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Ultraviolet cutoff and bosonic dominance
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We rederive the thermodynamical properties of a noninteracting gas in the presence of a minimal uncertainty
in length. Apart from the phase space measure which is modified due to a change of the Heisenberg uncertainty
relations, the presence of an ultraviolet cutoff plays a tremendous role. The theory admits an intrinsic tem-
perature above which the fermion contribution to energy density, pressure and entropy is negligible.
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I. INTRODUCTION

Modern physics is an edifice in which every stone
tightly linked to the others. A slight modification in one are
may produce important changes in different fields. Quant
mechanics starts with the commutation relations. Once t
have been fixed, using a representation of the operator a
bra we can in principle solve the Schro¨dinger equation
whose solutions potentially contain all the physics of t
~nonrelativistic! system studied. The correspondence pr
ciple which states the link between the commutator of t
variables of the phase space and their classical Poi
brackets is one of the basic axioms of quantum mechanic
is not deduced from another assumption and cannot
judged in an isolated manner: only the whole theory can
confronted to experience through its predictions.

Some authors have investigated the consequences o
alterations of these commutation relations on the observa
of some physical systems. In particular, some deformati
of the canonical commutators studied by Kempf, Manga
and Mann~KMM ! induce a minimal uncertainty in positio
~or momentum! in a very simple way, providing a toy mode
with manifest nonlocality@1#. The implications of some o
these quantum structures have been studied for the harm
oscillator @1–3# and the hydrogen atom@4#. The trans-
Planckian problem occurring in the usual description of
Hawking mechanism of black hole evaporation has also b
addressed in this framework, for the Schwarzschild and
Bañados-Teitelboim-Zanelli~BTZ! solutions @5,6#. These
studies have extended the work on the entropy of the b
hole @7# and Hawking radiation@8# in theories with modified
dispersion relations@9–13#.

One of the purposes of this article is a reinvestigation
the modifications these models induce, not in the charac
istics of a single particle, but in the behavior of a mac
scopic system. The modern presentation of thermodynam
basically relies on statistical physics. According to the s
tem under study~isolated, closed or opened!, one uses an
ensemble~microcanonical, canonical or grand canonical! and
the corresponding potential~entropy, free energy, grand po
tential! to derive thermodynamical quantities~pressure, spe
cific heat, chemical potential, etc.!.

The thermodynamic potentials are related to the der
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tives of the partition function which itself is an average~of a
quantity which depends on the ensemble used! on the phase
space. To define a measure on the phase space, one ne
know the extension of the fundamentals cells. In the ‘‘cla
sical’’ statistical physics, the Heisenberg uncertainty relatio
are used to show that this volume is the cube of the Pla
constant and the undiscernability of particles justifies
Gibbs factor. This can be inferred from quantum statisti
physics in which the sum giving the partition function
made on a discrete set of states.

If one modifies the commutators, one changes the Heis
berg uncertainty relations. The measure on the phase spa
no more the same; this results in new partition functions a
consequently different thermodynamical behaviors. From
quantum point of view, the energy spectrum of systems
modified by the change in the commutation relations.

The thermodynamics of some models displaying a m
mal uncertainty in length has been analyzed before@14–16#.
We shall give here better approximations and correct so
sign errors. The implications for the early universe have b
at the center of many works among which are Refs.@17,18#.
The standard big bang in a universe in which an ultravio
cutoff appears in a toy model exhibiting a modified disp
sion relation has similarly been analyzed@19#. The difference
between the two approaches relies on the fact that the
persion relations are different; in the first models, they co
from an assumption on the structure of the quantum ph
space.

In these works, the equation of state used for radiat
was obtained considering bosons. In the usual case the
tributions of fermions to energy, pressure and entropy
simply the seven eights of the ones corresponding to bos
This renders the equation of state insensitive to the r
between fermionic and bosonic degrees of freedom.
show this to be drastically changed in the new framewor

Many studies have been devoted to cosmological per
bations in trans-Planckian physics@20–31#. The consider-
ations we develop here may, in this context, be seen as
evant only in the pre-inflationary era. However, th
phenomenological bounds@4# are much lower than the
Planck scale. If one adopts a less restrictive point of vie
then the new scale may generate some sizeable effects.

The article is organized as follows. In the second sect
we give a very brief survey of the two models we will stud
They possess a minimal length uncertainty and so the qu
position representation plays a crucial role. The third sect
©2003 The American Physical Society04-1
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is devoted to the study of the noninteracting gas. We ob
its equation of state, entropy, etc. We use its specific hea
set a bound on the deformation parameter and find it to b
agreement with previous ones.

II. DEFORMED THEORIES

As shown by KMM @1#, the quantum mechanical theor
defined by the commutation relation

@ x̂,p̂#5 i\~11b p̂2! ~1!

is endowed with a minimal length uncertaintyDxmin

5\Ab. The presence of this minimal length uncertainty im
plies that no position representation exists. The conc
which proves to be the closest to it is the quasiposition r
resentation in which the operators are nonlocal:

p̂5
1

Ab
tan~2 i\Ab]j!, x̂5j1\Ab tan~ i\Ab]j!. ~2!

It should be emphasized that the second part of the pos
operator plays an important role. If it was not present,
theory would admit position eigenstates which would ha
finite energy. This is of course forbidden by the existence
a minimal uncertainty in length. This representation is fou
by projecting on states of maximal localization. For deta
see Ref.@1#.

The deformations studied here produce a theory whic
endowed with a minimal uncertainty in length. This mea
one cannot measure distances with arbitrary precision, e
by increasing the momenta of the particles involved. It h
been argued that a similar situation is likely to occur wh
quantum gravity sets in. This can be taken as a motiva
for studying some aspects of this toy model.

The most obvious extension to a three dimensional sp
is obtained by taking the tensorial product of three such c
ies. It will be referred to as theA1 model. It has translationa
invariance but lacks the symmetry under rotations. Anot
extension preserves rotational and translational symmetr
will be referred to as theA2 model. Its commutation relation
are

@ x̂ j ,p̂k#5 i\~ f ~ p̂2!d j ,k1g~ p̂2! p̂ j p̂k!, g~p2!5b,

f ~p2!5
bp2

211A112bp2
. ~3!

We will need the form of the momentum operators in th
model:

pk52 i\(
r 50

` S \2b

2
D D r ]

]jk
, where D5(

l 51

3
]2

]j l
2

.

~4!

Although the modelA2 is physically better motivated, we
shall analyze the thermodynamics of both extensions.
interest of such a study is that it reveals some generic p
erties which are shared by these kinds of deformations.
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III. NONINTERACTING GAS IN DEFORMED THEORIES

Introducing the momentum scaleb, it is straightforward
that with the Boltzmann constantk, the light velocityc and
the massm of any particle, one can construct on purely d
mensional grounds the characteristic temperatures

Tc5
1

bmk
, Tcr5

c

kAb
. ~5!

The first is ‘‘nonrelativistic,’’ particle dependent while th
second is ‘‘relativistic’’ (c dependent! and universal. We are
interested in what happens at and above these temperat

The constantb which appear in the KMM algebra is
free parameter. What numerical value can it assume? It
suggested@32# that the minimal length uncertainty\Ab
should be of the order of the Planck scale. We shall ado
less restrictive point of view here. The only constraint is th
the deformed commutator should not lead to contradicti
with the predictions of the orthodox theory which have be
observed experimentally. Our attitude is inspired by rec
works which have shown that a new physics may take pl
well before the Planck scale@33#. Taking the most stringen
phenomenological constraint\Ab<10216m @4#, one finds a
lower bound to the characteristic relativistic temperatu
Tcr>1013 K. If one assumes the minimal length uncertain
to be of the order of the Planck scale, thenTcr51016 K.

We now briefly summarize the formula of statistical phy
ics we will need. In the usual theory, a system which is
contact with a large heat reservoir and does not excha
particles with the surroundings has to be studied in the
nonical ensemble@34,35#. Its equilibrium state will be de-
scribed by a fixed temperature and a fixed particle num
while its energy will fluctuate around a mean value. Stric
speaking, for such a system the particle numberN is fixed
once and for all. But, one knows that when phase transiti
are not present, the descriptions given by the canonical
the grand canonical ensembles are very close. This will
used to compute the chemical potential in the canonical
semble where the calculations are easier.

The most important quantity will be the canonical par
tion function Z(T,V,N) which is defined in terms of the
Hamiltonian operatorĤ by the equation

Z~T,V,N!5Tr expS 2
Ĥ

kT
D . ~6!

The free energy is related to the partition function by

F~T,V,N!52kT ln Z. ~7!

In these variables the pressureP, the entropyS, the chemical
potentialm, the internal energyU and the constant volume
specific heatCV read
4-2
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P52
]F

]V
, S52

]F

]T
, m5

]F

]N
,

U5F1TS, and CV5
]U

]T
. ~8!

A. A1 model

1. Low temperatures

Low temperatures correspond to nonrelativistic behavio
Let us study a noninteracting nonrelativistic gas. One ha
solve the Schro¨dinger equation for a particle in a cubic bo
of lengthL. This will be done in the quasiposition represe
tation because of the lack of a position one. For simplic
let us first consider a one dimensional system; one obt
the solution

c~ t,j!}e2 iEtexpS 6
i j

\Ab
arctanA2mb\ED . ~9!

When the periodic boundary conditionc(t,j50)
5c(t,j5L) is imposed, one finds the quantization of ener

En5
1

2mb
tan2S 2p\Abn

L D , ~10!

(n being an integer! already obtained in Refs.@1,5#. This
leads to a cutoff in order to avoid a nonmonotonic dispers
relation:

nsup5EF L

4\Ab
G , ~11!

E being the integer part function~not to be confused with the
energy!.

This cutoff nsup is necessary in order to prevent a dive
gence of the partition function which would take place o
erwise, due to the periodic nature of the energy@Eq. ~10!#.
But this still allows an infinite energy provided that th
length of the box is fine tuned in such a way that the resul
its division by the minimal length uncertainty is an integ
This would not be problematic since such an energy wo
have a vanishing contribution to the partition function. Th
conclusion will remain untouched at high temperatures.

The one particle partition function is given by the formu

Z~T,V,1!5 (
n50

nsup

e2 En/kT

5 (
n50

nsup

expF2
1

2bmkT
tan2S \Ab

2pn

L D G .
~12!

The sum onn can be approximated by an integral ondn if
the size of the boxL is big enough. Introducing the integra
tion variablep by
12500
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n5
L

2p\Ab
arctan~Abp! ~13!

and replacing, as usual in statistical physics, the lengthL by
an integral on position, we find

Z~T,V,1!5
1

hE dxdp
1

11bp2 e2p2/2mkT. ~14!

The formula given in Eq.~14! admits a semiclassical inter
pretation. Let us first consider its limiting caseb50. Clas-
sically, the system can be seen as a point evolving in ph
space. The probability for the system to be in a configurat
in which the first particle is in the regionq1

W6dq1
W ,p1

W

6dp1
W , the second particle in the regionq2

W6dq2
W ,p2

W

6dp2
W , . . . is proportional toe2E(qW ,pW ) and proportional to

the number of elementary cells contained in the volume
the aforementioned region. At the quantum level, the Heis
berg uncertainty relation of the usual theory~written in the
one dimensional case! DpiDqi>\/2 assigns to each elemen
tary cell a volumeh. The number of such cells contained
the region under consideration is therefore

)
i 51

N
d3pi

Wd3qi
W

h3
. ~15!

One sees that in the new theory, one can simply keep
usual dispersion relation and modify the elementary cell v
ume. At the quantum level, this appears as a Jacobian lin
to the change of variables (nW→pW ). This could be anticipated
with a semiclassical reasoning. The new Heisenberg un
tainty relation implies

DxDp>
\

2
~11b^p2&!. ~16!

It assigns to the elementary cells of the phase space of
new theory a volumeh(11bp2) which replaces the usua
factorh. From this we could conjecture a simple recipe wh
dealing with the semiclassical approximation: it is obtain
by keeping the classical dispersion relation but modifyi
the measure in a way consistent with the new Heisenb
uncertainty relation.

However, it should be noted that, in the new theory, t
range over which one integrates is finite, due to the prese
of the cutoff which depends on the volume but not the te
perature:

psup5
t

Ab
, with t5tanFp

2 S L

4\Ab
D 21b L

4\Ab cG .

~17!

In this formulabxc represents the integer part of the numb
x. Due to the equality

lim
x→`

bxc
x

51, ~18!
4-3
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MUSONGELA LUBO PHYSICAL REVIEW D68, 125004 ~2003!
the upper bound goes to infinity and the volume of the
ementary cell tends to the usual one as the deformation
rameter is sent to zero. It can be anticipated that, becaus
integrand of Eq.~14! is a rapidly decreasing function, takin
the upper bound to be infinite will not introduce an app
ciable error in most cases.

Going to the three dimensional extensionA1, one has
simply to take the product of the elementary cells in the th
directions. The integral over the positions is obvious;
change of variablew5pW 2/2mkT allows one to write the one
point partition function as

Z~T,V,1!5
V

l3
J,

with

J5F 1

Ap
E

0

vsup
exp~2v!v21/2S 112

T

Tc
v D 21

dvG 3

,

l5S h2

2pmkTD
1/2

, vsup5
t2

2

Tc

T
. ~19!

Whenb vanishes, the upper bound equals infinity and
integral giving J assumes the value one so that the un
formed theory is recovered. The total partition functionZ is
found to be related to the usual one~corresponding tob
50 and now denotedZ* ) by the relation

Z5Z* JN. ~20!

The free energy then becomes

F5F* 2NkT ln J. ~21!

The thermodynamical quantities are affected in the follow
way:

P5P* 1NkT
1

J

]J

]V
, S5S* 1Nk ln J1NkT

1

J

]J

]T
,

m5m* 2kT ln J2NkT
1

J

]J

]N
, U5U* 1NkT2

1

J

]J

]T
,

CV5CV* 12NkT
1

J

]J

]T
1NkT2F2

1

J2 S ]J

]TD 2

1
1

J

]2J

]T2G .
~22!

As can be seen from Eq.~19!, J depends on the volum
only through the cutoff whose influence will be seen to
negligible for the system under study. Thus, the equation
statePV5NkT will remain valid, thanks to Eqs.~22!. The
presence of the temperature and the absence of the numb
particles in the expression ofJ results in the fact that the
entropy receives two contributions while the last term of
chemical potential in Eqs.~22! vanishes. The internal energ
is also modified and by way of consequence the specific
at constant volume too.
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The integral givingJ cannot be computed analytically
However, the qualitative features of the theory can be
tained quite easily. When the deformation parameter goe
zero,J assumes the value 1. As we shall show in a mome
the following parametrization holds:

J511s1

T

Tc
1s2S T

Tc
D 2

1•••. ~23!

Working to second order, we find

T

J

]J

]T
5s1

T

Tc
1~2s22s1

2!S T

Tc
D 2

5 logF11s1

T

Tc
1S 2s22

1

2
s1

2D S T

Tc
D 2G . ~24!

The last formula’s interest lies in the fact that it allows
more compact expression of the entropy:

S5NkS 5

2
1 logs0D1Nk logH V

N S 2pmkT

h2 D 3/2

3F112s1

T

Tc
1S 3s21

1

2
s1

2D S T

Tc
D 2G J , ~25!

so that an adiabatic process takes the form:

V;T23/2F122s1

T

Tc
1S 23s21

7

2
s1

2D S T

Tc
D 2G . ~26!

The formulas displayed in Eqs.~22! are used to recast th
equation of state and the specific heat as

r5PF3

2
1s1

T

Tc
1~2s22s1

2!S T

Tc
D 2G ,

CV5NkF3

2
12s1

T

Tc
1~6s223s1

2!S T

Tc
D 2G .

~27!

Considering the reaction

aA1bB
dD1eE, ~28!

the expression of the chemical potentialm shows that the
densities at equilibriumXi5Ni /V obey the modified law of
action of masses

XD
d XE

e

XA
aXB

b
5cteT3/2(2a2b1d1e)S 112ds1,D

T

Tc,D
12es1,E

T

Tc,E

22as1,A

T

Tc,A
22bs1,B

T

Tc,B
D , ~29!

since each particle, having its own mass, possesses a sp
critical temperature.
4-4
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Let us now evaluate the integralJ in order to have
numerical estimates of the constantss i . We shall use the
MacLaurin expansion with a remainder. Let us separate
integral of Eq.~19! in two parts:

J1/35I 11I 25
1

Ap
F E

0

Tc/2T

•••1E
Tc/2T

vsup
•••G . ~30!

On the second interval, the inequality

1

11
2T

Tc
v

<
1

2
~31!

can be used to obtain the majorization

I 2<
1

2Ap
E

Tc/2T

vsup
e2vv21/25

1

2Ap
FGS 1

2
,

Tc

2TD2GS 1

2
,vsupD G .

~32!

The asymptotic formula

G~a,z!;za21e2z for z→` ~33!

shows that

I 2<cstS Tc

2TD 21/2

expS 2
Tc

2TD1cstvsup
21/2exp~2vsup!.

~34!

Since, for a reasonableb, the characteristic temperatureTc
is reasonably expected to be very high, the integralI 2 which
contains the influence of the upper bound can therefore
neglected.

To evaluateI 1, we shall use the MacLaurin theore
which states that for any sufficiently regular functionf de-
fined on an interval@0,a# and for any pointv on that inter-
val, there exists another pointu(v) on the same interva
such that

f ~v!5 f ~0!1 f 8~0!v1
1

2
f 9~0!v21

1

6
f-@u~v!#v3.

~35!

This gives

1

112
T

Tc
v

512
2T

Tc
v1S 2T

Tc
D 2

v21
1

6
f-@u~v!#v3.

~36!

This enables us to find

U I 12
1

Ap
H E

0

Tc/2T

dve2vv21/2F12
2T

Tc
v1S 2T

Tc
D 2

v2G J U
<maxu f-~x!u

1

6Ap
E

0

Tc/2T

dve2vv5/2. ~37!
12500
e

e

On the interval involved, the following inequality is verified

umaxf-~x!u<cstS 2T

Tc
D 3

. ~38!

The integrals remaining in Eq.~37! can be expressed in
terms of complete and incompleteG functions. The final re-
sult reads:

I 15
1

Ap
FGS 1

2D2GS 3

2D 2T

Tc
1GS 5

2D S 2T

Tc
D 2G . ~39!

From this one reads the values of the coefficientss i .
The predictions of usual statistical physics are known

be quite accurate in ordinary conditions. We shall use this
give an estimate of the bound thermodynamics imposes
the deformation parameters. Consider the helium whose
cific heat at constant volume assumes an experimental v
comprised between 12.39 and 12.41 J K21 mole21. The un-
deformed theory assigns the value 12.47 J K21 mole21 to
any nonrelativistic gas. Thanks to Eqs.~27!, we can write the
specific heat in the new theory as

CV512.47S 11s1

T

Tc
D . ~40!

The measured value tells us that 12.39,CV,12.41. Assum-
ing T5300 K, the prediction of the model does not get o
of the experimental bounds provided thatTc>106 K which
inducesb<10245. One then finds a minimal length unce
tainty g<10212 m which does not disagree with the boun
derived from atomic physics considerationsg<10216 m @4#
but is less precise. It should be stressed that this only g
an idea of the order of magnitude since we did not inclu
interactions between the atoms. The estimated tempera
Tc at which something new should happen is too high for
nonrelativistic approach to be reliable. Thus the interest
the next subsection.

2. High temperatures

The deformed Klein-Gordon wave equation for a ma
less particle in a box leads to the spectrum

EnW
2
5

c2

b F tan2S \Ab
2pnx

L D1tan2S \Ab
2pny

L D
1tan2S \Ab

2pnz

L D G . ~41!

Replacing the sum by an integral, one obtains for the factJ
appearing in the partition function the expression

J5E
0

vsup
dxE

0

vsup
dyE

0

vsup
dz w~x,y,z!, ~42!

where
4-5
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w~x,y,z!5
1

p F S 11
T2

Tcr
2

x2D S 11
T2

Tcr
2

y2D S 11
T2

Tcr
2

z2D
3@exp~Ax21y21z2!#G21

, vsup5
Tcr

T
t.

~43!

Let us first consider a temperature verifyingT/Tcr,1, with
an upper bound which is practically infinite@Tcrt/T.1, t
being given by Eq.~17!#. In this case, replacing the doma
of integration, a cube, by a sphere should not introduce
important error. The result reads

J51212
z~5!

z~3! S T

Tcr
D 2

1288
z~7!

z~3! S T

Tcr
D 4

. ~44!

From Eqs.~22!, one finds the equation of state and the e
pression of the entropy

r

p
53224

z~5!

z~3! S T

Tcr
D 2

1288F4
z~7!

z~3!
2S z~5!

z~3! D G S T

Tcr
D 4

,

S54Nk1Nk logS 8p
V

N S kT

hcD
3H 1236

z~5!

z~3! S T

Tcr
D 2

1288F5
z~7!

z~3!
1S z~5!

z~3! D G S T

Tcr
D 4J D . ~45!

Like in Eqs. ~25! and ~27!, one obtains small departure
from the unmodified theory.

3. Very high temperatures

What happens at very high temperatures? Like in the p
ceding subsection, the most salient features can be cap
from the behavior ofJ. As the temperature is increased, t
form of the its integrand and its upper bound@Eqs. ~43!#
show thatJ goes to zero. An approximation of the form

J5snS Tcr

T D n

1sn11S Tcr

T D n11

1sn12S Tcr

T D n12

1•••

~46!

with n a positive integer will hold. Keeping the first tw
corrections one shows, by computations similar to those
the preceding subsection, that the entropy takes the form

S54Nk1Nk logH 8pe2nsn

k3

~hc!3
Tcr

n V

N
T32n

3F11S 1

2

sn11
2

sn
2

2
sn12

sn
D S Tcr

T D 2G J ~47!

~from which the equation of an adiabatic process can be
duced! while the equation of state reads
12500
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r5PF ~32n!2
sn11

sn

Tcr

T
1S sn11

2

sn
2

22
sn12

sn
D S Tcr

T D 2G .

~48!

The law of action of masses now assumes the form:

XD
d XE

e

XA
aXB

b
5cstT(32n)(d1e2a2b)F11~d1e2a2b!

3S 1

2

sn11
2

sn
2

2
sn12

sn
D S Tcr

T D 2G . ~49!

Let us find the integern. One hasT/Tcr,1 and Tcrt/T
,1. Now, the domain of integration is small and so t
exponential appearing in the functionw can be expanded in
polynomials. The function 11Tcr

2 /T2x2 admits two Taylor
expansions; the region in whichx,T/Tcr will be denotedA;
the other one will be denotedB. The same situation occur
for y andz; this leads to a partition of the domain of integr
tion. The most important contribution reads

JAAA5
Tcr

3

T3
. ~50!

The dependence on the volume is negligible. Compar
with Eq. ~46!, one hasn53 so that the equation of state is,
first order,r;0.

In this theory, statistics will play a role at high temper
ture. As is evident from Eqs.~42! and~43!, J will go to zero
as the temperature increases. The Bose-Einstein distribu

Ni5
gi

expS e i

kT
2n D21

~51!

reduces to the Maxwell-Boltzmann’s one only in the limitin
case

en!1. ~52!

Thanks to the relation giving the total number of particl
N5( iNi , one is led to the condition

en5
N

Z~T,V,1!
!1⇒ N

V
<8pS kT

hcD
3

J. ~53!

One concludes that neglecting statistics is accurate, at
high temperatures, only for systems whose densities are
small (J;T23). If this is not the case, the appropriate int
grand in the evaluation ofJ for bosons for example is

w~x,y,z!5
1

p1
H S 11

T2

Tcr
2

x2D S 11
T2

Tcr
2

y2D S 11
T2

Tcr
2

z2D
3@exp~Ax21y21z2!21#J 21

. ~54!

The normalization constantp1 ensures thatJ51 in the un-
deformed theory. One finds the dominant part is given by
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JAAA5S 2
p

4
2 log~2A2!13 log~11A3! D S Tcr

T D 2

.

~55!

In the formula givingJ, one now hasn52 and the associat
equation of state for a gas of bosons takes the formr5P.

We treat in more detail theA2 model in the following
section. Our choice is mostly due to the fact that theA2
model, possessing spherical symmetry, givesJ as a one di-
mensional integral, contrary to theA1 model @see Eq.~54!#.
Apart from leading to simpler formulas, this model see
also more suitable to the treatment of a Robertson-Wa
universe because of this rotational symmetry.

B. A2 model

In this case, the action of the first position operator on
plane waveck(t,jW )5exp(2iEt1k1j11k2j21k3j3) reduces to

p̂1ck~ t,jW !52 i\ck~ t,jW !(
r 50

` S \2b

2
kW2D r

. ~56!

The sum of the left hand side converges only when\2k2

,2/Ab; this is the cutoff. As shown in the last subsectio
we do not learn much from the deformed nonrelativis
theory; we then go directly to high temperatures. The so
tion to the wave equation gives the dispersion relation

E5c\kS 11
\2b

2
k2D 21

, ~57!

from which one infers the quantity controlling the departu
from the unmodified theory, for fermions and bosons:

Jbo5
1

2z~3!
E

0

A2(Tcr /T)
dxx2F expS x

11
1

2

T2

Tcr
2

x2D 21G 21

,

Jf e5
2

3z~3!
E

0

A2(Tcr /T)
dxx2F expS x

11
1

2

T2

Tcr
2

x2D 11G 21

.

~58!

For temperatures smaller thanTcr , a Taylor expansion of the
term in parentheses and an approximation of the upper bo
of the integral by infinity holds. This leads to the followin
expressions for the equation of state and the entropy in
bosonic case:

S r

pD
bo

53160
z~5!

z~3! S T

Tcr
D 2

1360F21
z~7!

z~3!
25S z~5!

z~3! D
2G S T

Tcr
D 4

,

12500
s
er

e

,

-

nd

e

Sbo54Nk1Nk logS 8p
V

N S kT

\cD 3H 1190
z~5!

z~3! S T

Tcr
D 2

1450F21
z~7!

z~3!
14S z~5!

z~3! D
2G S T

Tcr
D 4J D . ~59!

For fermions, the behavior is roughly similar but the d
tails are different:

S r

pD
f e

53175
z~5!

z~3! S T

Tcr
D 2

1
45

2 F441
z~7!

z~3!
2125S z~5!

z~3! D
2G S T

Tcr
D 4

,

Sf e54Nk1Nk logS 8p
V

N S kT

\cD 3H 11
225

2

z~5!

z~3! S T

Tcr
D 2

1
225

8 F441
z~7!

z~3!
1100S z~5!

z~3! D
2G S T

Tcr
D 4J D . ~60!

When the temperature becomes of the order of the crit
temperature, an important change takes place. The doma
integration forJ in Eq. ~58! becomes small and so one ca
approximate the integrand by its Taylor expansion near
origin. The difference between bosons and fermions en
into play through the difference of signs6 which leads to
different powers in terms of the temperature. Developing
full integrand in Eq.~58! to the fourth order inx, one finds

Jbo5
1

2z~3! F3

2 S Tcr

T D 2

2
1

3
A2S Tcr

T D 3G ,
Jf e5

2

3z~3! F1

6 S Tcr

T D 3

2
1

16S Tcr

T D 4G . ~61!

A computation to an order greater than the one to which
have limited ourselves brings in small corrections to the
efficients 13/16, etc. Using Eqs.~48!, one then finds the ex
pression of the entropy and the equation of state. The dif
ence is significant between the two statistics as can be
from the following equations:

S r

pD
bo

511
2

9
A2

Tcr

T
1

8

81S Tcr

T D 2

,

S r

pD
f e

5
3

8

Tcr

T
1

9

64S Tcr

T D 2

. ~62!

A numerical computation supports our approximati
scheme.
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In Fig. 1 we plot the ratios between the density and
pressure for a gas of bosons~fermions!. For temperatures
smaller than the critical one, these ratios are close to t
known value 3 in the undeformed theory. The two functio
then rise above this value as predicted by Eqs.~59! and~60!.
They finally tend to the asymptotic values 1 and 0 as
tained in Eqs.~62!.

Let us note that the behavior of the two models, althou
similar in the limiting case of very high temperatures, d
play some qualitative differences. As can be seen by com
ing Eqs.~45! and~60!, in theA1 model the density-pressur
ratio does not rise above the usual value 3, contrary to w
happens inA2.

We have here a manifestation of the domination of bos
in this context: their density-pressure ratio goes like a c
stant while the one corresponding to fermions vanish
Their entropy is also the only one to be considered at sc
much higher thanTcr as they correspond ton52 in Eq.~47!
while for fermions one hasn53 @see Eqs.~61!#. Although
the ratio we considered is much higher for bosons, one

FIG. 1. r/p plotted as a function ofT/Tcr for bosons and fer-
mions.
D

Re

12500
e

ir
s
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h
-
r-

at

s
-

s.
es

ill

cannot infer this to be the case for each of its parts. This w
be established for black body radiation elsewhere.

IV. CONCLUSIONS

We have studied the thermodynamics induced by a n
local theory which exhibits a minimal uncertainty in lengt
We have obtained that a new behavior sets in at very h
temperatures. The difference between fermions and boso
more important than in the usual case.

The fact that bosons dominate over fermions may m
that as the temperature is increased, fermion modes
crowding close to the cutoff while bosons can keep pack
more energy into modes of high energies.

It is worth mentioning some aspects which have not be
raised in this work. At the fundamental level, one can ask
the concept of spin is relevant in these theories and, in
case the answer is positive, one still has to study the rela
between spin and statistics in the new context. As the spi
a particle is defined, in the modern approach, through
behavior of its wave function under the Lorentz group, o
has to find its generalization in the new context. For e
ample, taking the ultimate structure of space-time to be gi
by a particular noncommutative geometry, the relevant al
bra is not the Poincare´ algebra but itsq deformation. A no-
tion of spin has been defined in these theories and the w
equations for particles of spin 0, 1/2 and 1 have been fo
@36#. Although the question has not been addressed in KM
theory, we hope for a similar situation to occur. We expec
generalization of the notion of spin which conserves
spin-statistic theorem.
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