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This work is an extension of our previous wdiRhys. Rev. Lett89, 131601(2002] which showed how to
systematically calculate the high energy evolution of gauge couplings in compagt (AdS dimensional
anti—de Sitterbackgrounds. We first directly compute the one-loop effects of massive charged scalar fields on
the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk
massegwhich generically are of the order of the Planck sga&leter only logarithmically in the corrections to
the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in
the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the
Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces
our previous calculation, which was based on AdS—conformal field theory duality. We also calculate the effects
of scalar fields satisfying nontrivial boundary conditidrelevant for orbifold breaking of bulk symmetrjesn
the running of gauge couplings.
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[. INTRODUCTION dimensional Poincare coordinates parallel to the boundaries
of the space. The AdS radius of curvature is given by 1/
The long lifetime of the proton and the apparent conver+or applications to the hierarchy problem, we take all dimen-
gence of the gauge couplings at a large scale has long besionful parameters to scale as appropriate powers of the 5D
seen as strong evidence for an energy desert between tRéanck scaleM. The weak scale is generated by the position
weak scale and an underlying UV scale. The drawback obf the IR brane,my~1/zg=T (where we measure mass
this picture is the difficulty in generating and stabilizing the scales in terms of the unit Minkowski metrig,, ).
requisite hierarchy of scales. A minimal supersymmetric We will imagine that at least the standard model gauge
model seems to fit into such a paradigm, as it naturally stafields propagate in the background of Hd). Then a low
bilizes the hierarchy and leads to an even more compellingnergy observer can only measure the effective coupling to
convergence of the gauge couplings. However, generatinthe Kaluza-Klein(KK) zero mode of 5D gauge fields. How-
the hierarchy necessitates some additional physics input. ever, recall that in compactified AdS backgrounds, the low-
Whatever physics is responsible for stabilizing the hierarlying KK modes of bulk fields have masses of the order of
chy should, at least naively, remain weakly coupled if it is tothe scaleT. Thus T serves as an effective compactification
preserve the predictions of grand unification. Thus it wouldscale, and for the same reasons as in a compactified flat space
seem that we should expect all the physics up to the UMield theory, the zero mode gauge coupling observable will
scale to be well described by perturbation theory. Here wée rendered uncalculable by strong coupling effects near this
instead explore the possibility that new strong dynamics magcale(for instance, the effects of higher dimensional opera-
arise at the TeV scale without spoiling the successful lowtors give rise to corrections that go roughly g T?).
energy gauge coupling relations implied by grand unified These remarks would then lead one to believe that it is
theories(GUTS). In particular, we are interested in making impossible to make any sense of effective field the@fyT)
low energy coupling constant predictions for grand unifiedat scales above the KK scale This seems to imply that
theories which are embedded in the Randall-Sundf®®  gauge unification at a large scale, of the order of the curva-
scenario[1]. In this model the hierarchy is generated geo-ture scalek, is not meaningful in a field theoretic context. In
metrically, via a 5D anti—de SittdAdS) metric, and can be reality, however, as we emphasized in a previous pggler
stabilized via a mechanism such as thaf2jf If one works this is not the case. In compactified AdS backgrounds, the
in conformal coordinates, the metric of the Ad§pacetime strong coupling scale beyond which EFT breaks down is
is given by observable dependent. While zero mode observables cannot
be reliably analyzed via local field theory at energies larger
thanT, a correlator whose external points are localized at a
coordinatez in the bulk is perturbative up to an energy scale
roughly given by
where z parametrizes location in the bulk spacetime,
bounded by a U\or “Planck”) brane at,=1/k and an IR _ M o
(or “TeV” ) brane atzjzg=1/T, and x* denotes the four- Pa= 1z @

ds?

:(kz)z(nwdx"dx”—dzz), (1)
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where p, is a 4D energy scale. In particular, a correlator The results of the analogous AdS computation are dis-
localized on the Planck brane is calculable up to momenta afussed in Sec. Il A. In contrast to flat 5D models, where the
the order of the scalbl. Because of this, it is possible to test dependence of the low energy coupling on the heavy bulk
unification at energies of ordds since, using perturbative Mmasses is linear, in AdS low energy gauge observables are
field theory, one can directly compute gauge field correlator®nly logarithmic functions of 5D mass scales, as long as they
whose external points lie on the Planck brane. When th@'e¢ smaller than the curvature sciléthis result was also
momentum drops below the scalethe energy resolution is obtained in[11] using a Pauli-Villars regularization proce-
insufficient to distinguish between the Planck brane Cor_QUre. Because the coefficient of the logarithm is the same as

relator and the zero mode correlator, and therefore the tw! ":‘j ﬁ’”rﬁly 4D theory, _'0"; el?ergt))/ Fgel‘lj(iCtioTS in odp
become equal at low energies. It follows that one can use th&'0d€! where symmetry is broken by bulk scalar masses are

Planck brane correlators to make low energy prediction§ erefore the same as in the flat 4D version of the model. We

based on high energy GUT symmetry. By analyzing thealso discuss the case in which the symmetry is broken by

Planck correlator of a 5D gauge field via the AdS conformalnomnvIal boundary conditions. When the symmetry is bro-

ek oy CE Coesponcenc e  ppis 0 e cx e 2 1 PLEk e ony e st of
RS model5-7], we argued previousl}8] that the momen- N pp oy

7 ’ L ... predictions. No large logarithms appear when the source of
tum dependence of this observable is quantitatively simila ge 1og bp

h finds i | h leadi | ymmetry breaking is the TeV brane.
to what one finds in a purely 4D gauge theory, leading to low = Ajiqugh formulas such as those presented in Sec. 11l A

energy predictions as in 4D GUTs. The possibility that gaugeyre gyfficient for working out low energy predictions in
couplings in AdS backgrounds evolve logarithmically wasyamed GUTS, the physical origin of the large logarithms is
first raised i 9], and in[10] within the context of a solution  gomewhat obscure. Furthermore one might worry that be-
to the hierarchy problerhMore recently, in Ref[11], the  cause of the large one-loop corrections, ordinary perturbation
zero mode correlator including a bulk mass was calculategs invalid for computing such quantities. For perturbation
using a Pauli-Villars regulator with results which are consis-theory to be sensible, there must be a way of employing the
tent with our previous work8], as well as with our results renormalization grougRG) to resum the large logarithms
below. Coupling constant evolution in an AdS backgroundinto scale dependent couplings. In Sec. Ill B we explicitly
was also considered from the point of view of supergravityshow how to calculate the two-point Planck gauge correlator
low energy effective Lagrangians ji2]. for momenta larger than the KK scale. We use this to de-
In [8] we proposed an EFT calculation of low energy scribe how the results presented in Sec. Ill A may be under-
gauge couplings based on integrating out fields that acquirgtood from an EFT perspective in terms of a procedure in
masses due to GUT symmetry breaking at a scale of deder which massive bulk fields are integrated out when the exter-
In this paper, we describe our EFT approach in more detailnal momenta in the correlators become of the order of their
However, we first present an alternative nondecoupling commasses. In this approach, the large logarithms arise due to
putation of the effects of massive fields on the low energyrunning of effective couplings. This result can also be ob-
gauge couplinggwhich is a technically trivial extension of tained by employing AdS/CFT ideas, along the lines that we
our previous zero mass calculatjoithat is, we will directly ~ used in[8]. A discussion of such an approach can be found in
compute the one-loop corrections to the couplings of gaug&ec. Il C.
field zero modes at momenta less thardue to massive

charged bulk fields in a compactified AgilBackgroundthis Il. COUPLING CONSTANT EVOLUTION

has also been done using a variety of method®9i.2]). In IN ELAT SPACE MODELS

this calculation, the information about the UV physiésr

instance physics around the GUT sgaie encoded in the Before discussing gauge theories in Ad#ckgrounds, it

dependence of the 4D effective gauge couplings on the bulls useful to review the situation in flat 5D spaces of the form
mass parameters of the heavy fields. In Sec. Il we show hoR*x St or R*xS/Z,. In this paper we will take as our
such a calculation is carried out in compactified 5D flat mod-“GUT” model a U(1);XU(1), gauge theory with scalar
els. For simplicity we will phrase much of our discussion in matter fields®; (i=1,2) charged undetJ(1);. In this
the context of a simple model with twd(1) gauge fields model, GUT symmetry is &, symmetry that interchanges
and two charged matter fields. In this toy exampleZ.a the two scalars as well as the two gauge fields, and ensures
symmetry that exchanges the gauge fields plays the role dhe equality of the twdJ(1) couplings in the UV. By break-
GUT symmetry. By breaking, either through nonsymmet- ing Z, either softly(through explicit symmetry breaking sca-
ric scalar masses or by boundary conditidimsthe case of lar mass termsor through boundary conditior(é the case
field theories propagating on the flat 5D orbifold*  of theories orR*x S!/Z,) we obtain different predictions for
X S/Z,), we obtain definite predictions for the relation be- how relations of the low energy effective coupling constants
tween the low energy gauge couplings of the tWd@1l) (defined in a suitable way; see belpdeviate fromZ, sym-
gauge fields. metric values. While simplistic, thiZ, model captures the
relevant field theoretic aspects in a clear way.
For the sake of completeness, let us first recall the stan-

we disagree with both the methodology and the quantitative redard calculation of the low energy coupling constant rela-

sults of the authors df10], however. tions in four-dimensional theories using EFT3]. Typically
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when calculating the evolution of couplings it is most con-where inM_S,

venient to work within the framework of an EFT. By inte-

grating out one scale at a time the calculation is greatly sim- d gi3

plified, and the evolution is accomplished by sequentially M@gi(#«):@- )
running and matching across mass thresholds. Working in an

EFT also allows the implementation of mass independente see that the running couplings(«) do not properly
subtraction scheme®.g. MS) which leads to a significant incorporate the decoupling of the charged fields at the thresh-
simplification of the solutions of the RG equations. For in-olds m;, m,. However, the prediction for the difference in
stance, suppose that in our toy modslis softly broken by  the gauge forces ai><mj (as measured, say by a Wilson
the introduction of hierarchical scalar masses>m,. Then  loop observableis the same as in the EFT approach

for high energies, th&, “GUT” symmetry will be manifest.

To derive relations between low energ<€m,) couplings 1 1 1 Jld 1202l
to leading logarithmic(LL) approximation within an EFT o202/~ 4242 1672J0 X(1=2x)%In
framework, we first integrate out the heavy field, at a ! 2

scalex~m;. To LL accuracy, this is accomplished by sim- 1 m, i
ply removing the field®, from the theory, and setting the = o2 |nm—+0(q m3), (6)
U(1) couplings to a common value at the scalg We then 1

run the couplings, by integrating the one-loop RG equationgyhere we used thag; () =g,(u) due to theZ, symmetry.
derived in the effective theory below the scag. Finally,  The logarithm ofm, /m, in this case is not from the running
below the scalen, we removed, from the theory, at which  of the gauge couplings, but rather from the infrared behavior
point the running of the couplings is completely frozen. Fol-of the 1P| correlator. Yet this result is equivalent to the EFT
lowing this procedure, one finds the standard result prediction of Eq.(3). In this paper, we will use dimensional

regularization plusMS throughout. We will calculate low

m3+x(1—x)g?

m3+x(1—x)g?

! — ! = ! In%, (3  energy predictions both in an EFT framewdik Sec. 11l B),
g3 ()  gi(wm) 247 my and in a nondecoupling scheme in Sec. Il A.
valid at LL order for allu<<mj. A. Bulk symmetry breaking in 5D models

Alternatively, in the original field theory, one could sim-
ply calculate the low energy observable of interest, keepin
the full particle content in the graphs. If one works in a mas
dependent scheme such as momentum subtraction, the

coupling of heavy modes occurs automatically, and there i . ; . )
no need to work within an EFT. However, it is also possibleman'feStS itself at energies smaller than the compactification

to calculate in the full theory using a mass independen _cale. At such SCQ'ES only the Iowe_st KK eiggnmodes .Of bulk
scheme. In this case decoupling will not be manifest. Never!!€ldS are accessible as asymptotic states in scattering pro-

theless, because all physical predictions are independent psses. Consequently, the .relevant observables are der.lved
the specific scheme chosen to carry out the calculations, o ©m the cprrelatprs of bulk field zero modgs. In partlg:ular, In
can be assured of getting the correct result for low energ h|gher_d|men5|onal GUT theory we are interested in deriv-
quantities ng relations between the gauge couplings as measured by a
. low energy observer. Such gauge couplings can be defined in

Re_call how this works in th# S scheme. IMS, the R.G number of ways, for instance as the function that multiplies
equations do not properly account for the decoupling o

heavy fields, leading to spurious RG evolution of the cou-he explicit 14 dependence of a Wilson loop whose perim-
plings at low energies. This unphysical running of the couy-Eter is Ionger-than the compactlﬂcatlon rad|us.. Eq.uwalently,
plings is compensated by logarithms of the heavy particle®ne could define an effectivg-dependent coupling in terms
masses in low energy matrix elements. The two effects ex0f the coefficient of the_ quadratic term in the 1PI action for
actly conspire to properly decouple the heavy modes fronih€ zero mode gauge field:

low energy physics. As an explicit example of this consider 1 1

again theU(1)xU(1) model. If we define an effective = +1I(q?) @)
gauge coupling in terms of the 1Pl gauge field two-point g%(g® ¢? ’

correlator(doing so gives rise to a resummation of all lead-

ing one-loop logarithms from the 1P| graphwe find, work-  Whereg is the tree-level coupling, and(q?) encodes one-
ing in Euclidean signature loop effects(we show how to compute it by summing over

the KK modes of bulk fields in Appendix A Throughout
1 most of our discussion, we will use the latter quantity as our
2f dx(1—2x)? definition of the coupling constant measured by low energy
0 observers. Working in dimensional regularization, the one-
loop vacuum polarization amplitude due to a charged 5D
, (4) scalar(massm) on a flat space of the forR*x St is given
by (see Appendix A

Now consider our toy model propagating in a flat, five
imensional (Euclidean space compactified either on a
jrcle of radiusR or on a line intervalS/Z, of length 7R.

e are interested in computing how five dimensional physics

1 1 1
2, 2 2 -
g97(q°) 9gi(m) 167

m?+x(1—x)q?

XIn >

i
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1 r1 lowest lying modes of the bulk fields. Although our compu-
(g% R)=— — [ dxxy1—x? tation of I1s1(q% R) included the contribution of all the KK
872 - . :
™ Jo excitations of bulk fields, we see that physics above the scale

. 2 21, 2 m, effectively decouples from physical quantities. Then the
XIn[2 sinf(7RVq"x%/4+m7)], ®) apparent “running” is due simply to the mismatch between

which turns out to be finite. Because the 5D gauge coupling® zero mode and the lowest mode of the massive field.
is dimensionful[gs]= — 1/2, no logarithmic divergences are ~\POVve the lowest mode, the KK spectra ‘?fl,Z (azsgentlglly
possible at one loop. Rather, divergences must scale linearfjjatch. On the other hand iR>1, the g°<m” limit is
with an ultraviolet cutoff. However, such divergences are9iven by

simply set to zero in dimensional regularization, leading to mR

our finite result. While there are no UV logarithms, in the Hs(g?)=— =+ 0(g%m?). (13
massless case finite logarithmic dependence can arise in the 24

2R2 ¢ i i i
IR for g°R°<1 Then in theZ, model withm;R>1 andm,=0, one predicts

1 4 for g°R?<1
2R)~— In(27RVg2) — =
Hs(a® 2472 3 1 1 mR »
+analytic in q°R2. 9 03(g®) gi(q?) 247

Besides the logarithm of/gZ, all other momentum depen- Where we have ignored the logarithm @R relative to the

dence for/gq?R<1 is analytic ing2. This is exactly what we POWET correction proportional tR. This result is directly
expect in the low energy limit, where our 5D theory Shouldapphcable to models with TeV compactification scales,

be describable by a 4D theory that consists of a masslegghere unificgtion qf th&U(3) X SU(2)x U(1) couplings at
scalar and &J(1) gauge field. In the four-dimensional limit a low scale is achieved through power law “running” of the

- : : lings[14]. From the point of view of Eq(13), this run-
R—0, the logarithm in Eq(9) becomes singular, reproduc- coup! . s
ing the usual one-loop UV logarithm of a 4D gauge theory.nlng IS not due to th‘?_RG evolu_t|on of the couphr(gmee_d .
All other g2 dependence is analytic, which in a 4D EFT is fqrtheorles compactified ona circle, th_ere are no logarithmic
encoded by the contribution of an infinite set of local Opera_dwergences and therefore in a mass independent scheme no

tors involving the massless 4D modes. It is also instructive tdQG flows to speak of Rather it comes about through finite,

. I . calculable corrections to the low energy couplings that de-
consider the limityq?R>1 of Eq.(8). In this case, the be- : g
havior ostl(qz'R;q is dominat?ed( t))y a nonanalytic power pend on a physical UV scale, in this case the bulk mass of

heavy field. At least in flat space models, the extreme UV

law term sensitivity of Eq.(13) implies that in general, low energy
\/?R predictions are highly dependent on the exact nature of sym-
Mea(q%R)=— _ (10) metry breaking near the UV scale. Unknown UV physics can
256 give rise to corrections that are as large as what appears on

the right hand side of Eq14). For instance, if in our model
Thus for large enougly?, the one-loop correction to the the symmetry breaking mass; arises dynamically, there are
coupling has the same size as the tree level result. At thigee-level operators involving tHe(1), field strength whose
scale the effects of higher dimension operators are also urtontribution is of the same order as the quantum effects.
suppressed. This indicates that the 5D gauge theory becomgguation(14) must therefore be viewed as at best an order of
strongly coupled in the UV, and is no longer an adequatgnagnitude estimate of the relation between low energy cou-
description of the physics. Whem+0, the low energy be- plings, rather than a definite prediction for 4D physics based
havior of Eq.(8) depends on the size oh relative to the  on symmetries of the 5D theory.
compactification radius. Far?<m?, andmR<1, we find

B. Symmetry breaking on manifolds with boundary

Hsl(qz;R):—%ln(Zme). (11 Let us now discuss how the quantum corrections are
™ modified due to the inclusion of boundaries. To be definite
we will considerU(1) gauge theories with scalar matter
mpropagating on the orbifol&'/Z,, where the orbifold fixed
planes(“branes”) bound the space. On such space the short
distance structure of the theory is modified because it is now
\ﬁ) possible to write down operators involving bulk fields that

Imagine that in our toyU(1)xU(1), &, acquires a mass
m;<<R while ®, remains massless. Then the deviations fro
Z, unification at low energy are found to be

1 1 1 . ; X

_ ~ In( (12) are localized on the boungjarles. Generically, we expect loop

g9%(q®) g3(q?) 24m? effects to generate new divergences that renormalize the co-

efficients of such operators. Depending on the mass dimen-

This is of course, what we expect to find if we decouple thesions of the brane localized couplings, short distance diver-

tower of KK states by hand and compute the relative runninggences on the branes may be logarithmic, inducing non-
of the gauge couplings in a 4D EFT that includes only thetrivial boundary RG flowg16].

my
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It is also possible to use the branes to break symmetries of We note that by simple power counting, the RG equations
the bulk theory. This occurs because one may impose bounder the boundary couplings are saturated at one foGme
ary conditions that are incompatible with the symmetries ofcan similarly calculate the one-loop effects af (—) scalars
the higher-dimensional Lagrangian. For instance, we may
give fields within a given multiplet different boundary con- 3, P(X,2)[,=0=P(X,2)[ ;= r=0. (19
ditions. Then from the 4D point of view there will be mass We find
splittings among the low lying KK modes of the fields in the
multiplet, so that a 4D observer will identify the compactifi- - 2.0y 2./ _ 2.
cation scale with the symmetry breaking scale. On the other Hsl’zz(q RI=1s(q%R) ~1si(a%R2)
hand, the spliting among heavy KK multiplefsnasses 1 r1
larger than the compactification scaleill be small relative — _f dxxy/1— x2
to the mass, so that the symmetry is manifest at high ener- 8m?Jo
gies. In the 5D language this is just the statement that the
symmetry is explicitly realized locally in the bulk, but bro-
ken at exceptional points.

To illustrate these features, we consider the one-loop cor-
rection to the zero mode effective gauge coupling due to avhich is finite. Despite this, the boundary coupling constants
scalar field® satisfying various types of boundary condi- receive logarithmically divergent radiative corrections. The
tions on flatR*x S'/Z, (we assume that the zero mode sur-reason why such divergences do not appear in(#g).is that
vives whatever boundary conditions we impose of the 5Dffom the 5D point of view, the zero mode correlator is a
gauge field. First choose ¢, +) boundary conditions at the nonlocal quantity. It can be obtained from a 5D effective

Z, points(located az=0,7R, with z a coordinate along the action (with the z dependence includgdy integrating over
sYz,) the compact space. In the process of doing this integration,

the UV divergences of one boundary combine with those of
3, (X,2)| = 0= 3, (X,2)| = .r=0. (150 the other to give the total UV cutoff dependence of the zero
mode Green’s function. Because of its short distance nature,
The one-loop vacuum polarization of the zero mode gaugéhe coefficient the UV logarithm a=0, where® satisfies
field is now given by (with e=4—D and Tl 1 Neumann k_)oundary condltlons, has the same value as the
4+ 1~ 5+ In(4m) corresponding UV logarithm in the+(,+) case, Eq(16).
L7y Using the same type of arguments describeldif], it can be
shown that the UV logarithm a= 7R, where the field sat-

XIn

7R
2cos - a>l4+m? | |, (20

P 1 1 1 5 isfies Dirichlet conditions, has the opposite sign. This leads
Hsllzz(q R)= 2_——2f dxxy1l—x to the cancellation of divergences in E&0), as well as the
48m%e 32m"J0 RG equations
x4+ m?| 1 , d_, d . 1
XIn| ——— |+ =11 '‘R). S N e W
n 2 > si(d5R) ,udlu)\o MdeR 962" (21)
(16 For a (—,—) scalar,
D(X,2)|z=0=P(X,2)[ ;= -r=0, (22)

This result can be easily derived by noting that the lowest
lying scalar KK state on the orbifold is in one-to-one corre-\ye have
spondence with that on the circle, while there are half as

many massive KK states o8'/Z, as there are o' (see 1 1 r1

Appendix A). Comparing to Eq(8), we see that the orbifold g, (9%R)= — + zf dxxy1—x?
calculation generates dfoles. There are now logarithmic 2 48m%e 32m°Jo
divergences which renormalize new brane-localized gauge 9 o )

kinetic terms “in Q°x“/4+me) 1

+—Igq(g%R),
u? 2

Lsp=i[Nod(2) + Ngd(z— TR)IF , F**+ - (17) (23)

(note that given our normalization for the 5D gauge field,and thus
Mor is dimensionless Loop effects therefore induce non-

trivial RG flows for the boundary couplings. It can be shown
that 2This is no longer true in more general models. For instance, a

bulk fermion with massn can give rise to a two-loop correction to
the beta function proportional tcnngé. Brane localized fields
N e 1 18 coupled to the bulk gauge field may also contribute to the RG
M 7\0,R - 2 (18 . -
du 967 equations starting at one loop.
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d 1 Then according to this naive dimensional analy@DA)
M@)\O,R ~ 96,2 (24 estimate, by choosing.=pu in Eq. (27) we may neglect

with some temerity the tree-level boundary couplings rela-

The low energy predictions for the case of softly brokentivé t0 the calculable logarithmic correction InfRpy)
bulk symmetry follow closely the discussion of the previous ~IN(1024m/g3) to obtain a prediction for the difference of
section. The only novelty here is the expligitdependence, the zero mode couplings at low energy
which must be compensated jpydependence of the bound- 1 1 1 1
ary couplings. However, if the symmetry breaking is by soft 2
terms, in a minimal subtraction scheme the logarithmic deq2q2) a2(q2) 5IN(1024m/g;) — 2|n(2ﬂTR\/?)

. g 91(9%)  93(q°) 24w 24
pendence oru can be absorbed into the definitions of the
boundary couplings which are universal. Subtleties arise +O(1/967?), (29
when symmetry breaking occurs through boundary condi-
tions. For instance, suppose we break Byesymmetry of  where 1g‘21:7-rR/g§~1 is the low energy coupling at tree
our U(1)XU(1) model by assigning<,+) boundary con- level. We note that in the case where symmetries are broken

ditions to®, and (—,—) to ®,. In MS, for \/¥R<1, by boundary conditions, bulk quantum effects are universal

and irrelevant as far as unification is concerned. This means

1 7R 1 that the extreme UV sensitivity that plagues the predictions

= — +N1o(u) + N r(p) + ——=In(27Rw) in the type of models considered in the previous section is
91(a%) g5 48m absent heréthe UV scale enters only logarithmicaljyiead-

ing to robust results for low energy physics.

1 4
. In(ZWRW)——}, (25)
24 3 IIl. COUPLING CONSTANT EVOLUTION

where\gr(w) are the running boundary couplings associ- IN AdS MODELS

ated with the gauge groupg(1),. In the same limit, We now determine how the one-loop effects calculated in
the previous section are modified by the presence of a back-
1 7R 1 ground Ad$ geometry. First we compute the one-loop cor-
WZEH‘N(“)H‘ZR(“)_ @I”(ZWR/‘) rection to effective low energyzero modg coupling con-
2 ° stants in the AdS background, which for the remainder of
+analytic ing®R?. (26)  this paper we will take to be Euclidean. We will show that

the UV structure(for instance the power counting of ultra-
Notice that the nonanalytic dependence gfnhas dropped violet divergencesof the gauge field zero mode correlators
out of this equation. Since the zero mode®j has been is identical to what we found in flat space in the last section.
removed by the boundary conditions, this result is simply an general, this must be the case, since the physics in the UV
manifestation of decoupling in this scheme. Becaftseand  comes from distances shorter than the curvature scale, and is
&, satisfy different boundary conditions at the orbifold fixed therefore not sensitive to it. In particular we will see that the
planes,Z, symmetry is explicitly broken on those points so logarithmic divergences of our AdS models are the same as
that in general we cannot expect equality of the boundaryhose in flat space, leading to the same RG flows. For in-
couplings. Consequently, it seems impossible to make a prestance, like in the previous section, only the coefficients of

diction for the quantity brane localized field strength operators are logarithmically
renormalized, while the bulk coupling of the AdS gauge
1 1 bound 1 In(2 ) theory receives linearly divergent loop corrections and there-
—5 50 T3 5. —boundary terms$ n(2mRu fore does not run.
0i(a®  g3(a?) 24m?

While the UV structure is the same, in curved spaces there

4 can be new finite loop effects not present in flat space field
{In(ZwR\/?)——} (27)  theories. In Sec. Ill A, we discuss the nature of curvature
3 corrections to the low energy gauge couplings. Whereas in

flat space gauge field zero mode amplitudes are linearly de-

due to the unknown values of the boundary couplings. T%;ndent on bulk mass scales larger than the compactification
make progress, additional assumptions about their magnitudggje in AdS scalar field masses smaller than the curvature

relative to the calculable quantum corrections are needegnier only logarithmically in the one-loop correction to the
[15]. Because the theory becomes strongly coupled at a scalg,ge couplinggMasses larger than the scileon the other
ps~512r/gz [at which point the quantum corrections to the hand, give rise to loop corrections that are identical to what
effective couplings are of the same order as the tree-levele find in flat space.

result; see for instance ECLO)], it is customary to make the  Ajthough the zero mode results are sufficient for deriving
assumption low energy predictions, the origin of the large logarithms that
appear is not entirely clear from this analysis. We provide a
physical explanation of the features of zero mode amplitudes
in Sec. Il B. There we will see that the logarithms arise from

1
2472

1
)\O(MS)NAR(MS)NW- (28
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T (33

KK mass gap, followed by a matching procedure to the zero R= E'”
mode observables. In Sec. Ill C we discuss how the large
logarithms may be understood in terms of the AdS/CFT cory

respondence.

the running of Planck correlators down to a scale near the 1 (k)

Ithough the effective coupling ia independent, one would
like to pick a value ofu in which all large logarithms have
been resummed into the values of the boundary couplings.
One can actually avoid the issue of choosing a renormaliza-
First consider the one-loop vacuum polarization due to dion scale if we recognize that because the strong coupling
scalar field with (-,+) boundary conditions, as in E(L5). scale for TeV brane correlators is of orderwe expect the
Using the results of the appendixes, this is given by boundary coupling\r(u) to be given by its NDA estimate
(of order 1/16r%) when evaluated at a renormalization scale

A. Zero mode observables

) 11 w? p~T. Likewise, the strong coupling scale for Planck local-

(g% =~ 1872 :+5In KT ized Green’s functions ig~k, so it is A\ (u~k) that we
€ expect to be small on the basis of NDA. Using the RG equa-

1 \/? tions
+ dxxy1—x?InN, ;| x\/ =],
16772j0 **( 2) d d 1
— N ) =p—N(p)=——, 34
30 MdM k(m) MdM () 9672 (34)
where

we can therefore relate the couplings evaluated at an arbi-
_ . . trary subtraction point to those at their NDA values. In the
NN+ (p)==In[i,(P/TK,(p/K) =i,( p/k)kp(p/T)|,(31) process of doing so, the explicit logarithms @fin Eq. (32

cancel with the logarithms that appear in the solution of the

with i (2), k,(z) defined in Appendix B. The #/pole here ~RG equation. We are then left with

has the same origin as the one that appears in flat space in

Eq. (16). It simply indicates that the boundary gauge field 1 R

couplings[such as those of Eq17)] are logarithmically m:?

renormalized. This follows again from dimensional analysis: °

+ N (2K) + A (2T)

the boundary couplings are the only dimensionless couplings 1 2
A " s 1 q

that arise in this theory. Only these quantities get logarithmi- + zf dxxy1—x?InN_ | x\/—],

cally divergent loop corrections. The fact that such diver- 167Jo 2

gences are indeed confined to the boundaries of the space can (35)

also be understood by computing the 5D effective action for

a background gauge field with dependence on the compagfhere now all couplings are expected to be given by their
coordinatez. Loop corrections to this quantity containel/ natural values. This is somewhat different from the flat space
poles multiplying delta functions with support on the bound-examples considered in the previous section, where the NDA
aries of the space, meaning the counterterms needed to renggale was homogeneous across the compact direction. Here,
malize the 5D action are those of E(7). Notice that in  pecause of warping, we see that the one-loop corrections are
accord with our general discussion, the coefficient of thesast in their simplest form when written in terms of the cou-
poles, and therefore the RG flows, is identical to the one Weyjings renormalized at the scales associated with their loca-
found for a scalar with ,+) boundary conditions on the tion in the bulk spacetim@.
flat orbifold. While the ultraviolet effects encoded in E&O) are simi-
While the RG equations are the same as in flat space, thefiér to those as in flat space, the low energy behavior for
application in the compact AdS background is slightly more [g?<T differs. We will separately consider the cases

subtle. Consider the zero mode coupling in M& scheme =0, m<k, andm>k. Form=0 we have
1 R 1 w? p2
i) g2 M) T o e et NN, (p) == I == In]1(p/T)Ky(p/K)

1 2 —Ka(p/M11(p/k)|, (36)
+ fldxxx/l—XZIn N++(x\/g), ' '
0

16m* which for p<T can be expanded as
(32

where A\, r(u) are a set of running boundary gauge cou- S3gquivalently, one could renormalize as[it8] by performing the
plings, localized at the Planck and TeV branes respectifRely. subtractions before taking the liniit— 4. While the interpretation

is the proper distance between the branes, which according t4 the boundary couplings differs in this scheme, the results for any
Eq. (1) is given by physical quantity are not changed.
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2 than the curvature scale therefore encounters the same types
NN ;. (p)=—In +terms analytic inp?/T? or p?/k?. of problems as power law coupling unification does in flat
(37) space. Remarkably, however, for<k, the low energy cou-
pling is only logarithmically sensitive to bulk mass scales

Thus form=0 and\/q?<T, we find

1 R m
1 R 1 [ g*> 8 92 :g_§+)\k(k)+)\T(T)_ oAz (44
ﬁ: — T A(2K) + N 1(2T) - 2872 |n§— 3
o % i Generically, this formula will also receive corrections from

+terms analytic ing. (3g)  Insertions of higher dimension operators at tree level. These
corrections manifest themselves either as terms that scale
Comparing to the one-loop vacuum polarization for-a,(  with the bulk mass asnR or as terms that are analytic in
+) scalar field propagating on fl&*x S'/Z,, we see that q?/T2. The former corrections originate from operators of
the infrared logarithms ofj> match those of Eq(16) if we  the form
identify the flat space compactification sc&tewith the pa-
rameterT, that appears here. The fact that iffisand not the S if d5X\/62F EMN
brane separatioR that appears is a consequence of the AdS M MN '
curvature. Given this fact, the infrared behavior is then iden-
tical to that of the flat 5D theory. whereZ, is some scalar field that develops a VEV of order
In the massive case, we use the expansiong$at : m/gs. Using NDA we find that these operators lead to a
breakdown of the calculation if the scalar mamss larger
thank. For m<k, the large logarithms in Ed44) dominate
the vacuum polarization and we expect the predictions for
the low energy couplings obtained by integrating out heavy
T'(v) z\ 7V particles to be reliable.
k(2)=——(2- V)(E) [1+O0()+- -], These results can be applied to the calculation of predic-
(40) tions for the low energy couplings in ods model, assuming
that®, acquires a symmetry breaking mass temp<k (but
where in both equations-* - ” denotes terms higher order in much larger than the KK scalg), while ®, remains mass-

(45)

) 2+v
W= rorn

Z v
E) [1+0(2%)+ -], (39

z°. Forp<T, we have less. We also take both fields to have,(+) boundary con-
X ) ditions. We then find from Eq38) and Eq.(44),
ve—4
INN_ . (p)=—In V —vlnf+-~, (41) 1 1 1 9
2 2 22 o2 — | (46)
01(9%) 93(q°) 24w my

and thus, fom=+#0,

1 R 1 2 K where as a consequence of thesymmetry, we have taken
I A(K) FA(T) = —— In( _) the tree-levelJ (1), , couplings equal. This equation is just
g%g®) ¢ k T 4872\ 2vk? T what we obtained in the 4D version of olr(1)xXU(1)
model. In realistic GUT models based on the AdS hierarchy,
+analytic ing?, (42)  the X,Y bosons will play a role analogous to that ®f in
_ 2 2 . , this model, while®, plays the role of a standard model
where we have usedf=4+m?/k?. From this equation, we gauge field. Therefore, if the 5D GUT symmetry is broken
see that a massive field decouples from the low energy 9augs; the VEV of a bulk Higgs boson field, we expect to find
force, in the sense that it contributes only through terms thaf ot the relations among the standard model low energy
are analytic ing? and can therefore be absorbed into thegauge couplings implied by broken GUT symmetry are iden-

coefficients of local operators involving the gauge fieldtica|to what is found in the minimal standard model with an
strength and its derivatives. In particular, heavy bulk fleldsenergy desert.

+vIn

give large q” independent contributions 1(q?) which We now describe how the above results are modified
manifest themselves as a correction to the bare cougng \yhen the charged scalar field satisfies different boundary
If m>k, Eq.(42) becomes conditions. For the case of{,+) boundary conditions, we
1 R MR s find
S = S M A(T) =, 43 1 R
2(~2 2 2
9°(a%) gs 48m D — +A(kI2) + N (2T)
g9°(q g

which is remarkably similar to the analogous flat space limit °
Jg?<R, m>R [see Eq(13) and Eq.(16)]. The fact that Eq. 1 1 > q®
(43) is so sensitive to the bulk mass implies that it is equally + 16 ZJ dxxV1-=xInN_ | x\/ =/,
sensitive to the contribution of tree-level operators to the low 0
energy couplings. Unification in AdS models at a scale larger (47)
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where now The low energy behavior depends on the value of the bulk

_ mass. Fom=0 this is
INN_(p)=—In[i,(p/T)K,(p/k) =1, (p/k)Kk,(p/T)].

(48) 1 R 1 g°\ 8
ﬁ=—2+)\k(2k)+)\T(T/2)— 2872 In E —g .
As before, we have used the RG equations for the boundary g'q s g (55)
couplings
Here, the logarithmic running below the scdlés saturated
d d 1 at an exponentially small mass scale, of or@iétk. Inspec-
M@Ak: _Mﬁ)‘T:W' (49 fion of the KK mass spectrum for a massless, ¢) scalar

field reveals that indeed there is an “almost zero modeat
to write the one-loop corrections in a form that does not havds; the wave function of the KK ground state is nearly)flat

large UV logarithms. For/a2<T this equation becomes with such a small mass. For nonzero mass this mode is lifted
9 9 \/az d to the scalel and we instead have

R k2 ag(2T)— — t R 2-vy K
Y N k - —_— — —
gZ(qZ) gg T 4&72 gz(qz) g§+)\k(2k)+)\T(T/2) 48772 In . +V|n_|_ .

2+v k (56)
X|In ; +V|”$ : (50 \We see that again there is a logarithm mfT for bulk

massesn<k. In fact, both the massless and massive, (

—) scalars give rise to coupling constant corrections that are
identical to the correspondingt(,+) examples worked out
earlier. So for instance, if symmetry breaking in oy
model arises from a modification of TeV brane boundary

In our toy GUT model, ifZ, is broken by assigning-,
+) boundary conditions tab,, while giving ordinary @,
+) boundary conditions td, we have(both fields are kept

massless conditions, no large logarithms will appear in the difference
> of low energy couplings. In GUT models, we may want to
1 1 _ 1 \/‘? assign (+,—) boundary conditions tX,Y bosons in order to
AP gg(?—boundary terms 24772|” K/’ suppress TeV brane proton decay. This means that orbifold

GUT breaking will not be sufficient to generate a reasonable
(51
prediction for the standard model gauge couplings measured

where the unknown boundary corrections are expected to bl the weak scale. It will be necessary to Higgs the GUT
small on the basis of NDA. This result is somewhat surpris-Symmetry in the bulk as well.

ing from the point of view of the KK expansion, where the
modes of®; andd, are split at a scale of ordar(sinced,
has no zero modeFrom this perspective, théz symmetry While it is straightforward to use a procedure like that of
breaking scale is identified with the KK scale, and no largethe previous section to compute predictions for low energy
logarithm in the difference of couplings is expected. The fac€ouplings in warped models, the physical origin of those
that a large logarithm appears in E&1) is obvious, how- results, particularly the large logarithms, is not completely
ever, once one considers high energy observables. clear from an analysis of KK modes alone. Ideally, one

When we reverse the boundary conditions on the scalaf’ould like to be able to understand how such logarithms
from (—,+) to (+,—) we have instead arise from an EFT procedure in which one integrates out

heavy bulk fields at a momentum scale of the order of their

B. The Planck brane correlator

1 R mass _and then uses the RG to run the couplings down to low
——— = — M (2K) + N (T/2) energies. However, because of the power-law growth of zero
9%(q?) g§ mode correlators for energies larger than the KK gap, it is

impossible to develop an EFT approach using such observ-
1 (1 q° ables. Furthermore, as we emphasized previously, in order to
+ 16772Jo dxxy1—=x%In N, _| x ek properly define high scale unification in a field theory con-

text, it is necessary that there exist observables that are cal-
(520  culable at the GUT scale. In the RSI scenario, Green’s func-
tions with external points lying on the Planck brane are

with insensitive to the effects of unknown UV physics as long as
) the typical external four-momenta are less than the scale
INN, —(p)=—In[l,(p/T)k,(p/K) =i, (p/K)K,(p/T)|. Consequently, they can be used to define the notion of a high

(53 GUT scale. They can also be used for the purpose of under-
standing the evolution of couplings in an EFT approach.
We will now show how to compute the gauge field Planck
d d 1 brane two-point correlator for external four-momerifa
U— A= — fh—A7= — —. (54) <\o?<k. _Domg so will enab!e us to understand_ how_the
du du 9672 large logarithms encountered in the previous section arise as

We have also made use of the RG equations
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a result of the usual matching and running of couplings in an
EFT framework. We do this at one loop in massless AdS

scalar electrodynamics with an action which includes

1
4—94 d5X\/6FMNFMN+fd5X\/§|DMCI>|2, (57)
5

as well as terms such as those of Ey). To do this we need
the gauge boson propagator, whichApg=0 gauge is given
by (here 7, is the flat Euclidean metrjc

M~V

14 ! v ! q q I
D§"(z,2")=n""Dy(z,2 )+?Hq(z,z ), (58)

where for one point on the Planck brane

kz K1(q2)lo(a/T)+Ko(a/T)lo(q2)

q 1o(q/T)Ko(alk) = lo(a/K)Ko(a/T) "
(59)

Dy(z,1k)=

We will not need the specific form ¢i,(z,z"). The quantity
of interest is

9%(9?)
— 7]”1}—‘,— ceey
(60)

fd"’xeip'X<Au(x,1/k)AV(O,1A<)>E

where we have defined an effective running coupliig?)
as measured by Planck brane obseryarsl dropped gauge
dependent piecgésAt one loop, there are two diagrams

which contribute. The usual vacuum polarization graph is
(dropping the longitudinal part of the gauge-boson propaga-

!

tor, and raising/lowering indices with the flat metric,,)
d°p dz

(1)
Lo f 2mP (K2° (k2 )?
X (2p+) .(2p+0),5,(2,2'),Dy(2' 1K)

D4(1k,2)Sy4 p(2,2")

(61)

whereas the seagull term of scalar QED is in this case

L@)=—2 J d°p dz Dy(1k Dq(z,1k
v M W@g q( iZ)Sp(Z!Z) q(Z, )
(62)
In these expression§(z,z') is the scalar propagatdiwe
can understand the dominant non-analytic momentum depen

dence of these quantities by the following arguments. Firs

consider the spectral representation for the propagator of
massless scalar with+(,+) boundary conditions

In(2) (2 )

p?+m?

Sy(z,2')= 2

(63

While then=0 mode hasny=0 and

PHYSICAL REVIEW D58, 125011 (2003

21-1/2

=2k, (64)

lﬁo(z):\/ﬂ[l—(g

the excited states witim,<k are peaked towards the
=1/T boundary. However, in the limit < \/¥<k,
1

D(21K) k [mz
2,1K)~—\/ 5o~ ©
a a vV 2qKq(g/k)

We therefore expect that all terms involving theé O modes
in the loop integrals will give contributions that are
suppressetby powers ofT/k relative to the terms involving
only n=0. To see this explicitly, we note that in order to
calculate the one-loop graphs we need the integrals

s (65

T dz
1= fl/k k22102 (2 In(2) (66)

and

|(2):

n

T dz
f (kZ) 1(q2) (/fn(z) (67)

The ratiosl {&/1§Y and1 /1" may be calculated simply by
noticing that for small values &f where the integrands have
their support, the excited states approach the constant values

my,

av
2k

From this we see thaf})/I )~ m,T/k for n#0 and forn

or mnot zerol {2159~ Jm,m,T/k? (where in both cases we
have taken the mode massésxm,<k). Similarly for n

Yn(z=1/K)— — Y1(my/T). (68)

#0, 1971 ~m T/k. On the other hand,
5
160= 54 (69)

is independent of.

Given these facts, it is easy to calculate the leading one-
loop corrections to the Planck two-point function of the
gauge field. We work in a decoupling scheme, so that as in a
usual EFT calculation, for external momen{/ﬁz<k we

eed only consider KK modes with masses less tkigh.
hat is, modes with masses heavier tharf give rise only
to trivial contributions that can be absorbed into local

%I the field running in the loop has spin, the dominance of the
zero mode over the excited KK states may no longer apply. How-
ever, it is still true in general that the regions of the loop integral
away fromz=1/k are suppressed for external momenta less than
the curvature scale. Thus to a good approximation we may replace
the propagators in the loop by their values on the Planck brane.

“Strictly speaking we should have analytically continued ourGiven this fact, it is possible to generalize the statements made here

propagators and vertices to AglS;. In not doing so we miss out on
constant terms which are irrelevant for our purposes here.

regarding scalar fields to more realistic situations involving spinor
and vector fields.

125011-10



EFFECTIVE FIELD THEORY AND UNIFICATION IN . .. PHYSICAL REVIEW D68, 125011 (2003

counterterm§.Despite the fact that the integrals) 1) for  this tree-level effect, the nonanalytic, prescription indepen-
the massive modes are suppressed by poweTselative to  dent momentum dependence is identical to the result derived
the integrals involving only the zero mode, it is possible thatfrom the zero mode calculation. Furthermore, Etfl) im-

the sum over the roughlyq?/T KK states that contribute to plies that\,(u) satisfies an RG equation

the loop amplitude gives rise to a term that is independent of

T. One can show that the leadifigindependent term of this d 1

sum is of ordeg?/k? and thus negligible fox/gq?<k. We are Mﬁ)‘k(“): T 242 (73

thus effectively only left with the contribution form the zero
mode. In this approximatiori,(;” is given by (in dimen-

. R which is different than what we found for its running in our
sional regularization

computation of the KK zero mode gauge correlator. This is
to be expected, since calculating in a nondecoupling scheme
leads to a beta function which includes spurious effects of
B 49%Ko(alk)?) (2m)P q(q+p)? massive particles which normally would not be included in
) the context of an EFT calculation. Of course, physical quan-
k 1 n tities are not sensitive to this apparent discrepancy, since in
q K (q/k)Z(qﬂq” q 77/“’) an(d7). the nondecoupling scheme the low energy matrix element
will contain large logarithms which exactly cancel the effects
Note that the zero mode contribution to the loop integral inof the spurious contribution to the beta function. Equation
this equation is exactly what one finds for the one-loop(72) is identical to what we found if8] by using AdS/CFT
vacuum polarization calculation in a purely 4D scalar QEDduality as it applies to AdS backgrounds compactified by
calculation[which we denote byll,5(g%)]. We have also branes.
dropped the zero mode contribution to the seagull term, since Equation(71) is valid for Jg?<k. As \/g? approacheg,
it vanishes in dimensional regularization. modes with masseas,,~k are no longer decoupled from the
Including tree-level effects as well as the contributionone-loop sums. Such modes are not suppressed near the
from the Planck brane boundary gauge couplithg contri-  Planck brane, so they give an order one contribution to the
bution of the TeV brane gauge coupling is highly suppressedorrelator(relative to the one-loop zero mod®r large mo-

S J d°p (2p+0).(2p+q),

in the limit o> T) menta. In fact, forJ/g?>k, the correlator becomes insensi-
tive to the curvature scale, so it must behave like a flat space
4y, Aiq-X 5D gauge correlator. This leads one to conclude that for large
j dxeT AL L)AL, 1)) energies, the behavior is a nonanalytic power law of the form
) J9?/k, reflecting the breakdown of the Planck observable at
k g k o
— 5 2 a scale which igup to a loop factorof orderk.
- 2 um gSAk f
g% Ko(g/k) Ko(a/k) If the bulk scalar has a mass, we can understand its
‘ decoupling from the point of view of the Planck correlator.
The massive scalar has a KK mode with mass rougtily2
2
Ko(a/k) i sllan(4?) + O(gg) |+ (70 [9,11] that, unlike other modes with masses below the cur-

vature scale, is unsuppressed nearl/k. Therefore, as the
where we have again ignored terms that depend on thexternal momentum becomes larger than the mass of this
choice of gauge. Resumming the above terms we find thanhode, a logarithm of/g? which is not suppressed by powers

the effective Planck brane coupling at one loop is of T/k, is induced. As in the zero mass case, the logarithm
has the same coefficient as in a 4D calculation. For external

1 1 1 9 momentum less tham, this special mode decouples and the
m: g_ngO(q/k)H‘k(r“)_ @'” W2 (7D running of the correlator freezes out. Thus this mode prop-

erly accounts both for the decoupling of the bulk field when

In this equation, the first term is due to the tree-level bulkVa?<m and for the correct momentum dependence when

gauge coupling. Because g >m.
It is now possible to understand from an EFT point of

view the results of the previous section. Suppdsehas a
(72) symmetry breaking mass temm; <k. Then®d, decouples at
scales less than its mass, and the only source of relative
it is customary to think of this term as giving rise to a tree-running between th&J (1) couplings is due to the one-loop
level running of the couplings. However, this uncalculable contr|but|on of the®, zero mode. Matching at the scaié
contribution to the running is completely universal and thus= ml, we find from Eq.(72),
irrelevant as far as unification is concerned. Note that beyond

q
(q/k)~—|n(2k

1 1 1

= 2 Ko(ak) + Xy () = o5 In| —

8In this case, the proper local counterterm is the coefficient of the gf(q2< m%) 95 24 K
Planck brane localized gauge field strength operator. (79

my
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which implies that at any other momentum scale larger thaidere A, weakly gauges & (1) global symmetry of arun-

T, known) CFT described byCcg7. The scalar fieldp(x) cor-
responds to the zero mode of our charged bullassless
1 1 1 9 scalar®, and couples to the CFT through the dimension-four
= - In( _) (75)  operatorO, with a couplingc which is of order 1K (we
03(q®)  g3(q?) 24m? 1 ignore couplings to gravity

The running of the gauge couplirggin Eq. (76) is exactly

We can use this result to derive low energy predictions b)}he runni.ng of the Planck correlqtor computed in the previ-
noting that the Planck brane correlator matches on smoothl§uS Sectior{8]. The former quantity can be extracted from
onto the KK zero mode gauge field correlator at low energy€ vacuum polarization of the 4D gauge field, which from
This can be seen explicitly from the fact thata’<T, Eq. Eq. (76) is given by
(59) approaches the zero mode gauge boson propagagor 1/ '

While we cannot use our calculation of the Planck correlator  I1#%(q)= f d*x €9 X IEer(X)IEe(0)) cer

to explicitly calculate the matching to the zero mode, we can

still use Eq.(71) to capture the leading logarithmic behavior. 1
This is because the threshold effects of the light KK modes, - >
whose contribution is unsuppressed as the external momen- 48m
tum reaches the scal cannot induce large logarithms (77)
(since matching only involves logs of ratios of light magses

We then expect the prediction of E75) to coincide with ~ The first term represents the renormalization of the coupling
the nondecoupling result of the previous section up to termgue to pure CFT effects. It is fixed in terms of Ward identi-
that are small relative to the large logarithm ¢g%/m,.  ties and conformal invariance to be

Indeed, this is exactly what happens.

2

(9" —g?7*")In pE +0(|c|?).

Finally, one can also use the Planck brane Green’s func- J d*x €9 X( I 1(X) IEe1(0)) cpr
tions to understand what happens when one of the scalars in
our Z, model has either<,+) or (+,—) boundary condi- 1 2
tions. In the (-, +) case, there is no KK mode that has a =— (q#qv—qZWW)m(—z), (79
strong overlap with the external gauge boson propagators. 295k k

The only logarithm ofg? then come from the scalar field L i
satisfying (+,+) boundary conditions. Because tg sym- where the coefficient is known in terms of the 5D parameters
’ ' due to the fact that this term is equivalent to the tree-level

metry is explicitly broken on the Planck brane, there is no ) .
analogue of Eq(74). Instead, we evaluate E(71) for the ~ /@nck gauge propagator in the AdS descripfiéh The sec-
ond term of Eq.77) is simply the one-loop contribution of

U(1), gauge group at a renormalization scale-k where : 2 ) X
the boundary couplings have values that are small accordin{€ Scalar, while theO(c) corrections denote corrections
the vacuum polarization due to insertions of the operator

to NDA. This accounts for the logarithm afq?/k that we .
found in the nondecoupling result of the previous section.O“' These are suppressed when the extemal momentum is
When the scalar is€,—), there is no zero mode, but recall smaller than a scale of ordér From Eq.(77) we find that

. . 2 . .
that there is a near zero mode, with a light mass of ordePhe running coupling at ordeg™ is given by

T2/k. This mode is nearly flat, and is unsuppressed zear 1 1 1 (q 1 o2
=1/, so it gives rise to logarithmic running of thé(1), = Tm(—) - —2|n(—2 . (79
coupling, again with the same coefficient as in 4D. Up to 97(a%) 9°(wm) gsk \k/ 487 \u

small corrections due to the nonuniversal TeV brane cou- hich " tch hat found in the AdS calcul
pling, the running of the two couplings is therefore identical, WNICN exactly matches what we found in the caicula-

which explains why no large logarithms appeared in the Iovx;ion' For more detai_ls of the computation in the dual field
energy predictions of Sec. Il A. theory, see our previous papid. . . .
The leading pure CFT correction to the running coupling,

Eq. (78), is universal and therefore irrelevant for unification
C. CFT interpretation (indeed in 5D it represents the tree-level gauge propagator
The results derived in the previous section can also b&n€ may worry that there are subleading nonuniversal cor-

obtained via the AdS/CFT correspondence as it applies to thgctions to Eq(78) which are as large as the one-loop con-
RS scenario. As we discussed previoug8j, the Planck tr'lbutlor'\ of the scalakp. Computing them would be impos-
brane one-loop two-point correlator is identical to theSiPle without knowledge of the precise nature of the CFT
Green's function of a four-dimensional gauge fiéld(x) in ~ Which is dual to our AdS theory. We note that this is not a
the dual 4D theory probl_em, however. First of all, we explicitly did the 5D cal-
culation and found exactly Eq79). Furthermore, on the
CFT side, we know exactly how nonuniversal effects are

Lap= ﬁCFT+4—g2FWF”V+AMJéFT encoded in the dual 4D description, namely through the in-
sertions of the dimension four operatar the massless case
+ | DM¢|2+ c(pO,+H.c). (76) O,. This matches the fact that contribution of the KK modes
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(which in the dual picture are CFT bound stafé$) was calized away from the Planck brane. Since the large loga-
found to be exponentially suppressed. rithms are insensitive to the detailed structure to th€Ti&V)
Now let us interpret our results in the context of E@6) region of the space, it is likely that any space that is close to
for both mass term and boundary condition symmetry breakAdS in the UV (near the Planck brapebut arbitrary in the
ing in the toyZ, model. BreakingZ, by an explicit bulk IR (near the TeV branewill give rise to similar patterns for
mass ternm for, say,®; modifies the dynamics of the cor- the running at one-loop. More work is necessary to deter-
responding scalar field in the 4D dual description. In particusmine full range of possibilities for the running of the cou-
lar, the dual 4D scalar is a propagating degree of freedomplings in general warped backgrounds, however.
only for energy scales abova. This can be seen by noting Note added While this paper was being finished, Ref.
that the massive bulk scalar in the AdS description is dual t¢20] appeared which has some overlap with these results.
the source of an operator in the CFT whose conformal di-

mension is given by 2 V4+m?/k?. It can be shown that if
this operator is nearly marginéle., m<k), then for energy
scales above the mass quantum corrections in the CFT ~ W.G. is supported in part by the DOE contract DE-ACO03-
induce a kinetic term for this source, in which case it is76SF00098 and by the NSF grant PHY-0098840 and ac-
promoted to a dynamical field. Thus fqf>m?, bothU(1) knowledges the hospitality of the Aspen Center for Physics
couplings run equally, while fag?><m? only theU(1), cou-  where some of this work was carried out. The work of I.R. is
pling runs, giving rise to a splitting of order I§¢2/m) be-  Supported in part by the DOE contracts DOE-ER-40682-143
tween the low energy couplings, in agreement with our Adsand DEAC02-6CH03000. We thank the organizers of the
results. Santa Fe Workshop on Extra Dimensions and Beyond, where
The case of orbifold symmetry breaking also has a simpléhis work was completed.
CFT interpretation. Consider first the case &f,(—) bound-
ary condition. The fact that in 5[, symmetry breaking is
localized on the TeV brane is equivalent to the statement that
in the dual theory theZ, symmetry is broken by the IR
dynamics of the CFT. Then it is clear that the relative run- A convenient way of obtaining the zero mode correlator is
ning of the couplings will not induce large logarithms. In the to calculate the corrections to the zero mode gauge field ef-
opposite (,+) case, the symmetry is explicitly broken on fective action due to integrating out bulk fields. Let the
the Planck brane, which corresponds to high scale breakinigigher dimensional gauge field obtain a classical background
in the dual picture. This accounts for the large logarithm weA (x). We first show how to compute the one-loop vacuum

ACKNOWLEDGMENTS

APPENDIX A: ONE-LOOP VACUUM POLARIZATION
FOR COMPACTIFIED THEORIES

found in the 5D calculation. polarization effects of a bulk scalar field to the effective ac-
tion for A,(x). The effects of fields in other representations
IV. CONCLUSION of the Lorentz group can be obtained by a straightforward

) . generalization of the results presented here. The one-loop
In this paper we have calculated the low energy coupling$, ik scalar contribution to the effective action can be ob-

of gauge theories in AdS backgrounds by several distincfained by summing the contribution of each 4D KK state. In
methods. First, we straightforwardly computed in a nondegcligean signature, it is given by

coupling scheme, finding, for scalar bulk masses less than
the curvature scale, logarithmic sensitivity to masses of par- L
ticles in the loops. We gave a natural interpretation of these _ D Y 2
results in terms of an EFT calculation, by running Planck Se”[AM]_4_Zg4J d"xF,, P +; trin{ =D D"+ my],
localized gauge field correlators to low energies and then (A1)
matching to the zero mode quantities. We have also extended
the results of our previous paper to include a discussion of . .
the case of symmetry breaking by boundary conditions. Wé{vhere m, are the KK masses, _an@4 is the e_ffecnve 4D
also showed how to interpret both the mass and boundaﬁaqu couplmg. For e_xample! In a compactified 5D theory
condition breaking scenarios using AAS/CFT. While here w possibly with boundarigsthis is given by
only considered scalar charged fields, we expect similar re-
sults to arise in more realistic settings. 1 R

Finally, one may wonder how the running of the gauge 97: 97+2 Ai, (A2)
couplings is modified when the background spacetime devi- 49
ates from Ad$. Although a full answer to this question is
beyond the scope of this paper, our analysis can be easilyhereR is the volume of the compact manifold ang are
generalized to consider what happens in more generdhe coefficients of a set of boundary localized gauge field
warped backgrounds with Poincare symmetric 4D sliceskinetic operators. Although we will only consided(1)
Briefly, we expect to find large logarithmic corrections to gauge theories here, it is not difficult to include the one-loop
low energy couplings in any spacetime geometry which ex<orrections due to quantum fluctuations of a non-Abelian
hibits a pattern of KK wave functions like AdS, in which 4D gauge field about its background value.
zero modes are delocalized, while excited KK states are lo- It is convenient to rewrite EqA1) as
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1 5 we may write
SerlAul= 72 J dOxF,, FH”
94

e 2 O
10 dP )= ) >
5| AT @A), (2m> 8 \ ¥ 2
2] (2m) \/T
1 X
(A3) X JdxxD/HF(—1/2,1D/2—1,x)|nN( a )
with 0 2
N v D—4 r1
M%) = — Ef P | (2pra)(2ptq) +—— | dxxt"P2F(3-D/2,1,5/2x)
(2m)P| (PP+md)((p+g)2+m?) 3 Jo
)
2nt xIn N( (A13)
o (A4) 2 dx

Let D=4, the first term is finite. Using

1
s(P)=2 5. (A5) F(—1/2,1,1%) = V1—x (AL4)
n p +mn

) we end up with
then we can write

This formula simplifies somewhat in four dimensions. When

1 Vg2x
1 s(p)—s(q) f dxxX?’272F(—1/2,1D/2—1x)In N( )
2 22 2y 22 (A6) 0 2
n (pTEmo)(gT+my) g p
. 1 2
Equation(A4) becomes 2 j dxx 1—x2|nN(x\@). (A15)
0
#"(g?)=(q*7*"—q*q")11(q?), (AT) , , _
On the other hand, depending on the asymptotic behavior of
with the integrand neax=0, the second integral is potentially
b 5 ) divergent in four dimensions. We will regulate this diver-
T 2)_3 1 f dp | N (q°—4p°) s(p) gence by working inD=4— e dimensions. If the function
)= > D-1J (2m)P 92+2q-p P). N(p) defined in Eq(A12) behaves as
(A8)
The integrals over momentum appearing in E&8) can be INN(p)— B+ By + (A16)

written in terms of hypergeometric functions. Introduce

asp— (for constantsd;, B, andM), we then have

Qp_4 (7 sinP2¢
1(2)= —> ;f o> , (A9) D—4 (1 Jo?
(2m)PJo  1+2zcosd TJ dxx'~P2F(3—D/2,1,5/2x)InN .
0 2
whereQp=27P"2T'(D/2) is theD-dimensional solid angle.
This integral can be obtained for instance from E228.3 2| B, q?
of [19] by applying a chain of identities involving hypergeo- =— 3 —+B,In oM +B1+0(e) |, (AL7)
metric functions. For &.z<1/2 the integral is € M
Q and therefore
1(z)= ﬁF(l,llZD/ZAzZ), (A10) 5,
(g% =~ 28,2 —+,82In Bt ,32
while for z<0 or z>1/2 it can be written as
1
Qp (D-2) 2 X[ = y+In(4m)] |+
I(z)= 2P 4z ———F[2—-D/2,1,3/2,1(4z°)]. 1672
N Joemnli=r ( Vi )
i X | dxxy1—=xqnN{ x\/—], A18
Defining o 2 (A18)
s(p)=—2— —InN(p) (A12) where u is an arbitrary subtraction scale. It arises from the

2p dp

expansion of the factor\(q?)® ~* that appears in EqA13):
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If on the other hand we choose-(—) boundary conditions
(A19)  Wwith the scalar vanishing on the boundaryzat 7R (but

2
q
(Vg?) " ¢=1—¢ln \ﬁ . _ w
2 with Neumann boundary conditions zt0) then

The 1k pole corresponds to a logarithmic divergence, and is "
canceled by a similae dependence in the bare couplings ) 1
appearing in Eq(Al). The explicit w dependence implies Ssllzz(p’R):Z‘o pZ+m2+(2n+1)/R?
that the tree-level couplings themselves acquire a depen-
dence oru in such a way that any physical quantity derived . 1
from Eq. (A1) is independent of the specific choice of scale. =sa, (BR -2 5—— 752
So far the discussion has been completely general and ? n=0 P+m°+(2n)7/R
applies to fields propagating on compactified manifolds with
arbitrary curvature or dimensionality. To be concrete, let us
apply this to models in flat 5D Euclidean space compactifie
either onS* or the line intervalS'/Z,. Taking the gauge
group to beU(1) and the scalar to have bulk mass(and
periodic boundary conditiongnd unitU(1) charge, we find

[

= ngZz( p:R)— ngZZ( p;R/2) (A26)

Cieading to the result quoted in the text. Equati@i8) can
also be applied directly to our AdS examples, provided that
the sums Eq(A5) over KK masses can be calculated. We
present a method for doing this in the next appendix.

oo

1
SSl(p;R):n;w D2+ 2+ nZ/ R APPENDIX B: MODE SUMS IN AdS
R In Appendix A we showed how to express the one-loop
/ p2+ effective action for zero mode gauge fields in terms of sums
/p +m2 COtr[WR m’],  (A20) over the KK masses of the form
and thus s(p):E 1 (B1)
InNai(p;R)=—2 In[2 sin 7Rp2+m?)]. (A21) n pZ+m;

It follows from this that onSt, 8,=,=0 and there are no Our results were independent of the specific form of the KK
1/ poles. As discussed in the text, this is consistent with thénass spectrum. Here we develop some tricks for evaluating
fact that onR*x S, loop corrections do not give rise to sums of this type when the massag are the KK masses of

logarithmic divergences. Then bulk fields in compactified AdS backgrounds. We will do this
for an even-even scalar in the background of &g In that
1 1 case the masses, satisfy the equation
Hsl(qziR):—Ff dxxy1l—x? n fy a
e NMmp)=j (Mg [Ty, (Mp/K) =y (M, /T)j, (M, /k) =0,
X In[2 sinh( 7R\q?x/4+ m2)]. (A22) (B2)

wherej (2)=(2—v)J(2) +2J,_1(2) with v=4+m?/k?,
andy,(z) is similarly defined withY (z) replacingy,(z).
For the moment we will assume that the bulk masss
nonzero. We now write

Given this result, it is straightforward to derive the one-loop
vacuum polarization effects of bulk fields &1x S'/Z,. For
instance for a scalar field satisfying-(+) boundary condi-
tions (defined in the textat the fixed points 08'/Z,,

o 1 E 1 j dz (
—_—= —f(z p), B3)
++ oy 2, 2
Ssllzz(p'R) n§=:0 p2+m2+n2/R2 (A23) n pTt+my c2m
where
1 1 1 (A24)
=- 55 t5ssUpiR), A24 1 d
2 2 S
2p%+m? 2 f(z;p)= 5—= —InM2), (B4)
p-+z°dz
and consequently
andC is a closed contour that encloses all the solutions of
15 (g2 1 vy 1 Eq. (B2) on the real axis but excludes the poiats =ip (we
51,22(q R)= 48772 T 5 30772 take p real). We can deform this contour to a contoGrf
given by the union of the linez=it with t taking values in
X q2/4+m
f dxxy1—x2n| ———— (—®,—p—€)U(—ptep—e)U(ptex), (B5)
,u
1 and the semicircles=—ip+ee'’ andz=ip + ee'?, with 6

+ —Ta(q%R)(+,+). (A25) e[ — m/2,7/2] (taking e—>Q). C’ glso contains a cirgular arc
that connects the endpoints= =i. However the integral
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of f(z) along this part of the contour is negligible. Since in and in the notation of the text
going fromC to C' no poles off(z) are crossed, we have

_( 9z INN. . (p)=—In[i,(p/T)k,(p/k) =k, (P/T)i,(p/K)],
s(p)—JC,ﬁf(z,p) (E9)

—PF 0 f(itip)— 2Res(~ipip)— oRes(ip;
=Pr| S_f(itip)— sRed(—ip;p) — 5Red(ip:p).

which together with the results of the previous appendix
yields Eq.(31). It is simple to generalize this method to

(B6) fields with different spin or boundary conditions. For in-
But note that fort=0, stance, a scalar with odd boundary conditions on the Planck
brane but even boundary conditions on the TeV bidne,
) 2 . ) +)] yields
N(xit)= ;[I LMKtk =Kk, (t/T)i(t/k)], (B7)
where nowi (z)=(2—v)I (2)+zl,_,(2), and k,(2)=(2 INN_,(p)=—In|i (p/TK,(p/K) =k, (p/T)I ,(p/K)|.
-v)l(2)+zK,_1(2) [1,(z) and K,(z) are the modified (B10)
Bessel functionk Thenf(it,p) is an odd function ot and
the principal value integral in EqB6) vanishes identically.
Therefore Similarly, the (+,—) spectrum gives rise to

1 d . .
S(P)= 3p gp " PIIGPIO =G (PIDLPO], NN, (p)=—In[1,(p/T)k,(p/k) — K, (pIT)i (p/K) .
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