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A charged rotating black ring
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We construct a supergravity solution describing a charged rotating black ring wii>ag! horizon in a
five-dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring
recently found by Emparan and Reall. We determine the exact value of the lower bodAtvot) wherel is
the angular momentum and the mass; the black ring saturating this bound has a maximum entropy for the
given mass. The charged black ring is characterized by a Maasgular momenturd, and electric charg®,
and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring
helps support the ring against its gravitational self-attraction, sa)tkt® can be made arbitrarily small while
Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the

singularity.
DOI: 10.1103/PhysRevD.68.124016 PACS nuni®er04.70.Bw, 04.20.Jb, 04.56h, 04.65:+e
I. INTRODUCTION The interpretation of the lower bound d&M? is that for

a given mass it takes a certain angular momentum to balance

Recently, Emparan and Re#ll] found an exact vacuum the gravitational self-attraction of the ring. An electric charge
solution describing a rotating black ring in a five- distributed uniformly around the black ring would help sup-
dimensional asymptotically flat spacetime. The black ringport the ring so that the ratid?>/M* could be made arbi-
solution is the first explicit example of nonuniqueness intrarily small. We find that this is indeed possible.
higher-dimensional gravity in the sense that the asymptoti- Applying the solution generating techniques of Hassan
cally determined quantities do not uniquely specify the soluand Sen[3] to the rotating black ring, we find a solution
tion: in five dimensions there exist asymptotically flat describing a charged rotating black ring. This is a solution of
vacuum solutions with the same mass and angular momerthe low-energy limit of heterotic string theofieterotic su-
tum, but with distinct horizon topologies—one is the rotating pergravity, and besides carrying a(l) electric chargeQ,
black hole with anS® horizon and the other is the rotating the black ring also carries local fundamental string charge.
black ring with anS?x S horizon. We extend this nonu- The charged black ring can be viewed as the field of a rotat-
nigueness result to charged solutions of low-energy heterotiihg excited loop of fundamental string with electric charged
string theory. added. We find that the rati@’/M?3 can be made arbitrarily

In five dimensions, the Myers-Perry black hdi2] is  small, while the dimensionless ratio of charge to mass ap-
characterized by madd and two independent angular mo- proaches a constant. The charge and mass sa@sfgM,
mentaJ; andJ,. TakingJ=J; andJ,=0, the dimensionless independent of the angular momentum. We also compute the

ratio constructed frond andM has an upper bound, magnetic moment and gyromagnetic ratio. The charged ro-
tating black ring has an extremal limit for which the ring is
32 32 extremally charged,Q|=M. For the extremal solution, the
Ws 77 (black hole. horizon coincides with the singularity.

It is unknown if supersymmetric black rings exist. [H]
all supersymmetric solutions =1 minimal supergravity
Emparan and Reall showed that for a black ring with nMss in five dimensions are constructed. Furthermore, as a first
and angular momentughthe dimensionless ratid?/M?* has uniqueness result, it is argued[i] that the only supersym-

a lower bound, metric, asymptotically flat black hole solutions in this theory
are the Breckenridge-Myers-Peet-VafBMPV) [6] black
J2 32 holes, which are characterized by their mass and angular
Wzkﬁ (neutral black ring, momentum. However, we have here a black ring solution not

to minimal supergravity, but to heterotic supergravity with
five dimensions compactified. Hence the uniqueness result of
and they founck~0.8437[1]. In this paper we show that the [5] does not exclude the possibility of a supersymmetric
exact value isk=27/32. The solution withl>/M®=1/7 is  black ring for which the extremal limit of the black ring
the black ring that maximizes the entropy for the given massfound in this paper may be a candidate.
For 1/m<J?/M3<32/27r there are spherical black hole so-  The matter of uniqueness is interesting in its own right,
lutions and black ring solutions with the same valuesJof but is also important for the string theory calculations of the
and M. entropy of supersymmetric or nearly supersymmetric black
holes[7]. For these derivations it is assumed that the black
hole solutions are specified uniquely by their asymptotic
*Email address: elvang@physics.ucsb.edu charges.
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The solutions presented in this paper @@ uniquely It is assumed that € »<2/(3.3) which guarantees that
specified by their asymptotic charges. For a certain range a&(¢) has three distinct real roots, &;, andé,. The roots
parameters there are charged rotating black rings and sphegan be ordered as 1<&,<0<1<&;<&,<1/v.
cal black holegobtained by applying the Hassan-Sen trans-  Analyzing the metriq2.1), one finds that in order to keep
formation to a Myers-Perry black hole with a single nonzerothe signature Lorentzian and to avoid conical singularities,
angular momentujnwith the same asymptotic charges. The the coordinate ranges are required to be
extremal limit of the charged black ring has vanishing hori-

zon area. §rsxs<&3, y<é&, 2.3
The paper is organized as follows. We consider the neutral . e
rotating black ring in Sec. II: in Sec. Il A we review the and the angular coordinatgsand ¢ must have periodicities

neutral black ring of1] and in Sec. Il B we derive the exact —
lower bound ofJ?/M? for the black ring. We review the A¢:A¢:w_ (2.4)
Hassan-Sen solution generating technique in Sec. Ill. The G'(&,)

Hassan-Sen technique gives the transformed solutions im-

plicitly. Starting from quite general solutions, we offer in the Furthermore£,=&,. If &= &3, the solution(2.1) describes
Appendix explicit expressions for the transformed solutions2 black hole withS*® horizon topology. A coordinate transfor-
In Sec. IV, we apply the Hassan-Sen transformation to thénation[1] identifies it as the Myers-Perry rotating black hole
rotating black ring to obtain the charged ring soluti@ec. [2] in five dimensions with one rotation parameter set to
IV A). We investigate the physical properti@ec. IV B and  zero. In the following we assum@& > £;. Since the orbit of
study an extremal limit of the charged black ri(8ec. IV Q. g4, then vanishes at botk= ¢, and &3, there are two dis-
We compare the local behavior of the charged black ring tdinct conditions imposed of ¢. These conditions are solved
the local behavior of a charged black string obtained by apby setting
plying the Hassan-Sen transformation to a boosted black 2
string (Sec. IV D). Somewhat unrelated to the black rings we 4~ 263
discuss in Sec. V solutions for charged black strings and their

286 &
extremal limits. We summarize and discuss the results ) ] )
in Sec. VI. implying that £3<&;<¢,. Equation(2.5 can be viewed as

the tuning of the angular momentum to uphold the ring.
Il. BLACK RING The limit x,y—>§2'is gsymptotic .infinity and it can be
shown that the solution is asymptotically flat: rescéland

Emparan and Reall found vacuum solutions describingy py taking %=2my/Ay and p=27d/Ap, so thatAd

black rings withS*x S' horizons in a five-dimensional as- _ \~ _ R A JCTED,
ymptotically flat spacetime. The static black ring solutj8ih c?o?);{ljinitz, trzzgfgr?:gt(ia& AVG(&)/12F(&)]. Via the

has conical singularities preventing the ring from collapsing,

&1 (2.5

but these conical singularities can be avoided if the ring is [ v fx—
rotating fast enough to provide a force to balance the ring == £y and 7=z £2 , (2.6
under its own gravitational attractigi]. We review the ro- A(X—y) A(x—y

tating black ring in Sec. Il A, and in Sec. Il B we derive the

exact lower bound od2/M3. the asymptotic metric can be written as

— 2 2 24772 2 24712
A. Review of the neutral rotating black ring ngsymp— —AEHdEH Sdythd gt tdd (27)

The metric of the black ring was obtained by a Wick  The Killing vectord/Jt vanishes whey— —, and since
rotation of a metric if9]. The solution is characterized by a the metric is regular here, the coordinate: — 1/y can natu-
parametew and a scalingh. Written in C-metric coordinates rally be extended past=0, allowing Y to take negative
(we adopt the notation of and follow closely R¢L]) the  values. The coordinates break downyat&,, whereg,,
metric is blows up. However, this is just a coordinate singularity that

can be removed by a change of coordinates. In fact, one finds
& F(x) vé-y |2 that there is arg?x S' horizon aty= ¢, and behind it arg!
ds’=-— F(y) dt+ & A dy curvature singularity is hiding at=&;. The regiony> ¢, is
the ergoregion. The ergosurface¥at0 is regular and has
, Fy) topology S?>x St.
+ W_y)z —FO| G(y)dy~+ Wdy Locally, the rotating black ring is expected to look like a
boosted black string, and indeed the near-singularity behav-
dx®>  G(x) 5 ior of the boosted black string matches that of the black ring
G(x) + mdéﬁ ” (2.1 (up t;) numerical factors and distortion; see also Secs. IV B—
IVD).
where The physical quantities such as the Arnowitt-Deser-
Misner (ADM) mass, the angular momentum, and the sur-
F(&)=1—¢&l&), G(&)=1-&>+vé. (2.2 face gravity are given for the black ring [A]. Dimension-

+F(y)2(
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2710 32 The quantities)?/ M3 and . A%/M? are given in Eqs(2.9)
32 W and (2.9 in terms of the roots,, &3, and &, of the cubic
2 equation
1.75¢ vE—E2+1=0. (2.10
1.5¢ We assume that@r<2/(3/3) in order for the equation to
have three distinct real roots. For=2/(3./3), the rootsé,
1.25¢ and ¢, coincide. Using standard methods for obtaining the
N roots of a cubic equation, we find
1 0 0
0. 75} = | 1-cos—— in—
&= 5| 1-cosg \/§sm3),
0.5 1 p 9
0 25! §3=§(1—cos§+ \/§sm§),
=2 : : : : : : v 1 0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 £4= = 1+2 cosz |,
FIG. 1. As in Ref.[1], we plot the dimensionless ratio
(277132)J2/M3 versusy for 0< »<2/(3y3). The solid line is the ~where
ratio for the black ring and the dashed line is the ratio for a Myers-
Perry black hole with only one nonzero angular momentum. The —cos Y1 27 , 21
dotted lines represent the constant functions 1 and 27/32. For the §=cos oV (2.1

black ring, (27/32)32/M3=1 at v~0.211645.
We can now write the dimensionless ratio of angular mo-

less quantities can be formed by multiplying the physicalmentum to mass in terms &f as

guantities by suitable powers of the mass. For the angular

momentumJ and the horizon areal we have 277 )2 1

32 3 24

20
8+6\/§cs<<?

+se8(§”. (2.12

2 32 (&4-&)° . -
NN N2 trt0)? (2.8 The global minimum of (27%/32)3%M? for the black ring
(83— 62)(264— 827 &5 (see Fig. 1is found by extremizing the right hand side of
Eg. (2.12 with respect to 4§, and one finds thatd

=3 cos }(2/\/7) corresponds to the minimum in Fig. 1.

Az_ 2048m (&3—£62) (64— &3)

(2.9

M3 27 (2&6,—Ey— )% Solving for v using Eq.(2.11) we get
We have used Eq2.9) to eliminate¢, from these expres- Vo=£ A /E+ 20 ~0.3377. (2.13
sions, and we seéb=c=1 throughout the paper. In Sec. IV, 3 V3 217

we compute the physical quantities for the charged black
ring, and the mass and angular momentum for the neutrdvaluating Eq(2.12 at v= v, we find the minimum valué&
black ring can then be obtained by taking the transformatiorio be
parametel3 to zero[see Eqs(4.4) and(4.9)].

_2m 2T samrs
B. Exact result for the black ring 32 M3 32 ’
Yo
Plotting the dimensionless ratio of angular momentum to _
mass as function of, Emparan and Reall found that/M3  giving the simple result
has a global minimum, 3 )
M3 < 7J (2.19
J? 32 . . :
—3>k7, for the black ring. It is peculiar that the valle=27/32—a
M m number produced by extremizing a function which depends

solely of the roots of the cubic equati¢®.10—cancels ex-
and they estimateld~0.8437[1]. We reproduce the plot in actly the factor 32/27 which comes from normalization of the
Fig. 1. In this section we determine the exact valuk tif be  mass and angular momentum. It would be interesting to un-
k=27/32. The black ring with}?/M3=1/7 is the solution derstand if there is any significance to this cancellation.
that maximizes the dimensionless measure of entropy, In terms of@, the dimensionless ratio of the horizon area
AIM32, and the mass is
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J3—ta

with nontrivial dilaton, magnetic fields, and antisymmetric

A? 10247 r(e
tensor field[16]. Many other solutions have been generated

dimensions, Sen found a charged rotating black hole solution
M3 }

using these transformations.
We shall be interested in classical solutionsDnspace-
time dimensions, and hence-1@ of the ten dimensions for
256 the heterotic string have been compactified; massless excita-
——— tions from the compactification and higher-derivative terms
27 are not included in the effective action, which is given by

In the given range, this function has a global maximum for
v=1q given in Eq.(2.13, and we find

A2
M3

Yo

In conclusion, the black ring withh=v, is the black ring S:j dOx/—Ge ?®

with minimum angular momentum and maximum entropy

for the mass given. Ad increases,A decreases, for fixed 1 1

mass(see also Fig. 3 of1]). X| RP+V,pVHD - Heve— ZF  ERv|
We find that the value ofs for which (27/32)J%/M?3 2" 8

=1 is approximatelyr~0.211645(see Fig. 1! One finds (3.1

that for 1/r<J?/M3<32/27x there are three distinct solu-

tions with the same asymptotic valubs and J: one is the  We consider only (1) gauge fields, and just a single(1)

Myers-Perry spherical black hole with,=0; the two others component of the gauge fields has been included in the ac-

are black ring solutions differentiated, for instance, by theirtion (3.1). The antisymmetric 3-form fieldd includes the

entropies. U(1) Chern-Simons term,

lll. REVIEW OF HASSAN-SEN TRANSFORMATIONS Hup=(00, BV,,+ cyclic permutationp

In the early 1990s it was showt0-14 that in any string
theory the space of classical solutions that are independent of
d of the spacetime coordinates has and©(,1)x0O(d
—1,1) symmetryfor O(d) X O(d) symmetry if thed dimen-  Throughout the metriG ,, refers to the string frame metric.
sions are all spati@l where the first factor acts on the left In D dimensions the Emstem metric is related to the string
movers and the second factor acts on the right movers.  metric byG,Ew_e [2/(D- 2)]<1>GM

Hassan and Seji3] showed that in heterotic string theory  we apply the Hassan-Sen transformations to classical so-
the group of transformations can be extended so that thgitions that are independent of the time directidhand (at
group acting on the right movers includes a subset of the 1feasj one spatial directiox®. The transformations of inter-
internal coordinates. If the signature of thecoordinates is  est to us involve only thex?,x!) part of the metric, which
Lor]?r:rt]man ind the b?ckgrofutr;]d gauge fields areﬂ?eutral undg\;e denote b)Gab, a,b=0,1, the 01 part of the antisymmet-

p of the U1) generators of the gauge group, the group o r|c tensorB,p,, and the gauge fielda, . Given such a solu-

transformations is Q(—1,1)® O(d+p—1,1). These trans-
a Jo0(d+p ) ®,A,,B,,), whereG andB are block diagonal—

formations can be used to generate new inequivalent classgtlIon (gW’ 0 ¢ Ii%0. h ¢ d sol
cal solutions from known classical solutions. e, Ba=0 for all i#0,1—the transformed solution

The symmetry can be realized explicitly for the low- (G.,.®.A, B,,) is computed as follows. Define ax2
energy effective action, but is valid to all ordersdn. Has- ~ matrixK as
san and Sem3] applied the transformations to a magnetic

6-brane solution in ten dimensions to generate a new solution a A 1. .
J Kab=—Ban— Gab— 7AsAs (33

(A +cyclic permutations (3.2

wtvp

of heterotic supergravity carrying independent electric and 4
magnetic charges as well as antisymmetric tensor field
charge. Also, starting from the neutral Kerr black hole in fourand a 5<5 matrix M,
(KT=n)G{K-n)  (K'=pGYK+ny  —(K'-nG'A
M=| KT+9G " K-n  (KT+pG Kty  —(K'+mG A [, (3.4
—ATG Y K- 17) —ATG YK+ 1) ATGA

The value forv given in[1] had a minor typo.
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where »=diag(—1,1). In addition to the above assumptions IV. CHARGED BLACK RING
we assume for convenience that0 for the original solu- A. Solution
tion. We haved=2 andp=1 and the symmetry on the space . . . -
of solutions is O(L1,190(2,1). Writing QeO(1,1) The rotating bla(;k ring solut|0|ﬁ2:1) has three Killing
©0(2,1) as vectors corresponding to the coordinatesy, and ¢. We
’ apply the Hassan-Sen transformation wikr «4/2 and a,
S 0 =0 to the ¢, ) part of the black ring solutiof2.1) to find a
Q= ( 0 R)' solution of the theory3.1) with D=5. The transformation is
given explicitly in the Appendix. The transformed solution is
we can choos® to be on the form 2
ds?=— LX)<dt+ \ﬁ&z—y cosi‘?,Bd¢>
cosha, sinha, O cosha; 0 sinha; F(y)h(x,y)? & A
R=| sinha, cosha, O 0 1 0 ,
0 0 1/ \ sinh 0 cosha + ! [ F(X)(G(y)d1/12+ F(y) dyz)
o S 7
! 1(3_5) AZ(X—y)2 G(y)
. . o . dx®>  G(x)
where a; parametrizes boosts that mix the O direction with +F(y)? +——d¢?||, (4.1)
the internal coordinate, and, parametrizes boosts in 01 G(x)  F(x)
space. The @,1) transformations are Lorentz boosts of the
solution in the 01 plane and we chodSé¢o be the identity  with fields
matrix.
givl;he Hassan-Sen transformation acts on the solution tZ*‘I’:h(X R v F(X)(&,-Y)
_ v & AF(Y)h(x.y)’
M=QMQT,
_ _ (x—y)sinh 28 . v F(X)(&-Y)
&= +In\/det G/det G. AT EFmny AT TN ARy
4.2

The (x°,x*) components of the new metric and the fiehls
andBg; are given implicitly byM and can be ext@ct_ed using The functionsF and G are given in Eqs(2.2) and
Egs.(3.3) and(3.4) with G, K, andA replaced byG, K, and

A. All other field components are unchanged by the transfor- h 14 Xy
mation. In the Appendix we give the explicit transformed (x.y)= EF(y)
solution in terms of the original solutions.

sink?B. 4.3

. . The analysis of the metric with respect to signature and regu-
Remark: Hassan-Sen transformations witha; =0 larity works out exactly as for the neutral case. The coordi-

Let (G,®,B=0) be a static solution satisfying the above Natesx andy are restricted to the regior2.3) and the coor-
assumptions. It is well knowiil7] that when applying a dinatesy and ¢ are periodic with the periods given in Eq.
Lorentz boost with parameter (dt—dtcosha+dzsinha (2.4 We note that fox andy in the coordinate region@.3),
anddz— dt sinha+dzcosha) and thenT dualizing in the 1 the functionh in Eq. (4.3) is strictly positive. _
direction, one obtains a new solutio(,®',B’) where the ~The asymptotic region is aty—§&,. Sinceh—1 at in-
linear momentum created by the boost is exchanged fét an finity, the coordinate — transformation(2.6) takes the
charge? Boosting the solution@’,d’,B") in 01 space with asymptotlc metric to the forn2.7) aft_er.the appropr_late res-
the same parametergives a new solution@”,®",B"), and calings. Thus the transformed metric is asymptotically flat.
thenT dualizing again, we find that the resulting solution is FOr é1= &3, the coordinate transformation given jd]

— . takes the solution given by Eqggt.1) and(4.2) to the solu-
exactly the Hassan-Sen-transformed solutiGndé,B) with : : . i s
a,=0 anda,=2a. This also holds true if the original met- tion obtained by applying the Hassan-Sen transformation in

i the Appendix to the five-dimensional Myers-Perry black hole
ric hasGo,# 0. ith onl tation parameter. This solution is
If Gi;=1 identically for the original static solution with only one nonzero rota P : :

(G.® 51:1 0), then the lasT duality transformation has no the five-dimensional analogue of the charged rotating black
T ' ) g hole in four dimensions found by S¢m6]. It can be gener-
effect: for Gy;=1 the solution G”,®",B")=(G,®,B),,—0  alized to a charged solution with two independent angular
is invariant undefl duality. In Sec. V we give an example of momenta by applying a Hassan-Sen transformation to the
a selfT-dual charged black string. general five-dimensional Myers-Perry rotating black hole.

In the following we assume thaf;>&5. Just as in the
case of the neutral black ring, regularity requi@gsto be
°The fields are required to fall off appropriately at infinity. given Eq.(2.5).
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_ The transformed solution is regular%—oo,_ o] d(_afin- J2 cosiB J2 1 cosH B

ing Y= —1/y we can extend the coordinate region to include PRl B R =— T
Y <O just as for the neutral black ring. At=¢&,, the metric M (1+ —sink?ﬁ) M £=0 ™ 1+ —sinl*?,B)
componentg,, blows up while the fields stay finite. By a 3 3

slight modification of the coordinate transformatioh ) (4.6
—(v,x) given in[1] we obtain new coordinates for which
the metric is regular ay=¢&,. The new coordinates—valid
for y> ¢,—are defined as

where we have used the res(2t14) for the lower bound on
J2/M3 for the neutral black ring, and the dimensionless ratio
of charge to mass is

dy=dy+ de, Q 2sinh 28
G(y) M- T 1 T 4.7
311+ §sinh2B
v (y—&)Vv—F(y)
do=dt+ \/———2" L cosKpdy,
& AG(y) We note that by taking3 large we can makd?/M? arbi-
_ trarily small while Q/M approaches a constant. Thus the
so thet, 4,y part of the metric becomes charge helps holding up the black ring, allowing us to make

the angular momentum arbitrarily small. This was of course
F(x) vé—y not possible for the neutral black ring.
N W vt & A Surprisingly, the ratidQ/M is independent of. In fact,
' we notice that the right hand side of Edg.7) is always less
F(X) than 1, so that for alg we have
+————[—G(y)dx*+2\—F(y)dxdy].
A“(X—y) Q|<=M, (4.8

2
ds; ,= cosf?ﬁdx)

The Killing vector (d/4t) vanishes atr=0, so the region with equality in the limit3— . Contrary to other solutions
y>¢, is the ergoregion. The determinagyg,,— gi,, has a with angular momentum and charge, this bound does not
zero aty=¢,, and since we know that the metric is regular involve the angular momentum.

here, the constant:(y) surface aty=¢, defines the event As a one-dimensional object in a five-dimensional asymp-
horizon. There is no inner horizon. Both the ergosurfalee  totically flat spacetime, the black ring can carry local—but
fined as the constant;{y) surface aly=0] and the horizon not global—fundamental string charge associated with the
are topologicallyS?x St. The curvature blows up at=&;, 3-form fieldH. Using Eq.(3.2) we find thatH has only one
and the dilaton is singular there; this corresponds to a spac@&onzero component

like S' curvature singularity in the metric.

\/z(g —x)2sini?B
B. Physical properties &t

H = —
Going to the Einstein metriG’, ,=e ?*"3G,,, and using T A€, +x sintPB—y cosRB ]2
the next-to-leading order behavior of the asymptotic metric

we compute the ADM mass and the angular momeni2n  and it gives rise to the local fundamental string charge

M= " (4.4
oA Eu(E—E)(E— &) '

4. Nt B(&;— &,)Y2
1+—smhz,8)(§ — &) Y[ e, SMTA(&—&
3 s A 167J S N A et

where the integral is over a 2-sphere parametrizea bypd

2 — £.)52cosR? ¢ at a constanty cut around of the ring. In the limiB
=—Z 3 iil ¢2) zos p > (45  —, the dimensionless ratig>/M diverges.
A Evi(E3— &) (€4 &2) From the leading order behavior of the field;

=A Ayl (27) at infinity we find the magnetic momept of
which reduce to the values for the neutral ring ®~0.  the black ring. In spherical coordinates with radial coordinate
Also, the black ring has an asymptotic electri¢€lcharge p and a polar coordinaté we have, for large,
given by(charges are normalized as|iti7])

_ psirfg

1 m(&,—€,)sinh 28 e 2
Q=-— e PxF= : g
167 J B ateo AzfiV(&_ £)(E4— &)

In analogy to the normalization of the charges, we normalize

The dimensionless ratio of angular momentum and mass ithe magnetic moment g8 = uA3/(167) where Az is the
given by area of a unit 3-sphere. We find
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7(é,— &)5%inh 28 We _shall compare this behavior with the near-singularity bg-
M= 5 > havior of the Hassan-Sen transformed boosted black string
AEV (€3~ E2)(€4— &) (see Sec. IV D).

The v dependence cancels @/ J so that the ratio depends

only on B. The gyromagnetic ratiagy is defined asg C. Bxtremal limit

=2uM/(QJ) and we find In the limit »—0 the ¢;'s behave as
4 2 1 v 1 v 1 v 1
3 1+§sm B wo §1~2—V+Z, &~ — +§, &3~ +§, §4~;—V.
I 2coskp '

The ratio J2/M? approaches zero whe@—o, but it di-
so thatg is independent of. We see from Eq(4.4) that for ~ Verges forv—0 (see Fig. 1. We find an extremal limit of the
the charged black ring, thg factor can take values between chargedn black ring by taking the limjg—c, keeping\
3/2 and 2. The same bounds have been found on the gyré-»€ # fixed. The extremal metric is

magnetic ratio for the string theory solution describing a

2
dilatonic rotating charged black hole in a four-dimensional ds?= — 1 t— M:Hy)d
asymptotically flat spacetimgl5]. It should, however, be N 2 2\2A
noted that there is an ambiguity in the normalization of the 1+ E(X_Y)
magnetic moment; changing the normalizationuothanges
the g factor. dv? dx?

The area of the event horizon is +———— | (Y= Ddy?+ LA
A?%(x—y)? y?—1 1-x?
16m° (& &) (&~ &) cositp
= . 2\ 2
AP P &) (64— £ &) +(1=x%)d¢
As a function of3, the dimensionless ratid/M®? is maxi- d the field
mized for B=0: for a given mass the neutral black ring and the Tields are
always has higher entropy than the charged black ring, and
increasing the charge while keeping the mass fixed, the ho- g-o_q ﬁ(x—y) B —_ A(1+y)
rizon area decreases. This is qualitatively the same behavior 2 ' i 2 A ’
as for a charged spherical black hole. 2V2A 1+ 5 (X=y)
Associated with the horizon is a Killing vector field
9 Ag? J Ao Y MAtY)
— —. 4.1 Y LN Y I’
v YV g,— E)cosRB IX 4.10 1+ E(x—y) V2A| 1+ E(X_y)

Outside the horizon where the original coordinates are valid, h h T
the Killing vector field is given by We now have—1<x<1 andy<—1, and the periodicities

are Ayy=A $=2. The solution is asymptotically flat. The

9 AvY2E (64— &) 0 curvature blows up ag— —o and this is a null singularity
EJF 7 —=. coinciding with the horizon.
2(&,— &) ’costtB 9y The physical quantities for the extremal solution are
Using the Killing field(4.10 we compute the surface gravity m . N o .
A(és—E3)vM%, 2A?’ 251273 2A2’
K= . (4.11
2(&,— &) cositp
A TN 2
Near the singularityy=§&,+ € for small e>0, the metric Q=S 7= M= opae 974
takes the form 812A 27A
d2~ + e(dv —dy)2+ dy?+ Jedyde+ €2dQ'2 Note that the inequality4.8) is saturated in the extremal

limit so that|Q|=M. Also, for the extremal ring.=J and
where we have ignored numerical constants ancktiepen- ~ the g factor is 2. By takingh large we can makd*/M?
dence[for example, the X,#) part of the metric is only arbitrarily small. The horizon area shrinks to zero; however,

singularity, k—2A/\. This is similar to the behavior found [15,18
for slowly rotating and nonrotating dilatonic charged spheri-
e ®~0(e ) and By,A,A,~O(1). cal black hole solutions in string theory.
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Defining r=—1/ and considering smali>0 we find f oSinh 2a sint?a
that the near-horizon and singularity behavior is Bi,=— - ,
2[r +rqcostta sinttB]
ds? 4 dt+ A dy 2+ ! (dy?+dr?+r2dQ3)
~— — re+r , ;
N2 22Ar A2 2 _ rocostta sinh 28 |
[r+rocostfa sinf?B]
with
_ rgsinh2asinh 28
e "~_-, A(A;B,—const. © 2[r+rqcoskasint?g]’

2r

We compare this with the near-singularity behavior of theThe solution is regular at=rcostfa and the coordinate
extremal limit of the charged boosted black string in SecSingularity atr=rq can be removed by a coordinate trans-

IV D. formation (valid for r <r,costa)
D. Charged boosted black string do=dt+ v rOCOSi falr—1 rosinh 2 COSH'B dr
The local behavior of the neutral rotating black ring is like 1=rolr 2(r—rocosita)
that of a boosted black string; hence we expect that the
charged black ring behaves locally as a boosted black string dw=dz+ VfoCOSiia/f—ldr
with similar charges and fields. We check this by comparing 1—rqolr '
the near-singularity behavior of the charged black ring to that
of a charged black string obtained from the boosted blackn these coordinates the metric becomes
string by the Hassan-Sen transformation in the Appendix.
The black string metric in five dimensions is the four- r(r—rocostfa)
dimensional Schwarzschild solution timés [r +rocosia sinfea]2
r ro| * .
ds?=— 1—To)dt2+d22+ 1—7") dr2+r2d02. rosinh 2« cositB ~fo o
p— 2T -9
(4.12 2(r —rqcostta) r—rocostfa

Applying a Lorentz boost to the solutiof.12 by taking +2(rocostfa/r— 1)~ Y2drdw+r?dQ3,

dt—dtcosha+dzsinha and dz—dt sinha+dzcosha, we

obtain the metric for the boosted black string:

r ocoslH rosinh 2o
d32=—<1— 0 : a) 24 2 dtdz

and it is regular at =r,. The Killing vector d/dt becomes
null at r=rycostta, and the determinang,g,,— gtzZ van-
ishes arr =r; the regionr ,<r <r,cosH« is the ergoregion
for the string and =r defines the horizon. There is a cur-

vature singularity at =0.
The physical quantities can be calculated as in the previ-
ous section. We findthe linear momentum is computed fol-

r oSint? ro\ 1
+<1+¥)d22+(1—70) dr2+r2dQ3.

lowing [17
4.13 g[17)
T dualizing the metrig4.13 gives the solution for the non- m= r_°[1+cosﬁa cosh 23], PZ:r—Osinh 2 cosHp,
extremal fundamental black strifgee Sec. ¥ Now instead 4 8
apply the Hassan-Sen transformation of the Appendix to Eq.
SR r r
(4.13. The transformed solution is given by q= Zocosﬁ’-asinh 28, Qu=-— gosinhZasinI"F,B,
e r(r—rocosta)
=- . th f ity i
[r + rocosia sint?g]2 and the surface gravity is
o gt rosinh 2acosﬁ,8d 2 o= 1
e T Py .
2(r —rocosia) 2rcosha costtB
r—ro rol 2 The near-singularity behavior of the solution(ignoring nu-
+————dZ+ ( 1- —) dr2+r2dQ32, merical constanis
r—rocostfa r
ds?~ +r(dv+dw)?+dw?— \rdrdw+r2dQ3,
oy rocosifa sint?8
e =i r ’ e ®~0(r 1), By,A;,A,~const.
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Qualitatively, this agrees with the near-singularity behaviorand with fields
of the charged black ring. For the black ring, the 2-sphere is
distorted and so is th&' around the ring.

T
e P=1+ - By
E. Extremal limit (5.2

There is an extremal limit defined by takimgy—c while

We have defined
keeping\ = (ro/4)e?” fixed. The extremal solution is

a=sinha,, b=cosha;sinha,,

1 Nosinh2a |2
ds’=— ;| di- =5 ——dz| +dZ Lo
[1+Aocosttalr] r = - (cosha; cosha,—1).
+dr?+r2dQ3,
There is anS?x R horizon atr =r, and the metrig5.1) has
o \ocosHa - N osinh 2 a curvature singularity at=0. The_ fields are regular every-
e"=1+—— By=F——7—7—"—7—, where, except at=0 where the dilaton blows up. The solu-
2[r +\ocostta] tion represents a charged black string with mass per length
m, electric charge per lengtf), fundamental string charge
_ 2\ ocostta NoSinh 2« Qu, and linear momentur®, along the string, given by
t— . o 1 AN
[r+X\ocosta] [r+\ocostfa] m=(ro/4)(1+ cosha;coshay), q=ryal4,
At r=0 there is a null singularity coinciding with the hori- Qu="P,=r,b/8.
zon. The near-singularity behavior for the extremal boosted
string is Expressed in terms of the three independent physical param-
etersm, q, andQy, we have
2 H 2
r NoSinh 2«
A= ———| dt— —— ——dz| +dZ+dr? 2
A3cosH 2r Fo=r-(M"—q°—4Qp),
+r2dQ3, i
S0 we must require
NocosHa 2> 2 2
e_q):of’ B, A, A,~COnst. m™=q"+4Qy (5.3

for the solution not to be naked singular. There are two ex-

As expected, this agrees with the near-singularity behavior ofemal limits that saturate the inequali§.3); we study these

the extremal charged black ring. at the end of this section.
Consider now the solution for a black string with funda-

V. BLACK STRINGS WITH CHARGE mental string charge in five dimensiofts7,20,2] given by

A

The most general five-dimensional black string solution r—rg
labeled by mass, angular momentum, electric charge per ds’=
length, and fundamental string charge was analyzed by Ma-
hapatra in[19]. The solution was found by applying a
Hassan-Sen transformation with genesgl and «, to the +
rotating black string vacuum solution obtained as the four-
dimensional Kerr solution times a flat direction. In this sec-
tion we consider a special case where the Hassan-Sen trans-  o-®_q 4
formation is applied to the neutral nonrotating black string
and we find that in one extremal limit this solution describes

2 r 2
— dte+ dz
sintfa’ jsintfa’

r+rosintra r+rosintra

!

ro) 7t
1‘?) dr2+r2dQ3,

rosintPa’

traveling waves in a fundamental string background. rosinh 2’

Applying the Hassan-Sen transformation of the Appendix Bi= 2(r +rlsintta’)’ 5.4
to the neutral black string#.12), we find a solution with the 0
metric

and A;=A,=0. In the extremal limita’ —o with r}e?®’
constant, this solution describes the fields outside a straight

N r2Rn2 -
ds?= — ar(r r0)~ rob dt2+ rotidtdz+d22 fundamental_ string20,22,. _
4(r+r)? r+r The solution(5.4) can be obtained from the neutral black
. string (4.12 by first applying a Lorentz boost and thén
r 2. > ;
o0 dr2+r2d(2§ (5.1) dualizing to exchange the linear momentum withcharge

[17,20,21.
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Applying a Lorentz boost with boost parameter to the  charge. We found that the lower bound on the dimensionless
solution (5.4 we obtain a solution describing a boosted ratio J?/M?3 could be arbitrarily small, because the charge
black string withH charge. As discussed in Sec. Il this is would help supporting the ring from collapsing.
exactly the same solution as the transformed solution in Egs. As mentioned in Sec. IV A, the solution given by Egs.
(5.1) and(5.2) with a;=0, ap,=2a', andry=r}, and it is (4.1) and (4.2 describes a charged rotating black ring for
invariant underT duality. §1>&3 and a charged rotating black hole féf=£;. The

Returning to the solution given in Eg&.1) and(5.2) we  lattér can also be obtained by applying the Hassan-Sen trans-
find that the inequality5.3) can be saturated by taking, formation of the Appendix to the five-dimensional Myers-

— with a, fixed or vice versa. We consider both cases in_erry black hole with one of the rotation parameters set to
the following. zero. For a giveng, the ratio|Q|/M is fixed, and one can

then use the parameter to set the value oB%M3. This
o holds for both the charged black ring and the charged spheri-
A. Extremal limit | cal black hole solutions. The behaviord##M?3 as a function
The inequality(5.3) is saturated by taking,—o while ~ Of v is as for the neutral black ringee Fig. ], just rescaled
keepinga; andR= iroe®2 constant. In this limit the electric DY @8-dependent factor. Hence there exists a range of values
field vanishes, and thB field and the dilaton behave just as f J/M? such that there are three distinct solutions with the
the fields for a straight fundamental strifig7,20,21, but ~ Same asymptotic charges: one is the Hassan-Sen transform of

whereas the fundamental string is boost invariant along the theé Myers-Perry black hole with just one nonzero angular
direction, this solution is not. momentum, and the two others are black ring soluti@mse

Introducing null coordinatesu=(1/\/§)(z+t) and v has greater horizon area than the oth€his is an extension

=(1/y2)(z—1) the Einstein metric for this extremal solution of the nonuniqueness resglt of Rgt] to charged solutions
can be written of low-energy heterotic string theory.

The charged black hole found here can be generalized by

M\ 13 2M applying a Hassan-Sen transformation to the general five-
dséinstein:(l+ ra <2dUdv+ Tduz dimensional Myers-Perry black hole with two independent
rotation parameters.
213 s oo For the charged black ring we found a curious relationship
1+ ] (dridradQy), between the mass and the chaiggl<M. The inequality is

saturated in the extremal limit, encouraging that the extremal

where M =R cosha;. This matches exactly the traveling Solution may actually be supersymmetric. This requires fur-
wave solutions found by Garfinklg23]. Thus the solution ther investigation.

describes constant spherically symmetric traveling waves The stability of the black ring solutions is an open ques-
along a fundamental black string. tion. The black rings resemble thin black strings, in particu-

lar for small v, so one may expect to find a classical

Gregory-Laflamme instability mode4]. If it exists, such an

. , ) D instability mode would generate ripples in the horizon, and
Taking a;— while keepinga, and R'=3rqoe“ con-  qye to the rotation the ripples would radiate away and one

stant gives another extremal solution with charges that satygyqid expect the ring to collapse to a rotating black hole.

rate the inequality5.3). This extremal solution is given by Very recently, Hong and Tel@5] presented a new form of

B. Extremal limit Il

the metric the C metric, and they expressed the neutral black ring met-
5 o ric (2.1) in terms of these new coordinates. Some expressions

__ r'—K dt2+ 2K dtdz+dZ2+dr2+r2d0?2 in this paper simplify when the coordinates of Hong and Teo
(r+M)2 +M ’ are used; in particular, the calculation of the exact value of

the lower bound o8%/M?2 simplifies drastically.
where nowM =R’ cosha, andK=R’sinha,, and the fields

K 2yM?2-K?
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The physical mass per length m=M/2, the electrical
charge per length ig=3M?—K?2, and the fundamental
string charge,=K/4 equals the linear momentuiy along
the string.

VI. DISCUSSION

. . . APPENDIX: HASSAN-SEN-TRANSFORMED SOLUTIONS
We have constructed a charged black ring solution to five-

dimensional heterotic supergravity and studied its properties. In this appendix we give explicit expressions for solutions
The solution is labeled by mass, angular momentum, andbtained by the Hassan-Sen solution generating technique
electric charge, and it also carries local fundamental stringeviewed in Sec. Ill.
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Transformation of a static metric original solution is asymptotically flat such th&,,— —1

Let (G, V,db) be a static solution mdependent of the time and Gy;—1 at infinity, thenGgy——1, Gg;—0, and Gy,
d|rect|onx and the spatial directior! with no gauge fields —1 at infinity, so the transformed solution is also asymptoti-
and no antisymmetric tensor fields. The transformations coneally flat.

sidered here involve only the{,x*) part of the metric. We If Gy,=1 identically, thenGy,=1 identically and there

assume that the metric is block diagonal: 3,;=0 for all : . 4 A
i #0,1 anda,b=0,1. The transformed solution is then given V.V'” be no magnetic L) field, A, =0. Note that U1) gauge

by the metric fields are generated only if; # 0 and that an antisymmetric
tensor field is generated only if,#0. Also, Gy, vanishes

for a,=0.
Goo= X(G) o—{costta;sinffa,Gog (1+ Goo)?
Transformation of a stationary metric (a,=0)
+G1[(1+ Gy +coshay(1—-Gyy) 1%,
Let (G, ,P) be a solution satisfying the conditions from
4 sinh Appendix A1 only that now we allow for an off-diagonal
= sinha, term Gy,#0. Setting8=«,/2 anda,=0, the transformed
GOl_ X(G) {COShalGOO (1+ Goo) solution iS
X[(1—Gqg) + cosha;coshay(1+ Ggp) ]
= GOO
+G(1-G1)[(1+ Gy +coshay(1—Gyy) ]}, Goo= ,
11 ( 1[( 1) o w1} 00 [1+(1+ Gy sint?B]2
— 4
G]_]_: W{Gaol[(l_ Goo) + COShalcOShaz(l-l— Goo)]2
+Sinhza26;ll(l_G]_1)2}; 601: GOlCOSHB y
[1+(1+ Ggg)sini?3]?
where
X(G) =Gy G11{(1~Goo)[ (1+G1y)
+coshay(1— Gyy) ]+ cosha, (1+ Ggg) G. Gop Gorcostfs GoldetG
cosha,(1— cosha = + etG,
20 ne T Y1+ (1+Gyysinteg2 °
X[(1—Gyy) +coshay(1+Gyy)]}2,
the dilaton O =D —In[1+(1+Goysintp],
B=b+iny)
= n —
GoG1:X(G)’
00 5 _ Gosinttg
the gauge fields O 4 (1+GyysintB’
K 2 Sinhal(1+Goo)[(1+Gll)+cosha2(l_G]_]_)]
0~ )
VGooG1X(G) _ (1+Gyysinh 28
0~ 3 )
& _ 2 sinhassinhas(1+ Go (1 Gy 1+ (1+Gog)sini? g
1= )
VGG 11X(G)
and an antisymmetric tensor field + __ Gossinh28
Y14 (14 Gyysint?B’
B, SN2 1 Gg(1- Gy
01~ — = o ~ L1717
VGG 11X(G) o .
For Gy;=0, this is just thea,=0 case of the previous sec-
+cosha;(1+Gog)(1+Gyy)]. tion.

If the original solution is asymptotically flat witkso,—
Even when the original solution is asymptotically flat, the —1 andGy;— 0 at infinity, then the new solution is asymp-
transformed metric is not necessarily so. However, if thetotically flat, and the matter fields approach zero at infinity.
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