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We study both analytically and numerically a coupled system of spherically symmet(®) S&hg-Mills-
dilaton equations in 81 Minkowski space-time. It has been found that the system admits a hidden scale
invariance which becomes transparent if a special ansatz for the dilaton field is used. This choice corresponds
to a transition to a frame rotated in therhb plane at a definite angle. We find an infinite countable family of
self-similar solutions which can be parametrized by he-the number of zeros of the relevant Yang-Mills
(YM) function. According to the performed linear perturbation analysis, the lowest solutionNwith only
occurred to be stable. The Cauchy problem has been solved numerically for a wide range of smooth finite-
energy initial data. It has been found that if the initial data exceed some threshold, the resulting solutions in a
compact region shrinking to the origin attain the lowist 0 stable self-similar profile, which can pretend to
be a global stable attractor in the Cauchy problem. The solutions reside a finite time in a self-similar regime
and then the unbounded growth of the second derivative of the YM function at the origin indicates a singularity
formation, which is in agreement with the general expectations for the supercritical systems.
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[. INTRODUCTION type-I behavior was observed as well. The type-I behavior is

characterized by a finite mass gap in the black hole spectrum.

Singularity formation in nonlinear evolution equations is This type-l behavior takes place if the considered system of

a general problem which arises in various branches of mattEinstein-matter equations admits static finite-energy asymp-

ematical physics. The term singularity means that the solytotically flat solutions. In this case the smallest black hole

tions to the evolutional differential equations cease to be difhas a finite mass which is equal to the mass of the lowest
ferentiated at some point or region. However, the strong-fiel@tatic solution. In the Einstein-Yang-MillEYM) system of
regime of the approach to the singularity can provide som&auations th&l=1 Bartnick-McKinnon(BK) static solution

universality and additional symmetries in the solutions bel2] 1S the lowest-mass static solution which determines a

havior that is of particular interest in the corresponding theMinimal mass of the formed black hole. Moreover, this
oretical field models, including gravity. =1 BK solution is occurred to be an intermediate attractor

It is well known that the space-time singularities are thewhich the collapsing solution should attain in order to turn to

. . . ; o the type-I black hole formation scenatfid,6].
mo_st generic featur_es of Emstelns_ equat_|([ﬂ$ and it is O)rqrzthe other hand, the analysis of It[he ]blowup in the non-
believed th_at the mixmaster-type singularity can preFend t.(ﬁnear wave equations in various field models without gravity
be a generic one. However, the nature of the space-time siny,

2= . _ _ owed that singularity formation in gravity and blowup in
gularity is model dependent and various matter fields prowd(-?he nonlinear wave equations share many common features

various scenarios of singularity formation. In the typical €as§7_11). Based on these observations, Bizon and Tabor put
of gravitational collapse the late-time dynamics of the spaceforyard the conjecturd8] that all basic properties of the
time singularity development is hidden under the event horiyrayitational collapse of massless fields such as universality,
zon formed. However in the last decade studies of the maS%'e|f_3imi|arity, and mass Sca”ng, origina”y observed for Ein-
less fields collapse initiated in the pioneering work of stein’s equations, are just the basic properties of a wide class
Choptuik[2] opened a new direction for understanding theof a supercritical evolution partial differential equations
singularity formation dynamics. (PDEs. This class includes Einstein equations, the Yang-
It was realized 2] that black holes with arbitrary small Mills equation in 5+1 Minkovski space, and many others.
masses would be obtained and the mass scale low was dis- Following this conjecture, we consider a coupled system
covered. This was called type-Il behavior which is characterof Yang-Mills-dilaton (YM-dilaton) equations in 3-1 Mink-
ized by a mass gap absence in the black hole spectrum. Theski space which is of interest for several reasons. First of
limiting case of a vanishing black hole mass is of particularall, this system is a truncated version of a theoretical field
interest. It has been found these critical solutions observed atodel inspired by the heterotic string. Then the dilaton field
the threshold of the black hole formation are discretely selfitself which is also called a scalar graviton provides many
similar. key features characteristic of a gravity. For example the static
Later on, numerical studies of the gravitational collapse ofsystem of spherically symmetric $2) Yang-Mills-dilaton
self-interacting massless fields were perforfigéd]| and the  equations has a countable infinite set of regular finite-mass
solutions[12] which are similar to the BK solutions in the
Einstein-Yang-Mills system of equations. Note that a similar
*Electronic addresses: edonets@sunhe.jinr.ru; donets@msi.se set of the regular solutions exists in the Einstein-Yang-Mills-
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dilaton systenf13,14. This fact stresses the dominant role tions. After integrating out the angular variables, the result-
of the Yang-Mills field for the YM-dilaton, EYM, and EYM- ing action and the field equations become
dilaton systems dynamics. One can expect that the YM-
dilaton model should exhibit all main features relevant for
the EYM and EYM-dilaton models. Hence a study of the S=—J
singularity formation in the YM-dilaton system should shed
new light on a singularity development hidden under the
formed event horizon in the EYM and EYM-dilaton models. +e?
We have found that the considered system of spherically
symmetric SW2) YM-dilaton equations admits a hidden
scale invariance. The corresponding criticality index is equal o f(1—1f2)
to +1, similar to the Einstein’s equations in-3 dimensions f+Hfo—f"—f'd'= — (4)
and Yang-Mills equation in %1 Minkovski space-time.
This means that the YM dilaton is supercritical and singular-
ity should arise if the initial data exceed some threshold. . ,
Note that a pure Yang-Mills system of equations im13 - _T:_r_z
Minkovski space-time is subcritical and the solutions should
remain everywhere smooth during the evolutidrb]. We
have found the late-time asymptotics of the YM-dilaton so-
lutions prior to the singularity formation is universal and is
described by the lowedii=0 self-similar profile. ThisN
=0 profile for the YM field is similar to those found [i8,9]
for a pure YM field in 5+1 Minkovski space. We have
shown the whole family of self-similar solutions exists la- . (212
beled by theN=0,1,2,3 . . . ,.>—the number of the nodes of E:f f12+f2+( -1 Hdr
the relevant YM function. 0 2r? ’
The paper is organized as follows. In the next section we (6)
introduce the main definitions and discuss the scale proper-
ties of the obtained YM-dilaton system of spherically sym-which is, of course, conserveah shell
metric equations. In Sec. lll the self-similar solutions of the For further analysis it is important to note that the system
YM-dilaton system and their linear stability are considered.of equations(4), (5) admits a hidden scale-invariant form.
And in Sec. IV the results of the numerical simulations of thelndeed, Eq.(4) is scale invariant in sense that i{t,r),
evolutional Cauchy problem are discussed. We conclud€(t,r) is a solution to Eq(4), then
with the main results and discuss briefly some open ques-
tions in the last section.

1 1 ..
282 T 242
2r<1> 2rCIJ

. f2—1)2
fr2—f24 %Hdrdt, 3

r

’ (O (f2_1)2

f/2_f2+
2r?

1 . (5)

Here and belowexcept Eq(26)] an over dot stands for a
partial derivative with respect th while a prime is a partial
derivative with respect to.

It is also useful to write down the expression for the total
energy

1 1 ..
T2 2+ 1224+ P
2rCI> 2r(I> e

ft,r)=f Ll d(t,r)=P Ll

(!r)_ )\,A [l (1r)_ )\1)\

II. MAIN EQUATIONS AND DEFINITIONS

is also a solution. The same is not true for E%).because of
the factore®/r? on the right-hand side of Eq5), which

breaks the scale invariance. However, it is possible to extract

We consider a coupled system of Yang-Mills-dilaton
fields, which is given by the action

1 1 exp( k) a scale-invariant partp(t,r) from the dilaton function
S= _J (D)2 —————FaF2 |d3%dt, (1) P(tr) that makes transparent the hidden scale invariance of
4m) |2 49° . the system. Indeed, if we consider the ansatz

where® is the dilaton field and=2*" the Yang-Mills field. d(r,H)=(r,t)+2 Inr, @)
Note that this action is a truncated version of the bosonic part
of the heterotic string effective action in four dimensions in,q system of equatior(d), (5), rewritten in terms of (t,r)

Einstein frame/16]. t,r), becomes scale invariant. The energy, expressed in
In the case of spherical symmetry, the dilaton field andt(i(rrﬁs) of the functiong(t,r), ¢(t r.) becomegy’ P
SU(2) Yang-Mills potential can be parametrized in terms of R

two independent function®(t,r) andf(t,r) as follows:

e 11 1
. E:f dr|—r2¢'2+2r¢’+2+—r2¢2
X 0 2 2
O=d(r,t), Al=0, Al= €k [f(r,)-1]. (2
r
- : : , : : ®
After substitution of this ansatz into the action and field
equations, the rescaling—®/k, r—(k/g)r, t—(k/g)t,
and S—g?S removes the dependence brandg and there-  providing the corresponding homogeneous scale low for the
fore we can puk=1, g=1 in what follows without restric- energy as

f’2+i‘2+—(f2_l)2

+r2e? 5
2r
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t i 2f, f,s, f(1—f?)
E[f()\),¢()\”—)\E[f(t,r),¢(t,r)] f'X’X+T+T:F, (10
According to the PDE general thedry/7] the degreer of S 2 2 2 x25(1— £2)2
the scale parametaras it enters in the energy homogeneous XXX 2g f2——= — . (1)
scale low defines the criticality class of the PDE system. The S s? Tox? 1-x2 2(1—x3)

criticality class of the system indicates the possibility of a _ ) )
singularity formation in the corresponding well-posed ~This system has four singular points= —o, —1, +1,
Cauchy problem as follows. k<0, the system is subcriti- - At the first step we restrict ourselves to the interval
cal: then, all initially regular solutions should remain glo- €[1,+2) which covers the interior of the past light cone of
bally regular during the evolution. [&>0, the system is the pointt=T, r=0. _

supercritical and one should expect singularity formations The natural requirement of the regularity for the YM
for a finite time for all initial data if it exceeds a some thresh-function f(x) on the past light cone of the point=T, r
old values. Ifa=0, the system is critical and there are no =0 provides the following local solution of the systeD),
definite expectations on singularity formation. Since in our(11) nearx=1:
case we havexr=+1, the system is supercritical and one

should expect singularity formations, which will be con- f(x)x%:fl(x_l)_E(lo+sl)(x_1)2+fl 3_1_Efi
firmed in the last section of this paper. 8 48 3
The revealed invariance under the scale dilations 1 5
T2, = _ 3 _ 4
o . + 9651+ 3251)(x 1)°+0((x—1)%),
f(t,r)—>f<x,x), ¢(t,r)—>¢(x,x) . )
S(X)y_1=4+8,(x—1)+| 8+8f2+ gs§+§sl (x—1)2
allows one to search for solutions depending @ndt vari-
ables in a combination/t. Because of the time translation 4 7 4
invariance, it is useful to introduce some positive constant +( —8ff+ §slf§+§sl+ %SiwL %Sf— 5)
which transforms similarly under the dilations, and search
for general scale-invariant solutions in a self-similar form: X (x—1)3+0((x—1)%), (12
T—t wheref, ands; are free parameters. The regularity require-
fr=f), &r,H=¢(x), x=—— (9 ment of the YM functionf at the origin on each slice<T

(until the blowup timet=T) leads to the following series

The constanfl has the meaning of a blowup time—the expansion of the solutions near +, written by making
use of the inversey= 1/x self-similar variable:

absolute value of the time in the evolution Cauchy problem,
when the expected singularity starts development and the 1
solution ceases to be smooth. We also will use alternatively  f( ) g—0=*1+ fon?+ —
the inverse independent variabpe= 1/x=r/(T —t), which is 10
more natural for the study of the Cauchy problem. The co- X 74+ 0(7°),
ordinate » covers half of the complete Minkowski space-

time only, corresponding to the past region of the blowup

point t=T, r=0. The coordinatex covers complete S(7) ,—0=Sot So
Minkowski space and we will use it mainly for the analysis
of the self-similar solutions in the next section.

3

, 10
fo| —4sof2+3f,+ —

1
Sofg_ 5) 7

7*+0(7°).

1 8
+Z)S°( 8s3f5+8sof3— 5
Ill. SELF-SIMILAR SOLUTIONS AND THEIR LINEAR (13)
STABILITY ANALYSIS
Heref, ands, are also free parameters.

These local solutions at the singular points satisfy appro-

priate boundary conditions

In order to bring the system of the scale-invariant equa
tions to the form, suitable for further analysis, it is conve-
nient to introduce a new functios(x) as follows:

= = =+
5(x) = IS0, f(1)=0, s(l)=4, f(o)==x1,
Fox(X) =500, S (X) =4 a0, (14
As we will see belows(x) represents the regular part of the
function ¢(x) on the semiaxixe[1,%). As a result we get a suitable desingularised boundary value

In terms of the functiond(x) and s(x) the system of problem(BVP) for the system(10), (11) with the boundary
PDEs(4), (5) transforms to a system of ordinary differential conditions of Eq.(14). Alternative strategy consists of solv-
equationg ODES: ing of the systen{10), (11) as an initial value problem start-
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12] T T T T TABLE I. The values of free parametefs, s, for the self-
' similar solutions with various\.
0.8 : i
N=0 N=2:
0.4 - i - N fy S
= 0.0 '\ \, N=3] 0 0.498934096775465 —8.92179247
= 04 [ 1 1.1357x 10 12 —8.00124
08 N1 2 8.98718 1013 —8.00095
' (S W— 3 8.06871x 1013 —8.00068
-1.2- ] PR PR PR
0 2 4 6 8 % 0.0 -8.0
In(x)
1E-7 6E-6
N=3 Note that the solution which correspondsNe- = is sim-
o 4E-6 _— ply the trivial solutionf(x) =0, s(x)=4/x?, which in terms
of the primary function readg(x)=In4.
< N=21 6 If N is finite andN>1, the solution of the system of
= -1E-74 N=1 equationg10), (11) can be easily found by applying the lin-
0| ear perturbations theory around the trivial solution in the
2E-7 oscillation region. Indeed, after the substitutionfdk)=0
c 2z 4 6 8 0 2 4 6 8 LX), ¢(X)=Ind+eh(x) into the system of equations
In(x) In(x) (10), (11), the linearized system for the perturbations
40 - T(x),#(x) which holds at the interval &xo=<x<xy [Xy
~exp(2m/+/3N)], becomes
3.24\ 4
"\ " df 1? d?e 23) 15
2.4 - N= 4 —=——f, —=—0.
= \ TING dx> x> d X
X 1.6 i
n The solution, bounded at infinity, can be found in terms of
0.8+ \ : elementary functions as follows:
\
\
" T(x)=C '\/§I 5|, 3= 16
5 7 1 T : (X)=Cyyxsin —-Inx+5|,  ¢=—", (16)
In(x)

whereC;, C,, and § are some integration constants. This

FIG. 1. Self-similar solutions foN=0,1,2,3: YM functions OsScillating solution gives a strong argument in favor of the

fu(X) (top), dilaton functionssy(x) (bottom). Note that asN in-  existence of solutions with arbitraty>0 zeros of YM func-
creases the solutiosy(x) tends uniformly to the limiting curve tion.

e

We found the solutions, which are defined on the interval
xe[1,+%). Now one can analytically continue them in

ing with the series expansidi?) near thex=1. In this case terms of the functiong(x), ¢(x) to the left of the poinix

the problem transforms to the shooting method search foe 1. It has been done numerically. The continued functions
some discrete sets of free parametérss;, so that they behave monotonically at the intervak [0,1] and they meet
provide the meeting of the local solutions to HG3) at their corresponding values at the regular paoiatO:f(x
infinity. The method of shooting technique also gives a pow-=0)=f.., ¢(x=0)=¢.. which are also their asymptotic
erful tool to prove global existence, developed by Breiten-values at the spatial infinity— + o on each slice= const,
lohner, Forgach, and Maisdri8]. We are planning to con- t<T in the self-similar regime. This can be seen from the

sider the proof of the existence in a separate paper.

series expansion of the solutions in terms of theariable at

_ In order to find the a_bove solutions numeri_cally,_ We CON-,, . oo (f_, ., f1, ¢, are free parameters
sider the above BVP using the method, described in detail in

[19]. In accordance with the general expectations, we have _ 1

found that the BVR(10), (11), (14) admits infinitely many f(n),w=fetfin 1+ 5(—f1¢1+fx—f§o)77_2
solutions and all of then can be labeled by te-the total

number of zeros of the YM functiofi(x) on the open semi- +0(773),

axisx e (1,°). The solutions with the lowedt, N=0,1,2,3
are given in Fig. 1. One can also extract the values of the — .1
corresponding free parametefrs s; or f,, S, as they enter (7).~ ¢t P17 "+ 5
the local series expansions, Efj2) and Eq.(13). The values
of f, ands, are displayed in Table I. X7 2+0(n3). (17)

b
2+e 5

1 1
E_—Jffazc—zfi”
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For example, the values f(x=0)=f, where the columry and the functiorA(p) are introduced as
=-0.507258 ..., ¢(x=0)=¢,,=2.12141% ... corre- follows (o, is Pauli matriy:
spond to theN=0 solution(see Fig. 5 beloyw

Further continuation of the solutions to the region of the )
negativex meets an obstacle at the next singular point X:e_'azA(p)(
=—1. It was found that all self-similar solutioriexcept the
trivial one), labeled by theN=0,1,2,3 ..., ceased to be
differentiable in the vicinity of the singular point=—1 and Alo)= Jf’ exf on(€)/2]Tn(E) ¢
therefore they cannot be continued smoothly to the complete (p)= 0 2

manifold, covered by th& coordinate.
The stability analysis of the obtained self-similar solu- Finally we get a matrix equation, which describes the
%pectrum of the linear perturbations,

tions can be done in terms of the linear perturbation theory,
The negative energy states in the spectrum of the linearize
system are usually related to the instability of the back-

v(p))
u(p)/’

dé. (23

_ —02 2_ 2
ground solutions. XpptUX=0% Q7=0"~1, (24
Now we consider the problem on the semiaxis[1,
+). Let us introduce in addition to the variabtea second where
independent variable so that the set of the lines=const is U U
orthogonal to the set of the lines=const: :( 11 12) — g i72Ay oA 25)
T—t Uz Uz
X=—", =—In (T—-1)2—r2 18 .
r T ( ) 18 and the elements of the matrikare
The action(1) in the x, 7 variables after the substitution of (fg_l)g
the anzatA7) for the dilaton field becomes V= eoN| 12+ N
2 sinttp
1/a¢\? 1 ap\?
5= [ axareart 5 2] -2 (%
2\ ox 2(x?—1)%2\ dr 1
V1=V = —.R(Sinthe(mlzfr/\l) ,
2 (aqs) 2x (a¢ 2 V2 sinffp
+— —_ — —_—
(x>—1)2\ 97 x2—1\9x] x2-1 )
Vorm St S oi2 s phcothp oVt (26)
af\2 1 [af\2 (f2—1)2 227 PNT 2PN TN sintep
+e?|| =] —————|—| +—————|{. (19
x| (x2—-1)2\97]  2(x*-1)

Note that the prime in formulé26) stands for a derivative
We look for spherically symmetric perturbed solutions of with respect to the variable.

the following form: For the background solutiofy(p), ¢o(p), Which corre-
_ sponds to theN=0, the matrix elementt)1(p), U1s(p),
f(x,7)=fn(X) + ey2(x*= Dv(x)e'”, U,,(p) are shown in Fig. 2. Background solutions with other
_ N>0 provide the matrix elementd;; of a similar shape.
B(X,7) = n(X) + €™ MNIZ )~ Tu(x)e'7, Using the method of the phase functions shift, introduced

(200 by Calogerd20] and developed by Degaspeil], we have
found that the self-similar solutionfy(p), &én(p) with N
zeros of the YM functionf have N unstable modes in the
spectrum of the linear perturbations. Hence the only self-
similar solution withN=0 is linearly stable.

where the backgroundy(x),¢n(Xx) are some solutions of
the BVP(10), (11), (14), parametrized bjN—the number of
zeros of the YM functiorf(x).

It is helpful to use the variablp instead of thex:

p=7In

x—1
Xx+1

1+e2° IV. CAUCHY PROBLEM

= . 21 . . .
X 1—e2r @) In this section we consider the Cauchy problem for the

system of equation®), (5) starting with regular initial data.
Then, following the lines of the Ref12], one can bring the The goal is to study the behavior of the solutions near the
effective action for the perturbations to the standard form oforigin, their possible attaining to some self-similar solutions,
two-channel Schidinger equation and their late-time asymptotics prior to the expected blowup.
The system of equationd), (5) is a coupled system of
~ . nonlinear wave equations. The boundary conditions at the
S= _J d7dpe®T(x) ,(x),, + X Ux— (@’ =1)x"x], origin and at the radial infinity as well as the initial condi-
(22 tions on the slica =0 have to be defined in order to get a
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U12

U22

'1 T T

-2.0 -1.5 -1.0
p

FIG. 2. Matrix elementsJ;;(p) for the background self-similar

-0.5

solution withN=0: U4, (top), U,=U,; (middle), U,, (bottom.
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whereb(t), ®y(t), P,(t) are finite smooth functions. Hence
the corresponding boundary conditions at the origin, which
must hold during the evolution, are as follows:

f(t,r=0)=1, f'(t,r=0)=0,
D(t,r=0)=>dy(t), &'(t,r=0)=0.
(28

It is important to note that the value of the dilaton func-
tion at the origin® (t,r =0) is a free parameter and there are
no reasons to keep it equal to its initial value. Indeed, in our
numerical algorithm we have put only the conditidn(t
=0,,=0)=0 while ®(t,r=0) has been calculated on each
slicet>0 according to the evolution equatiot®, (5). This
means we have put free boundary conditiondgit,r =0).

The asymptotic behavior of the solutions regular at infin-
ity is given by the series expansion

c
f(t,r), 0= i(l— F+O(r2)),

d
q:(t,r)r%=<bm—F+O(r“‘), (29)

wherec, d, and®,, are constants. This gives the boundary
conditions at the spatial infinity as follows:

f(t,r=0)==x1, f'(t,r=0)=0,

D(tr=0)=D,, D'(t,r=0)=0. (30

In order to impose the initial conditions in the Cauchy
problem for the system of equatiof®), (5), it is enough to
set the initial distribution and its derivatives for the YM
function f(t=0,r) only. Then the dilaton distributiom (t
=0,r) can be obtained from the field equati@), in a way
similar to the Einstein equations, where the dilaton plays a
role of the relevant metric function now.

So we always consider smooth regular initial distributions
f(t=0,)=h(r), whereh(r) provides nonvacuum values for
the YM field function in some compact region fooutside
the origin. It is convenient to use two different types of the
initial profiles forh(r):

h(r)=1—Ar2exd — o(r —R)?], (31)

well-posed Cauchy problem. In fact, such a problem with thghich is a Gauss-typeX, o, andR constantsinitial profile
initial and boundary conditions imposed is called a miXxed-4t connects the same YM vactia +1. and

type Cauchy problem. However, we will call it a Cauchy

problem, for short.

The system of equation&), (5), similarly to its static
version, has two singular boundary points=0 and r
=+o0. The regularity requirement provides the only pos-

sible series expansion near the origin:

f(t,r), .o=1—b(t)r>+0(r%),

D(t,1), o=Do(t) + D, ()r2+0(r?),

(27)

1-ar?

h(ry=——+;,
" 1+ar?

(32

which is a kink-type &=const), which connects two topo-
logically distinct YM vacuaf = *=1.

After the initial distributionh(r) is fixed, one can define a
YM radial wave, propagating towards the origiimgoing
wave), as follows:

f(or)=h(r), fOr)=f(0r)=h'(r). (33

125010-6
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We also put T T T T T T T T T T T T T T T T
1.5 .
d(0,r)=0. (34)
1.0
The dilaton function at=0 can be obtained now from Eq.
(5) with the initial data at the origin imposed: 0.5
_(I)"_z;q),:_g M ::: 0.0+
r r2| 2r2 | =
-0.5-
d(0r=0)=d'(0r=0)=0. (35 - - - T-t=3.0E-10
1.0 - - Tt=5.1E-15
The symmetric initial conditions that lead to two YM radial | Rt
waves, propagating towardsgoing and outwardgoutgo- 15 B )

ing) the origin, are determined in a similar way: .40 -35 30 -25 20 15 10 -5 0 5

f(or)=h(r), f(0r)=0, ®(On=0, In(r)
, @ 9 5 FIG. 3. The set of YM profileg(t,r) at the various times prior
—p"— 2@ _ e_ h'2+ (h*=1) to the singularity formation. The ingoing waves at the small radial
r r2 22 | scales exhibit universal self-similar behavior whereas the outgoing

waves at the right side of the figure are almost frozen at the given
time scale. The solutions correspond to the following initial ddja:
f(0r)=(1—ar?/(1+ar?), kink type,a=0.281(dashed ling (I1)
The Cauchy problem has been studied numerically witt (0r)=1—Ar?exd—o(r—ro)’], Gauss type A=0.2, ¢=10, ro
the help of a finite-difference scheme that preserves the totaf 2 (solid line).
energy during the evolution. An adaptive mesh refinement
algorithm was also installed in order to get a better resolution
on a small scales prior to the singularity formation. change the relevant parameters in the initial conditions to-
The system has been solved for various initial profileswards more strength initial data, after it exceeds some thresh-
h(r) and initial data(35), (36). The results can be summa- old value, the ingoing YM wave solution demonstrates uni-
rized as follows. If we start with small initial data, controlled versal behavior at the small scales. In fact, the YM function
by the values of the parameters in E¢3l), (32), the ingo-  f(t,r) attains the self-similaN=0 solution fy(r/(T—1));
ing wave solution gets smoothly bounced near the origin andee Figs. 3 and 4. As was expected, in this regime the corre-
after which is radiated away qualitatively similarly to the sponding solution for the dilaton functich(t,r) develops in
typical solution of a linear wave equation. If we gradually a non-self-similar way. However, as it can be easily seen

®(0r=0)=d'(0r=0)=0. (36)

1.5 T T T T T T T T T -40

/ T
. 4 TRy
-504 J
0.5+
—_—
= e
5 < g T
N - @- T-t=3.1E-
= 00 e‘ 60 -7 - @ T-t=6.3E-14
e 0_7 - @5 T=51E15 ]|
R ’ —B - T+t=5.6E-11
05 TS g e —& Tt 5E
% A 2In()+2 —8- T+4=15E-12
\ n(r T-t=2.4E-13
, / _.D_
-10 T T T T T T T '70 |/ T T T T T T T
-36 -32 -28 24 -36 =32 -28 24 =20

In(r)

FIG. 4. Self-similar regime of the solutions behavior: YM functif(,r) (left), dilaton functiond(t,r) (right) at varioust prior to the
blowup. The solutions effectively depends offT—t), whereT is the blowup time. The initial data are the same as in Fig. 3: kink-type

initial profile (circles, Gauss-type initial profilésquares
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FIG. 5. The late-time evolution of a some typical Cauchy problem solution prior to the blowup. YM prifigs) (left) and the
scale-invariant part of the dilaton profileg 7,t) = ®(r,t) — 2 In(r) (right) attain the self-similar solutioN =0 (dashed ling The valued ., ,
., are the asymptotical values of the self-simik=0 solution atp—o. The initial conditions are the same as in Fig. 3 for Gauss-type
initial profile.

from Fig. 4, the wholed(t,r) profile propagates along the w0
straight line 2 Ir+2.1214. This means that in the appropri- M= E=(T—t)J dx{
ately shifted and rotated at angbe=arctan{-2) back clock- !
wise frame the obtained dilaton functiaf(t,r),

X+

2
2x2

1,2 2
Do 5 B0t

$o(X)
+e%o fo(X) %+ 2

x2+1 ,  (fo(x)?=1)2
X2

$(t,r)=d(t,r)cosB+sinBInr, —4(T—1),

and vanishes as—T. Note that numerically the integral is
exhibits the self-similar behavior and attains the self-similarequal to 4 with accuracy 10. The corresponding Schwarz-
N=0 solution ¢y(t,r). The dilaton function®(t,r) can be schild radius is equal tos~8(T—t). It means that if gravity
expressed now in terms of its self-similar paft(t,r) is included, the obtained late-time self-similar attractibr
= B(t,r)/cosB+2Inr=¢(tr)+2Inr, which reproduces the exist9 has to be hidden under the formed event horizon.

ansatz (7). Figure 5 illustrates the late-time evolution of
some typical solution to the Cauchy problem which attains V. CONCLUSIONS AND DISCUSSION

the self-similar solutiorfo(7), ¢o(7). We conclude with the following summary. Using the spe-
The solutions evolve in a self-similar regime during acial ansatz for the dilaton field, we brought the system of the
finite time and at some blowup timethe second derivative SU(2) spherically symmetric Yang-Mills-dilaton equations to
of the YM functionf exhibits unbounded growth at the ori- a scale-invariant form and found an infinite countable family
gin. This is an indication for a singularity formation. The of self-similar solutions, labeled by thd=0—number of
blowup timeT is just the total time in the Cauchy problem zeros of the relevant YM function. Among them the only
and it depends on the initial data. However, as the solutionwest solution, which corresponds kb=0, is stable in the
attain the self-similar profilé,( ), ¢o(7) their dependence framework of the linear perturbation theory. Being a scale
on time enters effectively only in the forf—t. Hence, the invariant, the considered system has a criticality index equal
late-time asymptotics becomes universal for an arbitrary soto +1 which means that the system is a supercritical one in
lution with the initial data, which leads to the blowup. Ac- PDE terminology and should exhibit a singularity formation
cording to our studies, the self-similar solutitg( %), ¢q(7) if the initial data in the evolutional Cauchy problem exceed
is linearly stable and, as a result, it can pretend to be a glob&alome threshold value. The Cauchy problem has been solved
stable attractor in the Cauchy problem. The singularity for-numerically for a wide range of smooth finite-energy initial
mation at the origin is not accompanied by an energy conelata and the results we found are in agreement with this
centration which is typical for the supercritical systems. In-general expectation.
deed, the total energy, E(B), at timet<T inside the past It has been found that if the initial data exceed some
light cone ] 'dr(---) of the point (T,0) can be calculated threshold, the resulting solutions in a compact region, shrink-
using theN= 0 self-similar solutiorf,(x), ¢(x) as follows: ing to the origin, attain the lowedti=0 stable self-similar
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profile, which plays the role of an attractor in the Cauchypersymmetric field theory which also contains spin-1/2 di-

problem. If the solutions attain tHd=0 self-similar attrac- latino and gaugino fields in the fermionic sector. The study

tor, they evolve in a universal way during a finite time until of the fermionic fields in the obtained self-similar bosonic

the second derivative of the YM function at the origin startshbackgrounds seems to be a very interesting task itself and

growing infinitely. also can shed new light on singularity formation thresholds
The problem of the threshold that separates the disperssf the bosonic fields.

and blowup behavior of the Cauchy problem solutions re-  A|l these tasks are under considerations and will be re-

quires more detailed studies. This threshold is usually relateforted elsewhere.

to intermediate attractors, which are some local minima or

saddle points of the effective action. In our system both the
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