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Self-similarity and singularity formation in a coupled system
of Yang-Mills-dilaton evolution equations

E. E. Donets,* O. I. Streltsova, and T. L. Boyadjiev
Joint Institute for Nuclear Research, 141980 Dubna, Russia

~Received 19 June 2003; published 29 December 2003!

We study both analytically and numerically a coupled system of spherically symmetric SU~2! Yang-Mills-
dilaton equations in 311 Minkowski space-time. It has been found that the system admits a hidden scale
invariance which becomes transparent if a special ansatz for the dilaton field is used. This choice corresponds
to a transition to a frame rotated in the lnr-t plane at a definite angle. We find an infinite countable family of
self-similar solutions which can be parametrized by theN—the number of zeros of the relevant Yang-Mills
~YM ! function. According to the performed linear perturbation analysis, the lowest solution withN50 only
occurred to be stable. The Cauchy problem has been solved numerically for a wide range of smooth finite-
energy initial data. It has been found that if the initial data exceed some threshold, the resulting solutions in a
compact region shrinking to the origin attain the lowestN50 stable self-similar profile, which can pretend to
be a global stable attractor in the Cauchy problem. The solutions reside a finite time in a self-similar regime
and then the unbounded growth of the second derivative of the YM function at the origin indicates a singularity
formation, which is in agreement with the general expectations for the supercritical systems.

DOI: 10.1103/PhysRevD.68.125010 PACS number~s!: 11.27.1d, 02.60.Lj, 03.65.Pm
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I. INTRODUCTION

Singularity formation in nonlinear evolution equations
a general problem which arises in various branches of m
ematical physics. The term singularity means that the s
tions to the evolutional differential equations cease to be
ferentiated at some point or region. However, the strong-fi
regime of the approach to the singularity can provide so
universality and additional symmetries in the solutions
havior that is of particular interest in the corresponding t
oretical field models, including gravity.

It is well known that the space-time singularities are t
most generic features of Einstein’s equations@1# and it is
believed that the mixmaster-type singularity can pretend
be a generic one. However, the nature of the space-time
gularity is model dependent and various matter fields prov
various scenarios of singularity formation. In the typical ca
of gravitational collapse the late-time dynamics of the spa
time singularity development is hidden under the event h
zon formed. However in the last decade studies of the m
less fields collapse initiated in the pioneering work
Choptuik @2# opened a new direction for understanding t
singularity formation dynamics.

It was realized@2# that black holes with arbitrary sma
masses would be obtained and the mass scale low was
covered. This was called type-II behavior which is charac
ized by a mass gap absence in the black hole spectrum.
limiting case of a vanishing black hole mass is of particu
interest. It has been found these critical solutions observe
the threshold of the black hole formation are discretely s
similar.

Later on, numerical studies of the gravitational collapse
self-interacting massless fields were performed@3,4# and the
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type-I behavior was observed as well. The type-I behavio
characterized by a finite mass gap in the black hole spectr
This type-I behavior takes place if the considered system
Einstein-matter equations admits static finite-energy asy
totically flat solutions. In this case the smallest black ho
has a finite mass which is equal to the mass of the low
static solution. In the Einstein-Yang-Mills~EYM! system of
equations theN51 Bartnick-McKinnon~BK! static solution
@5# is the lowest-mass static solution which determines
minimal mass of the formed black hole. Moreover, thisN
51 BK solution is occurred to be an intermediate attrac
which the collapsing solution should attain in order to turn
the type-I black hole formation scenario@3,6#.

On the other hand, the analysis of the blowup in the n
linear wave equations in various field models without grav
showed that singularity formation in gravity and blowup
the nonlinear wave equations share many common feat
@7–11#. Based on these observations, Bizon and Tabor
forward the conjecture@8# that all basic properties of the
gravitational collapse of massless fields such as universa
self-similarity, and mass scaling, originally observed for E
stein’s equations, are just the basic properties of a wide c
of a supercritical evolution partial differential equation
~PDEs!. This class includes Einstein equations, the Yan
Mills equation in 511 Minkovski space, and many others.

Following this conjecture, we consider a coupled syst
of Yang-Mills-dilaton~YM-dilaton! equations in 311 Mink-
ovski space which is of interest for several reasons. Firs
all, this system is a truncated version of a theoretical fi
model inspired by the heterotic string. Then the dilaton fie
itself which is also called a scalar graviton provides ma
key features characteristic of a gravity. For example the st
system of spherically symmetric SU~2! Yang-Mills-dilaton
equations has a countable infinite set of regular finite-m
solutions@12# which are similar to the BK solutions in th
Einstein-Yang-Mills system of equations. Note that a simi
set of the regular solutions exists in the Einstein-Yang-Mil
©2003 The American Physical Society10-1
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dilaton system@13,14#. This fact stresses the dominant ro
of the Yang-Mills field for the YM-dilaton, EYM, and EYM-
dilaton systems dynamics. One can expect that the Y
dilaton model should exhibit all main features relevant
the EYM and EYM-dilaton models. Hence a study of t
singularity formation in the YM-dilaton system should sh
new light on a singularity development hidden under
formed event horizon in the EYM and EYM-dilaton mode

We have found that the considered system of spheric
symmetric SU~2! YM-dilaton equations admits a hidde
scale invariance. The corresponding criticality index is eq
to 11, similar to the Einstein’s equations in 311 dimensions
and Yang-Mills equation in 511 Minkovski space-time.
This means that the YM dilaton is supercritical and singul
ity should arise if the initial data exceed some thresho
Note that a pure Yang-Mills system of equations in 311
Minkovski space-time is subcritical and the solutions sho
remain everywhere smooth during the evolution@15#. We
have found the late-time asymptotics of the YM-dilaton s
lutions prior to the singularity formation is universal and
described by the lowestN50 self-similar profile. ThisN
50 profile for the YM field is similar to those found in@8,9#
for a pure YM field in 511 Minkovski space. We have
shown the whole family of self-similar solutions exists l
beled by theN50,1,2,3, . . . ,̀ —the number of the nodes o
the relevant YM function.

The paper is organized as follows. In the next section
introduce the main definitions and discuss the scale pro
ties of the obtained YM-dilaton system of spherically sy
metric equations. In Sec. III the self-similar solutions of t
YM-dilaton system and their linear stability are considere
And in Sec. IV the results of the numerical simulations of t
evolutional Cauchy problem are discussed. We concl
with the main results and discuss briefly some open qu
tions in the last section.

II. MAIN EQUATIONS AND DEFINITIONS

We consider a coupled system of Yang-Mills-dilato
fields, which is given by the action

S5
1

4pE F1

2
~]F!22

exp~kF!

4g2
FamnFmn

a Gd3xdt, ~1!

whereF is the dilaton field andFamn the Yang-Mills field.
Note that this action is a truncated version of the bosonic
of the heterotic string effective action in four dimensions
Einstein frame@16#.

In the case of spherical symmetry, the dilaton field a
SU~2! Yang-Mills potential can be parametrized in terms
two independent functionsF(t,r ) and f (t,r ) as follows:

F5F~r ,t !, At
a50, Ai

a5eaik

xk

r 2
@ f ~r ,t !21#. ~2!

After substitution of this ansatz into the action and fie
equations, the rescalingF→F/k, r→(k/g)r , t→(k/g)t,
andS→g2S removes the dependence onk andg and there-
fore we can putk51, g51 in what follows without restric-
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tions. After integrating out the angular variables, the res
ing action and the field equations become

S52E H 1

2
r 2F822

1

2
r 2Ḟ2

1eFF f 822 ḟ 21
~ f 221!2

2r 2 G J drdt, ~3!

f̈ 1 ḟ Ḟ2 f 92 f 8F85
f ~12 f 2!

r 2
, ~4!

F̈2F92
2F8

r
52

eF

r 2 F f 822 ḟ 21
~ f 221!2

2r 2 G . ~5!

Here and below@except Eq.~26!# an over dot stands for a
partial derivative with respect tot, while a prime is a partial
derivative with respect tor.

It is also useful to write down the expression for the to
energy

E5E
0

`H 1

2
r 2F821

1

2
r 2Ḟ21eFF f 821 ḟ 21

~ f 221!2

2r 2 G J dr,

~6!

which is, of course, conservedon shell.
For further analysis it is important to note that the syst

of equations~4!, ~5! admits a hidden scale-invariant form
Indeed, Eq.~4! is scale invariant in sense that iff (t,r ),
F(t,r ) is a solution to Eq.~4!, then

f̃ ~ t,r !5 f S t

l
,

r

l D , F̃~ t,r !5FS t

l
,

r

l D
is also a solution. The same is not true for Eq.~5! because of
the factoreF/r 2 on the right-hand side of Eq.~5!, which
breaks the scale invariance. However, it is possible to ext
a scale-invariant partf(t,r ) from the dilaton function
F(t,r ) that makes transparent the hidden scale invarianc
the system. Indeed, if we consider the ansatz

F~r ,t !5f~r ,t !12 ln r , ~7!

the system of equations~4!, ~5!, rewritten in terms off (t,r ),
f(t,r ), becomes scale invariant. The energy, expresse
terms of the functionsf (t,r ), f(t,r ), becomes

E5E
0

`

drH 1

2
r 2f8212rf8121

1

2
r 2ḟ2

1r 2efF f 821 ḟ 21
~ f 221!2

2r 2 G J , ~8!

providing the corresponding homogeneous scale low for
energy as
0-2
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EF f S t

l D ,fS r

l D G5lE@ f ~ t,r !,f~ t,r !#.

According to the PDE general theory@17# the degreea of
the scale parameterl as it enters in the energy homogeneo
scale low defines the criticality class of the PDE system. T
criticality class of the system indicates the possibility of
singularity formation in the corresponding well-pos
Cauchy problem as follows. Ifa,0, the system is subcriti
cal: then, all initially regular solutions should remain gl
bally regular during the evolution. Ifa.0, the system is
supercritical and one should expect singularity formatio
for a finite time for all initial data if it exceeds a some thres
old values. Ifa50, the system is critical and there are n
definite expectations on singularity formation. Since in o
case we havea511, the system is supercritical and on
should expect singularity formations, which will be co
firmed in the last section of this paper.

The revealed invariance under the scale dilations

f ~ t,r !→ f S t

l
,

r

l D , f~ t,r !→fS t

l
,

r

l D
allows one to search for solutions depending onr andt vari-
ables in a combinationr /t. Because of the time translatio
invariance, it is useful to introduce some positive constanT,
which transforms similarly under the dilations, and sea
for general scale-invariant solutions in a self-similar form

f ~r ,t !5 f ~x!, f~r ,t !5f~x!, x5
T2t

r
. ~9!

The constantT has the meaning of a blowup time—th
absolute value of the time in the evolution Cauchy proble
when the expected singularity starts development and
solution ceases to be smooth. We also will use alternativ
the inverse independent variableh51/x5r /(T2t), which is
more natural for the study of the Cauchy problem. The
ordinateh covers half of the complete Minkowski spac
time only, corresponding to the past region of the blow
point t5T, r 50. The coordinatex covers complete
Minkowski space and we will use it mainly for the analys
of the self-similar solutions in the next section.

III. SELF-SIMILAR SOLUTIONS AND THEIR LINEAR
STABILITY ANALYSIS

In order to bring the system of the scale-invariant eq
tions to the form, suitable for further analysis, it is conv
nient to introduce a new functions(x) as follows:

f~x!5 ln@x2s~x!#.

As we will see below,s(x) represents the regular part of th
function f(x) on the semiaxisxP@1,̀ ).

In terms of the functionsf (x) and s(x) the system of
PDEs~4!, ~5! transforms to a system of ordinary differenti
equations~ODEs!:
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f ,x,x1
2 f ,x

x
1

f ,xs,x

s
5

f ~12 f 2!

12x2
, ~10!

s,x,x

s
2

s,x
2

s2
2x2s f,x

2 2
2

x2
5

2

12x2
2

x2s~12 f 2!2

2~12x2!
. ~11!

This system has four singular pointsx52`, 21, 11,
1`. At the first step we restrict ourselves to the intervax
P@1,1`) which covers the interior of the past light cone
the pointt5T, r 50.

The natural requirement of the regularity for the Y
function f (x) on the past light cone of the pointt5T, r
50 provides the following local solution of the system~10!,
~11! nearx51:

f ~x!x→15 f 1~x21!2
f 1

8
~101s1!~x21!21 f 1S 31

48
2

2

3
f 1

2

1
1

96
s1

21
5

32
s1D ~x21!31O„~x21!4

…,

s~x!x→1541s1~x21!1S 818 f 1
21

1

8
s1

21
1

2
s1D ~x21!2

1S 28 f 1
21

4

3
s1f 1

21
7

3
s11

1

96
s1

31
7

48
s1

22
4

3D
3~x21!31O„~x21!4

…, ~12!

where f 1 ands1 are free parameters. The regularity requir
ment of the YM functionf at the origin on each slicet,T
~until the blowup timet5T) leads to the following series
expansion of the solutions nearx51`, written by making
use of the inverseh51/x self-similar variable:

f ~h!h→05611 f 2h21
1

10
f 2S 24s0f 2

213 f 21
10

3 D
3h41O~h6!,

s~h!h→05s01s0S s0f 2
22

1

3Dh2

1
1

20
s0S 8s0

2f 2
418s0f 2

32
8

9Dh41O~h6!.

~13!

Here f 2 ands0 are also free parameters.
These local solutions at the singular points satisfy app

priate boundary conditions

f ~1!50, s~1!54, f ~`!561,

f ,x~x!→x→`0, s,x~x!→x→`0. ~14!

As a result we get a suitable desingularised boundary va
problem~BVP! for the system~10!, ~11! with the boundary
conditions of Eq.~14!. Alternative strategy consists of solv
ing of the system~10!, ~11! as an initial value problem start
0-3
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ing with the series expansion~12! near thex51. In this case
the problem transforms to the shooting method search
some discrete sets of free parametersf 1 ,s1, so that they
provide the meeting of the local solutions to Eq.~13! at
infinity. The method of shooting technique also gives a po
erful tool to prove global existence, developed by Breite
lohner, Forgach, and Maison@18#. We are planning to con
sider the proof of the existence in a separate paper.

In order to find the above solutions numerically, we co
sider the above BVP using the method, described in deta
@19#. In accordance with the general expectations, we h
found that the BVP~10!, ~11!, ~14! admits infinitely many
solutions and all of then can be labeled by theN—the total
number of zeros of the YM functionf (x) on the open semi-
axis xP(1,̀ ). The solutions with the lowestN, N50,1,2,3
are given in Fig. 1. One can also extract the values of
corresponding free parametersf 1 , s1 or f 2 , s0 as they enter
the local series expansions, Eq.~12! and Eq.~13!. The values
of f 1 ands1 are displayed in Table I.

0 2 4 6 8
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0.0
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0 2 4 6 8
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N=3

N=2N=0

N=1

ln(x)ln(x)

6E-6

4E-6

-2E-7

2E-6

0

1E-7

0

-1E-7

f(
x)

ln(x)

N=0
N=1
N=2
N=3

S
(x

)

ln(x)

f(
x)

N=2

N=1

N=3

FIG. 1. Self-similar solutions forN50,1,2,3: YM functions
f N(x) ~top!, dilaton functionssN(x) ~bottom!. Note that asN in-
creases the solutionsN(x) tends uniformly to the limiting curve
4/x2.
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Note that the solution which corresponds toN5` is sim-
ply the trivial solutionf (x)50, s(x)54/x2, which in terms
of the primary function readsf(x)5 ln 4.

If N is finite andN@1, the solution of the system o
equations~10!, ~11! can be easily found by applying the lin
ear perturbations theory around the trivial solution in t
oscillation region. Indeed, after the substitution off (x)50
1e f̃ (x), f(x)5 ln 41ef̃(x) into the system of equation
~10!, ~11!, the linearized system for the perturbatio
f̃ (x),f̃(x) which holds at the interval 1!x0<x<xN @xN

;exp(2p/A3N)#, becomes

d2 f̃

dx2
52

1

x2
f̃ ,

d2f̃

dx2
5

2

x2
f̃. ~15!

The solution, bounded at infinity, can be found in terms
elementary functions as follows:

f̃ ~x!5C1Ax sinSA3

2
ln x1d D , f̃5

C2

x
, ~16!

whereC1 , C2, and d are some integration constants. Th
oscillating solution gives a strong argument in favor of t
existence of solutions with arbitraryN.0 zeros of YM func-
tion.

We found the solutions, which are defined on the inter
xP@1,1`). Now one can analytically continue them i
terms of the functionsf (x), f(x) to the left of the pointx
51. It has been done numerically. The continued functio
behave monotonically at the intervalxP@0,1# and they meet
their corresponding values at the regular pointx50: f (x
50)5 f ` , f(x50)5f` which are also their asymptoti
values at the spatial infinityr→1` on each slicet5const,
t,T in the self-similar regime. This can be seen from t
series expansion of the solutions in terms of theh variable at
h→1` ( f ` , f` , f̄ 1, f̄1 are free parameters!:

f ~h!h→`5 f `1 f̄ 1h211
1

2
~2 f̄ 1f̄11 f `2 f `

3 !h22

1O~h23!,

f~h!h→`5f`1f̄1h211
1

2 F21ef`S f̄ 1
22

1

2
1 f `

2 2
1

2
f `

4 D G
3h221O~h23!. ~17!

TABLE I. The values of free parametersf 1 , s1 for the self-
similar solutions with variousN.

N f1 s1

0 0.498934096775465 28.92179247
1 1.13571310212 28.00124
2 8.98718310213 28.00095
3 8.06871310213 28.00068

. . . . . . . . .
` 0.0 28.0
0-4
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For example, the values f (x50)5 f `

520.5072593 . . . , f(x50)5f`52.1214115 . . . corre-
spond to theN50 solution~see Fig. 5 below!.

Further continuation of the solutions to the region of t
negativex meets an obstacle at the next singular poinx
521. It was found that all self-similar solutions~except the
trivial one!, labeled by theN50,1,2,3, . . .`, ceased to be
differentiable in the vicinity of the singular pointx521 and
therefore they cannot be continued smoothly to the comp
manifold, covered by thex coordinate.

The stability analysis of the obtained self-similar so
tions can be done in terms of the linear perturbation the
The negative energy states in the spectrum of the linear
system are usually related to the instability of the ba
ground solutions.

Now we consider the problem on the semiaxisxP@1,
1`). Let us introduce in addition to the variablex a second
independent variablet so that the set of the linesx5const is
orthogonal to the set of the linest5const:

x5
T2t

r
, t52 ln A~T2t !22r 2. ~18!

The action~1! in the x,t variables after the substitution o
the anzatz~7! for the dilaton field becomes

S5E dxdte22tH 1

2 S ]f

]x D 2

2
1

2~x221!2 S ]f

]t D 2

1
2

~x221!2 S ]f

]t D2
2x

x221
S ]f

]x D1
2

x221

1efF S ] f

]xD 2

2
1

~x221!2 S ] f

]t D 2

1
~ f 221!2

2~x221!
G J . ~19!

We look for spherically symmetric perturbed solutions
the following form:

f ~x,t!5 f N~x!1eA2~x221!v~x!eivt,

f~x,t!5fN~x!1ee2fN(x)/2Ax221u~x!eivt,
~20!

where the backgroundf N(x),fN(x) are some solutions o
the BVP~10!, ~11!, ~14!, parametrized byN—the number of
zeros of the YM functionf (x).

It is helpful to use the variabler instead of thex:

r5
1

2
lnS x21

x11D , x5
11e2r

12e2r
. ~21!

Then, following the lines of the Ref.@12#, one can bring the
effective action for the perturbations to the standard form
two-channel Schro¨dinger equation

S̃52E dtdre2t@~x! ,r
1~x! ,r1x1Ux2~v221!x1x#,

~22!
12501
te

y.
ed
-

f

f

where the columnx and the functionA(r) are introduced as
follows (s2 is Pauli matrix!:

x5e2 is2A(r)S v~r!

u~r!
D ,

A~r!5E
0

r exp@fN~j!/2# f N~j! ,j

A2
dj. ~23!

Finally we get a matrix equation, which describes t
spectrum of the linear perturbations,

2x ,r,r1Ux5V2x, V25v221, ~24!

where

U5S U11 U12

U21 U22
D 5e2 is2AVeis2A, ~25!

and the elements of the matrixV are

V115ewNF f N8
21

~ f N
2 21!2

2 sinh2r
G ,

V125V215
1

A2 sinh2r
~sinh2rewN/2f N8 !8,

V225
1

2
wN9 1

1

4
wN8

21wN8 cothr1
3 f N

2 21

sinh2r
. ~26!

Note that the prime in formula~26! stands for a derivative
with respect to ther variable.

For the background solutionf 0(r), f0(r), which corre-
sponds to theN50, the matrix elementsU11(r), U12(r),
U22(r) are shown in Fig. 2. Background solutions with oth
N.0 provide the matrix elementsUi j of a similar shape.

Using the method of the phase functions shift, introduc
by Calogero@20# and developed by Degasperis@21#, we have
found that the self-similar solutionsf N(r), fN(r) with N
zeros of the YM functionf have N unstable modes in the
spectrum of the linear perturbations. Hence the only s
similar solution withN50 is linearly stable.

IV. CAUCHY PROBLEM

In this section we consider the Cauchy problem for t
system of equations~4!, ~5! starting with regular initial data.
The goal is to study the behavior of the solutions near
origin, their possible attaining to some self-similar solution
and their late-time asymptotics prior to the expected blow

The system of equations~4!, ~5! is a coupled system o
nonlinear wave equations. The boundary conditions at
origin and at the radial infinity as well as the initial cond
tions on the slicet50 have to be defined in order to get
0-5
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well-posed Cauchy problem. In fact, such a problem with
initial and boundary conditions imposed is called a mixe
type Cauchy problem. However, we will call it a Cauch
problem, for short.

The system of equations~4!, ~5!, similarly to its static
version, has two singular boundary pointsr 50 and r
51`. The regularity requirement provides the only po
sible series expansion near the origin:

f ~ t,r !r→0512b~ t !r 21O~r 4!,

F~ t,r !r→05F0~ t !1F2~ t !r 21O~r 4!,
~27!

FIG. 2. Matrix elementsUi j (r) for the background self-simila
solution withN50: U11 ~top!, U125U21 ~middle!, U22 ~bottom!.
12501
e
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whereb(t), F0(t), F2(t) are finite smooth functions. Henc
the corresponding boundary conditions at the origin, wh
must hold during the evolution, are as follows:

f ~ t,r 50!51, f 8~ t,r 50!50,

F~ t,r 50!5F0~ t !, F8~ t,r 50!50.
~28!

It is important to note that the value of the dilaton fun
tion at the originF(t,r 50) is a free parameter and there a
no reasons to keep it equal to its initial value. Indeed, in
numerical algorithm we have put only the conditionF(t
50,r 50)50 while F(t,r 50) has been calculated on eac
slice t.0 according to the evolution equations~4!, ~5!. This
means we have put free boundary condition forF(t,r 50).

The asymptotic behavior of the solutions regular at infi
ity is given by the series expansion

f ~ t,r !r→`56S 12
c

r
1O~r 22! D ,

F~ t,r !r→`5F`2
d

r
1O~r 24!, ~29!

wherec, d, andF` are constants. This gives the bounda
conditions at the spatial infinity as follows:

f ~ t,r 5`!561, f 8~ t,r 5`!50,

F~ t,r 5`!5F` , F8~ t,r 5`!50. ~30!

In order to impose the initial conditions in the Cauch
problem for the system of equations~4!, ~5!, it is enough to
set the initial distribution and its derivatives for the YM
function f (t50,r ) only. Then the dilaton distributionF(t
50,r ) can be obtained from the field equation~5!, in a way
similar to the Einstein equations, where the dilaton play
role of the relevant metric function now.

So we always consider smooth regular initial distributio
f (t50,r )5h(r ), whereh(r ) provides nonvacuum values fo
the YM field function in some compact region forr outside
the origin. It is convenient to use two different types of t
initial profiles for h(r ):

h~r !512Ar2exp@2s~r 2R!2#, ~31!

which is a Gauss-type (A, s, andR constants! initial profile
that connects the same YM vacuaf 511, and

h~r !5
12ar2

11ar2
, ~32!

which is a kink-type (a5const), which connects two topo
logically distinct YM vacuaf 561.

After the initial distributionh(r ) is fixed, one can define a
YM radial wave, propagating towards the origin~ingoing
wave!, as follows:

f ~0,r !5h~r !, ḟ ~0,r !5 f 8~0,r !5h8~r !. ~33!
0-6



.

al

it
to
en
tio

le
-
d

an
e

lly

to-
sh-

ni-
ion

rre-

en

ial
ing

ven

SELF-SIMILARITY AND SINGULARITY FORMATION . . . PHYSICAL REVIEW D 68, 125010 ~2003!
We also put

Ḟ~0,r !50. ~34!

The dilaton function att50 can be obtained now from Eq
~5! with the initial data at the origin imposed:

2F92
2F8

r
52

eF

r 2 F ~h221!2

2r 2 G ,

F~0,r 50!5F8~0,r 50!50. ~35!

The symmetric initial conditions that lead to two YM radi
waves, propagating towards~ingoing! and outwards~outgo-
ing! the origin, are determined in a similar way:

f ~0,r !5h~r !, ḟ ~0,r !50, Ḟ~0,r !50,

2F92
2F8

r
52

eF

r 2 Fh821
~h221!2

2r 2 G ,

F~0,r 50!5F8~0,r 50!50. ~36!

The Cauchy problem has been studied numerically w
the help of a finite-difference scheme that preserves the
energy during the evolution. An adaptive mesh refinem
algorithm was also installed in order to get a better resolu
on a small scales prior to the singularity formation.

The system has been solved for various initial profi
h(r ) and initial data~35!, ~36!. The results can be summa
rized as follows. If we start with small initial data, controlle
by the values of the parameters in Eqs.~31!, ~32!, the ingo-
ing wave solution gets smoothly bounced near the origin
after which is radiated away qualitatively similarly to th
typical solution of a linear wave equation. If we gradua
12501
h
tal
t
n

s

d

change the relevant parameters in the initial conditions
wards more strength initial data, after it exceeds some thre
old value, the ingoing YM wave solution demonstrates u
versal behavior at the small scales. In fact, the YM funct
f (t,r ) attains the self-similarN50 solution f 0„r /(T2t)…;
see Figs. 3 and 4. As was expected, in this regime the co
sponding solution for the dilaton functionF(t,r ) develops in
a non-self-similar way. However, as it can be easily se

FIG. 3. The set of YM profilesf (t,r ) at the various times prior
to the singularity formation. The ingoing waves at the small rad
scales exhibit universal self-similar behavior whereas the outgo
waves at the right side of the figure are almost frozen at the gi
time scale. The solutions correspond to the following initial data:~I!
f (0,r )5(12ar2)/(11ar2), kink type,a50.281~dashed line!; ~II !
f (0,r )512Ar2exp@2s(r2r0)

2#, Gauss type,A50.2, s510, r 0

52 ~solid line!.
ype

FIG. 4. Self-similar regime of the solutions behavior: YM functionf (t,r ) ~left!, dilaton functionF(t,r ) ~right! at varioust prior to the

blowup. The solutions effectively depends onr /(T2t), whereT is the blowup time. The initial data are the same as in Fig. 3: kink-t
initial profile ~circles!, Gauss-type initial profile~squares!.
0-7
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FIG. 5. The late-time evolution of a some typical Cauchy problem solution prior to the blowup. YM profilesf (h,t) ~left! and the
scale-invariant part of the dilaton profilesf(h,t)5F(r ,t)22 ln(r) ~right! attain the self-similar solutionN50 ~dashed line!. The valuesf ` ,
f` are the asymptotical values of the self-similarN50 solution ath→`. The initial conditions are the same as in Fig. 3 for Gauss-t
initial profile.
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from Fig. 4, the wholeF(t,r ) profile propagates along th
straight line 2 lnr12.1214. This means that in the approp
ately shifted and rotated at angleb5arctan(22) back clock-
wise frame the obtained dilaton functionf(t,r ),

f̃~ t,r !5F~ t,r !cosb1sinb ln r ,

exhibits the self-similar behavior and attains the self-sim
N50 solutionf0(t,r ). The dilaton functionF(t,r ) can be
expressed now in terms of its self-similar partF(t,r )

5f̃(t,r )/cosb12 ln r5f(t,r)12 ln r, which reproduces the
ansatz~7!. Figure 5 illustrates the late-time evolution o
some typical solution to the Cauchy problem which atta
the self-similar solutionf 0(h), f0(h).

The solutions evolve in a self-similar regime during
finite time and at some blowup timeT the second derivative
of the YM function f exhibits unbounded growth at the or
gin. This is an indication for a singularity formation. Th
blowup timeT is just the total time in the Cauchy proble
and it depends on the initial data. However, as the soluti
attain the self-similar profilef 0(h), f0(h) their dependence
on time enters effectively only in the formT2t. Hence, the
late-time asymptotics becomes universal for an arbitrary
lution with the initial data, which leads to the blowup. A
cording to our studies, the self-similar solutionf 0(h), f0(h)
is linearly stable and, as a result, it can pretend to be a gl
stable attractor in the Cauchy problem. The singularity f
mation at the origin is not accompanied by an energy c
centration which is typical for the supercritical systems.
deed, the total energy, Eq.~8!, at time t<T inside the past
light cone*0

T2tdr(•••) of the point (T,0) can be calculated
using theN50 self-similar solutionf 0(x), f0(x) as follows:
12501
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M5E5~T2t !E
1

`

dxH x211

2x2
f0~x! ,x

2 2
2

x
f0~x! ,x1

2

x2

1ef0(x)Fx211

x2
f 0~x! ,x

2 1
~ f 0~x!221!2

2x2 G J
;4~T2t !,

and vanishes ast→T. Note that numerically the integral i
equal to 4 with accuracy 1029. The corresponding Schwarz
schild radius is equal tor S;8(T2t). It means that if gravity
is included, the obtained late-time self-similar attractor~if
exists! has to be hidden under the formed event horizon.

V. CONCLUSIONS AND DISCUSSION

We conclude with the following summary. Using the sp
cial ansatz for the dilaton field, we brought the system of
SU~2! spherically symmetric Yang-Mills-dilaton equations
a scale-invariant form and found an infinite countable fam
of self-similar solutions, labeled by theN>0—number of
zeros of the relevant YM function. Among them the on
lowest solution, which corresponds toN50, is stable in the
framework of the linear perturbation theory. Being a sc
invariant, the considered system has a criticality index eq
to 11 which means that the system is a supercritical one
PDE terminology and should exhibit a singularity formatio
if the initial data in the evolutional Cauchy problem exce
some threshold value. The Cauchy problem has been so
numerically for a wide range of smooth finite-energy initi
data and the results we found are in agreement with
general expectation.

It has been found that if the initial data exceed so
threshold, the resulting solutions in a compact region, shri
ing to the origin, attain the lowestN50 stable self-similar
0-8
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profile, which plays the role of an attractor in the Cauc
problem. If the solutions attain theN50 self-similar attrac-
tor, they evolve in a universal way during a finite time un
the second derivative of the YM function at the origin sta
growing infinitely.

The problem of the threshold that separates the disp
and blowup behavior of the Cauchy problem solutions
quires more detailed studies. This threshold is usually rela
to intermediate attractors, which are some local minima
saddle points of the effective action. In our system both
staticN51 @12# and self-similar solutionf 1(h), f1(h) are
saddle points of the effective action and can play the role
such intermediate attractors. The study of the decay of
static and self-similar solutions withN>1 along their un-
stable modes is of particular interest for the threshold und
standing.

As was noted earlier, the system of Yang-Mills-dilato
fields is the bosonic part of the appropriately truncated
,

P.

12501
se
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e

f
e
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-

persymmetric field theory which also contains spin-1/2
latino and gaugino fields in the fermionic sector. The stu
of the fermionic fields in the obtained self-similar boson
backgrounds seems to be a very interesting task itself
also can shed new light on singularity formation thresho
of the bosonic fields.

All these tasks are under considerations and will be
ported elsewhere.
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