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Highly damped quasinormal modes of Kerr black holes
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Motivated by recent suggestions that highly damped black hole quasinormal modes~QNM’s! may provide a
link between classical general relativity and quantum gravity, we present an extensive computation of highly
damped QNM’s of Kerr black holes. We perform the computation using two independent numerical codes
based on Leaver’s continued fraction method. We do not limit our attention to gravitational modes, thus filling
some gaps in the existing literature. As already observed by Berti and Kokkotas, the frequency of gravitational
modes withl 5m52 tends tovR52V, V being the angular velocity of the black hole horizon. We show that,
if Hod’s conjecture is valid, this asymptotic behavior is related to reversible black hole transformations. Other
highly damped modes withm.0 that we computed donot show a similar behavior. The real part of modes
with l 52 andm,0 seems to asymptotically approach a constant valuevR.2mÃ, Ã.0.12 being~almost!
independent ofa. For any perturbing field, trajectories in the complex plane of QNM’s withm50 show a
spiraling behavior, similar to the one observed for Reissner-Nordstro¨m black holes. Finally, for any perturbing
field, the asymptotic separation in the imaginary part of consecutive modes withm.0 is given by 2pTH (TH

being the black hole temperature!. We conjecture that for all values ofl andm.0 there is an infinity of modes
tending to the critical frequency for superradiance (vR5m) in the extremal limit. Finally, we study in some
detail modes branching off the so-called ‘‘algebraically special frequency’’ of Schwarzschild black holes. For
the first time we find numerically that QNMmultipletsemerge from the algebraically special Schwarzschild
modes, confirming a recent speculation.

DOI: 10.1103/PhysRevD.68.124018 PACS number~s!: 04.70.Bw, 04.50.1h
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I. INTRODUCTION

The study of linearized perturbations of black hole so
tions in general relativity has a long history@1#. The devel-
opment of the relevant formalism, initially motivated by th
need for a formal proof of black hole stability, gave birth
a whole new research field. A major role in this field h
been played by the concept of quasinormal modes~QNM’s!:
oscillations having purely ingoing wave conditions at t
black hole horizon and purely outgoing wave conditions
infinity. These modes determine the late-time evolution
perturbing fields in the black hole exterior. Numerical sim
lations of stellar collapse and black hole collisions in t
‘‘full’’ ~nonlinearized! theory have shown that in the fina
stage of such processes~‘‘ringdown’’ ! QNM’s dominate the
black hole response to any kind of perturbation. Since th
frequencies are uniquely determined by the black hole
rameters~mass, charge and angular momentum!, QNM’s are
likely to play a major role in the nascent field of gravitation
wave astronomy, providing unique means to ‘‘identify’’ blac
holes@2#.

An early attempt at relating QNM’s to the Hawking radi
tion was carried out by York@3#. More recently Hod made an
interesting proposal to infer quantum properties of bla
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holes from their classical oscillation spectrum@4#. It was
suggested many years ago by Bekenstein@5# that in a quan-
tum theory of gravity the surface area of a black hole~which
by the Bekenstein-Hawking formula is nothing but its e
tropy! should have a discrete spectrum. The eigenvalue
this spectrum are likely to be uniformly spaced. Hod o
served that the real parts of the asymptotic~highly damped!
quasinormal frequencies of a Schwarzschild black hole
massM, as numerically computed by Nollert@6# and later by
Andersson@7#, can be written as

vR5THln 3, ~1!

where we have used units such thatc5G51 andTH is the
black hole’s Hawking temperature. He then exploited Boh
correspondence principle, requiring that ‘‘transition freque
cies at large quantum numbers should equal classical o
lation frequencies,’’ to infer that variations in the black ho
mass induced by quantum processes should be given by

DM5\vR . ~2!

Finally, he used the first law of black hole thermodynam
to deduce the spacing in the area spectrum for a Schwa
child black hole. Remarkably, in this quantum gravity co
text relevant modes are those which damp infinitely fast,
not significantly contribute to the gravitational wave sign
and are therefore typically ignored in studies of gravitatio
radiation. Following Hod’s suggestion, Dreyer recently us
a similar argument to fix a free parameter~the so-called

n
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Barbero-Immirzi parameter! appearing in loop quantum
gravity @8#. Supposing that transitions of a quantum bla
hole are characterized by the appearance or disappearan
a puncture with lowest possible spinj min , Dreyer found that
loop quantum gravity gives a correct prediction for t
Bekenstein-Hawking entropy ifj min51, consequently fixing
the Barbero-Immirzi parameter.

When Hod made his original proposal, formula~1! was
merely a curious numerical coincidence. Kunstatter@9# sug-
gested that a similar relation may hold also for multidime
sional black holes. Since these early speculations, a full
malism for nonrotating black hole perturbations in high
dimensions has been developed@10#, and different calcula-
tions have now shown that formula~1! holds exactly for
scalar and gravitational perturbations of nonrotating bla
holes in any dimension@11–16#. Furthermore, Birmingham
et al. have recently given intriguing hints corroborating t
correspondence suggested by Hod@17#, focusing attention on
~211!-dimensional Ban˜ados-Teitelboim-Zanelli~BTZ! black
holes@18#. In this case the QNM frequencies~which belong
to two ‘‘families’’ ! can be obtained analytically, and the
real parts are independent of the mode damping. T
showed that the identification of the fundamental quanta
black hole mass and angular momentum with the real pa
the QNM frequencies leads to the correct quantum beha
of the asymptotic symmetry algebra, and thus of the d
conformal field theory.

In light of these exciting new results, Hod’s conjectu
seems to be a very promising candidate to shed light
quantum properties of black holes. However, it is natura
ask whether the conjecture applies to more general~charged
and/or rotating! black holes. If asymptotic frequencies fo
‘‘generic’’ black holes depend~as they do! on the hole’s
charge, angular momentum, or on the presence of a cos
logical constant, should Hod’s proposal be modified in so
way? And how does the correct modification look like? T
hint for an answer necessarily comes from analytical or
merical calculations of highly damped QNM’s for charg
and rotating black holes, or for black holes in nonasympt
cally flat spacetimes. Some calculations in this direction h
now been performed, revealing unexpected and puzzling
tures@12,19–27#.

In particular, the technique originally developed by No
lert to study highly damped modes of Schwarzschild bla
holes has recently been extended to the RN case@19#, show-
ing that highly damped RN QNM’s show a peculiar spirali
behavior in the complex-v plane as the black hole charge
increased. Independently, Motl and Neitzke obtained an a
lytic formula for the asymptotic frequencies of scalar a
electromagnetic-gravitational perturbations of a RN bla
hole whose predictions show an excellent agreement~at least
for large values of the charge! with the numerical results
@12#. For computational convenience they fixed their units
a somewhat unconventional way: they introduced a par
eter k related to the black hole charge and mass byQ/M
52Ak/(11k), so thatb54p/(12k)51/TH is the inverse
black hole Hawking temperature andb I52k2b is the in-
verse Hawking temperature of the inner horizon. Their res
is an implicit formula for the asymptotic QNM frequencie
12401
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which has recently been confirmed by independent calc
tions @24#. However, its interpretation in terms of the su
gested correspondence is still unclear. Asymptotic quasi
mal frequencies of a charged black hole, according
formula ~3!, depend not only on the black hole’s Hawkin
temperature, but also on the Hawking temperature of
~causally disconnected! inner horizon. Perhaps more worry
ing is the fact that the asymptotic formula does not yield
correct Schwarzschild limit as the black hole chargeQ tends
to zero. The mathematical reason for this behavior has b
discussed in@12,24#. A calculation of higher-order correc
tions in v I

21/2 may explain the observed disagreement:
deed, as we shall see, the numerical study of Kerr modes
present in this paper seems to support this expectation
nally and most importantly, it is not at all clear which are t
implications of the generally nonperiodic behavior
asymptotic RN modes for the Hod conjecture. Maybe
complicated behavior we observe is an effect of t
electromagnetic-gravitational coupling, and we should o
considerpure gravitational perturbationsfor a first under-
standing of black hole quantization based on Hod’s conj
ture. The latter suggestion may possibly be ruled out on
basis of two simple observations: first of all, in the lar
damping limit ‘‘electromagnetic’’ and ‘‘gravitational’’ pertur-
bations seem to be isospectral to each other, and isospe
to scalar perturbations as well@12#; secondly, Kerr modes
with m50 show a very similar spiraling behavior, which
clearly not due to any form of electromagnetic-gravitation
coupling.

The available numerical calculations for highly damp
modes of black holes in non-asymptotically flat spacetim
are as puzzling as those for RN black holes in flat spaceti
Cardoso and Lemos@20# have studied the asymptotic spe
trum of Schwarzschild black holes in a de Sitter backgrou
They found that, when the black hole radius is comparabl
the cosmological radius, the asymptotic spectrum depe
not only on the hole’s parameters, but also on the ang
separation indexl. Formula~1! does not depend on dimen
sionality and gives the same limit for ‘‘scalar’’ and ‘‘gravita
tional’’ modes~loosely using the standard four dimension
terminology; see@10,14# for a more precise formulation in
higher dimensions!. This ‘‘universality’’ seems to be lost
when the cosmological constant is nonzero. The study
ried out in @20# has recently been generalized to higher
mensional Schwarzschild–de Sitter black holes@26# and to
take into account higher-order corrections to the predic
behavior@21#. However the issue is not settled yet, and t
asymptotics may be different from what was predicted
@20#. Indeed, recent numerical and analytical calculatio
@25,27# seem to suggest that the result presented in@20# is
only correct when the overtone indexn satisfiesnk!1,
wherek is the surface gravity at the Schwarzschild–de Sit
black hole horizon. For higher overtones, the behavior se
to be different. The problem is not completely solved y
Numerically, it seems difficult to compute QNM frequenci
for nk.1 @25#. Furthermore, at present, numerical and an
8-2
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HIGHLY DAMPED QUASINORMAL MODES OF KERR . . . PHYSICAL REVIEW D 68, 124018 ~2003!
lytical results show only a qualitative~but not quantitative!
agreement@27#.

Calculations of QNM’s for Schwarzschild–anti–de Sitt
black holes were performed in various papers@28#, showing
that the nature of the QNM spectrum in this case is rema
ably different~basically due to the ‘‘potential barrier’’ arising
because of the cosmological constant, and to the chan
QNM boundary conditions at infinity!. Those calculations
were recently extended to encompass asymptotic mo
@23#. The basic result is that consecutive highly damp
modes~whose real part goes to infinity as the imaginary p
increases! have a uniformspacingin both the real and the
imaginary part; this spacing is apparently independent of
kind of perturbation considered and of the angular separa
index l.

The aim of this paper is to study in depth the behavior
highly damped Kerr QNM’s, complementing and clarifyin
results that were presented in previous works@19,29#. The
plan of the paper is as follows. In Sec. II we briefly introdu
our numerical method. In Sec. III we discuss some res
presented in@19# and show a more comprehensive calcu
tion of gravitational QNM’s, considering generic values ofm
and higher multipoles~namely,l 53). In Sec. IV we display
some results for scalar and electromagnetic perturbation
our numerics for nongravitational modes are indicative of
true asymptotic behavior, the asymptotic formula which
valid for l 5m52 gravitational perturbations may be ve
special. In Sec. V we briefly summarize our results and
discuss the asymptotic behavior of the modes’ imagin
part. Finally, in Sec. VI we turn our attention to a differe
open problem concerning Kerr perturbations. Motivated
some recent, surprising developments arising from the st
of the branch cut in the Schwarzschild problem@30# and by
older conjectures derived from analytical calculations of
properties of algebraically special modes@31#, we turn our
attention to Kerr QNM’s in the vicinity of the Schwarzschi
algebraically special frequencies. As the black hole is set
rotation, we find for the first time that a QNM multiple
appears close to the algebraically special Schwarzsc
modes. A summary, conclusions and an outlook on poss
future research directions follow.

II. NUMERICAL METHOD

A first numerical study of Kerr QNM’s was carried ou
many years ago by Detweiler@32#. Finding highly damped
modes through a straightforward integration of the pertur
tion equations is particularly difficult even for nonrotatin
black holes@2#. In the Kerr case the situation is even wors
because, due to the nonspherical symmetry of the ba
ground, the perturbation problem does not reduce to a si
ordinary differential equation for the radial part of the pe
turbations, but rather to a system of differential equatio
~one equation for the angular part of the perturbations, an
second equation for the radial part!.

A method to find the eigenfrequencies without resorting
integrations of this system was developed by Leaver, and
been extensively discussed in the literature@19,29,33#. In this
paper we will apply exactly the same method. Followi
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Leaver, we will choose units such that 2M51. Then the
perturbation equations depend on a parameters denoting the
spin of the perturbing field (s50,21,22 for scalar, electro-
magnetic and gravitational perturbations respectively!, on the
Kerr rotation parametera (0,a,1/2), and on an angula
separation constantAlm . In the Schwarzschild limit the an
gular separation constant can be determined analytically,
is given by the relationAlm5 l ( l 11)2s(s11).

The basic idea in Leaver’s method is the followin
Boundary conditions for the radial and angular equatio
translate into convergence conditions for the series exp
sions of the corresponding eigenfunctions. In turn, these c
vergence conditions can be expressed as two equation
volving continued fractions. Finding QNM frequencies is
two-step procedure: for assigned values ofa, ,, m and v,
first find the angular separation constantAlm(v) looking for
zeros of theangular continued fraction equation; then re
place the corresponding eigenvalue into theradial continued
fraction equation, and look for its zeros as a function ofv.
Leaver’s method is relatively well convergent and nume
cally stable for highly damped modes, when compared
other techniques@34#. We mention that an alternative, ap
proximate method for finding Kerr quasinormal frequenc
has recently been presented@35#, which has the advantage o
highlighting some physical features of the problem.

In the next sections we will use Leaver’s technique
complement numerical studies of Kerr quasinormal ov
tones carried out by some of us in the past@19,29#. The
method we use for our analysis is the one described in th
papers. Exploring the high-damping regime necessarily
quires pushing our numerics to their limits. Therefore w
have systematically cross-checked the reliability of our
sults using two independent codes. As we shall see, our s
will uncover a plethora of interesting new features.

III. GRAVITATIONAL PERTURBATIONS

A. lÄmÄ2 modes: A more extensive discussion

Let us consider rotating black holes, having angular m
mentum per unit massa5J/M . The black hole’s~event and
inner! horizons are given in terms of the black hole para
eters by r 65M6AM22a2. The hole’s temperatureTH
5(r 12r 2)/A whereA58pMr 1 is the hole’s surface area
related to its entropyS by the relationS5A/4. Introducing
the angular velocity of the horizonV54pa/A, applying the
first law of black hole thermodynamics,

DM5THDS1VDJ, ~4!

andassuming that the formula for the area spectrum deriv
for a Schwarzschild black hole still holds in this case, Hod
conjectured that the real parts of the asymptotic frequen
for rotating black holes are given by

vR5ṽR5THln 31mV, ~5!

where m is the azimuthal eigenvalue of the field@4#. Hod
later used a systematic exploration of moderately dam
Kerr black hole QNM’s carried out a few years ago by one
us@29# to lend support to formula~5!, at least for modes with
8-3



ith
g

s
o

c
f
l
or

th
t
e
r

y
n
it

in

it-

pi
fo
b
fo

d
y

’
ion
nd
e

d

a
qs.

n-
y
e
to

r.
n
the

he
ood
l
red

,
ork-

s

te

nd

tive

BERTI et al. PHYSICAL REVIEW D 68, 124018 ~2003!
l 5m @36#. His conclusions were shown to be in contrast w
the observed behavior of modes having stronger dampin
@19#: the deviations between the numerics and formula~5!
were indeed shown togrow as the mode order grows~see
Fig. 7 in @19#!. Hod even used Eq.~4!, without including the
term due to variations of the black hole chargeDQ, to con-
jecture that Eq.~5! holds for Kerr-Newman black holes a
well @4#. This second step now definitely appears to be a b
extrapolation. Not only does formula~5! disagree with the
observed numerical behavior for perturbations of Kerr bla
holes havingl 5m52 @19# ~not to mention other values o
m, as we shall see below!; by now, analytic and numerica
calculations have shown that RN QNM’s have a much m
rich and complicated behavior@12,13,19#.

In summary, there is now compelling evidence that
conjectured formula~5! must be wrong. However it turns ou
@19#, quite surprisingly, that an extremely good fit to th
numerical data forl 5m52 is provided by an even simple
relation, not involving the black hole temperature:

vR5mV. ~6!

At first sight, the good fitting properties of this formula ma
be regarded as a coincidence. After all, this formula does
yield the correct Schwarzschild limit. Why should we trust
when it is only based on numerical evidence? A convinc
argument in favor of formula~6! is given in Fig. 1. There we
show the real part of modes havingl 5m52 as a function of
n for some selected values ofa ~namely, a
50.05,0.10, . . . ,0.45). The convergence towards the lim
ing valuevR52V ~horizontal lines in the plot! is evident.
Furthermore, the convergence is much faster for holes s
ning closer to the extremal limit, and becomes slower
black holes which are slowly rotating. The behavior we o
serve presents interesting analogies with the asymptotic

FIG. 1. Each different symbol corresponds to the~numerically
computed! value of vR as a function of the mode indexn, at dif-
ferent selected values of the rotation parametera. The selected val-
ues of a are indicated on the right of the plot. Horizontal line
correspond to the predicted asymptotic frequencies 2V at the given
values ofa. Convergence to the asymptotic value is clearly fas
for larger a. In the range ofn allowed by our numerical method
(n&50) convergence is not yet achieved fora&0.1.
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mula ~3!. The Schwarzschild limit may not be recovere
straightforwardly asa→0. Some order-of-limits issues ma
be at work, as recently claimed in@13# to justify the incorrect
behavior of formula~3! as the black hole chargeQ→0.

Is formula ~6! merely an approximation to the ‘‘true’
asymptotic behavior, for example a lowest-order expans
in powers ofV? To answer this questions we can try a
replace Eq.~6! by some alternative relation. Since in th
Schwarzschild limit equation~6! does not give the desire
‘‘ln 3’’ behavior, we would like a higher-order correction
which doesreproduce the nonrotating limit, while giving
good fit to the numerical data. Therefore, in addition to E
~5! and ~6!, we considered the following fitting relations:

vR54pTH
2 ln 31mV5THln 3~12V2!1mV, ~7!

vR5THln 3~12m2V2!1mV. ~8!

Formula ~7! enforces the correct asymptotic limit ata50,
and can be considered as anV2 correction to Hod’s conjec-
tured formula~5!. Since numerical results suggest a depe
dence onmV we also used the slight modification given b
formula ~8!, hoping for a better fit to our numerical data. Th
relative errors of the various fitting formulas with respect
the numerical computation for then540 QNM are given in
Fig. 2. Equation~6! is clearly the one which performs bette
All relations are seen to fail quite badly for small rotatio
rate, but this apparent failure is only due to the onset of
asymptotic behavior occurringlater ~that is, whenn.40) for
small values ofa.

We believe that the excellent fitting properties and t
convergence plot, when combined together, are very g
evidence in favor of Eq.~6!. Maybe the impressive visua
agreement between the numerics and the conjectu
asymptotic formula~6!, displayed in the left panel of Fig. 3
is even more convincing. Therefore, let us assume as a w
ing hypothesis that Eq.~6! is the correct asymptotic formula
~at least forl 5m52, and maybe for large enougha), and

r

FIG. 2. Relative difference between various fit functions a
numerical results for the mode with overtone indexn540. From
top to bottom in the legend, the lines correspond to the rela
errors for formulas~5!, ~6!, ~7! and ~8!.
8-4
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FIG. 3. Real part of the frequency for different modes withl 52 andm.0. In both panels we overplot~bold solid line! the prediction
of formula ~6!. The left panel shows the excellent agreement between modes withl 5m52 and the asymptotic formula. The right pan
shows the different behavior of modes withm51; these modes have a frequency that ‘‘bends’’ downwards asn increases, showing a loca
minimum as a function ofa. In both cases,vR→m in the extremal limita→1/2.
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let us consider the consequences of such an assumptio
computing the area spectrum for Kerr black holes. Mod
having l 5m may indeed be the relevant ones to make
connection with quantum gravity, as recently claimed in@36#.
Furthermore, the proportionality of these modes to the bl
hole’s angular velocityV seems to suggest that somethi
‘‘deep’’ is at work in this particular case.

In the following, we will essentially repeat the calculatio
carried out by Abdallaet al. @22# for near-extremal (a
→M ) Kerr black holes. We will argue that the conclusion
their calculation is in fact wrong, since those authors did
take into account the functional behavior ofvR(a) ~which
was unknown when they wrote the paper!, but rather as-
sumed thatvR5m/2M is constantin the vicinity of the ex-
tremal limit. In following the steps traced out in@22# we will
restore for clarity all factors ofM. This means, for example
that the asymptotic frequency form.0 in the extremal limit
is vR5m/2M . Let us also definex5a/M . The black hole
inner and outer horizons arer 65M @16(12x2)1/2#. The
black hole temperature is

T5
r 12r 2

A
5

1

4pM

A12x2

11A12x2
, ~9!

and we recall that the black hole surface areaA58pM2@1
1(12x2)1/2# is related to its entropyS by the relationS
5A/4. The hole’s rotational frequency is

V5
4pa

A
5

a

2Mr 1

5
1

2M

x

11A12x2
. ~10!

Let us now apply the first law of black hole thermodynam
and the area-entropy relation to find

DA5
4

T
~DM2VDJ!. ~11!

The authors of@22# focused on the extremal limit. They use
DJ5\m andDM5\vR(x51)5\m/2M to deduce that
12401
in
s
a

k

t

DA54\mF1/2M2V

T G5\mA, ~12!

whereA is the area quantum. Now, the square parenthes
undefined, sinceV→1/2M whenx→1 . Taking the limitx
→1 and keepingDM5\m/2M constantleads to

A58pS 11A12x

2 D .8p, ~13!

which is the final result in@22#. The fundamental assumptio
in this argument is that the asymptotic frequency isvR
5m/2M , which is strictly true only forx51. However, one
has to consider how the QNM frequency changes withx.
What is the effect of assumingvR5mV on the area spec
trum? The calculation is exactly the same, but the equa
DM5\m/2M is replaced byDM5\mV, and we conclude
that

DA50. ~14!

The area variation iszero at any black hole rotation ratea
,M . At first sight, this result may look surprising. It is no
and it follows from fundamental properties of black hole
Indeed, we are looking at reversible black hole transform
tions. It is well known that the gain in energyDE and the
gain in angular momentumDJ resulting from a particle with
negative energy2E and angular momentum2Lz arriving at
the event horizon of a Kerr black hole is subject to the
equality

DM>VDJ. ~15!

See, for example, Eq.~352! on p. 373 in@1# and the related
discussion. This inequality is equivalent to the statement
the irreducible massMirr [(Mr 1/2)1/2 of the black hole can
only increase@37#. In other words, by no continuous infini
tesimal process involving a single Kerr black hole can
surface area of the black hole be decreased~Hawking’s area
theorem!. Assuming the validity of Hod’s conjecture~2!, and
8-5
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FIG. 4. Real part of the first few modes withl 52 andm,0. Modes withm521 are shown in the left panel, modes withm522 in
the right panel. As the mode ordern increases,vR seems to approach a~roughly! constant valuevR52mÃ, whereÃ.0.12. Convergence
to this limiting value is faster for large values of the rotation parametera ~compare Fig. 1!.
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using the result~6! for asymptotic QNM’s, we are saturatin
the inequality~15!: we are considering areversibleprocess,
in which the area~or, equivalently, the irreducible mass! is
conserved. Classically, this result makes sense. Perturba
of Kerr black holes dying out on a vanishingly small time
cale are likely to be a process for which the horizon are
an adiabatic invariant. Some physical processes exhibitin
this feature were considered in detail in@38#.

What does the result~14! mean from the point of view of
area quantization? It could mean that using modes havil
5m in Hod’s conjecture is wrong, or that we cannot u
Bohr’s correspondence principle to deduce the area spec
for Kerr. A speculative suggestion may be tomodify Bohr’s
correspondence principle as introduced by Hod. Suppose for
example that we do not interpret the asymptotic frequen
as a change inmass(DM5\vR), but rather imposeTDS
5\vR . This is of course equivalent to Hod’s original pro
posal whena50. The asymptotic formula would then imply
using the first law of black hole thermodynamics, that t
minimum possible variation in mass isDM52m\V.

We notice that the above arguments do not apply
strictly extremal Kerr black holes, for whicha5M . In the
extremal case the horizon area isnot an adiabatic invarian
@39#, and its quantization probably requires some spe
treatment.

B. Modes with lÄ2, lÅm

As discussed in the previous paragraph, we feel quite c
fident that the real part of modes withl 5m52 approaches
the limit vR5mV as the mode damping tends to infinit
What about modes havinglÞm? In @19# it was shown that
modes withm50 show a drastically different behavior. A
the damping increases, modes show more and more lo
Pushing the calculation to very large imaginary parts is
easy, but the trend strongly suggests a spiraling asymp
behavior, reminiscent of RN modes. In this section
present results for the cases not considered in@19#, concen-
trating on the real parts of modes withl 52 and m51,
21, 22.

Modes for whichl 52, m51 are displayed in the righ
panel of Fig. 3. They do not seem to approach the limit o
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could naively expect, that is,vR5V. Instead, the real part o
the frequency shows a minimum as a function ofa, and
approaches the limitvR5m as a→1/2. To our knowledge,
the fact that the real part of modes withl 52 and m51
approachesvR5m51 asa→1/2 has not been observed b
fore. In the following we will see that this behavior is cha
acteristic of QNM’s due to perturbation fields having arb
trary spin, as long asm.0.

The real parts of modes withl 52, m,0 as functions of
a ~for some selected values ofn) are displayed in Fig. 4.
From the left panel, displaying the real part of modes w
m521, we infer an interesting conclusion: the frequenc
tend to approach a constant~presumablya-independent! lim-
iting value, with a convergence rate which is faster, as in
l 5m52 case, for largea. The limiting value is approxi-
mately given by 0.12. A similar result holds for modes wi
l 52, m522 ~right panel!. Once again the frequencies a
ymptotically approach a~roughly! constant value, with a
convergence rate which is faster for largea. The limiting
value is now approximately given byvR50.24, about twice
the value we got form521. In summary, the real part o
modes withm,0 seems to asymptotically approach the lim

vR52mÃ, ~16!

whereÃ.0.12 is~to a good approximation! independent of
a, at least in the extremal limita→1/2.

We will see below that this surprising result is quite ge
eral. It is supported by calculations of gravitational QNM
for different values ofl, and it also holds for electromagnet
and scalar perturbations, as long asm,0. An analytical deri-
vation of this result is definitely needed. It may offer som
insight on the physical interpretation of the result, and h
explain the surprising qualitative difference in the asympto
behavior of modes having different values ofm.

C. Modes with lÄ3

Results for a few highly-damped QNM’s withl 53, m
50 were shown in@19#. Those modes exhibit the usual ‘‘sp
raling’’ behavior in the complex plane as the imaginary p
increases. In this paragraph we present a more complete
8-6
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HIGHLY DAMPED QUASINORMAL MODES OF KERR . . . PHYSICAL REVIEW D 68, 124018 ~2003!
FIG. 5. Real parts of some modes withl 53 and different values ofm ~indicated in the plots!. Whenm.0, the observed behavior i
reminiscent of modes withl 52, m51 ~see Fig. 3!. Modes withm,0 approach a~roughly! constant valuevR52mÃ ~we only show
modes withm521), as they do forl 52 ~see Fig. 4!.
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culation of modes withl 53. Some care is required in con
sidering the results of this section as representative of
asymptotic behavior. In fact the pure imaginary Schwar
child algebraically special mode~separating the lower QNM
branch from the upper branch! is located at

Ṽ l52 i
~ l 21!l ~ l 11!~ l 12!

6
, ~17!

and can be taken as~roughly! marking the onset of the
asymptotic regime. The algebraically special mode quic
moves downwards in the complex plane asl increases, and
corresponds to an overtone indexn541 whenl 53. Unfor-
tunately we did not manage to push our numerical calcu
tions for l 53 to values ofn larger than about 50. Therefor
we cannot be completely sure that our results are indica
of the ‘‘true’’ QNM asymptotics.

In any event, some prominent features emerge from
general behavior of the real part of the modes, as displa
in the different panels of Fig. 5. First of all, contrary to o
expectations, neither the branch of modes withm53 nor the
branch withm52 seem to approach the limit we would e
pect,vR5mV. These modes show a behavior which is mo
closely reminiscent of modes havingl 52, m51: the modes’
real part ‘‘bends’’ towards the zero-frequency axis, show
minimum as a function ofa, and tends tovR5m as a
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→1/2. If the qualitative behavior of QNM’s does not dras
cally change at larger overtone indices, we would be facin
puzzling situation. Indeed, gravitational modes withl 5m
52 would have a rather unique asymptotic behavior, t
would require more physical understanding to be motivat

Another prominent feature is that, wheneverm.0, there
seems to be an infinity of modes approaching the limitvR
5m asa→1/2. This behavior confirms the general trend w
observed forl 52, m.0.

Finally, our calculations of modes withm,0 show, once
again, that these modes tend to approachvR52mÃ, where
Ã.0.12. We display, as an example, modes withl 53 and
m521 in the bottom right panel of Fig. 5.

IV. SCALAR AND ELECTROMAGNETIC
PERTURBATIONS

The calculations we have performed forl 53 hint at the
possibility that modes withl 5m52 are the only ones ap
proaching the limitvR5mV. However, for reasons ex
plained in the previous paragraph, carrying out numeri
calculations in the asymptotic regime whenl .2 is very dif-
ficult.

This technical difficulty is a hindrance if we want to te
the ‘‘uniqueness’’ of gravitational modes withl 5m52 by
looking at gravitational modes havingl .2. An alternative
8-7



BERTI et al. PHYSICAL REVIEW D 68, 124018 ~2003!
FIG. 6. Trajectories of a few scalar modes withl 5m50. The different panels correspond to the fundamental mode~top left!, which does
not show a spiraling behavior, and to modes with overtone indicesn52, 4, 10.
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idea to check this ‘‘uniqueness’’ is to look instead at pert
bations due to fields havingdifferent spinand l<2. In par-
ticular, here we show some results we obtained extend
our calculation to scalar (s50) and electromagnetic (s
521) modes. To our knowledge, results for Kerr sca
modes have only been published in@35#. Some highly
damped electromagnetic modes were previously compute
@29#.

A. Scalar modes

In Fig. 6 we show a few scalar modes withl 5m50. As
we could expect from existing calculations@19,35# the
modes show the typical spiraling behavior; the surprise h
is that this spiraling behavior sets in very quickly, and
particularly pronounced even if we look at the first overto
(n52). As the mode order grows, the number of spir
grows, and the center of the spiral~corresponding to ex-
tremal Kerr holes! moves towards the pure imaginary axis~at
least forn&10).

In Fig. 7 we show the trajectories of some scalar mo
for l 52. As can be seen in the top left panel, rotation
moves the degeneracy of modes with different values ofm. If
we follow modes withm50 we see the usual spiraling be
havior, essentially confirming results obtained in@35# using
the Prüfer method. However our numerical technique see
12401
-

g

r

in

re

s

s
-

s

to be more accurate than the~approximate! Prüfer method,
and we are able to follow the modes up to larger values
the rotation parameter: compare the bottom right panel in
Fig. 7 to Fig. 6 in@35#, and remember that their numeric
values must be multiplied by a factor 2~due to the different
choice of units!. On the basis of our numerical results, it
quite likely that the asymptotic behavior of scalar mod
with l 5m50 is described by a relation similar to Eq.~3!.
However, at present, no such relation has been derived
lytically.

In Fig. 8 we show the real part of scalar modes withl
5m51 andl 5m52 as a function ofa, for increasing values
of the overtone indexn. In both cases modes do not show
tendency to approach thevR5mV limit suggested by gravi-
tational modes withl 5m52. As we observed for mode
with l 53 andm.0, their behavior is rather similar to tha
of gravitational modes withl 52 and m51. This may be
considered further evidence that gravitational perturbati
with l 5m52 are, indeed, very special.

B. Electromagnetic modes

The calculation of highly damped electromagnetic QNM
basically confirms the picture we obtained from the comp
tation of scalar QNM’s presented in the previous section.
show some selected results in Fig. 9. The top left pa
8-8
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HIGHLY DAMPED QUASINORMAL MODES OF KERR . . . PHYSICAL REVIEW D 68, 124018 ~2003!
FIG. 7. Trajectories of a few scalar modes forl 52. In the top left panel we show how rotation removes the degeneracy of modes
differentm’s, displaying three branches~corresponding tom52, 0, 22) ‘‘coming out of the Schwarzschild limit’’ for the fundamental mod
(n51). In the top right and bottom left panel we show the progressive ‘‘bending’’ of the trajectory of them50 branch for the first two
overtones (n52, 3). Finally, in the bottom right panel we show the typical spiraling behavior for a mode withm50 andn59. This plot
can be compared to Fig. 6 in@35# ~notice that their scales have to be multiplied by two to switch to our units!. The continued fraction method
allows us to compute modes for larger values ofa ~and is presumably more accurate! than the Pru¨fer method.
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shows that, for large damping, the real part of electrom
netic QNM’s with l 51 andm.0 shows a local minimum
approaching the limitvR5m asa→1/2. The top right pane
shows that the real parts of modes withl 51 and m50
quickly start oscillating~that is, QNM’s display spirals in the
12401
-complex-v plane!. Finally, the bottom plots show the beha
ior of modes withl 51, m521 ~left! and l 52, m522
~right!. Once again, if our calculations are indicative of t
asymptotic behavior, modes seem to approach a roughly
stant valuev.2mÃ.
5.
FIG. 8. Real parts of the scalar modes withl 5m51 ~left! and l 5m52 ~right!. The observed behavior is reminiscent of Figs. 3 and
8-9
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FIG. 9. Real part of electromagnetic modes withl 5m51 ~top left!, l 51, m50 ~top right!, l 51, m521 ~bottom left! and l 52, m
522 ~bottom right! as a function of the rotation parametera, for increasing values of the mode index.
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V. THE ASYMPTOTIC BEHAVIOR OF THE MODES’
IMAGINARY PART

The evidence for a universal behavior emerging from
calculations we have presented is suggestive. For reason
explained in the previous sections, in some instances we
not have reached the asymptotic regime when our nume
codes become unreliable. With this caution, we can still
and draw some conclusions. Our results suggest that, w
ever the kind of perturbation~scalar, electromagnetic o
gravitational! that we consider, asymptotic modes belong
one of three classes:

~1! Modes withm.0: their real part probably approache
the limit vR5mV only for gravitational modes withl 5m.
Our calculation forl 5m53 cannot be considered as a tru
worthy counterexample to this prediction, since it is not
ally representative of the asymptotic regime. For other kin
of perturbations~and formÞ l ) vR apparently shows a mini
mum as a function ofa. This may be a real feature o
asymptotic modes, but it may as well be due to t
asymptotic behavior emerging only for larger values ofn. To
choose between the two alternatives we would either req
better numerical methods or the development of analyt
techniques. A ‘‘universal’’ feature is that, whatever the sp
of the perturbing field, QNM frequencies approach the li
iting valuevR5m asa→1/2.

~2! Modes withm50: these modes show a spiraling b
havior in the complex plane, reminiscent of RN QNM’s.
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~3! Modes withm,0: their real part seems to asympto
cally approach a constant~or weaklya-dependent! limit vR
.2mÃ, whereÃ.0.12, whatever the value ofl and the
spin of the perturbing field. Maybe this limit is not exact
independent ofa, but on the basis of our numerical data w
are quite confident that highly damped modes withm,0
tend to a universal limitvR.2mÃext , where Ãext has
some value between 0.11 and 0.12, asa→1/2.

Another interesting result concerns the modes’ imagin
part. In @19# we observed that the following formula hold
for gravitational modes withl 5m52:

v l 5m52
Kerr 52V1 i2pTHn. ~18!

Our numerical data show that, in general, all modes w
m.0 have an asymptotic separation equal to 2pTH . This
result holdsfor all kinds of perturbations~scalar, electromag-
netic or gravitational! we considered, as long asm.0. For
m50 the imaginary part oscillates, and this beautiful, ge
eral result does not hold. It turns out that it does not hold
well for modes withm,0. So far the analysis of our numer
cal data did not lead us to any conclusion on the asympt
separation of modes withm,0. This may hint at the fact
that for m,0 our calculations are not yet indicative of th
asymptotic regime. Therefore, some care is required in dr
ing conclusions on asymptotic modes from our results
m,0.
8-10
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HIGHLY DAMPED QUASINORMAL MODES OF KERR . . . PHYSICAL REVIEW D 68, 124018 ~2003!
VI. ALGEBRAICALLY SPECIAL MODES

A. An introduction to the problem

Algebraically special modes of Schwarzschild black ho
have been studied for a long time, but only recently th
understanding has reached a satisfactory level. Among
early studies rank those of Wald@40# and of Chandrasekha
@41#, who gave the exact solution of the Regge-Whee
Zerilli and Teukolsky equations at the algebraically spec
frequency. The nature of the QNM boundary conditions
the Schwarzschild algebraically special frequency is
tremely subtle, and has been studied in detail by Maas
van den Brink@31#. Black hole oscillation modes belong t
three categories:

~1! ‘‘standard’’ QNM’s, which have outgoing wave
boundary conditions at both sides~that is, they are outgoing
at infinity and ‘‘outgoing into the horizon,’’ using Maasse
van den Brink’s ‘‘observer-centered definition’’ of the boun
ary conditions!;

~2! total transmission modes from the left (TTML’s! are
modes incoming from the left~the black hole horizon! and
outgoing to the other side~spatial infinity!;

~3! total transmission modes from the right (TTMR’s! are
modes incoming from the right and outgoing to the oth
side.

In our units, the Schwarzschild ‘‘algebraically specia
frequency is given by formula~17!, and has been tradition
ally associated with TTM’s. However, when Chandrasek
found the exact solution of the perturbation equations at
algebraically special frequency he did not check that th
solutions satisfy TTM boundary conditions. In@31# it was
shown that, in general, they do not. An important conclus
reached in@31# is that the Regge-Wheeler equation and
Zerilli equation ~which are known to yield the same QNM
spectrum, being related by a supersymmetry transformat!

have to be treated on different footing atṼ l , since the su-
persymmetry transformation leading to the proof of isosp
trality is singular there. In particular, the Regge-Whee
equation hasno modes at allat Ṽ l , while the Zerilli equa-
tion hasboth a QNM and a TTML .

Numerical calculations of algebraically special mod
have yielded some puzzling results. Studying the Reg
Wheeler equation~that should have no QNM’s at all accord
ing to Maassen van den Brink’s analysis! and not the Zerilli
equation, Leaver@33# found a QNM which is very close, bu
not exactly locatedat, the algebraically special frequenc
Namely, he found QNM’s at frequenciesṼ l8 such that

Ṽ2850.00000023.998000i ,

Ṽ38520.000259220.015653i . ~19!

Notice that the ‘‘special’’ QNM’sṼ l8 are such thatRi Ṽ28

,uṼ2u, Ri Ṽ38.uṼ3u, and that the real part ofṼ38 is not
zero. Maassen van den Brink@31# speculated that the nu
merical calculation may be inaccurate and the last three
12401
s
ir
he

r,
l
t
-

en

r

r
e
e

n
e

n

-
r

s
e-

g-

its may not be significant, so that no conclusion can
drawn on the coincidence ofṼ l andṼ l8 , ‘‘if the latter does
exist at all.’’

An independent calculation was carried out by Anderss
@42#. Using a phase-integral method, he found that
Regge-Wheeler equation has pure imaginary TTMR’s which
are very close toṼ l for 2< l<6. He therefore suggested th
the modes he found coincide withṼ l , which would then be
a TTM. Maassen van den Brink@31# observed that, if all
figures in the computed modes are significant, the coin
dence of TTM’s and QNM’s is not confirmed by this calc
lation, sinceṼ l8 andṼ l are numerically~slightly! different.

Onozawa@29# showed that the Kerr mode with overton
index n59 tends toṼ l asa→0, but suggested that mode
approachingṼ l from the left and the right may cancel eac
other ata50, leaving only the special~TTM! mode. He also
calculated this~TTM! special mode for Kerr black holes
solving the relevant condition that the Starobinsky const
should be zero and finding the angular separation constan
a continued fraction method; his results improved upon
accuracy of those previously obtained in@41#.

The analytical approach adopted in@31# clarified many
aspects of the problem for Schwarzschild black holes, but
situation concerning Kerr modes branching from the algeb
ically special Schwarzschild mode is still far from clear.
@31# Maassen van den Brink, using slow-rotation expansio
of the perturbation equations, drew two basic conclusions
these modes. The first is that, fora.0, the so-called Kerr
special modes~that is, solutions to the condition that th
Starobinsky constant should be zero@29,41#! are all TTM’s
~left or right, depending on the sign ofs). The TTMR’s can-
not survive asa→0, since they do not exist in the Schwarz
child limit; this is related to the limita→0 being a very
tricky one. In particular, in this limit, the special Kerr mod
becomes a TTML for s522; furthermore, the special mod
and the TTMR cancel each other fors52. Studying the limit
a→0 in detail, Maassen van den Brink reached a sec
important conclusion: the Schwarzschild special freque
Ṽ l is a limit point for a multiplet of ‘‘standard’’ Kerr QNM’s,
which for smalla are well approximated by

v524i 2
33078176

700009
ma1

3492608

41177
ia21O~ma2!1O~a4!

~20!

when l 52, and by a more complicated formula—his equ
tion ~7.33!—whenl .2. None of the QNM’s we numerically
found seems to agree with the analytic prediction when
rotation ratea is small.

Maassen van den Brink suggested~see note@46# in @31#!
that QNM’s corresponding to the algebraically special f
quency withm.0 may have one of the following three be
haviors in the Schwarzschild limit: they may merge wi
those havingm,0 at a frequencyṼ l8 such thatuṼ l8u,uṼ l u
~but uṼ l8u.uṼ l u for l>4) and disappear, as suggested
Onozawa@29#; they may terminate at some~finite! small a;
or, finally, they may disappear towardsv52 i`. Recently
8-11
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FIG. 10. The left panel shows the trajectories described in the complex-v plane by the doublets emerging close to the Schwarzsc

algebraically special frequency (Ṽ2524i ) when m.0 and l 52. Notice that the real part of modes withm.0 tends tovR5m as a
→1/2. The right panel shows the spiraling trajectory of the mode withm50.
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Maassen van den Brinket al. @30# put forward another alter
native: studying the branch cut on the imaginary axis, th
found that in the Schwarzschild case a pair of ‘‘unconve
tional damped modes’’ should exist. Forl 52 these modes
were identified by a fitting procedure to be located on
unphysical sheet lying behind the branch cut~hence the
name ‘‘unconventional’’! at

v6570.0271~0.003324!i . ~21!

An approximate analytical calculation confirmed the pr
ence of these modes, yielding

v1.20.032481~0.00343624!i , ~22!

in reasonable agreement with Eq.~21!. If their prediction is
true, anadditionalQNM multiplet should emerge nearṼ l as
a increases. This multiplet ‘‘may well be due tov6 splitting
~since spherical symmetry is broken! and moving through
the negative imaginary axis asa is tuned’’ @30#. In the fol-
lowing paragraph we will show that a careful numeric
search indeed reveals the emergence of such multiplets
these do not seem to behave exactly as predicted in@30#.

B. Numerical search and QNM multiplets

As we have summarized in the previous paragraph,
situation for Kerr modes branching from the algebraica
special Schwarzschild mode is still unclear, and there are
many open questions. Is a multiplet of modes emerging fr
the algebraically special frequency whena.0? Can QNM’s
be matched by the analytical prediction~20! at small values
of a? If a doublet does indeed appear, as recently sugge
in @30#, does it tend to the algebraically special frequen
Ṽ2524i as a→0, does it tend to the values predicted
formula ~21!, or does it go to some other limit?

After carrying out an extensive numerical search w
both our numerical codes, we have found some surpri
Our main new result is shown in the left panel of Fig. 1
There we show the trajectories in the complex plane
QNM’s with l 52 andm.0: a doubletof modes does in-
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deed appear close to the algebraically special freque
Both modes in the doublet tend to the usual limit (Ṽ25m)
asa→1/2. We have tried to match these ‘‘twin’’ modes wit
the predictions of the analytical formula~20!. Unfortunately,
none of the two branches we find seems to agree with
~20! at smalla. Our searches succeeded in finding a mo
doublet only whenm.0. For m<0 the behavior of the
modes is, in a way, more conventional. For example, in
right panel of Fig. 10 we see thel 52, m50 mode emerging
from the standard algebraically special frequencyṼ2 and
finally describing the ‘‘usual’’ spirals asa increases.

In the top left panel of Fig. 11 we see that the real part
all modes havingm>0 does indeed go to zero asa→0, with
an m-dependent slope. However, the top right panel in
same figure shows that the imaginary part of the modes d
not tend to24 asa→0. Qualitatively this behavior agree
rather well with that predicted by Eq.~21!. Extrapolating our
numerical data to the limita→0 yields, however, slightly
different numerical values; our extrapolated values forl 52
arev5(2420.10)i andv5(2410.09)i .

At present, we have no explanation for the appearanc
the doublet only whenm.0. A confirmation of this behavior
comes from numerical searches we have carried out fol
53, close to the algebraically special frequencyṼ3. Once
again, a QNM multiplet only appears whenm.0. In par-
ticular, we see the appearance of a doublet that behaves
similarly to the modes shown in the left panel of Fig. 1
Extrapolating the numerical data for thel 53 doublet yields
the valuesv5(22020.19)i and v5(22010.24)i as a
→0.

A more careful search near the algebraically special
quency Ṽ3 surprisingly revealed the existence of oth
QNM’s. However, the additional modes we find may well
‘‘spurious’’ modes due to numerical inaccuracies, since
are pushing our method to its limits of validity~very high
dampings and very small imaginary parts!.

VII. CONCLUSIONS

In this paper we have numerically investigated the beh
ior of highly damped QNM’s for Kerr black holes, using tw
8-12
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HIGHLY DAMPED QUASINORMAL MODES OF KERR . . . PHYSICAL REVIEW D 68, 124018 ~2003!
FIG. 11. The top row shows the real and imaginary parts~left and right, respectively! of the ‘‘doublet’’ of QNMs emerging from the
algebraically special frequency as functions ofa. The doublets only appear whenm.0. We also overplot the real and imaginary parts of t
mode withl 52, m50 ~showing the usual oscillatory behavior!. The bottom row shows, for completeness, the real and imaginary parts~left
and right, respectively! of modes with negativem and branching from the algebraically special frequency.
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independent numerical codes to check the reliability of
results. Our findings do not agree with the simple behav
conjectured by Hod for the real part of the frequency@4,36#
as given in Eq.~5!. We did not limit our attention to gravi-
tational modes, thus filling some gaps in the existing lite
ture.

Our main results concerning highly damped modes can
summarized as follows. Scalar, electromagnetic and grav
tional modes show a remarkable universality of behavior
the high damping limit. The asymptotic behavior crucia
depends, for any kind of perturbation, on whetherm.0, m
50 or m,0. As already observed in@19#, the frequency of
gravitational modes withl 5m52 tends tovR52V, V be-
ing the angular velocity of the black hole horizon. W
showed that, if Hod’s conjecture is valid, this asympto
behavior is related toreversible black hole transformations,
that is, transformations for which the black hole irreducib
mass~and its surface area! does not change.

Other ~gravitational and nongravitational! modes withm
.0 do not show a similar asymptotic behavior in the ran
of n allowed by our numerical method. In particular, in th
high-damping limit, the real part of~gravitational and non-
gravitational! modes withm.0 typically shows a minimum
as a function of the rotation parametera, and then ap-
proaches the limitvR5m as the black hole becomes e
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tremal. At present we cannot exclude the possibility that
calculations actually break downbefore we reach the
asymptotic regime. Better numerical methods or analyti
techniques are needed to give a final answer concerning
asymptotic behavior of modes withm.0.

Hod @43# recently used a continued-fraction argume
modelled on that used in@11# and claimed that the
asymptotic Kerr QNM frequency is given~for any m) by

vKerr5mV1 i2pTHn. ~23!

This result is obviously compatible with our calculation
only for m.0, so there is some reason to be cautious ab
Hod’s derivation. Essential in his argument is a comparis
of the order of magnitude of the recursion coefficientsan ,
bn andgn defined in Eqs.~6!, ~7! and~8! of @43#. Looking at
his formulas~14! and~15!, it is apparent that the magnitude
of the an and gn recursion coefficients asn→` are of the
same order. However, in@43# the an terms are treated a
negligible with respect to thebn andgn terms. Equation~23!
comes from imposinggn50 for n.N, where N is some
~large! integer. However, ifgn50 for all n.N, then it is not
legitimate to say that thegn-terms are much larger than th
an terms. Neglecting thean terms is not correct: after im
posinggn50, the expansion coefficientsdn for large n are
8-13
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computed by comparing thean andbn terms, not thebn and
gn terms. Furthermore, if Hod’s argument were correct
would allow the calculation of the real part of the frequen
for Schwarzschild gravitational perturbations. However,
plying his argument to the Schwarzschild case, Hod co
only derive the asymptotic behavior of electromagnetic p
turbations, for which the QNM frequency vanishes. Finally
contradiction with our numerics would result if th
asymptotic limit were reached forn@(ab)22, where b
[(124a2)1/2, as stated in@43#. Our numerical results show
that this is only valid forl 5m52, otherwise we would
clearly see convergence to the asymptotic behavior alre
for n530–50~at least for intermediate values ofa andb).

Recently Musiri and Siopsis showed that Eq.~5! holds in
an intermediate regime, whenuvu is large butuvau&1 @44#.
Their result is compatible with our calculations, and~unfor-
tunately! it does not provide a final answer on the asympto
behavior. Concluding, despite these recent efforts, a m
careful analytical analysis is needed before drawing any fi
conclusion on asymptotic Kerr QNM frequencies.

An interesting new finding of this paper is that for a
values ofm.0, and for any kind of perturbing field, ther
seems to be an infinity of modes tending to the critical f
quency for superradiance,vR5m, in the extremal limit. This
finding generalizes a well-known analytical result by D
weiler for QNM’s with l 5m @32,35#. It would be interesting
to generalize Detweiler’s proof, which only holds forl 5m,
to confirm our conjecture that forany m.0 there is an in-
finity of QNM’s tending tovR5m asa→1/2.

The real part of modes withl 52 andnegative masymp-
totically approaches a valuevR.2mÃ, Ã.0.12 being~al-
most! independent ofa. Maybe this limit is not exactly in-
dependent ofa, but on the basis of our numerical data w
feel confident that highly damped modes withm,0 do tend
to a universal limitvR.2mÃext ~where Ãext has some
value between 0.11 and 0.12! asa→1/2. This is an interest-
ing prediction, and it would again be extremely useful
confirm it using analytic techniques. So far we have not b
able to find any simple physical explanation for this limitin
value. For example, we have tentatively explored a poss
connection betweenÃ and the frequencies of marginall
stable counterrotating photon orbits, but we could not fi
any obvious correlation between the two.

Both for gravitational and for nongravitational perturb
tions, the trajectories in the complex plane of modes w
m50 show a spiraling behavior, strongly reminiscent of t
one observed for Reissner-Nordstro¨m ~RN! black holes, and
probably well approximated in the high damping limit by a
equation similar to Eq.~3!.

Last but not least, an important result concerning hig
damped modes is that, for any perturbing field, t
asymptotic separation in the imaginary part of consecu
modes withm.0 is given by 2pTH (TH being the black
hole temperature!. An heuristic explanation for this fact wa
put forward for the Schwarzschild case in@12#. The idea is as
follows. Since QNM’s determine the position of the poles
a Green’s function on the black hole background, and
Euclidean black hole solution converges to a thermal cir
at infinity having temperatureTH , it may not be too surpris-
12401
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ing that the spacing in asymptotic QNM’s coincides with t
spacing 2p iTH expected for a thermal Green’s functio
However, this simple relation concerning the mode spac
does not seem to hold whenm<0. Analytic derivations for
the spacing in the QNM imaginary parts have been provid
in @45# and@46#. These calculations use the fact that QNM
are poles in the scattering amplitude of the relevant w
equation. They are based on the Born approximation,
they only apply to static spacetimes. A generalization to s
tionary spacetimes, if possible, might provide an analyti
confirmation of our numerical result.

Finally, we studied in some detail modes branching fro
the so-called ‘‘algebraically special frequency’’ of Schwarz
child black holes. We found numerically for the first tim
that QNM multipletsemerge from the algebraically speci
modes as the black hole rotation increases, confirming a
cent speculation@30#. However, we found some quantitativ
disagreement with the analytical predictions in@30,31#. The
problem deserves further investigation.

Hopefully our numerical results will serve as a guide
the analytical search for asymptotic QNM’s of Kerr blac
holes. Although one can in principle apply Motl and Neit
ke’s @12# method in the present case, the Kerr geometry
some special features that complicate the analysis. The
kolsky equation describing the field’s evolution no long
has the Regge-Wheeler-Zerilli~Schrödinger-like! form; how-
ever, it can be reduced to that form by a suitable transform
tion of the radial coordinate. The main technical difficul
concerns the fact that the angular separation constantAlm is
not given analytically in terms ofl, as it is in the Schwarzs
child or RN geometry; even worse, it depends on the f
quencyv in a nonlinear way. Therefore, an analytical unde
standing of the problem must also encompass
understanding of the asymptotic properties of the separa
constant. The scalar case is well studied, both analytic
and numerically@47#, but a similar investigation for the elec
tromagnetic and gravitational perturbations is still lackin
An idea we plan to exploit in the future is to use a numeri
analysis of the angular equation as a guideline to find
asymptotic behavior ofAlm . Once the asymptotic behavio
of Alm is determined, the analysis of the radial equation m
proceed along the lines traced in@12#.
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