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Gravitational field around a timelike current-carrying screwed cosmic string
in scalar-tensor theories
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In this paper we obtain a space-time generated by a timelike current-carrying superconducting screwed
cosmic string~TCSCS!. This gravitational field is obtained in a modified scalar-tensor theory in the sense that
torsion is taken into account. We show that this solution is compatible with a torsion field generated by the
scalar fieldf. The analysis of the gravitational effects of a TCSCS shows up that the torsion effects that appear
in the physical frame of Jordan-Fierz type can be described in a geometric form given by contorsion term plus
a symmetric part which contains the scalar gradient. As an important application of this solution, we consider
the linear perturbation method developed by Zel’dovich, investigate the accretion of cold dark matter due to the
formation of wakes when a TCSCS moves with speedv, and discuss the role played by torsion. Our results are
compared with those obtained for cosmic strings in the framework of scalar-tensor theories without taking
torsion into account.
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I. INTRODUCTION

Scalar-tensor theories of gravity represent the simp
and most natural generalization of Einstein’s theory of g
eral relativity. The earliest scalar-tensor theories consider
massless scalar field with a constant coupling to matter@1#.
Later, scalar-tensor theories were generalized by havin
scalar field self-interaction and dynamical coupling to ma
@2#. More recently, these theories have been generalized
ther to the case of multiple scalar fields@3#. In these theories
@4,5#, the gravitational interaction is mediated by one or s
eral long range fields in addition to the usual tensor field
Einstein’s theory of general relativity. The principal cons
quence of these theories is the fact that at sufficiently h
energy scales@6–8# they can be relevant. If gravity is esse
tially a scalar-tensor theory, there will be direct implicatio
for cosmology and experimental tests of the gravitatio
interaction@9–11#.

Thus, it seems natural to investigate a general theory
gravity which involves scalar-tensor fields, especially tho
aspects connected with the gravitational fields generated
topological defects, such as cosmic strings@12#, and study
their gravitational and cosmological consequences.
gravitational field of a cosmic string, in the context of th
theory of general relativity is quite remarkable: a partic
placed at rest around a straight, infinite, static cosmic st
will not be attracted to it, there is no local gravity. Its spac
time is locally flat but not globally. Thus, the external grav
tational field due to a cosmic string may be approximat
described by what is commonly called conical geometry. T
nontrivial topology of this space-time leads to a number
interesting effects, such as, gravitational lensing@13#, the
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emission of radiation by a freely moving particle@14#, the
existence of an electrostatic self-force@15# on an electric
charged particle at rest, and the so-called gravitatio
Aharonov-Bohm effect@16#, among others. Therefore, th
richness of effects produced by this defect as well as the
ideas this object brought to general relativity seems to jus
the interest in the study of this structure, and specifically
possible role played by it in the framework of cosmolo
due to the fact that it carries a large energy density, es
cially in the context of scalar-tensor theories of gravity d
to their relevance at high energies in which scale topolog
defects could be formed. In this context, some authors h
studied solutions for cosmic strings in Brans-Dicke@17#, in
dilaton theory @18#, and in situations with more genera
scalar-tensor couplings@19,20#.

Torsion fields play an important role in the geometry o
cosmic string whose presence could have influenced the
mation and evolution of structures in the Universe@21#. As
an example of effects produced by torsion we can men
the one which corresponds to the contribution to neutr
oscillations@22#. The fact that torsion could influence som
physical phenomena led several authors to argue that tor
may have been an important element in the early unive
when quantum effects of gravity were drastically importa
@23,24# and for this reason have to be taken into account
the context of cosmology torsion is important and produ
modifications of kinematic quantities, like shear, vorticit
acceleration and expansion@7,25–29#.

Taking into account the arguments concerning the imp
tance of torsion and that scalar-tensor theories of gra
could be important at least at sufficiently high energy
which scenario topological defects, such as a cosmic st
could be formed, we investigated a modified scalar-ten
theory of gravity in the sense that a torsion field is pres
@30,31#. Based on this modified scalar-tensor theory we
termined the space-time generated by a screwed super
©2003 The American Physical Society20-1
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ducting bosonic cosmic string and studied some of its f
tures.

Following this approach, in this paper we will determin
the space-time generated by a timelike current-carry
screwed cosmic string~TCSCS! and investigate some of it
physical consequences. In this background, an interesting
pect to consider are the anisotropies of the cosmic mic
wave background radiation~CMBR!. These anisotropies
were analyzed using numerical simulations of high reso
tion which demonstrated the existence of scale densities
revealed the presence of significant small-scale structure
strings or ‘‘wiggliness’’@32–35#. This substructure has im
portant dynamical consequences and also causes loop fo
tion on scales much smaller than the horizon. These res
suggest that long strings are more important than loop
seeding density perturbations@36,37#.

The assumption that a string network@38,39# presents
wiggles, leads to the conclusion that wiggles cosmic stri
accompanying strings with low velocities, present a sign
cant peak in the CMBR and an enhancement in the ma
power spectrum. The scale of the wiggles is much sma
than the characteristic length of the string. In fact it w
argued that a distant observer will not be able to resolve
details of the wiggly structure, and therefore, in this case
not possible to distinguish the wiggle cosmic string of tho
generated in the presence of torsion. For this reason
important to investigate with details this framework with to
sion and its possible effects.

The interesting effect which can be studied is the acc
tion of the cold dark matter by wakes when the cosmic str
is moving in a space-time with torsion in the context of
scalar-tensor theory. This effect was studied taking into
count the string power spectrum obtained in simulatio
projecting this forward to the present day using linear the
of transfer functions for both cold and hot dark matter. T
was an invaluable first step, but further developments
necessary because strings create nonlinear objects at
times and power spectrum provides an incomplete desc
tion of non-Gaussian perturbations. Our work assumes
same idea, but using torsion as an essential element. In
study of wiggles, the approach considered frequently is
one proposed by Zel’dovich@40#. Here, we will assume tha
this is the correct mechanism to study wiggles also wh
torsion is present. This assumption is justified by the fact t
this mechanism considers nonlinear effects. We will de
mine the time-dependent metric in linearized gravity for
bitrary evolving string configurations. As we will see the u
of the Zel’dovich approximation in this scenario induces p
turbations grown in a cold dark matter universe. In doing
we postulate that the small-scale structures existing
wiggles strings can be approximately scaled by the geom
cal deformation that torsion produces@30#.

In this work we study the implications on these pheno
ena when we have a TCSCS. Our purposes are to obtain
gravitational field surrounding a TCSCS and study some
its consequences, in particular, how the cosmological eff
of long strings are affected by torsion and scalar fields
compared with the corresponding results in general relativ
One important effect which will be studied is the accretion
12402
-

g

s-
-

-
nd
on

a-
lts
in

s
-
er
r

s
e
s
e
is

-
g

c-
,
y
s
re
arly
p-
e
he
e

n
at
r-
-

-
,

in
ri-

-
the
f
ts
s

y.
f

the cold dark matter by wakes when a TCSCS is movi
Thus, in order to study this phenomenon we will analyze
formation and evolution of wakes in this space-time w
special emphasis to the role played by torsion in the proc
of formation of wakes. Also we will consider a possible e
planation to the anisotropies of the CMBR, which will b
done by the analysis of perturbations in this backgrou
This problem is most conveniently studied using the line
perturbation methods developed by Zel’dovich@40#. In this
approach we consider the universe in the matter-domina
era t.teq with scale factora(t);t2/3, and average density
given byrav51/6pGt2.

This paper is organized as follows. In Sec. II we presen
short description of scalar-tensor theories with torsion fie
with a discussion of geodesics based on energy conserva
and in terms of contorsion. In Sec. III we obtain the soluti
that corresponds to a screwed cosmic string carrying a ti
like current TCSCS by applying a method used by Linet@41#
to solve the linearized Einstein’s equations. In Sec. IV,
study the scattering by a TCSCS, and in Sec. V,
Zel’dovich approximation in a theory with torsion is intro
duced. In Sec. VI, we study the accretion of cold dark ma
by wakes. Finally, in Sec. VII we provide some closing r
marks.

II. SETTING UP SCALAR-TENSOR THEORIES
OF GRAVITY WITH TORSION

In this section, we consider some basic features of sca
tensor theories of gravity with the inclusion of torsion. A
important aspect to point out in these theories is the inform
tion concerning the presence of torsion which comes ou
the geodesic equations written in the Jordan-Fierz frame.
important to call attention to the fact that usually test p
ticles are affected by torsion if they are fermions. In o
model, indeed, bosonic particles can also be affected by
torsion background. This effect appear in the geodesic eq
tions which present contributions arising from torsion. If w
only consider metric aspects, that is, if the metricity con
tion “mgab50 is assumed, we find that the connection o
Riemann-Cartan manifoldU4, is given by

Gln
a5$ln

a %JF1Kln
a , ~2.1!

where$ln
a %JF is the usual Christoffel symbol evaluated in th

Jordan-Fierz frame with metricg̃mn . The contortion tensor
Kln

a reads

Kln
a52 1

2 ~Sln
a1Snl

a2Sln
a!, ~2.2!

whereSln
a is the torsion. As torsion can also exist in th

absence of fermionic particles@8#, let us assume that th
dilaton can generate torsion which can be written, in terms
this field, as

Smn
l5~dm

l ]nf̃2dn
l]mf̃!/2f̃. ~2.3!

In this case the curvature tensor is defined as in a R
mannian space, using however the connections defined
0-2
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U4, instead of the Christoffel symbols. The action is t
same of the Refs.@8,5,30# and takes the form

I 5
1

16pE d4xA2g̃F f̃R̃~$ %!2
k~f̃!

f̃
]mf̃]mf̃G

1I m~ g̃mn ,Cm!, ~2.4!

wherek(f̃)5v(f̃)2e, with v(f̃) being a general function
of the scalar field ande is the torsion coupling constant@5#.
The scalar curvatureR̃($ %) is evaluated in the Jordan-Fier
frame and the action corresponding to the matter field
represented byI m(g̃mn ,Cm).

In the physical frame of Jordan-Fierz type, the equatio
for the metric,g̃mn , are

G̃mn5
k~f̃!

f̃2 S ]mf̃]nf̃2
1

2
g̃mng̃ab]af̃]bf̃ D18pGT̃mn .

~2.5!

If we consider that the action of matter does not ha
fermionic fields, we find from Bianchi identities that

]n~A2g̃T̃mn!1A2g̃$na
m %JFT̃mn50. ~2.6!

This result permits us to write the geodesic equations
terms of the connection only and therefore, the contort
term does not appear. Then, in this case, the geodesic e
tions are

d2xm

dt2
1$ab

m %JF

dxa

dt

dxb

dt
50. ~2.7!

This is the correct result corresponding to geodesic eq
tions in the cases where spin is not present. It is worth cal
attention to the fact that this result does not means that
sion in our work does not contribute to geodesics. In fact,
contributions arising from torsion, in the case where spin
not present, are coded in the metric written in Jordan-F
frame and taking into account the contortion. The tors
contribution to geodesic equations becomes evident if
write these equations as a function of the dilaton field. T
action proposed in Eq.~2.4!, in Jordan-Fierz frame can b
transformed to another frame called Einstein frame, usin
field dependent conformal transformation@27# given by

g̃mn5L2~f!gmn , ~2.8!

and defining the quantitiesL2(f) anda2(f) as

GL2~f!5f̃21

a2~f![S ] ln L~f!

]f D 2

5@2v~f̃!13#21. ~2.9!
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Therefore, we can calculate all quantities in the Einst
frame and reexpress all of them in the physical frame
Jordan-Fierz type just by using the above conformal tra
formation.

Now, let us analyze Eq.~2.7! with the torsion written
explicitly. To do this, it would be better to write Eq.~2.7! as
a function of the contorsion. Thus, let us consider the Chr
offel symbols in the Jordan-Fierz frame as a sum of
Christoffel symbols in the Einstein frame$ab

m %, the contor-
tion given by Eq.~2.2! and the dilatonf, as

$ab
m %JF5$ab

m %1K (ab)
m1

a~f!

2
~da

m]bf1db
m]af!,

~2.10!

where the contorsionK (ab)
m can be written, explicitly, as

K (ab)
m5

a~f!

2
~da

m]bf1db
m]af22gabgmn]nf!,

~2.11!

and the dilatonf is the solution of the equation of motion

hgf524pGa~f!T, ~2.12!

where

hgf5
1

A2g
]m@A2gk~f!]mf# ~2.13!

is the d’Alembertian in this background andk(f) is defined
as

k~f!5122ea2~f!, ~2.14!

with e being the torsion coupling constant.
The important point to call attention here is the fact th

the symmetric part of the contorsion appears in the Chris
fel symbols in the Jordan-Fierz frame, which is the fram
where the physical quantities are measurable. Notice tha
torsion effects are taken into account in Eq.~2.10! and this is
a peculiarity of the Jordan-Friez frame. As we will see
Sec. IV, the expression for the Newtonian force on a t
particle put this point into evidence.

III. TIMELIKE CURRENT-CARRYING SCREWED
COSMIC STRING IN SCALAR-TENSOR THEORIES

In this section we will consider the appropriate action f
matter fieldsI m , which can be used to obtain the solution
a timelike current-carrying screwed cosmic string in scal
tensor theories. The model which we will consider here h
been already discussed recently@30# in the magnetic case
~spacelike current!. In order to recall some features of th
model we will include a brief discussion in this section, wi
the appropriate changes to be considered in the electric c

Using the transformation given by Eq.~2.9!, we can ex-
press action~2.4! in the Einstein frame in the following
form:
0-3
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I 5
1

16pGE d4xA2g@R~$ %!22k~f!gmn]mf]nf#

1E d4xA2g@2 1
2 L2$DmF~DmF!* 2 1

2 DmS~DmS!* %#

2
1

16p
@~FmnFmn1HmnHmn!2L2V~ uFu,uSu!#, ~3.1!

where DmS5(]m1 ieAm)S and DmF5(]m1 iqBm)F are
the covariant derivatives, withAm and Bm being the gauge
fields andF andS the scalar fields. The field strengths a
defined as usual asFmn5]mAn2]nAm and Hmn5]mBn

2]nBm . Note thatk(f), already defined, contains informa
tion coming from the scalar-tensor terma2(f) and from the
torsion through the coupling constante. In this work we will
consider high orders ink(f), because we are interested
the torsion contribution at high-energy scales, when poss
cosmic strings were formed.

The vortex configuration associated with the fiel
(F,Bm) is given by

F5w~r !eiu,
~3.2!

Bm5
1

q
@P~r !21#dm

u ,

with (t,r ,u,z) being the usual cylindrical coordinates wi
r>0 and 0<u,2p. The fieldsw(r ) and P(r ) obey the
same boundary conditions as the ordinary cosmic stri
@42#, namely,w(r )5h and P(r )50 outside the string and
w(r )50 andP(r )51 in the core. The electromagnetic pro
erties are represented by the fields (S,Am) with the configu-
rations

S5s~r !ei z(z,t), ~3.3!

Am5
1

e FAt~r !2
]z~z,t !

]t Gdm
t .

~3.4!

In the string core, theS field acquires an expectatio
value and is responsible for the timelike current carried
the gauge fieldAm which does not vanishes outside th
string. The potentialV(w,s) triggering the spontaneou
symmetry breaking can be written in the most general cas

V~w,s!5
lw

4
~w22h2!21 f wsw2s21

ls

4
s42

ms
2

2
s2,

~3.5!

wherelw , ls , f ws , andms are coupling constants. Consid
ering the analogy with the ordinary cosmic string case, t
potential possesses all the ingredients necessary to driv
formation of a screwed cosmic string with a timelike curre

Now, let us consider a cosmic string in a cylindrical c
ordinate system, in which situation we can write the me
for the electric case in the Einstein frame as@43,44#

ds25e2(g2c)~dr21dz2!1b2e22cdu22e2cdt2, ~3.6!
12402
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whereg, c, andb depend only onr.
A straightforward calculation shows that the Einste

equations appropriately modified to take into account con
butions coming from the scalar-tensor features and tors
can be written, in the Einstein frame as

Rmn52k~f!]mf]nf18pG~Tmn2 1
2 gmnT!, ~3.7!

Gmn52k~f!]mf]nf2k~f!gmngab]af]bf

18pGTmn . ~3.8!

Thus, the Einstein equations in the space-time given
Eq. ~3.6! reads

b958pGb~Tt
t1Tr

r !e2(g2c),

~bg8!858pGb~Tr
r1Tu

u!e2(g2c), ~3.9!

~bc8!854pGb~Tt
t1Tr

r1Tu
u2Tz

z!e2(g2c).

The equation describing the scalar fieldf, in this back-
ground, is given by

@~bk~f!f8!#854pGbTa~f!e2(g2c). ~3.10!

In order to solve Eqs.~3.9! and~3.10!, let us write explic-
itly the components of the energy-momentum tensor in t
case, which are given as

Tt
t52

1

2
L2~f!H e2(c2g)~f821s82!1

e2c

b2
f2P2

1e22cs2At
21L22~f!e22gS At8

2

4pe2D
1L22~f!

e2(2c2g)

b2 S P82

4pq2D 12L2~f!V~f,s!J ,

~3.11!

Tz
z52

1

2
L2~f!H e2(c2g)~f821s2!1

e2c

b2
f2P2

2e22cs2At
22L22~f!e22gS At8

2

4pe2D
1L22~f!

e2(2c2g)

b2 S P82

4pq2D 12L2~f!V~f,s!J ,

~3.12!
0-4
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Tr
r5

1

2
L2~f!H e2(c2g)~f821s82!2

e2c

b2
f2P2

1e22cs2At
22L22~f!e22gS At8

2

4pe2D
1L22~f!

e2(2c2g)

b2 S P82

4pq2D 22L2~f!V~f,s!J ,

~3.13!

Tu
u52

1

2
L2~f!H e2(c2g)~f821s82!2

e2c

b2
f2P2

1e22cs2At
22L22~f!e22gS At8

2

4pe2D
2L22~f!

e2(2c2g)

b2 S P82

4pq2D 12L2~f!V~w,s!J .

~3.14!

Note that in the present case of a timelike current, theTr
r

and Tu
u components have different sign in the electroma

netic part as compared to the spacelike case@30#. In this
situation, because only the temporal component of the e
tromagnetic field is different from zero, the electric charge
the core of the string does not vanish. In next sections
will investigate the consequences of this fact, in the fram
work of the weak field approximation.

Now, we solve the previous set of equations given by
~3.9!, in the region outside the TCSCS, that is, forr 0<r
<`, wherer 0 is the radius of the string. In this region, th
contribution to the energy-momentum tensor of the str
reads

Tt
t52

1

2
e22gS At8

2

4pe2D , Tz
z5

1

2
e22gS At8

2

4pe2D ,

~3.15!

Tr
r52

1

2
e22gS At8

2

4pe2D , Tt
t5

1

2
e22gS At8

2

4pe2D .

If we consider the asymptotic conditions, we can co
clude that only the fieldAm does not vanish outside th
string. In this case, the external solutions of Eq.~3.9! are
formally the same of the scalar-tensor theory@20#, but thef
solution is different and comes from the equation

f85k21~f!
l

r
. ~3.16!

The solutions forb(r ) and g(r ) are the same obtaine
recently@20# and are written as

b5Br, g5m2 ln r /r 0 , ~3.17!
12402
-
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whereB and m are integration constants. If we use Bran
Dicke theory to estimate the order of magnitude of the c
rection induced byk21(f)l, considering particular value
of the parameterv consistent with solar system experimen
made by very large baseline interferometry@45#, we con-
clude that the external solution in this theory for those valu
of v is the same as in the case of the superconducting cos
string in scalar-tensor theory@20#. Thus, we will assume tha
the metric functionc(r ) has the same form obtained in th
case without torsion@20#, and then, it can be written as

c~r !5

S r

r 0
D n

~11p!

S r

r 0
D 2n

1p

, ~3.18!

where now the parametern is such that the following relation
holds: n25k21(f)l21m2, which is the same result ob
tained in@30#.

Therefore, the external metric for the TCSCS takes
form

ds25S r

r 0
D 22n

W2~r !F S r

r 0
D 2m2

~dr21dz2!1B2r 2du2G
2S r

r 0
D 2n 1

W2~r !
dt2, ~3.19!

with W(r )5@(r /r 0)2n1p#/@11p#. In order to get all infor-
mation concerning the current in the core of the string
will use the weak field approximation~for details of this
procedure see Ref.@20#!, in which case we can write the
following relations:

gmn5hmn1hmn ,

L~f!5L~f0!1L8~f0!f (1) ,
~3.20!

Tmn5T(0)mn1T(1)mn ,

f5f01f (1) ,

where L8(f0)5L(f0)a(f0), hmn5diag(2,1,1,1) is
the Minskowski metric tensor, andf0 is a constant.

In this case, the energy-momentum tensor of the str
sourceT(0)mn ~in Cartesian coordinates! has the following
components:

T(0)tt5Ud~x!d~y!1
Q2

4p
¹2S ln

r

r 0
D 2

,

T(0)zz52td~x!d~y!1
Q2

4p
¹2S ln

r

r 0
D 2

,

~3.21!

T(0)i j 52Q2d i j d~x!d~y!1
Q2

2p
] i] j ln~r /r 0!,
0-5
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where the energy per unit lengthU and the tension per uni
lengtht, are given, respectively, by

U522pE
0

r 0
T (0)t

t rdr ~3.22!

and

t522pE
0

r 0
T(0)z

z rdr , ~3.23!

and the charge in the core is given by

Q522peE
0

r 0
rdrs2At . ~3.24!

Now, let us find the matching conditions connecting t
internal and external solutions. For this purpose, we shall
the linearized Einstein-Cartan equation in order to find
internal solution. These equations are given by

¹2hmn5216pG~T(0)mn2 1
2 g(0)mnT(0)!. ~3.25!

At this point let us use a method applied by Linet@41# to
solve the linearized Einstein’s equations using distribut
functions. Doing this, we find that the internal solution of E
~3.25! with time-independent source is given by

htt524G̃0@Q2$ ln~r /r 0!%21~U2t2Q2!ln~r /r 0!#,

hzz524G̃0@Q2$ ln~r /r 0!%21~U2t1Q2!ln~r /r 0!#,
~3.26!

hi j 52G̃0@Q2r 2] i] j22d i j ~U1t2Q2!ln~r /r 0!#.

It is worth calling attention to the fact that torsion do
not appear explicitly in the components of the metric. This
a consequence of the linearized approximation in thef field.

In this case, we can find the matching conditions using
fact that @$mn

a %#
r 5r 0

(1) 5@$mn
a %#

r 5r 0

(2) and given by

@garK (mn)
r#

r 5r 0

(2) 5@garK (mn)
r#

r 5r 0

(1) , for contorsion @46,47#

where (2) represents the internal region and (1) corre-
sponds to the external region aroundr 5r 0 . Then the conti-
nuity conditions are

@gmn#
r 5r 0

(2) 5@gmn#
r 5r 0

(1) ,

~3.27!F ]gmn

]xa G
r 5r 0

(2)

5F ]gmn

]xa G
r 5r 0

(1)

.

Now, let us find the solution of the equation for the fie
f. It is given by

hgf (1)524pk21G̃0a~f!T(0) , ~3.28!

whereT(0)52(U1t1Q2)d(x)d(y) . Then, the solution of
Eq. ~3.28! in terms of the new coordinate,r5r @11G̃0(4t

2Q2)24G̃0t ln(r/r0)12G̃0Q
2ln2(r/r0)#, is given by
12402
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f (1)52G̃0k21~f!a~f0!~U1t1Q2!ln
r

r 0
. ~3.29!

Taking into account the linearized forms of the exter
and interior metrics, we obtain

m254G̃0Q2,

B25128G̃0S t2
Q2

2 D ,

l52G̃0a~f0!~U1t1Q2!.

Finally, if we rewrite Eq.~3.26! in terms of the new co-
ordinater and use the result given by Eq.~3.29!, the metric
for a TCSCS, in the Einstein frame, can be written as

ds25H 124G̃0FQ2 ln2
r

r 0
1~U2t1Q2!ln

r

r 0
G J ~dr21dz2!

2H 114G̃0FQ2 ln2
r

r 0
1~U2t2Q2!ln

r

r 0
G J dt2

1r2F128G̃0S t2
Q2

2 D24G̃0~U2t2Q2!ln
r

r 0

24G̃0Q2ln2
r

r 0
Gdu2. ~3.30!

Now, if we return to the Jordan-Fierz frame, the defi
angle associated with this space-time can be written in
linearized approximation as

Du54pG̃0~U1t22Q2!. ~3.31!

This means that in this order of approximation there is
contribution arising from torsion. In fact, the contribution
the metric due to torsion in the Jordan-Fierz frame appear
the dilaton solution given by Eq.~3.29!, but it is not pre-
served in the linearized expression given by Eq.~3.31!, for
the deficit angle. The reason for this absence of torsion in
deficit angle is that the contribution arising from torsio
comes out only in second order inG̃0 and therefore it does
not appear in the linearized solution we have consider
This result corresponds to the same one obtained in the t
like case of pure scalar-tensor theories of gravity@48#.

IV. PARTICLE DEFLECTION NEAR A TCSCS

In the previous section we concluded that torsion does
contribute to the deficit angle, but some new physical effe
appear associated with torsion in such a way that it play
role as we shall see in what follows. In this section we stu
the geodesic equation in the space-time under considera
To do this, we have to work with the metric given by E
~3.30! which was written in the Jordan-Fierz frame. For th
we can use the Christoffel symbols in Jordan-Fierz frame
in Eq. ~2.10!. In this frame, thett component of Eq.~2.10! is
given by
0-6
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$ tt
i %JF5$ tt

i %1K (tt)
i . ~4.1!

Let us consider the effect of the torsion on an unchar
particle moving around the defect, assuming that the part
has a speeduvu<1. In this case the geodesic equations b
come

d2xi

dt2
1$ tt

i %JF50, ~4.2!

wherei is the spatial coordinate index. We note here that
symmetric part of the dilaton gradient does not appear
cause the dilaton has no dependence on time. In the pre
case, in the linearized approximation, the Christoffel sy
bols in the Einstein frame are given by

$ tt
i %52

1

2
] ihtt , ~4.3!

with gtt5211htt . According to the previous section, in th
context of Einstein gravity the componenthtt reads

htt524G̃0H ~U2t2Q2!lnS r

r 0
D1Q2 lnS r

r 0
D 2J . ~4.4!

In order to make our analysis more simple, let us consi
this approach in the framework of Einstein gravity. In th
case, it is necessary to compute the symmetric part of
contortion~2.11!, which is given by

K (tt)
r 52

f̃8

2f̃
;a~f0!f (1)8

52
1

r
G̃0k21~f!a2~f0!~U1t1Q2!, ~4.5!

and the geodesic equations can be written as

d2xi

dt2
2

1

2
] ihtt1K (tt)

i 50, ~4.6!

wherehtt does not contain a contribution arising from to
sion as we can see from Eq.~4.4!. We can see that this
expression is compatible with the Christoffel symbols
Jordan-Fierz frame calculated with the general form~2.10!.
Then, in this framework the contribution arising from torsio
is contained entirely in the symmetric part of the contors
K (tt)

i given by Eq.~4.5!, evaluated in the Jordan-Fierz fram
This form of the geodesic equations is more suitable to
analysis of the new contribution arising from the dilato
torsion aspects.

Taking into account previous considerations we can c
clude that the gravitational acceleration induced by the st
around it, is given by

a5“htt22
G̃0k21~f!a2~f0!~U1t1Q2!

r
, ~4.7!
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and as a consequence, the torsion contribution to the fo
reads

f
tors

52
2m

r
G̃0k21~f!a2~f0!~U1t1Q2!. ~4.8!

Therefore, the total force on a test particle due to
TCSCS can be written as

f 52
4G̃0m

r FQ2S ~U2t!

Q2
2112ln~r/r 0!D

1
1

2
k21~f!a2~f0!Q2S 11

~U1t!

Q2 D G . ~4.9!

In what follows, let us consider the deflection of particl
moving past the string. Assuming for simplicity that the d
rection of propagation is perpendicular to the string, we c
write the metric, in terms of Minkowskian coordinates, as

ds25~12h̃tt!@2dt21dx21dy2#, ~4.10!

whereh̃tt is given by

h̃tt524G̃0H Q2F lnS r

r 0
D G1U2t2Q21

a2k21~f!

2
~U1t

1Q2!J lnS r

r 0
D . ~4.11!

Note that in this case, we can conclude that there i
change in the geodesics due to the presence of the conto
~4.6!. In order to investigate the formation of a wake movin
behind a TCSCS, we will first consider the rest frame of t
string with a velocityv in the x direction. Thus, in this situ
ation, the geodesic equations~4.6! can be written in the lin-
earized version as

2ẍ52~12 ẋ22 ẏ2!]xhtt1~12 ẏ2!a~f0!]xf (1) ,
~4.12!

2ÿ52~12 ẋ22 ẏ2!]yhtt1~12 ẋ2!a~f0!]yf (1) ,
~4.13!

wherehtt is given by Eq.~4.4! and the overdot denotes de
rivative with respect tot. Now, let us concentrate our atten
tion on the last terms of Eqs.~4.12! and~4.13! due to the fact
that they contain information concerning the roles of the s
lar field and torsion. For our analysis it is enough to cons
eronly terms of first order inG̃0, in which case~4.13! can be
integrated over the unperturbed trajectoryx5vt, y5y0. Do-
ing this procedure and going to the frame in which the str
has a velocityv, we find that particles entering the wak
have a transverse velocity given by
0-7
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v t54pG̃0~U1t22Q2!vg1
r 0 2

vg
. ~4.14!
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This result tell us that the first term contains the us
contribution of the deficit angle to the velocity of the pa
ticles. The second term contains the contributions aris
from torsion and electromagnetic field. A quick glance at t
equation allows us to understand the essential role playe
torsion in the context of the present formalism. For examp
if torsion is present, even in the case in which the string
no current, an attractive gravitational force comes out. In
context of the TCSCS, torsion enhances the force that a
particle feels outside the string. This peculiar fact may ha
meaningful astrophysical as well as cosmological impli
tions, as for example, contributing to the process of form
tion of structures.

V. ZEL’DOVICH APPROXIMATION IN TORSION
SPACE-TIME

In this section we study the linear perturbation meth
developed by Zel’dovich@40# and apply it to the case of
space-time with torsion. We will assume that dark mat
particles interact very weakly, so that all forces on the p
ticles of nongravitational origin can be ignored. In the ca
of the ordinary cosmic strings this approach has been te
against exact solution andN-body simulations with satisfac
tory results@49#. An important advantage of the Zel’dovic
approach is the fact that it can be used in the case where
evolution is strongly nonlinear. In this paper we conside
linear evolution. We analyze the perturbation in the da
matter background when the cosmic string is formed con
ering an unperturbed universe. We also investigate the ac
tion of cold dark matter by straight strings in a universe
the matter-dominated erat.teq , with scale factora(t)
;t2/3, and average density given by

rav5
1

6pGt2
. ~5.1!

Let us write the trajectories of a cold dark matter parti
as

rW~x,t !5a~ t !@xW1C~x,t !#, ~5.2!

wherexW is the unperturbed comoving position of a partic
andC is the comoving displacement measured from the
sition of the particle.

Now, let us analyze the equation of motion for this p
ticle in the presence of torsion. We find a Newton’s-li
equation in Cartesian coordinates in the background co
sponding to the metric~4.10!, which reads as
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d2rW

dt2
52¹WrL, ~5.3!

where the gravitational potentialL is given by

L5LCDM1LTCSCS, ~5.4!

with LCDM being the gravitational potential due to the co
dark matter. In this work we will consider that the presen
of the cold dark matter does not affect the cosmic str
configuration, but on the other hand, the cosmic string p
turbes the dark matter trajectories. In this case, the cos
string gravitational potentialLTCSCS can be written as a
function of the linearized cosmic string metric given by

LTCSCS522G̃0H Q2F lnS r

r 0
D G1U2t2Q21

a2k21~f!

2
~U

1t1Q2!J lnS r

r 0
D , ~5.5!

and therefore, the trajectories of the cold dark matter p
ticles are perturbed by the TCSCS space-time.

The gravitational potentialL(x,t) satisfies the Poisson
equation

¹ r
2L54pG~r1rTCSCS!, ~5.6!

wherer is the cold dark matter density andrTCSCS is the
perturbation due to the string. Mass conservation implies

r~rW,t !5
rav~ t !a3~ t !

udet~]rW/]xW !u
. ~5.7!

Using Eqs.~5.2! and ~4.6!, thus we obtain

]rW

]xW
5a~ t !@11“x•C~xW ,t !#, ~5.8!

and then, in the approximation we are considering, we g

r~rW,t !5rav~ t !@12¹x•C~xW ,t !!. ~5.9!

From Eq. ~5.2! for the trajectories of cold dark matte
particles, we can obtain the relations

r̈ 5äC12ȧĊ1aC̈. ~5.10!

Now, consider the fact thata;t2/3. Thus, we have

C̈1
4

3t
Ċ2

2

3t2
C52

v t

a3
. ~5.11!
0-8
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In order to solve Eq.~5.11!, let us consider an idealize
situation in which the cosmic string is formed in the timet i
.teq , in an initially unperturbed universe. The perturbati
caused by the cosmic string in the timet.t i can be found by
solving Eq.~5.11! with the following initial conditions:

C~xW ,t i !5Ċ~xW ,t i !50. ~5.12!

The solution of Eq.~5.11!, with the initial conditions
given above, can be written as

C~xW ,t !53v tF12
2

5

t i

t
2

3

5 S t

t i
D (2/3)G , ~5.13!

with v t given by Eq.~4.14!. This result shows the influenc
of the parameters contained in the expression forv t given in
Eq. ~4.14!, which determines the TCSCS space-time. It re
resents the time-dependent accretion of the cold dark m
by a TCSCS. As we saw in the last section the transve
velocity of the accretion by wake,v t , depends on the gravi
tational effects arising from torsion. We can identify torsi
through the presence of the parameterk(f). Using Eq.
~2.14! we conclude that this contribution is given bya2(1
22ea2)21@U1t1Q2)/vg], and therefore it enhances th
attraction between the cold dark matter particles in the w
and introduces new parameters that can be adjusted by s
lation in order to describe the observational spectrum. T
contribution comes in the contortion part given by Eq.~4.5!.
The factore, in the second term, contains torsion signatu
which we are considering as an arbitrary parameter. No
days, this parameter is taken to be very small, but in cos
string scale formation or in high-energy scales@50#, torsion
effects probably give us an interesting contribution. In t
case wheree can be neglected, the effect of torsion is
enhance dilaton effect. Then, torsion effects are impor
and if analyzed whent;t i , it may be relevant and thus
cannot be neglected. As we are working in the lineariz
approximation, the results obtained give us only an appro
mate idea of the effects of torsion.

It is worth calling attention to the fact that in the prese
case, the time-dependent solution has the same form o
ordinary cosmic string, but the accretion velocity has an
teresting dependence on the dilaton solution that contains
current-carrying and torsion terms.

VI. WAKE EVOLUTION IN A BACKGROUND
WITH TORSION

In this section we study the formation of sheetlike wak
when a TCSCS moves fastly. In the previous section
investigated the effect of cosmic string formation in the co
dark matter universe, considering an unperturbed unive
Now, we will make a quantitative description of accretio
onto wakes using the Zel’dovich approximation developed
last section, but now considering the presence of torsion
assuming that in the linearized solution, torsion has so
contribution. To investigate this problem, we have to so
the following differential equation:
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C̈1
4

3t
Ċ2

2

3t2
C52

up

a3
, ~6.1!

whereup is the linearized contribution coming from the d
laton torsion in the background under consideration and
given by

up5
2pG̃0k21a2~f0!~U1t1Q2!

vg
. ~6.2!

In this case, differently from the last section, the wak
begin to move with a velocity due to the perturbation, w
magnitude given by Eq.~6.2!. We will consider that the
wakes have a dissipation only induced by torsion effects
the geodesic equation and that the appropriate initial co
tions are

C~ t i !50, Ċ~ t i !52v t , ~6.3!

wherev t contains the contribution of the torsion. The sol
tion in a time immediately aftert i , where the torsion effects
are present, is given by

C~x,t !5
3

2 Fup2
1

5
~up2v tt i !

t i

t
2

3

5 S up2
2

3
v tt i D S t

t1
D 2/3G .

~6.4!

Note that, whent@t i , the torsion perturbationup can be
neglected. In this situation, there is a contribution com
from the torsion contained inv t , which is small, but does no
vanish nowadays. Thus, taking into account this fact,
~6.4! turns into

C~x,t !5
3

5
v tF t i

2

t
2t i S t

t i
D 2/3G . ~6.5!

The turn around surfaces, where particles stop expand
with the Hubble flow in the x direction and begin fallin
back towards the wake, can be found from the conditionṙ x
50 or, equivalently, fromx12C(x,t)50. This yields

x~ t !53v tFup

v t
2

1

5 S up

v t
2t i D t i

t
2

3

5 S up

v t
2

2

3
t i D S t

t i
D 2/3G .

~6.6!

The wake thicknessd(t) and the surface mass densi
s(t) of the wake are given, respectively, by

d~ t !52x~ t !S t

t i
D 2/3

;6v tFup

v t
2

1

5 S up

v t
2t i D t i

t
2

3

5 S up

v t
2

2

3
t i D

3S t

t i
D 2/3G S t

t i
D 2/3

~6.7!

and
0-9
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s~ t !5r td~ t !5;
v t

pG̃0t2 Fup

v t
2

1

5 S up

v t
2t i D t i

t
2

3

5 S up

v t
2

2

3
t i D

3S t

t i
D 2/3G S t

t i
D 2/3

. ~6.8!

We investigated the wake evolution in a background w
torsion usingr(t)51/6pG̃0t2. This is the same expressio
as in the case of the flat universe, and constitutes a rea
able approximation in the case of a linearized solution
terms of torsion in the matter-dominated era with the wa
formed at t i;teq . The most important new feature of th
results here presented is to consider the wake in a b
ground with torsion.

In the wake evolution case the contribution of the ba
ground to the wake vanishes and the dilaton-torsion con
bution only appears in the transversal velocity of the acc
tion v t . In the case where the torsion parametere is small,
this contribution can be neglected as compared with the e
tromagnetic effects and the only effect of the torsion is
amplify the dilaton interactions. But if we analyze the res
when t;t i , we conclude that the terms which contain co
tributions arising from torsion can be relevant and thee pa-
rameter can be adjusted in order to correspond to the e
era. In this scenario, torsion could dominate the accretion
matter. Other interesting analyses can be done when the
tromagnetic current vanishes, in which case the contribu
is due only to dilaton-torsion effects, in which caseC(x,t) is
given byC(x,t)5 3

5 up@ t i
2/t2t i(t/t i)

2/3#. In this scenario, at
high-energy scale, these effects can be measurable@50#, in
principle.

VII. CONCLUSION

We have obtained the solution that corresponds to a ti
like current-carrying screwed cosmic string~TCSCS!.
Screwed cosmic strings are stable topological defects and
been obtained in the framework of a general scalar-ten
theory including torsion. In the model in which spin va
ishes, torsion is af gradient and propagates outside t
string. In fact, torsion is small but gives a non-negligib
contribution to the geodesic equations obtained from
contortion term and from the scalar fields. The motivation
consider this scenario comes from the fact that scalar-te
gravitational fields are important for a consistent descript
of gravity, at least at sufficiently high energy scales. On
other hand, torsion can induces some physical effects
could be important at some energy scale, as for example
the low-energy limit of a string theory.

The analysis of the metric and contortion help us to u
derstand the consequences of the gravitational interac
due to a TCSCS at a cosmological level. One important c
sequence is related with the gravitational field surroundin
TCSCS, which is divergent for the state parameter approa
ing the mass of the current carrier, and thus the gravitatio
effects seem unbounded. However, it is important to call
tention to the fact that this divergence is strongly connec
with another divergence, namely, that is associated with
12402
n-
n
e

k-

-
i-
-

c-

t
-

rly
of
ec-
n

e-

as
or

e
o
or
n
e
nd
in

-
on
n-
a
h-
al
t-
d
e

string tension: asU increases, the tension decreases to ze
and eventually becomes negative so that the correspon
state is absolutely unstable against the transverse pertu
tions and should go into a stable state. Therefore, the gr
tational effects of such strings are indeed limited even
classical level.

In the space-time generated by a TCSCS, massless
ticles ~such as photons! will be deflected by an angleDu

54pG̃0(U1t22Q2). From the observational point o
view, it would be impossible to distinguish a screwed stri
from its general relativity partner, just by considering effec
based on deflection of light, as for instance, double ima
effect. On the other hand, trajectories of massive partic
will be affected by torsion coupling, which is generated by
space-time with torsion@51,52#.

We have shown that wakes produced by the string in
Hubble time can have important effects due to torsion. If
string is moving with normal velocityv through matter, a
transversal velocity appears. It is worth calling attention
the fact that there exists, in this case, a new contribution

the transversal velocity given byv t52pG̃0k21a2(f0)(U
1t1Q2)/vg, which is associated with aspects of the scal
tensor theories which includes torsion.

We also have shown that the propagation of photons
unaffected by a TCSCS and it is only affected by the angu
deficit. This result shows us that the effect of torsion
massive particles is qualitatively different from its effect o
radiation. This aspect becomes especially relevant when
culating CMBR anisotropy and the power spectrum as w
gly cosmic strings.

The investigations concerning the formation and evo
tion of wakes in the space-time of TCSCS shows that ther
an effect arising from torsion on the process of wakes f
mation. Using the Zel’dovich approximation we analyzed t
linear perturbations in this space-time. The accretion of c
dark matter in the isolated strength cosmic string is stud
and the effect of torsion was pointed out. Assuming the
lidity of the linear perturbation methods developed
Zel’dovich in this background and that dark matter partic
interact very weakly, in such a way that all forces differe
from the gravitational one can be ignored, it was shown t
the accretion of matter by wakes formation when a TCS
moves with speedv depends on the features of the sca
field and torsion.

Therefore, assuming that torsion have had a physic
relevant role during the early stages of the Universe’s evo
tion, we can say that torsion fields may be potential sour
of dynamical stresses which, when coupled to other fun
mental fields~i.e., the gravitational and scalar fields!, might
have performed an important action during the phase tra
tions leading to formation of topological defects such as
TCSCS we have considered. Therefore, it seems an im
tant issue to investigate basic models and scenarios invol
cosmic defects within the context of scalar-tensor theo
with torsion and one of the reasons for this is the fact t
torsion would be relevant int;t i , that is, in the early stage
of our Universe.
0-10
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