. Rather it comes about through finite
calculable corrections to the low energy couplings that
pend on a physical UV scale, in this case the bulk mass
heavy field. At least in flat space models, the extreme
sensitivity of Eq.~13! implies that in general, low energ
predictions are highly dependent on the exact nature of s
metry breaking near the UV scale. Unknown UV physics c
give rise to corrections that are as large as what appear
the right hand side of Eq.~14!. For instance, if in our mode
the symmetry breaking massm1 arises dynamically, there ar
tree-level operators involving theU(1)1 field strength whose
contribution is of the same order as the quantum effe
Equation~14! must therefore be viewed as at best an orde
magnitude estimate of the relation between low energy c
plings, rather than a definite prediction for 4D physics bas
on symmetries of the 5D theory.

B. Symmetry breaking on manifolds with boundary

Let us now discuss how the quantum corrections
modified due to the inclusion of boundaries. To be defin
we will consider U(1) gauge theories with scalar matt
propagating on the orbifoldS1/Z2, where the orbifold fixed
planes~‘‘branes’’! bound the space. On such space the sh
distance structure of the theory is modified because it is n
possible to write down operators involving bulk fields th
are localized on the boundaries. Generically, we expect l
effects to generate new divergences that renormalize the
efficients of such operators. Depending on the mass dim
sions of the brane localized couplings, short distance div
gences on the branes may be logarithmic, inducing n
trivial boundary RG flows@16#.
1-4
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It is also possible to use the branes to break symmetrie
the bulk theory. This occurs because one may impose bo
ary conditions that are incompatible with the symmetries
the higher-dimensional Lagrangian. For instance, we m
give fields within a given multiplet different boundary co
ditions. Then from the 4D point of view there will be ma
splittings among the low lying KK modes of the fields in th
multiplet, so that a 4D observer will identify the compacti
cation scale with the symmetry breaking scale. On the o
hand, the splitting among heavy KK multiplets~masses
larger than the compactification scale! will be small relative
to the mass, so that the symmetry is manifest at high e
gies. In the 5D language this is just the statement that
symmetry is explicitly realized locally in the bulk, but bro
ken at exceptional points.

To illustrate these features, we consider the one-loop
rection to the zero mode effective gauge coupling due t
scalar fieldF satisfying various types of boundary cond
tions on flatR43S1/Z2 ~we assume that the zero mode su
vives whatever boundary conditions we impose of the
gauge field!. First choose (1,1) boundary conditions at the
Z2 points~located atz50,pR, with z a coordinate along the
S1/Z2)

]zF~x,z!uz505]zF~x,z!uz5pR50. ~15!

The one-loop vacuum polarization of the zero mode ga
field is now given by „with e542D and ē215e21

1 1
2 @2g1 ln(4p)…

PS1/Z2

11
~q2;R!5

1

48p2ē
2

1

32p2E
0

1

dxxA12x2

3 lnFq2x2/41m2

m2 G1
1

2
PS1~q2;R!.

~16!

This result can be easily derived by noting that the low
lying scalar KK state on the orbifold is in one-to-one corr
spondence with that on the circle, while there are half
many massive KK states onS1/Z2 as there are onS1 ~see
Appendix A!. Comparing to Eq.~8!, we see that the orbifold
calculation generates 1/e poles. There are now logarithmi
divergences which renormalize new brane-localized ga
kinetic terms

L5D5 1
4 @l0d~z!1lRd~z2pR!#FmnFmn1••• ~17!

~note that given our normalization for the 5D gauge fie
l0,R is dimensionless!. Loop effects therefore induce non
trivial RG flows for the boundary couplings. It can be show
that

m
d

dm
l0,R

1152
1

96p2 . ~18!
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We note that by simple power counting, the RG equatio
for the boundary couplings are saturated at one loop.2 One
can similarly calculate the one-loop effects of (1,2) scalars

]zF~x,z!uz505F~x,z!uz5pR50. ~19!

We find

PS1/Z2

12
~q2;R!5PS1~q2;R!2PS1~q2;R/2!

2
1

8p2E
0

1

dxxA12x2

3 lnF2coshS pR

2
Aq2x2/41m2D G , ~20!

which is finite. Despite this, the boundary coupling consta
receive logarithmically divergent radiative corrections. T
reason why such divergences do not appear in Eq.~20! is that
from the 5D point of view, the zero mode correlator is
nonlocal quantity. It can be obtained from a 5D effecti
action ~with the z dependence included! by integrating over
the compact space. In the process of doing this integrat
the UV divergences of one boundary combine with those
the other to give the total UV cutoff dependence of the z
mode Green’s function. Because of its short distance nat
the coefficient the UV logarithm atz50, whereF satisfies
Neumann boundary conditions, has the same value as
corresponding UV logarithm in the (1,1) case, Eq.~16!.
Using the same type of arguments described in@17#, it can be
shown that the UV logarithm atz5pR, where the field sat-
isfies Dirichlet conditions, has the opposite sign. This lea
to the cancellation of divergences in Eq.~20!, as well as the
RG equations

m
d

dm
l0

1252m
d

dm
lR

1252
1

96p2 . ~21!

For a (2,2) scalar,

F~x,z!uz505F~x,z!uz5pR50, ~22!

we have

PS1/Z2

22
~q2;R!5

1

48p2ē
1

1

32p2E
0

1

dxxA12x2

3 lnFq2x2/41m2

m2 G1
1

2
PS1~q2;R!,

~23!

and thus

2This is no longer true in more general models. For instance
bulk fermion with massm can give rise to a two-loop correction t
the beta function proportional tomg5

2. Brane localized fields
coupled to the bulk gauge field may also contribute to the
equations starting at one loop.
1-5
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m
d

dm
l0,R

225
1

96p2 . ~24!

The low energy predictions for the case of softly brok
bulk symmetry follow closely the discussion of the previo
section. The only novelty here is the explicitm dependence
which must be compensated bym dependence of the bound
ary couplings. However, if the symmetry breaking is by s
terms, in a minimal subtraction scheme the logarithmic
pendence onm can be absorbed into the definitions of t
boundary couplings which are universal. Subtleties a
when symmetry breaking occurs through boundary con
tions. For instance, suppose we break theZ2 symmetry of
our U(1)3U(1) model by assigning (1,1) boundary con-

ditions toF1 and (2,2) to F2. In MS, for Aq2R!1,

1

g1
2~q2!

.
pR

g5
2 1l10~m!1l1R~m!1

1

48p2 ln~2pRm!

2
1

24p2 F ln~2pRAq2!2
4

3
G , ~25!

wherel10,R(m) are the running boundary couplings asso
ated with the gauge groupU(1)2. In the same limit,

1

g2
2~q2!

.
pR

g5
2 1l20~m!1l2R~m!2

1

48p2 ln~2pRm!

1analytic inq2R2. ~26!

Notice that the nonanalytic dependence onq2 has dropped
out of this equation. Since the zero mode ofF2 has been
removed by the boundary conditions, this result is simpl
manifestation of decoupling in this scheme. BecauseF1 and
F2 satisfy different boundary conditions at the orbifold fixe
planes,Z2 symmetry is explicitly broken on those points s
that in general we cannot expect equality of the bound
couplings. Consequently, it seems impossible to make a
diction for the quantity

1

g1
2~q2!

2
1

g2
2~q2!

.boundary terms1
1

24p2 ln~2pRm!

2
1

24p2 F ln~2pRAq2!2
4

3
G ~27!

due to the unknown values of the boundary couplings.
make progress, additional assumptions about their magni
relative to the calculable quantum corrections are nee
@15#. Because the theory becomes strongly coupled at a s
ms;512p/g5

2 @at which point the quantum corrections to th
effective couplings are of the same order as the tree-le
result; see for instance Eq.~10!#, it is customary to make the
assumption

l0~ms!;lR~ms!;
1

96p2 . ~28!
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Then according to this naive dimensional analysis~NDA!
estimate, by choosingm5ms in Eq. ~27! we may neglect
with some temerity the tree-level boundary couplings re
tive to the calculable logarithmic correction ln(2pRms)
;ln(1024p/g4

2) to obtain a prediction for the difference o
the zero mode couplings at low energy

1

g1
2~q2!

2
1

g2
2~q2!

.
1

24p2ln~1024p/g4
2!2

1

24p2 ln~2pRAq2!

1O~1/96p2!, ~29!

where 1/g4
25pR/g5

2;1 is the low energy coupling at tre
level. We note that in the case where symmetries are bro
by boundary conditions, bulk quantum effects are univer
and irrelevant as far as unification is concerned. This me
that the extreme UV sensitivity that plagues the predictio
in the type of models considered in the previous section
absent here~the UV scale enters only logarithmically!, lead-
ing to robust results for low energy physics.

III. COUPLING CONSTANT EVOLUTION
IN AdS MODELS

We now determine how the one-loop effects calculated
the previous section are modified by the presence of a b
ground AdS5 geometry. First we compute the one-loop co
rection to effective low energy~zero mode! coupling con-
stants in the AdS background, which for the remainder
this paper we will take to be Euclidean. We will show th
the UV structure~for instance the power counting of ultra
violet divergences! of the gauge field zero mode correlato
is identical to what we found in flat space in the last secti
In general, this must be the case, since the physics in the
comes from distances shorter than the curvature scale, a
therefore not sensitive to it. In particular we will see that t
logarithmic divergences of our AdS models are the same
those in flat space, leading to the same RG flows. For
stance, like in the previous section, only the coefficients
brane localized field strength operators are logarithmica
renormalized, while the bulk coupling of the AdS gau
theory receives linearly divergent loop corrections and the
fore does not run.

While the UV structure is the same, in curved spaces th
can be new finite loop effects not present in flat space fi
theories. In Sec. III A, we discuss the nature of curvatu
corrections to the low energy gauge couplings. Wherea
flat space gauge field zero mode amplitudes are linearly
pendent on bulk mass scales larger than the compactifica
scale, in AdS scalar field masses smaller than the curva
enter only logarithmically in the one-loop correction to th
gauge couplings.~Masses larger than the scalek, on the other
hand, give rise to loop corrections that are identical to w
we find in flat space.!

Although the zero mode results are sufficient for derivi
low energy predictions, the origin of the large logarithms th
appear is not entirely clear from this analysis. We provid
physical explanation of the features of zero mode amplitu
in Sec. III B. There we will see that the logarithms arise fro
1-6
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EFFECTIVE FIELD THEORY AND UNIFICATION IN . . . PHYSICAL REVIEW D68, 125011 ~2003!
the running of Planck correlators down to a scale near
KK mass gap, followed by a matching procedure to the z
mode observables. In Sec. III C we discuss how the la
logarithms may be understood in terms of the AdS/CFT c
respondence.

A. Zero mode observables

First consider the one-loop vacuum polarization due t
scalar field with (1,1) boundary conditions, as in Eq.~15!.
Using the results of the appendixes, this is given by

P~q2!52
1

48p2 F1

ē
1

1

2
lnS m2

4kT
D G

1
1

16p2E
0

1

dxxA12x2ln N11S xAq2

2
D ,

~30!

where

ln N11~p!52 lnu i n~p/T!kn~p/k!2 i n~p/k!kn~p/T!u,
~31!

with i n(z), kn(z) defined in Appendix B. The 1/e pole here
has the same origin as the one that appears in flat spa
Eq. ~16!. It simply indicates that the boundary gauge fie
couplings @such as those of Eq.~17!# are logarithmically
renormalized. This follows again from dimensional analys
the boundary couplings are the only dimensionless coupl
that arise in this theory. Only these quantities get logarith
cally divergent loop corrections. The fact that such div
gences are indeed confined to the boundaries of the spac
also be understood by computing the 5D effective action
a background gauge field with dependence on the com
coordinatez. Loop corrections to this quantity contain 1e
poles multiplying delta functions with support on the boun
aries of the space, meaning the counterterms needed to r
malize the 5D action are those of Eq.~17!. Notice that in
accord with our general discussion, the coefficient of
poles, and therefore the RG flows, is identical to the one
found for a scalar with (1,1) boundary conditions on the
flat orbifold.

While the RG equations are the same as in flat space,
application in the compact AdS background is slightly mo
subtle. Consider the zero mode coupling in theMS scheme

1

g2~q2!
5

R

g5
2 1lk~m!1lT~m!2

1

96p2 lnS m2

4kT
D

1
1

16p2E
0

1

dxxA12x2ln N11S xAq2

2
D ,

~32!

where lk,T(m) are a set of running boundary gauge co
plings, localized at the Planck and TeV branes respectivelR
is the proper distance between the branes, which accordin
Eq. ~1! is given by
12501
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R5
1

k
lnS k

TD . ~33!

Although the effective coupling ism independent, one would
like to pick a value ofm in which all large logarithms have
been resummed into the values of the boundary couplin
One can actually avoid the issue of choosing a renormal
tion scale if we recognize that because the strong coup
scale for TeV brane correlators is of orderT, we expect the
boundary couplinglT(m) to be given by its NDA estimate
~of order 1/16p2) when evaluated at a renormalization sca
m;T. Likewise, the strong coupling scale for Planck loca
ized Green’s functions ism;k, so it is lk(m;k) that we
expect to be small on the basis of NDA. Using the RG eq
tions

m
d

dm
lk~m!5m

d

dm
lT~m!52

1

96p2 , ~34!

we can therefore relate the couplings evaluated at an a
trary subtraction pointm to those at their NDA values. In the
process of doing so, the explicit logarithms ofm in Eq. ~32!
cancel with the logarithms that appear in the solution of
RG equation. We are then left with

1

g2~q2!
5

R

g5
2 1lk~2k!1lT~2T!

1
1

16p2E
0

1

dxxA12x2ln N11S xAq2

2
D ,

~35!

where now all couplings are expected to be given by th
natural values. This is somewhat different from the flat sp
examples considered in the previous section, where the N
scale was homogeneous across the compact direction. H
because of warping, we see that the one-loop corrections
cast in their simplest form when written in terms of the co
plings renormalized at the scales associated with their lo
tion in the bulk spacetime.3

While the ultraviolet effects encoded in Eq.~30! are simi-
lar to those as in flat space, the low energy behavior
Aq2!T differs. We will separately consider the casesm
50, m,k, andm.k. For m50 we have

ln N11~p!52 ln
p2

kT
2 lnuI 1~p/T!K1~p/k!

2K1~p/T!I 1~p/k!u, ~36!

which for p!T can be expanded as

3Equivalently, one could renormalize as in@18# by performing the
subtractions before taking the limitD→4. While the interpretation
of the boundary couplings differs in this scheme, the results for
physical quantity are not changed.
1-7
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ln N11~p!.2 ln
p2

T2 1terms analytic inp2/T2 or p2/k2.

~37!

Thus form50 andAq2!T, we find

1

g2~q2!
5

R

g5
2 1lk~2k!1lT~2T!2

1

48p2 F ln
q2

T22
8

3
G

1terms analytic inq2. ~38!

Comparing to the one-loop vacuum polarization for a (1,
1) scalar field propagating on flatR43S1/Z2, we see that
the infrared logarithms ofq2 match those of Eq.~16! if we
identify the flat space compactification scaleR with the pa-
rameterT, that appears here. The fact that it isT, and not the
brane separationR that appears is a consequence of the A
curvature. Given this fact, the infrared behavior is then id
tical to that of the flat 5D theory.

In the massive case, we use the expansions forz!1:

i n~z!.
21n

G~n11!S z

2D n

@11O~z2!1•••#, ~39!

kn~z!.
G~n!

2
~22n!S z

2D 2n

@11O~z2!1•••#,

~40!

where in both equations ‘‘••• ’’ denotes terms higher order in
z2. For p!T, we have

ln N11~p!.2 lnFn224

n G2n ln
k

T
1•••, ~41!

and thus, formÞ0,

1

g2~q2!
.

R

g5
2 1lk~k!1lT~T!2

1

48p2F lnS m2

2nk2D 1n lnS k

T
D G

1analytic inq2, ~42!

where we have usedn2541m2/k2. From this equation, we
see that a massive field decouples from the low energy ga
force, in the sense that it contributes only through terms
are analytic inq2 and can therefore be absorbed into t
coefficients of local operators involving the gauge fie
strength and its derivatives. In particular, heavy bulk fie
give large q2 independent contributions toP(q2) which
manifest themselves as a correction to the bare couplingg5.

If m@k, Eq. ~42! becomes

1

g2~q2!
.

R

g5
2 1lk~k!1lT~T!2

mR

48p2 , ~43!

which is remarkably similar to the analogous flat space li
Aq2!R, m@R @see Eq.~13! and Eq.~16!#. The fact that Eq.
~43! is so sensitive to the bulk mass implies that it is equa
sensitive to the contribution of tree-level operators to the l
energy couplings. Unification in AdS models at a scale lar
12501
S
-

ge
at

s

it

y

r

than the curvature scale therefore encounters the same
of problems as power law coupling unification does in fl
space. Remarkably, however, form,k, the low energy cou-
pling is only logarithmically sensitive to bulk mass scales

1

g2~q2!
.

R

g5
2 1lk~k!1lT~T!2

1

24p2 ln
m

T
. ~44!

Generically, this formula will also receive corrections fro
insertions of higher dimension operators at tree level. Th
corrections manifest themselves either as terms that s
with the bulk mass asmR or as terms that are analytic i
q2/T2. The former corrections originate from operators
the form

S;
1

AM
E d5XAGSFMNFMN, ~45!

whereS is some scalar field that develops a VEV of ord
m/g5. Using NDA we find that these operators lead to
breakdown of the calculation if the scalar massm is larger
thank. For m,k, the large logarithms in Eq.~44! dominate
the vacuum polarization and we expect the predictions
the low energy couplings obtained by integrating out hea
particles to be reliable.

These results can be applied to the calculation of pre
tions for the low energy couplings in ourZ2 model, assuming
thatF1 acquires a symmetry breaking mass termm1,k ~but
much larger than the KK scaleT), while F2 remains mass-
less. We also take both fields to have (1,1) boundary con-
ditions. We then find from Eq.~38! and Eq.~44!,

1

g1
2~q2!

2
1

g2
2~q2!

.
1

24p2lnSAq2

m1
D , ~46!

where as a consequence of theZ2 symmetry, we have taken
the tree-levelU(1)1,2 couplings equal. This equation is jus
what we obtained in the 4D version of ourU(1)3U(1)
model. In realistic GUT models based on the AdS hierarc
the X,Y bosons will play a role analogous to that ofF1 in
this model, whileF2 plays the role of a standard mod
gauge field. Therefore, if the 5D GUT symmetry is brok
by the VEV of a bulk Higgs boson field, we expect to fin
that the relations among the standard model low ene
gauge couplings implied by broken GUT symmetry are ide
tical to what is found in the minimal standard model with
energy desert.

We now describe how the above results are modifi
when the charged scalar field satisfies different bound
conditions. For the case of (2,1) boundary conditions, we
find

1

g2~q2!
5

R

g5
2 1lk~k/2!1lT~2T!

1
1

16p2E
0

1

dxxA12x2ln N21S xAq2

2
D ,

~47!
1-8
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where now

ln N21~p!52 lnu i n~p/T!Kn~p/k!2I n~p/k!kn~p/T!u.
~48!

As before, we have used the RG equations for the bound
couplings

m
d

dm
lk52m

d

dm
lT5

1

96p2 , ~49!

to write the one-loop corrections in a form that does not h
large UV logarithms. ForAq2!T this equation becomes

1

g2~q2!
5

R

g5
2 1lk~k/2!1lT~2T!2

1

48p2

3F lnS 21n

2n
D 1n ln

k

T
G . ~50!

In our toy GUT model, ifZ2 is broken by assigning (2,
1) boundary conditions toF1, while giving ordinary (1,
1) boundary conditions toF2 we have~both fields are kept
massless!

1

g1
2~q2!

2
1

g2
2~q2!

.boundary terms1
1

24p2 lnSAq2

k
D ,

~51!

where the unknown boundary corrections are expected t
small on the basis of NDA. This result is somewhat surp
ing from the point of view of the KK expansion, where th
modes ofF1 andF2 are split at a scale of orderT ~sinceF1
has no zero mode!. From this perspective, theZ2 symmetry
breaking scale is identified with the KK scale, and no la
logarithm in the difference of couplings is expected. The f
that a large logarithm appears in Eq.~51! is obvious, how-
ever, once one considers high energy observables.

When we reverse the boundary conditions on the sc
from (2,1) to (1,2) we have instead

1

g2~q2!
5

R

g5
2 1lk~2k!1lT~T/2!

1
1

16p2E
0

1

dxxA12x2ln N12S xAq2

2
D ,

~52!

with

ln N12~p!52 lnuI n~p/T!kn~p/k!2 i n~p/k!Kn~p/T!u.
~53!

We have also made use of the RG equations

m
d

dm
lk52m

d

dm
lT52

1

96p2 . ~54!
12501
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The low energy behavior depends on the value of the b
mass. Form50 this is

1

g2~q2!
5

R

g5
2 1lk~2k!1lT~T/2!2

1

48p2F lnS q2

T2D 2
8

3
G .

~55!

Here, the logarithmic running below the scaleT is saturated
at an exponentially small mass scale, of orderT2/k. Inspec-
tion of the KK mass spectrum for a massless (1,2) scalar
field reveals that indeed there is an ‘‘almost zero mode’’~that
is, the wave function of the KK ground state is nearly fla!
with such a small mass. For nonzero mass this mode is li
to the scaleT and we instead have

1

g2~q2!
5

R

g5
2 1lk~2k!1lT~T/2!2

1

48p2FlnS 22n

2n
D 1n ln

k

T
G .

~56!

We see that again there is a logarithm ofm/T for bulk
massesm,k. In fact, both the massless and massive (1,
2) scalars give rise to coupling constant corrections that
identical to the corresponding (1,1) examples worked ou
earlier. So for instance, if symmetry breaking in ourZ2
model arises from a modification of TeV brane bounda
conditions, no large logarithms will appear in the differen
of low energy couplings. In GUT models, we may want
assign (1,2) boundary conditions toX,Y bosons in order to
suppress TeV brane proton decay. This means that orbi
GUT breaking will not be sufficient to generate a reasona
prediction for the standard model gauge couplings measu
at the weak scale. It will be necessary to Higgs the G
symmetry in the bulk as well.

B. The Planck brane correlator

While it is straightforward to use a procedure like that
the previous section to compute predictions for low ene
couplings in warped models, the physical origin of tho
results, particularly the large logarithms, is not complet
clear from an analysis of KK modes alone. Ideally, o
would like to be able to understand how such logarith
arise from an EFT procedure in which one integrates
heavy bulk fields at a momentum scale of the order of th
mass and then uses the RG to run the couplings down to
energies. However, because of the power-law growth of z
mode correlators for energies larger than the KK gap, i
impossible to develop an EFT approach using such obs
ables. Furthermore, as we emphasized previously, in orde
properly define high scale unification in a field theory co
text, it is necessary that there exist observables that are
culable at the GUT scale. In the RSI scenario, Green’s fu
tions with external points lying on the Planck brane a
insensitive to the effects of unknown UV physics as long
the typical external four-momenta are less than the scalk.
Consequently, they can be used to define the notion of a h
GUT scale. They can also be used for the purpose of un
standing the evolution of couplings in an EFT approach.

We will now show how to compute the gauge field Plan
brane two-point correlator for external four-momentaT
!Aq2!k. Doing so will enable us to understand how th
large logarithms encountered in the previous section aris
1-9
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a result of the usual matching and running of couplings in
EFT framework. We do this at one loop in massless A
scalar electrodynamics with an action which includes

S5
1

4g5
2E d5XAGFMNFMN1E d5XAGuDMFu2, ~57!

as well as terms such as those of Eq.~17!. To do this we need
the gauge boson propagator, which inAz50 gauge is given
by ~herehmn is the flat Euclidean metric!

Dq
mn~z,z8!5hmnDq~z,z8!1

qmqn

q2 Hq~z,z8!, ~58!

where for one point on the Planck brane

Dq~z,1/k!5
kz

q

K1~qz!I 0~q/T!1K0~q/T!I 0~qz!

I 0~q/T!K0~q/k!2I 0~q/k!K0~q/T!
.

~59!

We will not need the specific form ofHq(z,z8). The quantity
of interest is

E d4xeip•x^Am~x,1/k!An~0,1/k!&[
g2~q2!

q2 hmn1•••,

~60!

where we have defined an effective running couplingg(q2)
as measured by Planck brane observers~and dropped gauge
dependent pieces!. At one loop, there are two diagram
which contribute. The usual vacuum polarization graph
~dropping the longitudinal part of the gauge-boson propa
tor, and raising/lowering indices with the flat metrichmn)

Lmn
(1)5E dDp

~2p!D

dz

~kz!3

dz8

~kz8!3
Dq~1/k,z!Sq1p~z,z8!

3~2p1q!m~2p1q!nSp~z,z8!,Dq~z8,1/k! ~61!

whereas the seagull term of scalar QED is in this case

Lmn
(2)522hmnE dDp

~2p!D

dz

~kz!3 Dq~1/k,z!Sp~z,z!Dq~z,1/k!.

~62!

In these expressions,Sp(z,z8) is the scalar propagator.4 We
can understand the dominant non-analytic momentum de
dence of these quantities by the following arguments. F
consider the spectral representation for the propagator
massless scalar with (1,1) boundary conditions

Sp~z,z8!5(
n

cn~z!cn~z8!

p21mn
2

. ~63!

While then50 mode hasm050 and

4Strictly speaking we should have analytically continued o
propagators and vertices to AdSD11. In not doing so we miss out on
constant terms which are irrelevant for our purposes here.
12501
n
S

s
a-

n-
st

a

c0~z!5A2kF12S T

k D 2G21/2

.A2k, ~64!

the excited states withmn,k are peaked towards thez

51/T boundary. However, in the limitT!Aq2!k,

Dq~z,1/k!;
k

q
Apz

2q

1

K0~q/k!
e2qz. ~65!

We therefore expect that all terms involving thenÞ0 modes
in the loop integrals will give contributions that ar
suppressed5 by powers ofT/k relative to the terms involving
only n50. To see this explicitly, we note that in order
calculate the one-loop graphs we need the integrals

I nm
(1)5E

1/k

1/T dz

~kz!2K1~qz!cn~z!cm~z! ~66!

and

I n
(2)5E

1/k

1/T dz

~kz!
K1~qz!2cn~z!2. ~67!

The ratiosI nm
(1)/I 00

(1) andI n
(2)/I 0

(1) may be calculated simply by
noticing that for small values ofz, where the integrands hav
their support, the excited states approach the constant va

cn~z.1/k!→2
pmn

2Ak
Y1~mn /T!. ~68!

From this we see thatI n0
(1)/I 00

(1);AmnT/k for nÞ0 and forn

or m not zeroI nm
(1)/I 00

(1);AmnmnT/k2 ~where in both cases we
have taken the mode massesT!mn,k). Similarly for n
Þ0, I n

(2)/I 0
(2);mnT/k. On the other hand,

I 00
(1).

c0
2

2q
, ~69!

is independent ofT.
Given these facts, it is easy to calculate the leading o

loop corrections to the Planck two-point function of th
gauge field. We work in a decoupling scheme, so that as
usual EFT calculation, for external momentaAq2!k, we
need only consider KK modes with masses less thanAq2.
That is, modes with masses heavier thanAq2 give rise only
to trivial contributions that can be absorbed into loc

r

5If the field running in the loop has spin, the dominance of t
zero mode over the excited KK states may no longer apply. Ho
ever, it is still true in general that the regions of the loop integ
away fromz51/k are suppressed for external momenta less t
the curvature scale. Thus to a good approximation we may rep
the propagators in the loop by their values on the Planck bra
Given this fact, it is possible to generalize the statements made
regarding scalar fields to more realistic situations involving spi
and vector fields.
1-10
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counterterms.6 Despite the fact that the integralsI nm
(1) ,I n

(2) for
the massive modes are suppressed by powers ofT relative to
the integrals involving only the zero mode, it is possible th
the sum over the roughlyAq2/T KK states that contribute to
the loop amplitude gives rise to a term that is independen
T. One can show that the leadingT-independent term of this
sum is of orderq2/k2 and thus negligible forAq2!k. We are
thus effectively only left with the contribution form the zer
mode. In this approximation,Lmn

(1,2) is given by ~in dimen-
sional regularization!

Lmn
(1)5

c0
4

4q4K0~q/k!2E dDp

~2p!D

~2p1q!m~2p1q!n

q2~q1p!2

5
k2

q4

1

K0~q/k!2~qmqn2q2hmn!P4D~q2!.

Note that the zero mode contribution to the loop integra
this equation is exactly what one finds for the one-lo
vacuum polarization calculation in a purely 4D scalar QE
calculation @which we denote byP4D(q2)]. We have also
dropped the zero mode contribution to the seagull term, s
it vanishes in dimensional regularization.

Including tree-level effects as well as the contributi
from the Planck brane boundary gauge coupling~the contri-
bution of the TeV brane gauge coupling is highly suppres
in the limit Aq2@T)

E d4xeiq•x^Am~x,1/k!An~0,1/k!&

5
k

q2

g5
2

K0~q/k!
hmnF12

k

K0~q/k!
g5

2lk

2
k

K0~q/k!
g5

2P4D~q2!1O~g5
4!G1•••, ~70!

where we have again ignored terms that depend on
choice of gauge. Resumming the above terms we find
the effective Planck brane coupling at one loop is

1

g2~q2!
5

1

g5
2k

K0~q/k!1lk~m!2
1

48p2 lnS q2

m2D . ~71!

In this equation, the first term is due to the tree-level b
gauge coupling. Because

K0~q/k!.2 lnS q

2kD , ~72!

it is customary to think of this term as giving rise to a tre
level running of the couplingg5. However, this uncalculable
contribution to the running is completely universal and th
irrelevant as far as unification is concerned. Note that bey

6In this case, the proper local counterterm is the coefficient of
Planck brane localized gauge field strength operator.
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this tree-level effect, the nonanalytic, prescription indep
dent momentum dependence is identical to the result der
from the zero mode calculation. Furthermore, Eq.~71! im-
plies thatlk(m) satisfies an RG equation

m
d

dm
lk~m!52

1

24p2 , ~73!

which is different than what we found for its running in ou
computation of the KK zero mode gauge correlator. This
to be expected, since calculating in a nondecoupling sch
leads to a beta function which includes spurious effects
massive particles which normally would not be included
the context of an EFT calculation. Of course, physical qu
tities are not sensitive to this apparent discrepancy, sinc
the nondecoupling scheme the low energy matrix elem
will contain large logarithms which exactly cancel the effec
of the spurious contribution to the beta function. Equati
~71! is identical to what we found in@8# by using AdS/CFT
duality as it applies to AdS backgrounds compactified
branes.

Equation~71! is valid for Aq2,k. As Aq2 approachesk,
modes with massesmn;k are no longer decoupled from th
one-loop sums. Such modes are not suppressed nea
Planck brane, so they give an order one contribution to
correlator~relative to the one-loop zero mode! for large mo-
menta. In fact, forAq2.k, the correlator becomes insens
tive to the curvature scale, so it must behave like a flat sp
5D gauge correlator. This leads one to conclude that for la
energies, the behavior is a nonanalytic power law of the fo
Aq2/k, reflecting the breakdown of the Planck observable
a scale which is~up to a loop factor! of orderk.

If the bulk scalar has a massm, we can understand its
decoupling from the point of view of the Planck correlato
The massive scalar has a KK mode with mass roughlym/A2
@9,11# that, unlike other modes with masses below the c
vature scale, is unsuppressed nearz51/k. Therefore, as the
external momentum becomes larger than the mass of
mode, a logarithm ofAq2 which is not suppressed by powe
of T/k, is induced. As in the zero mass case, the logarit
has the same coefficient as in a 4D calculation. For exte
momentum less thanm, this special mode decouples and t
running of the correlator freezes out. Thus this mode pr
erly accounts both for the decoupling of the bulk field wh
Aq2,m and for the correct momentum dependence wh
Aq2.m.

It is now possible to understand from an EFT point
view the results of the previous section. SupposeF1 has a
symmetry breaking mass termm1,k. ThenF1 decouples at
scales less than its mass, and the only source of rela
running between theU(1) couplings is due to the one-loo
contribution of theF2 zero mode. Matching at the scaleq2

5m1
2, we find from Eq.~71!,

1

g1
2~q2,m1

2!
5

1

g5
2k

K0~q/k!1l1~m!2
1

24p2 lnS m1

m
D ,

~74!
e

1-11
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which implies that at any other momentum scale larger t
T,

1

g2
2~q2!

5
1

g1
2~q2!

2
1

24p2 lnSAq2

m1
D . ~75!

We can use this result to derive low energy predictions
noting that the Planck brane correlator matches on smoo
onto the KK zero mode gauge field correlator at low ener
This can be seen explicitly from the fact that atAq2!T, Eq.
~59! approaches the zero mode gauge boson propagatorq2.
While we cannot use our calculation of the Planck correla
to explicitly calculate the matching to the zero mode, we c
still use Eq.~71! to capture the leading logarithmic behavio
This is because the threshold effects of the light KK mod
whose contribution is unsuppressed as the external mom
tum reaches the scaleT, cannot induce large logarithm
~since matching only involves logs of ratios of light masse!.
We then expect the prediction of Eq.~75! to coincide with
the nondecoupling result of the previous section up to te
that are small relative to the large logarithm ofAq2/m1.
Indeed, this is exactly what happens.

Finally, one can also use the Planck brane Green’s fu
tions to understand what happens when one of the scala
our Z2 model has either (2,1) or (1,2) boundary condi-
tions. In the (2,1) case, there is no KK mode that has
strong overlap with the external gauge boson propagat
The only logarithm ofq2 then come from the scalar fiel
satisfying (1,1) boundary conditions. Because theZ2 sym-
metry is explicitly broken on the Planck brane, there is
analogue of Eq.~74!. Instead, we evaluate Eq.~71! for the
U(1)2 gauge group at a renormalization scalem;k where
the boundary couplings have values that are small accor
to NDA. This accounts for the logarithm ofAq2/k that we
found in the nondecoupling result of the previous secti
When the scalar is (1,2), there is no zero mode, but reca
that there is a near zero mode, with a light mass of or
T2/k. This mode is nearly flat, and is unsuppressed neaz
51/k, so it gives rise to logarithmic running of theU(1)1
coupling, again with the same coefficient as in 4D. Up
small corrections due to the nonuniversal TeV brane c
pling, the running of the two couplings is therefore identic
which explains why no large logarithms appeared in the l
energy predictions of Sec. III A.

C. CFT interpretation

The results derived in the previous section can also
obtained via the AdS/CFT correspondence as it applies to
RS scenario. As we discussed previously@8#, the Planck
brane one-loop two-point correlator is identical to t
Green’s function of a four-dimensional gauge fieldAm(x) in
the dual 4D theory

L4D5LCFT1
1

4g2 FmnFmn1AmJCFT
m

1uDmfu21c~fO41H.c.!. ~76!
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HereAm weakly gauges aU(1) global symmetry of an~un-
known! CFT described byLCFT . The scalar fieldf(x) cor-
responds to the zero mode of our charged bulk~massless!
scalarF, and couples to the CFT through the dimension-fo
operatorO4 with a couplingc which is of order 1/k ~we
ignore couplings to gravity!.

The running of the gauge couplingg in Eq. ~76! is exactly
the running of the Planck correlator computed in the pre
ous section@8#. The former quantity can be extracted fro
the vacuum polarization of the 4D gauge field, which fro
Eq. ~76! is given by

Pmn~q!5E d4xeiq•x^JCFT
m ~x!JCFT

n ~0!&CFT

2
1

48p2~qmqn2q2hmn!lnS q2

m2D 1O~ ucu2!.

~77!

The first term represents the renormalization of the coup
due to pure CFT effects. It is fixed in terms of Ward iden
ties and conformal invariance to be

E d4xeiq•x^JCFT
m ~x!JCFT

n ~0!&CFT

5
1

2g5
2k

~qmqn2q2hmn!lnS q2

k2D , ~78!

where the coefficient is known in terms of the 5D paramet
due to the fact that this term is equivalent to the tree-le
Planck gauge propagator in the AdS description@6#. The sec-
ond term of Eq.~77! is simply the one-loop contribution o
the scalarf, while theO(c2) corrections denote correction
to the vacuum polarization due to insertions of the opera
O4. These are suppressed when the external momentu
smaller than a scale of orderk. From Eq.~77! we find that
the running coupling at orderg2 is given by

1

g2~q2!
5

1

g2~m!
2

1

g5
2k

lnS q

k
D 2

1

48p2lnS q2

m2D , ~79!

which exactly matches what we found in the AdS calcu
tion. For more details of the computation in the dual fie
theory, see our previous paper@8#.

The leading pure CFT correction to the running couplin
Eq. ~78!, is universal and therefore irrelevant for unificatio
~indeed in 5D it represents the tree-level gauge propaga!.
One may worry that there are subleading nonuniversal c
rections to Eq.~78! which are as large as the one-loop co
tribution of the scalarf. Computing them would be impos
sible without knowledge of the precise nature of the C
which is dual to our AdS theory. We note that this is no
problem, however. First of all, we explicitly did the 5D ca
culation and found exactly Eq.~79!. Furthermore, on the
CFT side, we know exactly how nonuniversal effects a
encoded in the dual 4D description, namely through the
sertions of the dimension four operator~in the massless case!
O4. This matches the fact that contribution of the KK mod
1-12
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~which in the dual picture are CFT bound states@6#! was
found to be exponentially suppressed.

Now let us interpret our results in the context of Eq.~76!
for both mass term and boundary condition symmetry bre
ing in the toy Z2 model. BreakingZ2 by an explicit bulk
mass termm for, say,F1 modifies the dynamics of the cor
responding scalar field in the 4D dual description. In parti
lar, the dual 4D scalar is a propagating degree of freed
only for energy scales abovem. This can be seen by notin
that the massive bulk scalar in the AdS description is dua
the source of an operator in the CFT whose conformal

mension is given by 21A41m2/k2. It can be shown that if
this operator is nearly marginal~i.e., m!k), then for energy
scales above the massm, quantum corrections in the CF
induce a kinetic term for this source, in which case it
promoted to a dynamical field. Thus forq2.m2, bothU(1)
couplings run equally, while forq2,m2 only theU(1)2 cou-

pling runs, giving rise to a splitting of order ln(Aq2/m) be-
tween the low energy couplings, in agreement with our A
results.

The case of orbifold symmetry breaking also has a sim
CFT interpretation. Consider first the case of (1,2) bound-
ary condition. The fact that in 5D,Z2 symmetry breaking is
localized on the TeV brane is equivalent to the statement
in the dual theory theZ2 symmetry is broken by the IR
dynamics of the CFT. Then it is clear that the relative ru
ning of the couplings will not induce large logarithms. In th
opposite (2,1) case, the symmetry is explicitly broken o
the Planck brane, which corresponds to high scale brea
in the dual picture. This accounts for the large logarithm
found in the 5D calculation.

IV. CONCLUSION

In this paper we have calculated the low energy coupli
of gauge theories in AdS backgrounds by several dist
methods. First, we straightforwardly computed in a non
coupling scheme, finding, for scalar bulk masses less t
the curvature scale, logarithmic sensitivity to masses of p
ticles in the loops. We gave a natural interpretation of th
results in terms of an EFT calculation, by running Plan
localized gauge field correlators to low energies and t
matching to the zero mode quantities. We have also exten
the results of our previous paper to include a discussion
the case of symmetry breaking by boundary conditions.
also showed how to interpret both the mass and bound
condition breaking scenarios using AdS/CFT. While here
only considered scalar charged fields, we expect similar
sults to arise in more realistic settings.

Finally, one may wonder how the running of the gau
couplings is modified when the background spacetime d
ates from AdS5. Although a full answer to this question i
beyond the scope of this paper, our analysis can be ea
generalized to consider what happens in more gen
warped backgrounds with Poincare symmetric 4D slic
Briefly, we expect to find large logarithmic corrections
low energy couplings in any spacetime geometry which
hibits a pattern of KK wave functions like AdS, in which 4
zero modes are delocalized, while excited KK states are
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calized away from the Planck brane. Since the large lo
rithms are insensitive to the detailed structure to the IR~TeV!
region of the space, it is likely that any space that is close
AdS in the UV ~near the Planck brane!, but arbitrary in the
IR ~near the TeV brane! will give rise to similar patterns for
the running at one-loop. More work is necessary to de
mine full range of possibilities for the running of the co
plings in general warped backgrounds, however.

Note added. While this paper was being finished, Re
@20# appeared which has some overlap with these results
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APPENDIX A: ONE-LOOP VACUUM POLARIZATION
FOR COMPACTIFIED THEORIES

A convenient way of obtaining the zero mode correlator
to calculate the corrections to the zero mode gauge field
fective action due to integrating out bulk fields. Let th
higher dimensional gauge field obtain a classical backgro
Am(x). We first show how to compute the one-loop vacuu
polarization effects of a bulk scalar field to the effective a
tion for Am(x). The effects of fields in other representatio
of the Lorentz group can be obtained by a straightforw
generalization of the results presented here. The one-
bulk scalar contribution to the effective action can be o
tained by summing the contribution of each 4D KK state.
Euclidean signature, it is given by

Se f f@Am#5
1

4g4
2E dDxFmnFmn1(

n
tr ln@2DmDm1mn

2#,

~A1!

where mn are the KK masses, andg4 is the effective 4D
gauge coupling. For example, in a compactified 5D the
~possibly with boundaries!, this is given by

1

g4
2 5

R

g5
2 1(

i
l i , ~A2!

whereR is the volume of the compact manifold andl i are
the coefficients of a set of boundary localized gauge fi
kinetic operators. Although we will only considerU(1)
gauge theories here, it is not difficult to include the one-lo
corrections due to quantum fluctuations of a non-Abel
gauge field about its background value.

It is convenient to rewrite Eq.~A1! as
1-13
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Se f f@Am#5
1

4g4
2E dDxFmnFmn

1
1

2E dDq

~2p!DAm~q!Pmn~q2!An~2q!,

~A3!

with

Pmn~q2!52(
n
E dDp

~2p!DF ~2p1q!m~2p1q!n

~p21mn
2!~~p1q!21mn

2!

2
2hmn

p21mn
2G . ~A4!

Let

s~p!5(
n

1

p21mn
2 , ~A5!

then we can write

(
n

1

~p21mn
2!~q21mn

2!
5

s~p!2s~q!

q22p2 . ~A6!

Equation~A4! becomes

Pmn~q2!5~q2hmn2qmqn!P~q2!, ~A7!

with

P~q2!5
2

q2

1

D21
E dDp

~2p!D FD221
~q224p2!

q212q•p
Gs~p!.

~A8!

The integrals over momentum appearing in Eq.~A8! can be
written in terms of hypergeometric functions. Introduce

I ~z!5
VD21

~2p!DE0

p

du
sinD22u

112z cosu
, ~A9!

whereVD52pD/2/G(D/2) is theD-dimensional solid angle
This integral can be obtained for instance from Eq.~3.228.3!
of @19# by applying a chain of identities involving hyperge
metric functions. For 0,z,1/2 the integral is

I ~z!5
VD

~2p!D F~1,1/2,D/2,4z2!, ~A10!

while for z,0 or z.1/2 it can be written as

I ~z!5
VD

~2p!D

~D22!

4z2 F@22D/2,1,3/2,1/~4z2!#.

~A11!

Defining

s~p!52
1

2p

d

dp
ln N~p!, ~A12!
12501
we may write

P~q2!5
VD

~2p!D

D22

8
SAq2

2
D D24

3F E
0

1

dxxD/222F~21/2,1,D/221,x!ln NS Aq2x

2
D

1
D24

3
E

0

1

dxx12D/2F~32D/2,1,5/2,x!

3 ln NS Aq2

2Ax
D G . ~A13!

This formula simplifies somewhat in four dimensions. Wh
D54, the first term is finite. Using

F~21/2,1,1,x!5A12x ~A14!

we end up with

E
0

1

dxxD/222F~21/2,1,D/221,x!ln NS Aq2x

2
D

→2E
0

1

dxxA12x2ln NS xAq2

2
D . ~A15!

On the other hand, depending on the asymptotic behavio
the integrand nearx50, the second integral is potentiall
divergent in four dimensions. We will regulate this dive
gence by working inD542e dimensions. If the function
N(p) defined in Eq.~A12! behaves as

ln N~p!→b11b2ln
p

M
1••• ~A16!

asp→` ~for constantsb1 , b2 andM ), we then have

D24

3
E

0

1

dxx12D/2F~32D/2,1,5/2,x!ln NS Aq2

2Ax
D

52
2

3
Fb2

e
1b2lnSA q2

2M
D 1b11O~e!G , ~A17!

and therefore

P~q2!52
1

48p2 Fb2

e
1b2lnS m

M
D 1b11

1

2
b2

3@2g1 ln~4p!#G1
1

16p2

3E
0

1

dxxA12x2ln NS xAq2

2
D , ~A18!

wherem is an arbitrary subtraction scale. It arises from t
expansion of the factor (Aq2)D24 that appears in Eq.~A13!:
1-14
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~Aq2!2e512e lnSAq2

m
D . ~A19!

The 1/e pole corresponds to a logarithmic divergence, and
canceled by a similare dependence in the bare couplin
appearing in Eq.~A1!. The explicit m dependence implies
that the tree-level couplings themselves acquire a dep
dence onm in such a way that any physical quantity deriv
from Eq. ~A1! is independent of the specific choice of sca

So far the discussion has been completely general
applies to fields propagating on compactified manifolds w
arbitrary curvature or dimensionality. To be concrete, let
apply this to models in flat 5D Euclidean space compactifi
either onS1 or the line intervalS1/Z2. Taking the gauge
group to beU(1) and the scalar to have bulk massm ~and
periodic boundary conditions! and unitU(1) charge, we find

sS1~p;R!5 (
n52`

` 1

p21m21n2/R2

5
pR

Ap21m2
coth@pRAp21m2#, ~A20!

and thus

ln NS1~p;R!522 ln@2 sinh~pRAp21m2!#. ~A21!

It follows from this that onS1, b15b250 and there are no
1/e poles. As discussed in the text, this is consistent with
fact that onR43S1, loop corrections do not give rise t
logarithmic divergences. Then

PS1~q2;R!52
1

8p2E
0

1

dxxA12x2

3 ln@2 sinh~pRAq2x2/41m2!#. ~A22!

Given this result, it is straightforward to derive the one-lo
vacuum polarization effects of bulk fields onR43S1/Z2. For
instance for a scalar field satisfying (1,1) boundary condi-
tions ~defined in the text! at the fixed points ofS1/Z2,

sS1/Z2

11
~p;R!5 (

n50

` 1

p21m21n2/R2 ~A23!

5
1

2

1

p21m2 1
1

2
sS1~p;R!, ~A24!

and consequently

PS1/Z2

11
~q2;R!5

1

48p2 F1

e
2

g

2
G2

1

32p2

3E
0

1

dxxA12x2lnFx2q2/41m2

4pm2 G
1

1

2
PS1~q2;R!~1,1 !. ~A25!
12501
is
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If on the other hand we choose (1,2) boundary conditions
with the scalar vanishing on the boundary atz5pR ~but
with Neumann boundary conditions atz50) then

sS1/Z2

12
~p;R!5 (

n50

` 1

p21m21~2n11!2/R2

5sS1/Z2

11
~p;R!2 (

n50

` 1

p21m21~2n!2/R2

5sS1/Z2

11
~p;R!2sS1/Z2

11
~p;R/2! ~A26!

leading to the result quoted in the text. Equation~A18! can
also be applied directly to our AdS examples, provided t
the sums Eq.~A5! over KK masses can be calculated. W
present a method for doing this in the next appendix.

APPENDIX B: MODE SUMS IN AdS

In Appendix A we showed how to express the one-lo
effective action for zero mode gauge fields in terms of su
over the KK masses of the form

s~p!5(
n

1

p21mn
2 . ~B1!

Our results were independent of the specific form of the K
mass spectrum. Here we develop some tricks for evalua
sums of this type when the massesmn are the KK masses o
bulk fields in compactified AdS backgrounds. We will do th
for an even-even scalar in the background of Eq.~1!. In that
case the massesmn satisfy the equation

N~mn![ j n~mn /T!yn~mn /k!2yn~mn /T! j n~mn /k!50,
~B2!

where j n(z)5(22n)Jn(z)1zJn21(z) with n5A41m2/k2,
and yn(z) is similarly defined withYn(z) replacingyn(z).
For the moment we will assume that the bulk massm is
nonzero. We now write

(
n

1

p21mn
2 5E

C

dz

2p i
f ~z;p!, ~B3!

where

f ~z;p!5
1

p21z2

d

dz
lnN~z!, ~B4!

and C is a closed contour that encloses all the solutions
Eq. ~B2! on the real axis but excludes the pointsz56 ip ~we
take p real!. We can deform this contour to a contourC8
given by the union of the linesz5 i t with t taking values in

~2`,2p2e!ø~2p1e,p2e!ø~p1e,`!, ~B5!

and the semicirclesz52 ip1eeiu andz5 ip1eeiu, with u
P@2p/2,p/2# ~takinge→0). C8 also contains a circular ar
that connects the endpointsz56 i`. However the integral
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of f (z) along this part of the contour is negligible. Since
going fromC to C8 no poles off (z) are crossed, we have

s~p!5E
C8

dz

2p i
f ~z;p!

5PrE
2`

` dt

2p
f ~ i t ;p!2

1

2
Resf ~2 ip;p!2

1

2
Resf ~ ip;p!.

~B6!

But note that fort>0,

N~6 i t !5
2

p
@ i n~ t/T!kn~ t/k!2kn~ t/T!i n~ t/k!#, ~B7!

where now i n(z)5(22n)I n(z)1zIn21(z), and kn(z)5(2
2n)I n(z)1zKn21(z) @ I n(z) and Kn(z) are the modified
Bessel functions#. Then f ( i t ,p) is an odd function oft and
the principal value integral in Eq.~B6! vanishes identically.
Therefore

s~p!5
1

2p

d

dp
ln@ i n~p/T!kn~p/k!2kn~p/T!i n~p/k!#,

~B8!
. B

gy

s.

12501
and in the notation of the text

ln N11~p!52 lnu i n~p/T!kn~p/k!2kn~p/T!i n~p/k!u,
~B9!

which together with the results of the previous appen
yields Eq. ~31!. It is simple to generalize this method t
fields with different spin or boundary conditions. For in
stance, a scalar with odd boundary conditions on the Pla
brane but even boundary conditions on the TeV brane@(2,
1)# yields

ln N21~p!52 lnu i n~p/T!Kn~p/k!2kn~p/T!I n~p/k!u.
~B10!

Similarly, the (1,2) spectrum gives rise to

ln N12~p!52 lnuI n~p/T!kn~p/k!2Kn~p/T!i n~p/k!u.
~B11!
i,
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