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Ultraviolet cutoff and bosonic dominance
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We rederive the thermodynamical properties of a noninteracting gas in the presence of a minimal uncertainty
in length. Apart from the phase space measure which is modified due to a change of the Heisenberg uncertainty
relations, the presence of an ultraviolet cutoff plays a tremendous role. The theory admits an intrinsic tem-
perature above which the fermion contribution to energy density, pressure and entropy is negligible.
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[. INTRODUCTION tives of the partition function which itself is an averagét a
quantity which depends on the ensemble ysedthe phase
Modern physics is an edifice in which every stone isspace. To define a measure on the phase space, one needs to
tightly linked to the others. A slight modification in one area know the extension of the fundamentals cells. In the “clas-
may produce important changes in different fields. Quantunsical” statistical physics, the Heisenberg uncertainty relations
mechanics starts with the commutation relations. Once thegire used to show that this volume is the cube of the Planck
have been fixed, using a representation of the operator algeenstant and the undiscernability of particles justifies the
bra we can in principle solve the Schlinger equation Gibbs factor. This can be inferred from quantum statistical
whose solutions potentially contain all the physics of thephysics in which the sum giving the partition function is
(nonrelativistig system studied. The correspondence prin-made on a discrete set of states.
ciple which states the link between the commutator of two If one modifies the commutators, one changes the Heisen-
variables of the phase space and their classical Poissdrerg uncertainty relations. The measure on the phase space is
brackets is one of the basic axioms of quantum mechanics. tio more the same; this results in new partition functions and
is not deduced from another assumption and cannot beonsequently different thermodynamical behaviors. From the
judged in an isolated manner: only the whole theory can bguantum point of view, the energy spectrum of systems are
confronted to experience through its predictions. modified by the change in the commutation relations.
Some authors have investigated the consequences of the The thermodynamics of some models displaying a mini-
alterations of these commutation relations on the observablesal uncertainty in length has been analyzed befhde-16.
of some physical systems. In particular, some deformationsVe shall give here better approximations and correct some
of the canonical commutators studied by Kempf, Manganosign errors. The implications for the early universe have been
and Mann(KMM ) induce a minimal uncertainty in position at the center of many works among which are REf3,18.
(or momentumin a very simple way, providing a toy model The standard big bang in a universe in which an ultraviolet
with manifest nonlocalityf1]. The implications of some of cutoff appears in a toy model exhibiting a modified disper-
these quantum structures have been studied for the harmorgion relation has similarly been analyZdd®]. The difference
oscillator [1-3] and the hydrogen atonfi4]. The trans- between the two approaches relies on the fact that the dis-
Planckian problem occurring in the usual description of thepersion relations are different; in the first models, they come
Hawking mechanism of black hole evaporation has also beeftom an assumption on the structure of the quantum phase
addressed in this framework, for the Schwarzschild and thepace.
Barados-Teitelboim-Zanelli(BTZ) solutions [5,6]. These In these works, the equation of state used for radiation
studies have extended the work on the entropy of the blaclvas obtained considering bosons. In the usual case the con-
hole[7] and Hawking radiatiofi8] in theories with modified tributions of fermions to energy, pressure and entropy are
dispersion relation§9—-13). simply the seven eights of the ones corresponding to bosons.
One of the purposes of this article is a reinvestigation ofThis renders the equation of state insensitive to the ratio
the modifications these models induce, not in the charactebetween fermionic and bosonic degrees of freedom. We
istics of a single particle, but in the behavior of a macro-show this to be drastically changed in the new framework.
scopic system. The modern presentation of thermodynamics Many studies have been devoted to cosmological pertur-
basically relies on statistical physics. According to the syshbations in trans-Planckian physi¢20—31. The consider-
tem under study(isolated, closed or opengdone uses an ations we develop here may, in this context, be seen as rel-
ensemblémicrocanonical, canonical or grand canonieald  evant only in the pre-inflationary era. However, the
the corresponding potentigntropy, free energy, grand po- phenomenological boundf4] are much lower than the
tentia) to derive thermodynamical quantiti¢sressure, spe- Planck scale. If one adopts a less restrictive point of view,
cific heat, chemical potential, efc. then the new scale may generate some sizeable effects.
The thermodynamic potentials are related to the deriva- The article is organized as follows. In the second section
we give a very brief survey of the two models we will study.
They possess a minimal length uncertainty and so the quasi-
*Email address: muso@ictp.trieste.it position representation plays a crucial role. The third section
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is devoted to the study of the noninteracting gas. We obtainlll. NONINTERACTING GAS IN DEFORMED THEORIES
its equation of state, entropy, etc. We use its specific heat to
set a bound on the deformation parameter and find it to be iﬂ1
agreement with previous ones.

Introducing the momentum scal® it is straightforward
at with the Boltzmann constakt the light velocityc and
the masan of any particle, one can construct on purely di-

mensional grounds the characteristic temperatures
Il. DEFORMED THEORIES

As shown by KMM[1], the quantum mechanical theory
defined by the commutation relation T.= 1 T.= ¢
C cr .
kVB

[X,p]=i#(1+Bp?) (1)

- Bmk’
is endowed with a minimal length uncertaintx.,;,  The first is “nonrelativistic,” particle dependent while the
=#+/B. The presence of this minimal length uncertainty im- second is “relativistic” (¢ dependentand universal. We are
plies that no position representation exists. The concephterested in what happens at and above these temperatures.
which proves to be the closest to it is the quasiposition rep- The constan{3 which appear in the KMM algebra is a
resentation in which the operators are nonlocal: free parameter. What numerical value can it assume? It was
L suggested 32] that the minimal length uncertainty 3
A . A . should be of the order of the Planck scale. We shall adopt a
P= \/_—Btar(_'h‘/ﬁaf)’ X=&+h\BtanifiBoy). (2 less restrictive point of view here. The only constraint is that
the deformed commutator should not lead to contradictions
It should be emphasized that the second part of the positiowith the predictions of the orthodox theory which have been
operator plays an important role. If it was not present, theobserved experimentally. Our attitude is inspired by recent
theory would admit position eigenstates which would haveworks which have shown that a new physics may take place
finite energy. This is of course forbidden by the existence ofvell before the Planck scal@3]. Taking the most stringent
a minimal uncertainty in length. This representation is foundphenomenological constraifit/3<10"%m [4], one finds a
by projecting on states of maximal localization. For details,Jower bound to the characteristic relativistic temperature:
see Ref[1]. T.=10 K. If one assumes the minimal length uncertainty
The deformations studied here produce a theory which iso be of the order of the Planck scale, tHEn= 10 K.
endowed with a minimal uncertainty in length. This means We now briefly summarize the formula of statistical phys-
one cannot measure distances with arbitrary precision, evens we will need. In the usual theory, a system which is in
by increasing the momenta of the particles involved. It hasontact with a large heat reservoir and does not exchange
been argued that a similar situation is likely to occur whenparticles with the surroundings has to be studied in the ca-
quantum gravity sets in. This can be taken as a motivatiomonical ensembl¢34,35. Its equilibrium state will be de-
for studying some aspects of this toy model. scribed by a fixed temperature and a fixed particle number
The most obvious extension to a three dimensional spacehile its energy will fluctuate around a mean value. Strictly
is obtained by taking the tensorial product of three such copspeaking, for such a system the particle numies fixed
ies. It will be referred to as th&; model. It has translational once and for all. But, one knows that when phase transitions
invariance but lacks the symmetry under rotations. Anotheare not present, the descriptions given by the canonical and
extension preserves rotational and translational symmetry; the grand canonical ensembles are very close. This will be
will be referred to as thé, model. Its commutation relations used to compute the chemical potential in the canonical en-

®

are semble where the calculations are easier.
o ) L The most important quantity will be the canonical parti-
[X; . Pe]=i1%(f(p?) 8k +a(PH)P;pK),  9(p?) =4, tion function Z(T,V,N) which is defined in terms of the
) Hamiltonian operatoH by the equation
Bp
f(pY)=——. 3
A 1+2pp? @ a
We will need the form of the momentum operators in this Z(T,V,N)zTrexp( a ﬁ) ©
model:
“ (R8T 9 S The free energy is related to the partition function by
=—ifh ——A| ——, where A= —.
Pi Zo ( 2 ) 43" 21 o0&t
(4) F(T,V,N)=—-KTInZ. (7)

Although the modelA, is physically better motivated, we

shall analyze the thermodynamics of both extensions. Thén these variables the pressiRethe entropyS the chemical
interest of such a study is that it reveals some generic progpotential «, the internal energy) and the constant volume
erties which are shared by these kinds of deformations.  specific heaC,, read
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5 IF S IF IF L G
=— ., S=——, u=-—, n= arcta (13
v aT N 2mh B UVEL)
_ U and replacing, as usual in statistical physics, the lehgby
U=F+TS and Cv=37- ®  an integral on position, we find
1 2
— —p“/2mkT
A. A; model Z(T,V,1) hf dxdp1+/3p2e . (14

1. Low temperatures
The formula given in Eq(14) admits a semiclassical inter-

retation. Let us first consider its limiting cage=0. Clas-
ically, the system can be seen as a point evolving in phase
space. The probability for the system to be in a conflguratlon

Low temperatures correspond to nonrelativistic behaviors
Let us study a noninteracting nonrelativistic gas. One has t
solve the Schidinger equation for a particle in a cubic box
of lengthL. This will be done in the quasiposition represen-
tation because of the lack of a position one. For simplicity,n Which the first particle is in the reglortql_dql,pl
let us first consider a one dimensional system; one obtam§dp1, the second particle in the reg|0q2+dq2,p2
the solution +dp,, ... is proportional toe EC@P and proportional to

the number of elementary cells contained in the volume of

the aforementioned region. At the quantum level, the Heisen-
©) berg uncertainty relation of the usual theduyritten in the

one dimensional cagé p;Aq;=#/2 assigns to each elemen-

B
- " _ tary cell a volumeh. The number of such cells contained in
When the periodic - boundary —conditiony(t,£=0) the region under consideration is therefore

=y(t,£=L) isimposed, one finds the quantization of energy

N d3p d3q
1 2hi\Bn —. (19
>mB tar?( 3 ) , (10) e

(n being an integeralready obtained in Ref§l,5]. This
leads to a cutoff in order to avoid a nonmonotonic dispersio

(L, &) xe‘Etexp< i—g arctany2mp#E |.

E.=

One sees that in the new theory, one can simply keep the
rJ'Jsual dispersion relation and modify the elementary cell vol-
ume. At the quantum level, this appears as a Jacobian linked

relation:
to the change of varlabless\(—> p). This could be anticipated
L with a semiclassical reasoning. The new Heisenberg uncer-
Negyp=E|——|, 11 tainty relation implies
sup 4ﬁ\/E ( ) y p
h

E being the integer part functigimot to be confused with the AxAp= §(1+,3< p%). (16)
energy.

This cutoff ng,, is necessary in order to prevent a diver- |t assigns to the elementary cells of the phase space of the
gence of the partition function which would take place oth-new theory a volumé(1+ Bp?) which replaces the usual
erwise, due to the periodic nature of the enefy. (10)].  factorh. From this we could conjecture a simple recipe when
But this still allows an infinite energy provided that the dealing with the semiclassical approximation: it is obtained
length of the box is fine tuned in such a way that the result Oby keeping the classical dispersion relation but modifying
its division by the minimal length uncertainty is an integer.the measure in a way consistent with the new Heisenberg
This would not be problematic since such an energy wouldincertainty relation.
have a vanishing contribution to the partition function. This  However, it should be noted that, in the new theory, the
conclusion will remain untouched at high temperatures.  range over which one integrates is finite, due to the presence

The one particle partition function is given by the formula of the cutoff which depends on the volume but not the tem-

perature:
ot T T |_|
psup—\/—_ﬂ, with  t=tal 5 2B a5l
(17)

In this formula| x| represents the integer part of the number
x. Due to the equality

Nsup

Z(TV,1)=2 e &/KT
n=0

12
The sum om can be approximated by an integral dn if x|

the size of the box is big enough. Introducing the integra- lim—=1, (18)
tion variablep by x—oo X
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the upper bound goes to infinity and the volume of the el- The integral givingJ cannot be computed analytically.
ementary cell tends to the usual one as the deformation paiowever, the qualitative features of the theory can be ob-
rameter is sent to zero. It can be anticipated that, because ti@ined quite easily. When the deformation parameter goes to
integrand of Eq(14) is a rapidly decreasing function, taking zero,J assumes the value 1. As we shall show in a moment,
the upper bound to be infinite will not introduce an appre-the following parametrization holds:
ciable error in most cases.

Going to the three dimensional extensidn, one has T
simply to take the product of the elementary cells in the three J=1+ 1T, too
directions. The integral over the positions is obvious; the

change of variablev=p?/2mkT allows one to write the one Working to second order, we find
point partition function as

2
T 23

T

Te

Ta) o NARE
v J T O, (20— 01) T,
Z(TV,)=—J,
! log| 1+ T+2 12(Tﬂ (24)
=10 01— O— =0 - .
with I T 2 27T,
1 (s, T |1 3 The last formula’s interest lies in the fact that it allows a
J= —J pexp(—w)w‘l’2 1+ 2—w) do| , more compact expression of the entropy:
Jmlo Te
5 V [ 2amkT)| ¥
hz |12 t? T, 19 S=NKk| 5 +logao | +Nklog) 2
“l2amkT) 0 Y2 T (19
: . T 1 T\?
When g vanishes, the upper bound equals infinity and the X|[1+20y=—+|30,+ 02 || = , (25
integral givingJ assumes the value one so that the unde- Te 2 Tc

formed theory is recovered. The total partition functioms ) _
found to be related to the usual ofieorresponding tg3 SO that an adiabatic process takes the form:
=0 and now denoted, ) by the relation

VT3 1- 20,2+ ~30p4 1 0?|[ = ’ (26)
z=z, I\ (20) T, 2727\ T,) |
The free energy then becomes The formulas displayed in Eq$22) are used to recast the
equation of state and the specific heat as
F=F, —NkTInJ. (21
. iy , . T T)\?
The thermodynamical quantities are affected in the following p=P|z+0o,=—+(20,— )| =] |,
way: 2 Te Te
B 143 B 143 C_Nk3+2 T+6 3,2 T\?
P_P*+NkT3W’ S—S*+NkInJ+Nijﬁ, v= 2 0'1TC (605 0'1) T |
(27)
= kTInJ Nle 7 U=U, +NkT? J Considering th i
pm=p,—kTInJ— 3N =U, 3T onsidering the reaction
aA+bB=dD+eE, 28
Cy=Cj+ 2NKT= aJ+NkT2{ l(ﬁ‘])2+la2‘] “
Vo JaT J2\oT] "3 aTe) the expression of the chemical potentjalshows that the

(22)  densities at equilibriunX;=N; /V obey the modified law of

action of masses
As can be seen from Eq19), J depends on the volume

only through the cutoff whose influence will be seen to be (4.

negligible for the system under study. Thus, the equation of “D°E _ teg3/2(-a-b+d+e)
statePV=NKT will remain valid, thanks to Eqs22). The XaXE
presence of the temperature and the absence of the number of
particles in the expression df results in the fact that the
entropy receives two contributions while the last term of the
chemical potential in Eq$22) vanishes. The internal energy

is also modified and by way of consequence the specific heaince each particle, having its own mass, possesses a specific
at constant volume too. critical temperature.

T T
1+2d01'DT_D +2e0-1’ET_E
c, c,

T T
—2a0'1AT—A—2bO'1YBT—B y (29)
c, c,
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Let us now evaluate the integral in order to have
numerical estimates of the constants. We shall use the

MacLaurin expansion with a remainder. Let us separate the

integral of Eq.(19) in two parts:

1 T2T Osup
Pr=trt= | [ [ @
= oo %0
On the second interval, the inequality
1 1 31
—g_
1+ 2T 2 3D
T.”

can be used to obtain the majorization

| 1 Osup 12 1 F(l Tc) F(l )}
<s— e “ =——\I'lz,==|-T| 3, .
2 2\/; T /2T w 2\/; 2'2T 2 wSUp
(32)
The asymptotic formula
I'(a,z)~z22"le ? for z—w (33

shows that
—1/2
| ,<cSt E ex —E
2 2T 2T

Since, for a reasonable, the characteristic temperatufe
is reasonably expected to be very high, the intetyathich

+ CSth_ul’gzqu — Wsyp)-
(34)

contains the influence of the upper bound can therefore b

neglected.

To evaluatel,, we shall use the MacLaurin theorem

which states that for any sufficiently regular functibale-

fined on an interva]0,a] and for any pointw on that inter-
val, there exists another poirff{w) on the same interval
such that

1 1
f(@)=F(0)+1' (0 0+ 51"(0)w?+ £ 1"[f(w)]o®.

(39
This gives
G TCL 2 24 Zimg 3
?— —T—Ca) T_C w 6 [ (w)]w.
T—Cw
(36)
This enables us to find
1 Tc/2T 2T 2T\?
l,—— f doe ®ew 12 1——w+(—) w?
! \/;( 0 Tc Tc
N | 1 (T2t 5o
s=maxf”(x —j dwe “w” (3
(x) 6vmlo 7)

PHYSICAL REVIEW D68, 125004 (2003

On the interval involved, the following inequality is verified:

2T\3
|ma>q"”(x)|sc5t(_|_—> ) (38
C

The integrals remaining in Eq37) can be expressed in
terms of complete and incomplelefunctions. The final re-
sult reads:

R L

From this one reads the values of the coefficients

The predictions of usual statistical physics are known to
be quite accurate in ordinary conditions. We shall use this to
give an estimate of the bound thermodynamics imposes on
the deformation parameters. Consider the helium whose spe-
cific heat at constant volume assumes an experimental value
comprised between 12.39 and 12.41 Jknole ®. The un-
deformed theory assigns the value 12.47 3Kole ! to
any nonrelativistic gas. Thanks to Eq&7), we can write the
specific heat in the new theory as

T
Cy= 12.47( 140, T—) . (40)

C

The measured value tells us that 1439,<12.41. Assum-

ing T=300 K, the prediction of the model does not get out
of the experimental bounds provided thiat=10° K which
inducesB=<10"“°. One then finds a minimal length uncer-
tainty <10 2> m which does not disagree with the bound
Gerived from atomic physics consideratiops: 1016 m [4]

but is less precise. It should be stressed that this only gives
an idea of the order of magnitude since we did not include
interactions between the atoms. The estimated temperature
T. at which something new should happen is too high for the
nonrelativistic approach to be reliable. Thus the interest of
the next subsection.

2. High temperatures

The deformed Klein-Gordon wave equation for a mass-
less patrticle in a box leads to the spectrum

, C? 27Ny 2mn,
Eﬁ_ﬁ tar?| /B - +tar?| B - )
ttar? WEZW”Z) | (@1

Replacing the sum by an integral, one obtains for the fattor
appearing in the partition function the expression

J:f S“pdxf S“"dyf dz o(xy.2), (42
0 0 0

where
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1 T? T? T2 On+1 Tor Uﬁ+1 On+2| [ Ter 2
e(X,y,2)=— 1+—x2>(1+—y2)(1+—z2 p=P|[(3—n)— —+ -2 (—) :
m Tgr Tgr Tgr on T (Tﬁ Tn T
1 (48)
TCI‘
X[expVx°+y2+29)]| Wsup= L. The law of action of masses now assumes the form:
dye
(43 %:CstT(S—n)(d+e—a—b) 1+(d+e—a—b)
XaXg
. . e - . A’MB
Let us first consider a temperature verifyilgT,, <1, with
an upper bound which is practically infinifel, t/T>1, t 1 aﬁﬂ Onio) [ Ter)?
being given by Eq(17)]. In this case, replacing the domain 2 o2 - o T I (49
n

of integration, a cube, by a sphere should not introduce an

important error. The result reads Let us find the integen. One hasT/T.,<1 and Tt/T
<1. Now, the domain of integration is small and so the

{5)( T\? () T\ exponential appearing in the functiancan be expanded in
J—1—12—§(3) T +288—§(3) T, (44) polynomials. The function + T2/T?x? admits two Taylor

expansions; the region in which< T/ T, will be denotedA;
From Egs.(22), one finds the equation of state and the ex-the other one will be denoteld. The same situation occurs

pression of the entropy for y andz this leads to a partition of the domain of integra-
tion. The most important contribution reads
5)[ T\2 7 5 T\*
Py ot >(_> +288{4z( )_(5( >”<_) .
p 5(3) Tcr 5(3) §(3) Tcr JAAA:F- (50)

l)z The dependence on the volume is negligible. Comparing
hc ()T with Eq. (46), one has= 3 so that the equation of state is, to
4 first order,p~0.
+28£{5@+(@> (l) ] (45 In this theory, statistics will play a role at high tempera-
43) L3\ Te ' ture. As is evident from Eqg42) and(43), J will go to zero
as the temperature increases. The Bose-Einstein distribution
Like in Egs.(25) and(27), one obtains small departures
from the unmodified theory. N, = Yi (51)

ol {55
S=4Nk+ Nklog 87TN— 1-36_ 45+

cr

€
3. Very high temperatures exy{ KT V) -1
i 9 i [ r . . e
What happens at very high temperatures? Like in the prer?fuces to the Maxwell-Boltzmann’s one only in the limiting

ceding subsection, the most salient features can be captured

from the behavior ofl. As the temperature is increased, the
form of the its integrand and its upper boufigs. (43)] er<]. (52

show that] goes to zero. An approximation of the form ) o )
Thanks to the relation giving the total number of particles

T\ T |" L T | "2 N=2;N;, one is led to the condition
J:“n(?) +"n+1(?) TOn+2 ?) NN [T s
Ve < — < P
€= Za vy STV he) Y (53

with n a positive integer will hold. Keeping the first two One concludes that neglecting statistics is accurate, at very

corrections one shows, by computations similar to those ohigh temperatures, only for systems whose densities are very

the preceding subsection, that the entropy takes the form small (J~T3). If this is not the case, the appropriate inte-
grand in the evaluation of for bosons for example is

k3 v
= 4NK-+NKkI Mg — T 30 1 T2 T2 T2
S 09{8776 (Tn(hc)3 CrN (P(X,y,z):_| 1+_2X2 1+_2y2 l+_222
m
cr cr cr
10’ﬁ+1 On+2 Tcr)2 -1
X — — =
Tl e T 0 X[exnm)—ﬂ] : (54

(from which the equation of an adiabatic process can be deFhe normalization constant; ensures thal=1 in the un-
duced while the equation of state reads deformed theory. One finds the dominant part is given by
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T 2
Jaan= —Z—|og(2ﬁ)+3 log(1+ ﬁ))(%) .

In the formula givingJ, one now han=2 and the associate

equation of state for a gas of bosons takes the foraP.
We treat in more detail thé\, model in the following
section. Our choice is mostly due to the fact that the
model, possessing spherical symmetry, givess a one di-
mensional integral, contrary to th, model[see Eq.54)].

Apart from leading to simpler formulas, this model seems | p
also more suitable to the treatment of a Robertson-Walken

universe because of this rotational symmetry.

B. A, model

PHYSICAL REVIEW D68, 125004 (2003

B ( V(kT)3 g(5)( T )2
Sb0—4Nk+Nk|Og 877N % 1+90@ T_Cr

{(7) £(5) ZK T )4])
+45c{21@+4(@) | (]

For fermions, the behavior is roughly similar but the de-
tails are different:

{5)( T)\?
e:3+75_<T_cr)

] D oSO T
+2[441§(3) 125(§<3)) Tor)

(59

P/

In this case, the action of the first position operator on the

plane wavapk(t,é) =exp(—iEt+k & +ké+ksé3) reduces to
. . . * ﬁ2 T
pllﬂk(tf):_iﬁlﬂk(tf)zo (Tﬂkz) - (56)

The sum of the left hand side converges only whigik?

<2/\/B; this is the cutoff. As shown in the last subsection,

( V(kT)3[ 225§(5)( T )2
Sie=4Nk+ Nklog 8WN — {1+

fic 2 {(3)\ T
B 1o S 1|
"8 {441«3)“0 §<3>) 7. | ©

When the temperature becomes of the order of the critical

we do not learn much from the deformed nonrelativistictemperature, an important change takes place. The domain of
theory; we then go directly to high temperatures. The soluintegration forJ in Eq. (58) becomes small and so one can

tion to the wave equation gives the dispersion relation

2

i -1
2
1+ 5 k

E=chk , (57)

from which one infers the quantity controlling the departure

from the unmodified theory, for fermions and bosons:

- 1-1
1 V2(Tep IT) X
J =—J dxx?| expf ——— | 1| ,
P 2¢(3) )o d AT
+ = —x
I 272 |
r 1-1
2 V2(Te IT) X
J =—f dxx@| ex +1
©73¢(3))o P L
+ - —x
I 2712 |
(59

For temperatures smaller thdp, , a Taylor expansion of the

term in parentheses and an approximation of the upper bound
of the integral by infinity holds. This leads to the following
expressions for the equation of state and the entropy in the

bosonic case:

ol §<5>( T )2
(p)bo‘3+6°z<3> Tor
LT
+36c{21§<3> 5(5(3)) Tol "

approximate the integrand by its Taylor expansion near the
origin. The difference between bosons and fermions enters
into play through the difference of signs which leads to
different powers in terms of the temperature. Developing the
full integrand in Eq.(58) to the fourth order irx, one finds

1 [3(Te\? 1 (Te\3
gz 1) 277 |

sl 7] 7 |
Y 3@lel T) Tl T )

A computation to an order greater than the one to which we
have limited ourselves brings in small corrections to the co-
efficients 13/16, etc. Using Eg&t8), one then finds the ex-
pression of the entropy and the equation of state. The differ-
ence is significant between the two statistics as can be seen
from the following equations:

(62)

Py 2 Ter 8 (Tcr 2
(5)b0—1+§ﬁ?+8—1 T

(62

p _3Tcr+9Tcr2
p/,, 8T 64\ T)"

A numerical computation supports our approximation

scheme.
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al cannot infer this to be the case for each of its parts. This will
be established for black body radiation elsewhere.

3 IV. CONCLUSIONS

We have studied the thermodynamics induced by a non-
local theory which exhibits a minimal uncertainty in length.
We have obtained that a new behavior sets in at very high
temperatures. The difference between fermions and bosons is
11 more important than in the usual case.

The fact that bosons dominate over fermions may mean
that as the temperature is increased, fermion modes start
crowding close to the cutoff while bosons can keep packing

1 2 3 4 more energy into modes of high energies.
FIG. 1. p/p plotted as a function of /T, for bosons and fer- It is worth mentioning some aspects which have not been
mions. raised in this work. At the fundamental level, one can ask if

the concept of spin is relevant in these theories and, in the

In Fig. 1 we plot the ratios between the density and the®@S€ the answer is positive, one still has to study the relation
pressure for a gas of bosoffermions. For temperatures between spin and statistics in the new context. As the spin of
smaller than the critical one, these ratios are close to theft Particle is defined, in the modern approach, through the
known value 3 in the undeformed theory. The two functionsP€havior of its wave function under the Lorentz group, one

then rise above this value as predicted by E§8) and (60). has to fin(_:i its gengralization in the new co_ntext. For ex-
They finally tend to the asymptotic values 1 and 0 as ob@mple, taking the ultimate structure of space-time to be given
tained in Eqs(62). by a particular noncommutative geometry, the relevant alge-

Let us note that the behavior of the two models, althougH'@ IS not the Poincarelgebra but itsy deformation. A no-
similar in the limiting case of very high temperatures, dis-tion of spin has been defined in these theories and the wave

play some qualitative differences. As can be seen by compafduations for particles of spin 0, 1/2 and 1 have been found
ing Eqs.(45) and (60), in the A, model the density-pressure 36]. Although the question has not been addressed in KMM

ratio does not rise above the usual value 3, contrary to whdf'€°ry, We hope for a similar situation to occur. We expect a
happens im,. ge'nerahz.at]on of the notion of spin which conserves the
We have here a manifestation of the domination of bosonSP!N-statistic theorem.

in this context: their density-pressure ratio goes like a con-
stant while the one corresponding to fermions vanishes.
Their entropy is also the only one to be considered at scales | warmly thank Ph. Spindel and Ph. de Gottal for useful
much higher tharT, as they correspond to=2 in Eq.(47)  discussions about thermodynamical effects in trans-
while for fermions one has=3 [see Eqs(61)]. Although  Planckian physics. | also thank G. Senjanovic, A. Ozpineci,
the ratio we considered is much higher for bosons, one stiland W. Liao for interesting remarks.
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