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Motivated by recent suggestions that highly damped black hole quasinormal (@dbts) may provide a
link between classical general relativity and quantum gravity, we present an extensive computation of highly
damped QNM'’s of Kerr black holes. We perform the computation using two independent numerical codes
based on Leaver’s continued fraction method. We do not limit our attention to gravitational modes, thus filling
some gaps in the existing literature. As already observed by Berti and Kokkotas, the frequency of gravitational
modes withl =m=2 tends towg=2(), O being the angular velocity of the black hole horizon. We show that,
if Hod's conjecture is valid, this asymptotic behavior is related to reversible black hole transformations. Other
highly damped modes witm>0 that we computed doot show a similar behavior. The real part of modes
with | =2 andm<0 seems to asymptotically approach a constant valge —mw, w=0.12 being(almos}
independent ofi. For any perturbing field, trajectories in the complex plane of QNM’s with O show a
spiraling behavior, similar to the one observed for Reissner-Nomsitack holes. Finally, for any perturbing
field, the asymptotic separation in the imaginary part of consecutive modesnwith is given by 27T (Ty
being the black hole temperatyr&Ve conjecture that for all values bAndm>0 there is an infinity of modes
tending to the critical frequency for superradianeg;, € m) in the extremal limit. Finally, we study in some
detail modes branching off the so-called “algebraically special frequency” of Schwarzschild black holes. For
the first time we find numerically that QNvhultipletsemerge from the algebraically special Schwarzschild
modes, confirming a recent speculation.
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[. INTRODUCTION holes from their classical oscillation spectryd]. It was
suggested many years ago by Bekens{Birthat in a quan-
The study of linearized perturbations of black hole solu-tum theory of gravity the surface area of a black h#ich
tions in general relativity has a long histary]. The devel- by the Bekenstein-Hawking formula is nothing but its en-
opment of the relevant formalism, initially motivated by the tropy) should have a discrete spectrum. The eigenvalues of
need for a formal proof of black hole stability, gave birth to this spectrum are likely to be uniformly spaced. Hod ob-
a whole new research field. A major role in this field hasserved that the real parts of the asymptgkighly damped
been played by the concept of quasinormal ma@@sM’s): quasinormal frequencies of a Schwarzschild black hole of
oscillations having purely ingoing wave conditions at themassM, as numerically computed by Noll¢] and later by
black hole horizon and purely outgoing wave conditions atAnderssor{7], can be written as
infinity. These modes determine the late-time evolution of
perturbing fields in the black hole exterior. Numerical simu- wr=Tnln3, @)
lations of stellar collapse and black hole collisions in the

“f[ull” (?onlir;]earizeai th(;prydhave” sho&an, thdat "_‘ trt‘e tfri1nal black hole’s Hawking temperature. He then exploited Bohr’s
stage of such process€singdown”) QNM's dominate the .correspondence principle, requiring that “transition frequen-

black hoI_e response to any Kind _Of perturbation. Since thelf:ies at large quantum numbers should equal classical oscil-
frequencies are uniquely determined by the black hole pay;

. ation frequencies,” to infer that variations in the black hole
r.ameters(mass, charge and angular momenl“@NMS ar®  mass induced by quantum processes should be given by
likely to play a major role in the nascent field of gravitational
wave astronomy, providing unique means to “identify” black AM =% wg. 2)
holes[2].

An early attempt at relating QNM’s to the Hawking radia- Finally, he used the first law of black hole thermodynamics
tion was carried out by York3]. More recently Hod made an to deduce the spacing in the area spectrum for a Schwarzs-
interesting proposal to infer quantum properties of blackchild black hole. Remarkably, in this quantum gravity con-

text relevant modes are those which damp infinitely fast, do
not significantly contribute to the gravitational wave signal,
*Present address: Groupe de Cosmologie et Gravitatio@nd are therefore typically ignored in studies of gravitational
(GReCQ, Institut d’Astrophysique de Pari€NRS), 98 bis Boule-  radiation. Following Hod’s suggestion, Dreyer recently used
vard Arago, 75014 Paris, France. a similar argument to fix a free parametghe so-called

where we have used units such tikatG=1 andTy is the
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Barbero-Immirzi parametgrappearing in loop quantum efr 4243 FAlo=0, (3)
gravity [8]. Supposing that transitions of a quantum black

hole are characterized by the appearance or disappearance of

a puncture with lowest possible sgig;,, Dreyer found that which has recently been confirmed by independent calcula-
loop quantum gravity gives a correct prediction for thetions[24]. However, its interpretation in terms of the sug-
Bekenstein-Hawking entropy jf,i,=1, consequently fixing gested correspondence is still unclear. Asymptotic quasinor-
the Barbero-Immirzi parameter. mal frequencies of a charged black hole, according to

When Hod made his original proposal, formyth was formula (3), depend not only on the black hole’s Hawking
merely a curious numerical coincidence. Kunstaftfdrsug-  temperature, but also on the Hawking temperature of the
gested that a similar relation may hold also for multidimen-(causally disconnectg¢dnner horizon. Perhaps more worry-
sional black holes. Since these early speculations, a full foring is the fact that the asymptotic formula does not yield the
malism for nonrotating black hole perturbations in highercorrect Schwarzschild limit as the black hole cha@&ends
dimensions has been developdd], and different calcula- to zero. The mathematical reason for this behavior has been
tions have now shown that formuld) holds exactly for  discussed if12,24. A calculation of higher-order correc-
scalar and gravitational perturbations of nonrotating blackions in w; > may explain the observed disagreement: in-
holes in any dimensiofil1-16. Furthermore, Birmingham deed, as we shall see, the numerical study of Kerr modes we
et al. have recently given intriguing hints corroborating the present in this paper seems to support this expectation. Fi-
correspondence suggested by Had], focusing attention on  nally and most importantly, it is not at all clear which are the
(2+1)-dimensional Baados-Teitelboim-ZaneliBTZ) black  implications of the generally nonperiodic behavior of
holes[18]. In this case the QNM frequenciéwhich belong  asymptotic RN modes for the Hod conjecture. Maybe the
to two “families”) can be obtained analytically, and their complicated behavior we observe is an effect of the
real parts are independent of the mode damping. Theglectromagnetic-gravitational coupling, and we should only
showed that the identification of the fundamental quanta otonsiderpure gravitational perturbationgor a first under-
black hole mass and angular momentum with the real part aftanding of black hole quantization based on Hod’s conjec-
the QNM frequencies leads to the correct quantum behaviare. The latter suggestion may possibly be ruled out on the
of the asymptotic symmetry algebra, and thus of the duabasis of two simple observations: first of all, in the large
conformal field theory. damping limit “electromagnetic” and “gravitational” pertur-

In light of these exciting new results, Hod’s conjecture bations seem to be isospectral to each other, and isospectral
seems to be a very promising candidate to shed light oo scalar perturbations as well2]; secondly, Kerr modes
quantum properties of black holes. However, it is natural toxith m=0 show a very similar spiraling behavior, which is
ask whether the conjecture applies to more genetarged clearly not due to any form of electromagnetic-gravitational
and/or rotating black holes. If asymptotic frequencies for coupling.

“generic” black holes dependas they d® on the hole’s The available numerical calculations for highly damped
charge, angular momentum, or on the presence of a cosmmodes of black holes in non-asymptotically flat spacetimes
logical constant, should Hod’s proposal be modified in someare as puzzling as those for RN black holes in flat spacetime.
way? And how does the correct modification look like? TheCardoso and Lemo0] have studied the asymptotic spec-
hint for an answer necessarily comes from analytical or nutrum of Schwarzschild black holes in a de Sitter background.
merical calculations of highly damped QNM'’s for charged They found that, when the black hole radius is comparable to
and rotating black holes, or for black holes in nonasymptotithe cosmological radius, the asymptotic spectrum depends
cally flat spacetimes. Some calculations in this direction haveot only on the hole’s parameters, but also on the angular
now been performed, revealing unexpected and puzzling feaseparation index. Formula(1) does not depend on dimen-
tures[12,19-21. sionality and gives the same limit for “scalar” and “gravita-

In particular, the technique originally developed by Nol- tional” modes(loosely using the standard four dimensional
lert to study highly damped modes of Schwarzschild blackerminology; se€ 10,14 for a more precise formulation in
holes has recently been extended to the RN €88k show-  higher dimensions This “universality” seems to be lost
ing that highly damped RN QNM'’s show a peculiar spiralingwhen the cosmological constant is nonzero. The study car-
behavior in the complew plane as the black hole charge is ried out in[20] has recently been generalized to higher di-
increased. Independently, Motl and Neitzke obtained an ananensional Schwarzschild—de Sitter black hdl2g] and to
lytic formula for the asymptotic frequencies of scalar andtake into account higher-order corrections to the predicted
electromagnetic-gravitational perturbations of a RN blackbehavior[21]. However the issue is not settled yet, and the
hole whose predictions show an excellent agreerfarieast asymptotics may be different from what was predicted in
for large values of the chargevith the numerical results [20]. Indeed, recent numerical and analytical calculations
[12]. For computational convenience they fixed their units in[25,27] seem to suggest that the result presentefRdj is
a somewhat unconventional way: they introduced a paramoenly correct when the overtone index satisfiesnk<1,
eter k related to the black hole charge and massQiy wherek is the surface gravity at the Schwarzschild—de Sitter
=2.k/(1+Kk), so thatB=4m/(1—k)=1/T, is the inverse black hole horizon. For higher overtones, the behavior seems
black hole Hawking temperature amg]=—k?g is the in- to be different. The problem is not completely solved yet.
verse Hawking temperature of the inner horizon. Their resulNumerically, it seems difficult to compute QNM frequencies
is an implicit formula for the asymptotic QNM frequencies, for nk>1 [25]. Furthermore, at present, numerical and ana-
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lytical results show only a qualitativébut not quantitative  Leaver, we will choose units such thatvi2=1. Then the
agreemenf27]. perturbation equations depend on a parametEnoting the

Calculations of QNM's for Schwarzschild—anti—de Sitter spin of the perturbing fieldg=0,—1,—2 for scalar, electro-
black holes were performed in various papf?8], showing  magnetic and gravitational perturbations respectivelyg the
that the nature of the QNM spectrum in this case is remarkKerr rotation parametea (0<a<1/2), and on an angular
ably different(basically due to the “potential barrier” arising separation constam®;,,. In the Schwarzschild limit the an-
because of the cosmological constant, and to the changingular separation constant can be determined analytically, and
QNM boundary conditions at infinijy Those calculations is given by the relatiol,=1(1+1)—s(s+1).
were recently extended to encompass asymptotic modes The basic idea in Leaver's method is the following.
[23]. The basic result is that consecutive highly dampedBoundary conditions for the radial and angular equations
modes(whose real part goes to infinity as the imaginary parttranslate into convergence conditions for the series expan-
increases have a uniformspacingin both the real and the sions of the corresponding eigenfunctions. In turn, these con-
imaginary part; this spacing is apparently independent of th@ergence conditions can be expressed as two equations in-
kind of perturbation considered and of the angular separatiofiolving continued fractions. Finding QNM frequencies is a
index|. two-step procedure: for assigned valuesapf(, m and w,

The aim of this paper is to study in depth the behavior offirst find the angular separation constégt,(w) looking for
highly damped Kerr QNM’s, complementing and clarifying zeros of theangular continued fraction equation; then re-
results that were presented in previous wofk8,29. The  place the corresponding eigenvalue into theial continued
plan of the paper is as follows. In Sec. Il we briefly introducefraction equation, and look for its zeros as a functionwof
our numerical method. In Sec. Ill we discuss some resultg eaver's method is relatively well convergent and numeri-
presented if19] and show a more comprehensive calcula-cally stable for highly damped modes, when compared to
tion of gravitational QNM’s, considering generic valueswf  other technique$34]. We mention that an alternative, ap-
and higher multipolesnamely,l =3). In Sec. IV we display proximate method for finding Kerr quasinormal frequencies
some results for scalar and electromagnetic perturbations. Has recently been presen{@s], which has the advantage of
our numerics for nongravitational modes are indicative of thenighlighting some physical features of the problem.
true asymptotic behavior, the asymptotic formula which is In the next sections we will use Leaver's technique to
valid for |=m=2 gravitational perturbations may be very complement numerical studies of Kerr quasinormal over-
special. In Sec. V we briefly summarize our results and weones carried out by some of us in the pft9,29. The
discuss the asymptotic behavior of the modes’ imaginarynethod we use for our analysis is the one described in those
part. Finally, in Sec. VI we turn our attention to a different papers. Exploring the high-damping regime necessarily re-
open problem concerning Kerr perturbations. Motivated byquires pushing our numerics to their limits. Therefore we
some recent, surprising developments arising from the studjave systematically cross-checked the reliability of our re-
of the branch cut in the Schwarzschild problgdd] and by  sults using two independent codes. As we shall see, our study
older conjectures derived from analytical calculations of thewill uncover a plethora of interesting new features.
properties of algebraically special modekl], we turn our

attention to Kerr QNM'’s in the vicinity of the Schwarzschild 11l. GRAVITATIONAL PERTURBATIONS
algebraically special frequencies. As the black hole is set into o _
rotation, we find for the first time that a QNM multiplet A. I=m=2 modes: A more extensive discussion

appears close to the algebraically special Schwarzschild | et us consider rotating black holes, having angular mo-
modes. A summary, conclusions and an outlook on possiblghentum per unit masa=J/M. The black hole’sevent and
future research directions follow. innen horizons are given in terms of the black hole param-
eters byr.=M=M?—a?% The hole’s temperaturd
=(r,.—r_)/A whereA=8xMr, is the hole’s surface area,
related to its entropys by the relationS=A/4. Introducing

A first numerical study of Kerr QNM’s was carried out the angular velocity of the horizad =4 ma/A, applying the
many years ago by Detweil¢B2]. Finding highly damped first law of black hole thermodynamics,
modes through a straightforward integration of the perturba-
tion equations is particularly difficult even for nonrotating AM=THAS+QAJ, 4
black holeqd?2]. In the Kerr case the situation is even worse,
because, due to the nonspherical symmetry of the bac . . SR
ground, the perturbation problem does not reduce to a singl ra Schwarzschild black hole still holds in th|_s casend .
ordinary differential equation for the radial part of the per- conjectqred that the real part;s of the asymptotic frequencies
turbations, but rather to a system of differential equationgOr rotating black holes are given by
(one equation for the angular part of the perturbations, and a ~
second equation for the radial part wr=wr=TyN3+mQ, ®)

A method to find the eigenfrequencies without resorting towhere m is the azimuthal eigenvalue of the fied]. Hod
integrations of this system was developed by Leaver, and hdater used a systematic exploration of moderately damped
been extensively discussed in the literafdr,29,33. In this  Kerr black hole QNM'’s carried out a few years ago by one of
paper we will apply exactly the same method. Followingus[29] to lend support to formuléb), at least for modes with

Il. NUMERICAL METHOD

andassuming that the formula for the area spectrum derived
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FIG. 2. Relative difference between various fit functions and
numerical results for the mode with overtone index 40. From
top to bottom in the legend, the lines correspond to the relative
errors for formulag5), (6), (7) and(8).

FIG. 1. Each different symbol corresponds to themerically
computed value of wg as a function of the mode indax at dif-
ferent selected values of the rotation paramatérhe selected val-
ues ofa are indicated on the right of the plot. Horizontal lines
correspond to the predicted asymptotic frequenci@sa? the given
values ofa. Convergence to the asymptotic value is clearly fastermula (3). The Schwarzschild limit may not be recovered
for largera. In the range ofn allowed by our numerical method straightforwardly as—0. Some order-of-limits issues may
(n=50) convergence is not yet achieved #o£0.1. be at work, as recently claimed fih3] to justify the incorrect

behavior of formula(3) as the black hole chargg—0.
| =m[36]. His conclusions were shown to be in contrast with  Is formula (6) merely an approximation to the “true”
the observed behavior of modes having stronger damping iasymptotic behavior, for example a lowest-order expansion
[19]: the deviations between the numerics and form@a in powers of()? To answer this questions we can try and
were indeed shown tgrow as the mode order growsee replace Eq.(6) by some alternative relation. Since in the
Fig. 7 in[19]). Hod even used Ed4), without including the ~ Schwarzschild limit equatioii6) does not give the desired
term due to variations of the black hole chary®), to con-  “In3” behavior, we would like a higher-order correction
jecture that Eq(5) holds for Kerr-Newman black holes as which doesreproduce the nonrotating limit, while giving a
well [4]. This second step now definitely appears to be a boldjood fit to the numerical data. Therefore, in addition to Egs.
extrapolation. Not only does formulé) disagree with the (5) and(6), we considered the following fitting relations:
observed numerical behavior for perturbations of Kerr black
holes having =m=2 [19] (not to mention other values of wR=4TrTﬁIn 3+mQ=TyIn3(1- 0% +mQ, 7)
m, as we shall see belgwby now, analytic and numerical
calculations have shown that RN QNM'’s have a much more
rich and complicated behavi$t2,13,19.

In summary, there is now compelling evidence that the

conjectured formul#5) must be wrong. However it turns out Formula(7) enforces the correct asymptotic Iim,it a0,
[19], quite surprisingly, that an extremely good fit to the and can be considered as 873 correction to Hod’s conjec-

numerical data fof=m=2 is provided by an even simpler tured formula(5). Since numerical results suggest a depen-

relation, not involving the black hole temperature: dence orm{) we also used the slight modification given by
formula(8), hoping for a better fit to our numerical data. The

wr=mQ. (6) relative errors of the various fitting formulas with respect to
the numerical computation for the=40 QNM are given in

At first sight, the good fitting properties of this formula may Fig. 2. Equation(6) is clearly the one which performs better.
be regarded as a coincidence. After all, this formula does ndll relations are seen to fail quite badly for small rotation
yield the correct Schwarzschild limit. Why should we trust it rate, but this apparent failure is only due to the onset of the
when it is only based on numerical evidence? A convincingasymptotic behavior occurringter (that is, whem>40) for
argument in favor of formulé6) is given in Fig. 1. There we small values of.
show the real part of modes havihg m=2 as a function of We believe that the excellent fitting properties and the
n for some selected values ofa (namely, a  convergence plot, when combined together, are very good
=0.05,0.10...,0.45). The convergence towards the limit- evidence in favor of Eq(6). Maybe the impressive visual
ing value wg=2() (horizontal lines in the plgtis evident. agreement between the numerics and the conjectured
Furthermore, the convergence is much faster for holes spiresymptotic formula6), displayed in the left panel of Fig. 3,
ning closer to the extremal limit, and becomes slower foris even more convincing. Therefore, let us assume as a work-
black holes which are slowly rotating. The behavior we ob-ing hypothesis that Eq6) is the correct asymptotic formula
serve presents interesting analogies with the asymptotic fofat least forl=m=2, and maybe for large enougt), and

wr=TxIn3(1—-mM?Q?)+mQ. 8
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FIG. 3. Real part of the frequency for different modes with2 andm>0. In both panels we overpldgbold solid line the prediction

of formula (6). The left panel shows the excellent agreement between modes with=2 and the asymptotic formula. The right panel
shows the different behavior of modes with=1; these modes have a frequency that “bends” downwardsiasreases, showing a local
minimum as a function o&. In both caseswr—m in the extremal limita— 1/2.

let us consider the consequences of such an assumption in
computing the area spectrum for Kerr black holes. Modes
having |=m may indeed be the relevant ones to make a
connection with quantum gravity, as recently claimefB6l. ~ \yhere A is the area quantum. Now, the square parenthesis is
Furthermore, the proportionality of these modes to the b'“'ﬁndeﬁned, sinc€)—1/2M whenx—1 . Taking the limitx
hole’s angular velocity) seems to suggest that something _, 1 g9 keepingAM =%m/2M constantieads to

“deep” is at work in this particular case.
142 =8
2 )7

1/2M - Q)

AA=4im T

(12)

}zﬁmA,

In the following, we will essentially repeat the calculation
carried out by Abdallaet al. [22] for near-extremal &
— M) Kerr black holes. We will argue that the conclusion of
their calculation is in fact wrong, since those authors did no

A=8m (13

take into account the functional behavior @k(a) (which
was unknown when they wrote the papebut rather as-
sumed thatwg=m/2M is constantin the vicinity of the ex-
tremal limit. In following the steps traced out [&2] we will

restore for clarity all factors ofl. This means, for example,

that the asymptotic frequency far>0 in the extremal limit
is wg=M/2M. Let us also defink=a/M. The black hole
inner and outer horizons are. =M[1+(1—x%)?]. The
black hole temperature is

ro—r_ 1 J1-x°
A 4TM 1415

and we recall that the black hole surface afea87M?[1
+(1-x%2] is related to its entropys by the relationS
=A/4. The hole’s rotational frequency is

T=

9

47ra a 1 X
O=——

= 10
A 2Mr. 2M14\1-x2 (10

Mhich is the final result in22]. The fundamental assumption
in this argument is that the asymptotic frequencydig
=m/2M, which is strictly true only foix=1. However, one
has to consider how the QNM frequency changes with
What is the effect of assumingg=m{) on the area spec-
trum? The calculation is exactly the same, but the equation
AM=#m/2M is replaced byAM =7zm(), and we conclude
that

AA=0. (14)
The area variation igero at any black hole rotation rate
<M. At first sight, this result may look surprising. It is not,
and it follows from fundamental properties of black holes.
Indeed, we are looking at reversible black hole transforma-
tions. It is well known that the gain in energyE and the
gain in angular momentudJ resulting from a particle with
negative energy- E and angular momentum L, arriving at
the event horizon of a Kerr black hole is subject to the in-
equality

AM=QAJ. (15

Let us now apply the first law of black hole thermodynamics

and the area-entropy relation to find

AA= ;(AM—QAJ). (11)

See, for example, E4352) on p. 373 in[1] and the related
discussion. This inequality is equivalent to the statement that
the irreducible masM;,, =(Mr ., /2)*2 of the black hole can
only increasd37]. In other words, by no continuous infini-
tesimal process involving a single Kerr black hole can the

The authors of22] focused on the extremal limit. They used surface area of the black hole be decreastalvking'’s area

AJ=Am andAM =% wg(Xx=1)=Am/2M to deduce that

theorem. Assuming the validity of Hod’s conjectu¥g), and
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FIG. 4. Real part of the first few modes witk-2 andm<0. Modes withm=—1 are shown in the left panel, modes with= —2 in
the right panel. As the mode ordeiincreaseswg seems to approach(eoughly) constant valuesg= —mw, wherew=0.12. Convergence
to this limiting value is faster for large values of the rotation paramat@ompare Fig. 1

using the resul{6) for asymptotic QNM’s, we are saturating could naively expect, that img= (). Instead, the real part of
the inequality(15): we are considering eeversibleprocess, the frequency shows a minimum as a functionapfand

in which the aredor, equivalently, the irreducible mass  approaches the limiwg=m asa— 1/2. To our knowledge,
conserved. Classically, this result makes sense. Perturbatiotise fact that the real part of modes with-2 and m=1

of Kerr black holes dying out on a vanishingly small times- approacheswg=m=1 asa— 1/2 has not been observed be-
cale are likely to be a process for which the horizon area isore. In the following we will see that this behavior is char-
an adiabatic invariant Some physical processes exhibiting acteristic of QNM'’s due to perturbation fields having arbi-
this feature were considered in detail[88]. trary spin, as long as>0.

What does the resu(ii4) mean from the point of view of The real parts of modes with=2, m<0 as functions of
area quantization? It could mean that using modes havinga (for some selected values aof) are displayed in Fig. 4.
=m in Hod’s conjecture is wrong, or that we cannot useFrom the left panel, displaying the real part of modes with
Bohr’s correspondence principle to deduce the area spectrum=—1, we infer an interesting conclusion: the frequencies
for Kerr. A speculative suggestion may bertwdify Bohr's  tend to approach a constapresumabha-independentlim-
correspondence principle as introduced by H&dippose for iting value, with a convergence rate which is faster, as in the
example that we do not interpret the asymptotic frequencies=m=2 case, for largea. The limiting value is approxi-
as a change imass(AM =%iwg), but rather impos&AS  mately given by 0.12. A similar result holds for modes with
=hwg. This is of course equivalent to Hod’s original pro- |=2, m=—2 (right pane). Once again the frequencies as-
posal whera=0. The asymptotic formula would then imply, ymptotically approach &roughly) constant value, with a
using the first law of black hole thermodynamics, that theconvergence rate which is faster for large The limiting
minimum possible variation in mass &M =2m# (). value is now approximately given hyg=0.24, about twice

We notice that the above arguments do not apply tahe value we got fom=—1. In summary, the real part of
strictly extremal Kerr black holes, for which=M. In the  modes withm<0 seems to asymptotically approach the limit
extremal case the horizon areanist an adiabatic invariant
[39], and its quantization probably requires some special wRr= —Mw, (16)
treatment.

wherew=0.12 is(to a good approximatignndependent of
B. Modes with =2, I#m a, at least in the extremal lima— 1/2.
. ) . , We will see below that this surprising result is quite gen-
~ Asdiscussed in the previous paragraph, we feel quite consyp 1t is supported by calculations of gravitational QNM'’s
fident that the real part of modes with-m=2 approaches o gitferent values of, and it also holds for electromagnetic
the limit or=m() as the mode damping tends to infinity. 44 scalar perturbations, as longras 0. An analytical deri-
What about modes havirigsm? In [19] it was shown that \ation of this result is definitely needed. It may offer some
modes withm=0 show a drastically different behavior. As insight on the physical interpretation of the result, and help

the damping increases, modes show more and more loopgypain the surprising qualitative difference in the asymptotic
Pushing the calculation to very large imaginary parts is noyehavior of modes having different valuesrof
easy, but the trend strongly suggests a spiraling asymptotic

behavior, reminiscent of RN modes. In this section we ,

present results for the cases not considereld 8, concen- C. Modes with =3

trating on the real parts of modes witk=2 and m=1, Results for a few highly-damped QNM's with=3, m

-1, -2. =0 were shown i 19]. Those modes exhibit the usual “spi-
Modes for whichl=2, m=1 are displayed in the right raling” behavior in the complex plane as the imaginary part

panel of Fig. 3. They do not seem to approach the limit onéncreases. In this paragraph we present a more complete cal-
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FIG. 5. Real parts of some modes witlk 3 and different values afn (indicated in the plogs Whenm>0, the observed behavior is
reminiscent of modes with=2, m=1 (see Fig. 3. Modes withm<0 approach droughly) constant valuevg=—mw (we only show
modes withm=—1), as they do fot=2 (see Fig. 4

culation of modes with=3. Some care is required in con- —1/2. If the qualitative behavior of QNM’s does not drasti-
sidering the results of this section as representative of theally change at larger overtone indices, we would be facing a
asymptotic behavior. In fact the pure imaginary Schwarzspuzzling situation. Indeed, gravitational modes withm
child algebraically special modseparating the lower QNM =2 would have a rather unique asymptotic behavior, that

branch from the upper brancls located at would require more physical understanding to be motivated.
Another prominent feature is that, whenewer-0, there
= (=DId+1)d+2) seems to be an infinity of modes approaching the limit
O)=—i , (17) . . .
6 =m asa—1/2. This behavior confirms the general trend we

observed fol =2, m>0.
and can be taken agoughly) marking the onset of the Finally, our calculations of modes witm<<O show, once
asymptotic regime. The algebraically special mode quicklyagain, that these modes tend to approagh — mw, where
moves downwards in the complex planeldacreases, and w=0.12. We display, as an example, modes Wit3 and
corresponds to an overtone index 41 whenl=3. Unfor- m=—1 in the bottom right panel of Fig. 5.
tunately we did not manage to push our numerical calcula-
tions forl =3 to values ofn larger than about 50. There_fore_ IV. SCALAR AND ELECTROMAGNETIC
we cannot be completely sure that our results are indicative PERTURBATIONS
of the “true” QNM asymptotics.

In any event, some prominent features emerge from the The calculations we have performed for 3 hint at the
general behavior of the real part of the modes, as displayeplossibility that modes with=m=2 are the only ones ap-
in the different panels of Fig. 5. First of all, contrary to our proaching the limitwg=m{. However, for reasons ex-
expectations, neither the branch of modes with 3 nor the  plained in the previous paragraph, carrying out numerical
branch withm=2 seem to approach the limit we would ex- calculations in the asymptotic regime whien2 is very dif-
pect,wg=m{). These modes show a behavior which is moreficult.
closely reminiscent of modes havihg 2, m=1: the modes’ This technical difficulty is a hindrance if we want to test
real part “bends” towards the zero-frequency axis, shows ahe “uniqueness” of gravitational modes with-m=2 by
minimum as a function ofa, and tends towg=m asa looking at gravitational modes havirlg-2. An alternative
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FIG. 6. Trajectories of a few scalar modes withm= 0. The different panels correspond to the fundamental nimgeleft), which does
not show a spiraling behavior, and to modes with overtone indiceg, 4, 10.

idea to check this “uniqueness” is to look instead at pertur-to be more accurate than tii@pproximate Prifer method,
bations due to fields havindifferent spinandl<2. In par- and we are able to follow the modes up to larger values of
ticular, here we show some results we obtained extendinthe rotation parameter: compare the bottom right panel in our
our calculation to scalars&0) and electromagnetics( Fig. 7 to Fig. 6 in[35], and remember that their numerical
=—1) modes. To our knowledge, results for Kerr scalarvalues must be multiplied by a factor(due to the different
modes have only been published [B5]. Some highly choice of unit3. On the basis of our numerical results, it is
damped electromagnetic modes were previously computed iquite likely that the asymptotic behavior of scalar modes

[29]. with |=m=0 is described by a relation similar to E().
However, at present, no such relation has been derived ana-
A. Scalar modes lytically.

In Fig. 8 we show the real part of scalar modes with
=m=1 andl=m=2 as a function o8, for increasing values
of the overtone index. In both cases modes do not show a

In Fig. 6 we show a few scalar modes witkm=0. As
we could expect from existing calculatiofd9,35 the

tational modes witH=m=2. As we observed for modes

particularly pronounced even if we look at the first overtoneWith I=3 andm>0, their behavior is rather similar to that

(n=2). As the mode order grows, the number of Splralsof gravitational modes with=2 andm=1. This may be

?rreor}r,]vasly K&:anr? htglibc;fon\tirs ?;V\fg? dss?;]rgjol:rrisi%?%nsr tgéx- considered further evidence that gravitational perturbations
P ginary with [=m=2 are, indeed, very special.

least forn=10).

In Fig. 7 we show the trajectories of some scalar modes
for I=2. As can be seen in the top left panel, rotation re-
moves the degeneracy of modes with different valuas.df The calculation of highly damped electromagnetic QNM'’s
we follow modes withm=0 we see the usual spiraling be- basically confirms the picture we obtained from the compu-
havior, essentially confirming results obtained &b] using  tation of scalar QNM'’s presented in the previous section. We
the Priier method. However our numerical technique seemshow some selected results in Fig. 9. The top left panel

B. Electromagnetic modes
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FIG. 7. Trajectories of a few scalar modes fer2. In the top left panel we show how rotation removes the degeneracy of modes with
differentm’s, displaying three branchésorresponding ton=2, 0, —2) “coming out of the Schwarzschild limit” for the fundamental mode
(n=1). In the top right and bottom left panel we show the progressive “bending” of the trajectory ohth@ branch for the first two
overtones (=2, 3). Finally, in the bottom right panel we show the typical spiraling behavior for a modemwth andn=9. This plot
can be compared to Fig. 6 [85] (notice that their scales have to be multiplied by two to switch to our ufite continued fraction method
allows us to compute modes for larger valuesadgand is presumably more accuratban the Prfer method.

shows that, for large damping, the real part of electromageomplexw plane. Finally, the bottom plots show the behav-
netic QNM’s withl|=1 andm>0 shows a local minimum, ior of modes withl=1, m=—1 (left) andl=2, m=-2
approaching the limitvg=m asa— 1/2. The top right panel (right). Once again, if our calculations are indicative of the
shows that the real parts of modes withk1 and m=0 asymptotic behavior, modes seem to approach a roughly con-
quickly start oscillatingthat is, QNM'’s display spirals in the stant valuew=—-mw.
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FIG. 8. Real parts of the scalar modes withm=1 (left) andl =m=2 (right). The observed behavior is reminiscent of Figs. 3 and 5.
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FIG. 9. Real part of electromagnetic modes withm=1 (top left), =1, m=0 (top right, =1, m=—1 (bottom lef) andI=2, m
= —2 (bottom righ} as a function of the rotation parameterfor increasing values of the mode index.

V. THE ASYMPTOTIC BEHAVIOR OF THE MODES’ (3) Modes withm<0: their real part seems to asymptoti-
IMAGINARY PART cally approach a constafor weakly a-dependentlimit wg
The evidence for a universal behavior emerging from the . Mo Wherem%O.l_Z, whatever the \_/al_ue_ dfand the
calculations we have presented is suggestive. For reasons wen of the perturbing field. Maybe this limit IS not exactly
explained in the previous sections, in some instances we mamdepe'ndent 0?‘ but on thg basis of our numerical Fiata we
not have reached the asymptotic regime when our numeric re quite con_fldent th_at_ highly damped modes with-0
codes become unreliable. With this caution, we can still tr énd to a universal limitwg= ~Mwey, Where wey has
and draw some conclusions. Our results suggest that, what°ome value_ betwee_:n 0.1 and 0.12aas1/2. . .
Another interesting result concerns the modes’ imaginary

ever the kind of perturbatioriscalar, electromagnetic or ;
gravitational that we consider, asymptotic modes belong toPart In .[191 we observed_that the following formula holds
for gravitational modes with=m=2:

one of three classes:
(1) Modes withm>0: their real part probably approaches Kerr )
the limit wg=mQ only for gravitational modes with=m. W[ Zm=2=2Q+i27Tyn. (18
Our calculation fol =m=3 cannot be considered as a trust-
worthy counterexample to this prediction, since it is not re- Our numerical data show that, in general, all modes with
ally representative of the asymptotic regime. For other kind$n>0 have an asymptotic separation equal T2, . This
of perturbationgand form#1) wg apparently shows a mini- result holdgor all kinds of perturbationgscalar, electromag-
mum as a function ofa. This may be a real feature of netic or gravitationalwe considered, as long &as>0. For
asymptotic modes, but it may as well be due to them=0 the imaginary part oscillates, and this beautiful, gen-
asymptotic behavior emerging only for larger valuesofo  eral result does not hold. It turns out that it does not hold as
choose between the two alternatives we would either requireell for modes withm<<0. So far the analysis of our numeri-
better numerical methods or the development of analyticatal data did not lead us to any conclusion on the asymptotic
techniques. A “universal” feature is that, whatever the spinseparation of modes witm<<0. This may hint at the fact
of the perturbing field, QNM frequencies approach the lim-that for m<<O our calculations are not yet indicative of the
iting value wg=m asa—1/2. asymptotic regime. Therefore, some care is required in draw-
(2) Modes withm=0: these modes show a spiraling be- ing conclusions on asymptotic modes from our results for
havior in the complex plane, reminiscent of RN QNM's. m<0.
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VI. ALGEBRAICALLY SPECIAL MODES

A. An introduction to the problem

PHYSICAL REVIEW D 68, 124018 (2003

its may not be significant, so that no conclusion can be

drawn on the coincidence @&, and Q) , “if the latter does
exist at all.”

Algebraically _special modes O.f Schwarzschild black hole_s An independent calculation was carried out by Andersson
have been studied for a long time, but only recently thelr[42]_ Using a phase-integral method, he found that the

understanding has reached a satisfactory level. Among t
early studies rank those of Wald0] and of Chandrasekhar

[41], who gave the exact solution of the Regge-Wheeler

hI—ezegge-WheeIer equation has pure imaginary FBMvhich

are very close t@), for 2<|=<6. He therefore suggested that

Zerilli and Teukolsky equations at the algebraically speciathe modes he found coincide wify , which would then be
frequency. The nature of the QNM boundary conditions a TTM. Maassen van den Brinj31] observed that, if all
the Schwarzschild algebraically special frequency is exfigures in the computed modes are significant, the coinci-
tremely subtle, and has been studied in detail by Maassefience of TTM's and QNM's is not confirmed by this calcu-

van den Brink[31]. Black hole oscillation modes belong to
three categories:

(1) “standard” QNM'’s, which have outgoing wave
boundary conditions at both sidé&bat is, they are outgoing
at infinity and “outgoing into the horizon,” using Maassen
van den Brink’s “observer-centered definition” of the bound-
ary conditions;

(2) total transmission modes from the left (TTM) are
modes incoming from the leftthe black hole horizonand
outgoing to the other sidéspatial infinity;

(3) total transmission modes from the right (TRM) are

modes incoming from the right and outgoing to the other

side.
In our units, the Schwarzschild “algebraically special”
frequency is given by formulél?7), and has been tradition-

ally associated with TTM’'s. However, when Chandrasekha
found the exact solution of the perturbation equations at th
algebraically special frequency he did not check that thes

solutions satisfy TTM boundary conditions. [81] it was
shown that, in general, they do not. An important conclusio

Zerilli equation(which are known to yield the same QNM
spectrum, being related by a supersymmetry transformpatio

have to be treated on different footing @i, since the su-

lation, since(); and (), are numericallyslightly) different.
Onozawa[29] showed that the Kerr mode with overtone

indexn=9 tends to}; asa—0, but suggested that modes

approaching), from the left and the right may cancel each
other ata=0, leaving only the specidl TM) mode. He also
calculated this(TTM) special mode for Kerr black holes,
solving the relevant condition that the Starobinsky constant
should be zero and finding the angular separation constant by
a continued fraction method; his results improved upon the
accuracy of those previously obtained[#1].

The analytical approach adopted [i@1] clarified many
aspects of the problem for Schwarzschild black holes, but the
situation concerning Kerr modes branching from the algebra-
ically special Schwarzschild mode is still far from clear. In

lBl] Maassen van den Brink, using slow-rotation expansions

of the perturbation equations, drew two basic conclusions on

fhese modes. The first is that, far>0, the so-called Kerr

gpecial modegthat is, solutions to the condition that the
Starobinsky constant should be z¢&9,41]) are all TTM's

reached il 31] is that the Regge-Wheeler equation and thg(Ieft or right, depending on the sign 6. The TTMg's can-

not survive am— 0, since they do not exist in the Schwarzs-
child limit; this is related to the limita—0 being a very

Iﬁ{ricky one. In particular, in this limit, the special Kerr mode

becomes a TTMfor s= —2; furthermore, the special mode

persymmetry transformation leading to the proof of isospecypq the TTM, cancel each other far=2. Studying the limit
trality is singular there. In particular, the Regge-Wheelery . in detail, Maassen van den Brink reached a second

equation ha:o modes at alat O, while the Zerilli equa-
tion hasboth a QNM and a TTM.

important conclusion: the Schwarzschild special frequency
Q, is a limit point for a multiplet of “standard” Kerr QNM'’s,

Numerical calculations of algebraically special modesyhich for smalla are well approximated by
have yielded some puzzling results. Studying the Regge-

Wheeler equatiofithat should have no QNM's at all accord-
ing to Maassen van den Brink’s analysénd not the Zerilli

equation, Leave33] found a QNM which is very close, but
not exactly locatedht, the algebraically special frequency.

Namely, he found QNM'’s at frequencie?s,’ such that

),=0.000000- 3.998000,

Q3

—0.000259-20.015658.

(19

Notice that the “special” QNM'sQ); are such thatri{}}

<|Q,|, R®i0;>|Q;], and that the real part of}; is not
zero. Maassen van den Briril81] speculated that the nu-

33078176
700009 2"

3492608 , o .
41177 & T Oma) + O

(20)

w=—4i—

whenl=2, and by a more complicated formula—his equa-
tion (7.33—whenl >2. None of the QNM’s we numerically
found seems to agree with the analytic prediction when the
rotation ratea is small.

Maassen van den Brink suggesiage notd46] in [31])
that QNM'’s corresponding to the algebraically special fre-
guency withm>0 may have one of the following three be-
haviors in the Schwarzschild limit: they may merge with

those havingn<0 at a frequency); such thafQ/|<|Q,|
(but |Q/|>|€,| for I=4) and disappear, as suggested by
Onozawa[29]; they may terminate at soniéinite) small a;

merical calculation may be inaccurate and the last three digpr, finally, they may disappear towards= —io. Recently
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FIG. 10. The left panel shows the trajectories described in the complptene by the doublets emerging close to the Schwarzschild

algebraically special frequencyf)p=—4i) whenm>0 and|=2. Notice that the real part of modes with>0 tends towg=m asa
—1/2. The right panel shows the spiraling trajectory of the mode withO.

Maassen van den Bringt al. [30] put forward another alter- deed appear close to the algebraically special frequency.
native: studying the branch cut on the imaginary axis, theyBoth modes in the doublet tend to the usual linfit,(=m)
found that in the Schwarzschild case a pair of “unconven-gsa—1/2. We have tried to match these “twin” modes with
tional damped modes” should exist. Fb=2 these modes the predictions of the analytical formu{@0). Unfortunately,
were identified by a fitting procedure to be located on thenone of the two branches we find seems to agree with Eqg.
unphysical sheet lying behind the branch ¢hence the (20) at smalla. Our searches succeeded in finding a mode

name “unconventional) at doublet only whenm>0. For m<0 the behavior of the
_ modes is, in a way, more conventional. For example, in the
w.=+0.027+(0.0033-4)i. (21)  right panel of Fig. 10 we see the=2, m=0 mode emerging

from the standard algebraically special frequeriey and
Tinally describing the “usual” spirals aa increases.

In the top left panel of Fig. 11 we see that the real part of
all modes havingn=0 does indeed go to zero as-0, with
an m-dependent slope. However, the top right panel in the
; : : i same figure shows that the imaginary part of the modes does
n reasonaplg agreement W.Ith H@L. If their predlct|~on 'S not tend to—4 asa—0. Qualitatively this behavior agrees
true, anadditional QNM mulflplet should emerge nedl as  (aiher well with that predicted by E€R1). Extrapolating our
aincreases. This multiplet “may well be due &. splitting  nymerical data to the limia—0 yields, however, slightly

(since spherical symmetry is brokeand moving through giferent numerical values; our extrapolated values!for

the negative imaginary axis asis tuned” [30]. In the fol- arew=(—4-0.10) andw=(—4+0.09).

lowing paragraph we will show that a careful numerical At present, we have no explanation for the appearance of
search indeed reveals the emergence of such multiplets, btie doublet only whem=>0. A confirmation of this behavior

An approximate analytical calculation confirmed the pres
ence of these modes, yielding

w;=—0.03248+(0.003436-4)i, (22

these do not seem to behave exactly as predict¢ddh comes from numerical searches we have carried out for
=3, close to the algebraically special frequerféy. Once
B. Numerical search and QNM multiplets again, a QNM multiplet only appears whem>0. In par-

As we hav mmarized in the previou raaraph. th 'pu!ar, we see the appearance pfadoublet that beha_ves quite
s we have summarized © previous paragrapn, élmllarly to the modes shown in the left panel of Fig. 10.

situation for Kerr modes branching from the algebraically xtrapolating the numerical data for the 3 doublet yields
special Schwarzschild mode is still unclear, and there are Stj’e valuesw=(— 20~ 0.19) and w=(~ 20+ 0.24) ):/;15 a
many open questions. Is a multiplet of modes emerging fro 0 = ' “= '
the algebraically special fr_equency_ vv_ha]:rO? Can QNM's A more careful search near the algebraically special fre-
be matched by the anallytlcal predicti@@0) at small values ency D, surprisingly revealed the existence of other
of a? If a doublet does indeed appear, as recently suggest Ms ngever the additional modes we find may well be
in [30], does it tend to the algebraically special frequency‘,s - q ’ q o . )
purious” modes due to numerical inaccuracies, since we

(,=—4i asa—0, does it tend to the values predicted by 516 pushing our method to its limits of validityery high
formula (21), or does it go to some other limit? dampings and very small imaginary parts
After carrying out an extensive numerical search with

both our numerical codes, we have found some surprises.
Our main new result is shown in the left panel of Fig. 10.
There we show the trajectories in the complex plane of In this paper we have numerically investigated the behav-
QNM’s with =2 andm>0: a doubletof modes does in- ior of highly damped QNM's for Kerr black holes, using two

VII. CONCLUSIONS
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FIG. 11. The top row shows the real and imaginary pédef and right, respective)yof the “doublet” of QNMs emerging from the
algebraically special frequency as functionsaofhe doublets only appear whem>0. We also overplot the real and imaginary parts of the
mode withl =2, m=0 (showing the usual oscillatory behavjiofhe bottom row shows, for completeness, the real and imaginary(feftts
and right, respective)yof modes with negativen and branching from the algebraically special frequency.

independent numerical codes to check the reliability of outremal. At present we cannot exclude the possibility that our
results. Our findings do not agree with the simple behaviocalculations actually break dowibefore we reach the
conjectured by Hod for the real part of the frequefidy86]  asymptotic regime. Better numerical methods or analytical
as given in Eq(5). We did not limit our attention to gravi- techniques are needed to give a final answer concerning the
tational modes, thus filling some gaps in the existing litera-asymptotic behavior of modes with>0.
ture. Hod [43] recently used a continued-fraction argument
Our main results concerning highly damped modes can bmodelled on that used irfl11] and claimed that the
summarized as follows. Scalar, electromagnetic and gravitaasymptotic Kerr QNM frequency is givefior any m) by
tional modes show a remarkable universality of behavior in
the high damping limit. The asymptotic behavior crucially
depends, for any kind of perturbation, on whether0, m
=0 orm<0. As already observed il9], the frequency of This result is obviously compatible with our calculations
gravitational modes witth=m=2 tends towg=2(, Q) be-  only for m>0, so there is some reason to be cautious about
ing the angular velocity of the black hole horizon. We Hod's derivation. Essential in his argument is a comparison
showed that, if Hod’s conjecture is valid, this asymptoticof the order of magnitude of the recursion coefficieats
behavior is related toeversible black hole transformations /3, andy, defined in Eqs(6), (7) and(8) of [43]. Looking at
that is, transformations for which the black hole irreduciblehis formulas(14) and(15), it is apparent that the magnitudes
mass(and its surface arg¢aloes not change. of the «,, and y,, recursion coefficients as—c are of the
Other (gravitational and nongravitationamnodes withm  same order. However, if43] the «, terms are treated as
>0 do not show a similar asymptotic behavior in the range negligible with respect to thg, andy, terms. Equatiori23)
of n allowed by our numerical method. In particular, in the comes from imposingy,=0 for n>N, whereN is some
high-damping limit, the real part digravitational and non- (large integer. However, ify,=0 for alln>N, then it is not
gravitational modes withm>0 typically shows a minimum legitimate to say that the,-terms are much larger than the
as a function of the rotation parametaer and then ap- «, terms. Neglecting ther, terms is not correct: after im-
proaches the limitwg=m as the black hole becomes ex- posingy,=0, the expansion coefficient§, for largen are

o " =mQO+i27Tyn. (23
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computed by comparing the, and 3, terms, not the3,, and  ing that the spacing in asymptotic QNM'’s coincides with the
vn terms. Furthermore, if Hod’'s argument were correct, itspacing 2riT,; expected for a thermal Green’s function.
would allow the calculation of the real part of the frequencyHowever, this simple relation concerning the mode spacing
for Schwarzschild gravitational perturbations. However, apdoes not seem to hold when=<0. Analytic derivations for
plying his argument to the Schwarzschild case, Hod couldhe spacing in the QNM imaginary parts have been provided
only derive the asymptotic behavior of electromagnetic perin [45] and[46]. These calculations use the fact that QNM'’s
turbations, for which the QNM frequency vanishes. Finally, a5re poles in the scattering amplitude of the relevant wave
contradlcjuon. Wlth our numerics Wouldizresult if the equation. They are based on the Born approximation, and
asymptotic_limit were reached fon>(ab) =, whereb  hey oniy apply to static spacetimes. A generalization to sta-

(1 Aa2\1/2 ; ; . d : ] . . .
n (1 h‘}a ) fliS StalFedf”ﬁ‘lli]- Our nurr;lerlcz_al results Sh?w tionary spacetimes, if possible, might provide an analytical
that this is only valid forl=m=2, otherwise we would confirmation of our numerical result.

clearly see convergence to the asymptotic behavior already Finally, we studied in some detail modes branching from

for n=30-50(at least for intermediate values afandb). _ « ; ; " )
Recently Musiri and Siopsis showed that Eg). holds in the_ so-called "algebraically special fr_equency of Sphwqrzs
: . . . child black holes. We found numerically for the first time
an intermediate regime, whe is large buwa|<1 [44] that QNM multipletsemerge from the algebraically special
Their result is compatible with our calculations, afuhfor- Q uitip ge from 9 ica’ly Speci
modes as the black hole rotation increases, confirming a re-

tunately it does not provide a final answer on the asymptotic . .o
behavior. Concluding, despite these recent efforts, a more€Nt Speculatiofi30]. However, we found some quantitative

careful analytical analysis is needed before drawing any findfiSagreement with the analytical predictions/&0,31. The
conclusion on asymptotic Kerr QNM frequencies. problem deserves further investigation. o
An interesting new finding of this paper is that for all Hopefully our numerical results will serve as a guide in
values ofm>0, and for any kind of perturbing field, there the analytical search for asymptotic QNM'’s of Kerr black
seems to be an infinity of modes tending to the critical fre-holes. Although one can in principle apply Motl and Neitz-
quency for superradianceg=m, in the extremal limit. This  ke's [12] method in the present case, the Kerr geometry has
finding generalizes a well-known analytical result by Det-some special features that complicate the analysis. The Teu-
weiler for QNM’s with | =m [32,35. It would be interesting Kkolsky equation describing the field’s evolution no longer
to generalize Detweiler’s proof, which only holds fior m, has the Regge-Wheeler-Zerilschralinger-like) form; how-
to confirm our conjecture that fany m>0 there is an in- ever, it can be reduced to that form by a suitable transforma-

finity of QNM’s tending towg=m asa—1/2. tion of the radial coordinate. The main technical difficulty
The real part of modes with=2 andnegative masymp-  concerns the fact that the angular separation congtgnts
totically approaches a valuer=—mw, w=0.12 beingal-  not given analytically in terms df as it is in the Schwarzs-

mos} independent of. Maybe this limit is not exactly in-  child or RN geometry; even worse, it depends on the fre-
dependent of, but on the basis of our numerical data we quencyw in a nonlinear way. Therefore, an analytical under-

feel confident that h|gh|y damped modes witik< 0 do tend Standing of the prob|em must also encompass an
to a universal limitwg=—Mmwe,; (Where we, has some ynderstanding of the asymptotic properties of the separation
value between 0.11 and 0)1@a— 1/2. This is an interest- constant. The scalar case is well studied, both analytically

ing prediction, and it would again be extremely useful 1044 nymericallf47], but a similar investigation for the elec-
confirm it using analytic techniques. So far we have not beef,magnetic and gravitational perturbations is still lacking.

able to find any simple physical exp!anation for this Iimitin_g An idea we plan to exploit in the future is to use a numerical
value. For example, we have tentatively explored a IC’oss'blanalysis of the angular equation as a guideline to find the

connection betweers and the frequencies of marginally dasymptotic behavior of.. Once the asymptotic behavior

stable counterrotating photon orbits, but we could not fin 5f A is determined. the analvsis of the radial equation ma:
any obvious correlation between the two. Im | Ined, ysl lal equati y
proceed along the lines traced|[ib2].

Both for gravitational and for nongravitational perturba-
tions, the trajectories in the complex plane of modes with
m=0 show a spiraling behavior, strongly reminiscent of the

one observed for Reissner-NordstrdRN) black holes, and ACKNOWLEDGMENTS
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