
PHYSICAL REVIEW D 68, 124016 ~2003!
A charged rotating black ring

Henriette Elvang*
Department of Physics, UCSB, Santa Barbara, California 93106, USA

~Received 22 July 2003; published 23 December 2003!

We construct a supergravity solution describing a charged rotating black ring with anS23S1 horizon in a
five-dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring
recently found by Emparan and Reall. We determine the exact value of the lower bound onJ2/M3, whereJ is
the angular momentum andM the mass; the black ring saturating this bound has a maximum entropy for the
given mass. The charged black ring is characterized by a massM, angular momentumJ, and electric chargeQ,
and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring
helps support the ring against its gravitational self-attraction, so thatJ2/M3 can be made arbitrarily small while
Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the
singularity.
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I. INTRODUCTION

Recently, Emparan and Reall@1# found an exact vacuum
solution describing a rotating black ring in a five
dimensional asymptotically flat spacetime. The black r
solution is the first explicit example of nonuniqueness
higher-dimensional gravity in the sense that the asympt
cally determined quantities do not uniquely specify the so
tion: in five dimensions there exist asymptotically fl
vacuum solutions with the same mass and angular mom
tum, but with distinct horizon topologies—one is the rotati
black hole with anS3 horizon and the other is the rotatin
black ring with anS23S1 horizon. We extend this nonu
niqueness result to charged solutions of low-energy heter
string theory.

In five dimensions, the Myers-Perry black hole@2# is
characterized by massM and two independent angular mo
mentaJ1 andJ2. TakingJ5J1 andJ250, the dimensionless
ratio constructed fromJ andM has an upper bound,

J2

M3
<

32

27p
~black hole!.

Emparan and Reall showed that for a black ring with masM
and angular momentumJ the dimensionless ratioJ2/M3 has
a lower bound,

J2

M3
>k

32

27p
~neutral black ring!,

and they foundk'0.8437@1#. In this paper we show that th
exact value isk527/32. The solution withJ2/M351/p is
the black ring that maximizes the entropy for the given ma
For 1/p<J2/M3<32/27p there are spherical black hole s
lutions and black ring solutions with the same values oJ
andM.
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The interpretation of the lower bound onJ2/M3 is that for
a given mass it takes a certain angular momentum to bala
the gravitational self-attraction of the ring. An electric char
distributed uniformly around the black ring would help su
port the ring so that the ratioJ2/M3 could be made arbi-
trarily small. We find that this is indeed possible.

Applying the solution generating techniques of Hass
and Sen@3# to the rotating black ring, we find a solutio
describing a charged rotating black ring. This is a solution
the low-energy limit of heterotic string theory~heterotic su-
pergravity!, and besides carrying a U~1! electric chargeQ,
the black ring also carries local fundamental string char
The charged black ring can be viewed as the field of a ro
ing excited loop of fundamental string with electric charg
added. We find that the ratioJ2/M3 can be made arbitrarily
small, while the dimensionless ratio of charge to mass
proaches a constant. The charge and mass satisfyuQu<M ,
independent of the angular momentum. We also compute
magnetic moment and gyromagnetic ratio. The charged
tating black ring has an extremal limit for which the ring
extremally charged,uQu5M . For the extremal solution, the
horizon coincides with the singularity.

It is unknown if supersymmetric black rings exist. In@4#
all supersymmetric solutions ofN51 minimal supergravity
in five dimensions are constructed. Furthermore, as a
uniqueness result, it is argued in@5# that the only supersym
metric, asymptotically flat black hole solutions in this theo
are the Breckenridge-Myers-Peet-Vafa~BMPV! @6# black
holes, which are characterized by their mass and ang
momentum. However, we have here a black ring solution
to minimal supergravity, but to heterotic supergravity wi
five dimensions compactified. Hence the uniqueness resu
@5# does not exclude the possibility of a supersymme
black ring for which the extremal limit of the black rin
found in this paper may be a candidate.

The matter of uniqueness is interesting in its own rig
but is also important for the string theory calculations of t
entropy of supersymmetric or nearly supersymmetric bla
holes@7#. For these derivations it is assumed that the bla
hole solutions are specified uniquely by their asympto
charges.
©2003 The American Physical Society16-1



e
he
ns
ro

he
ri

tr
e
t

Th
im
e

ns
th

t
ap
lac

e
he
ul

in
-

ng
i

in

e

ck
a

t

p
es,

-
le
to

d

at
nds

a
av-

ing
B–

er-
ur-

HENRIETTE ELVANG PHYSICAL REVIEW D68, 124016 ~2003!
The solutions presented in this paper arenot uniquely
specified by their asymptotic charges. For a certain rang
parameters there are charged rotating black rings and sp
cal black holes~obtained by applying the Hassan-Sen tra
formation to a Myers-Perry black hole with a single nonze
angular momentum! with the same asymptotic charges. T
extremal limit of the charged black ring has vanishing ho
zon area.

The paper is organized as follows. We consider the neu
rotating black ring in Sec. II: in Sec. II A we review th
neutral black ring of@1# and in Sec. II B we derive the exac
lower bound ofJ2/M3 for the black ring. We review the
Hassan-Sen solution generating technique in Sec. III.
Hassan-Sen technique gives the transformed solutions
plicitly. Starting from quite general solutions, we offer in th
Appendix explicit expressions for the transformed solutio
In Sec. IV, we apply the Hassan-Sen transformation to
rotating black ring to obtain the charged ring solution~Sec.
IV A !. We investigate the physical properties~Sec. IV B! and
study an extremal limit of the charged black ring~Sec. IV C!.
We compare the local behavior of the charged black ring
the local behavior of a charged black string obtained by
plying the Hassan-Sen transformation to a boosted b
string ~Sec. IV D!. Somewhat unrelated to the black rings w
discuss in Sec. V solutions for charged black strings and t
extremal limits. We summarize and discuss the res
in Sec. VI.

II. BLACK RING

Emparan and Reall found vacuum solutions describ
black rings withS23S1 horizons in a five-dimensional as
ymptotically flat spacetime. The static black ring solution@8#
has conical singularities preventing the ring from collapsi
but these conical singularities can be avoided if the ring
rotating fast enough to provide a force to balance the r
under its own gravitational attraction@1#. We review the ro-
tating black ring in Sec. II A, and in Sec. II B we derive th
exact lower bound onJ2/M3.

A. Review of the neutral rotating black ring

The metric of the black ring was obtained by a Wi
rotation of a metric in@9#. The solution is characterized by
parametern and a scalingA. Written in C-metric coordinates
~we adopt the notation of and follow closely Ref.@1#! the
metric is

ds252
F~x!

F~y!
S dt1A n

j1

j22y

A
dc D 2

1
1

A2~x2y!2 F2F~x!S G~y!dc21
F~y!

G~y!
dy2D

1F~y!2S dx2

G~x!
1

G~x!

F~x!
df2D G , ~2.1!

where

F~j!512j/j1 , G~j!512j21nj3. ~2.2!
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It is assumed that 0,n,2/(3A3) which guarantees tha
G(j) has three distinct real rootsj2 , j3, andj4. The roots
can be ordered as21,j2,0,1,j3,j4,1/n.

Analyzing the metric~2.1!, one finds that in order to kee
the signature Lorentzian and to avoid conical singulariti
the coordinate ranges are required to be

j2<x<j3 , y,j2 , ~2.3!

and the angular coordinatesc andf must have periodicities

Dc5Df5
4pAF~j2!

G8~j2!
. ~2.4!

Furthermore,j1>j3. If j15j3, the solution~2.1! describes
a black hole withS3 horizon topology. A coordinate transfor
mation@1# identifies it as the Myers-Perry rotating black ho
@2# in five dimensions with one rotation parameter set
zero. In the following we assumej1.j3. Since the orbit of
gff then vanishes at bothx5j2 and j3, there are two dis-
tinct conditions imposed onDf. These conditions are solve
by setting

j15
j4

22j2j3

2j42j22j3
, ~2.5!

implying that j3,j1,j4. Equation~2.5! can be viewed as
the tuning of the angular momentum to uphold the ring.

The limit x,y→j2 is asymptotic infinity and it can be
shown that the solution is asymptotically flat: rescalec and
f by taking c̃52pc/Dc and f̃52pf/Df, so thatDf̃

5Dc̃52p, and defineÃ5AAG8(j2)/@2F(j2)#. Via the
coordinate transformation

z5
Aj22y

Ã~x2y!
and h5

Ax2j2

Ã~x2y!
, ~2.6!

the asymptotic metric can be written as

dsasymp
2 52dt21dz21z2dc̃21dh21h2df̃2. ~2.7!

The Killing vector]/]t vanishes wheny→2`, and since
the metric is regular here, the coordinateY521/y can natu-
rally be extended pastY50, allowing Y to take negative
values. The coordinates break down aty5j4, where gyy
blows up. However, this is just a coordinate singularity th
can be removed by a change of coordinates. In fact, one fi
that there is anS23S1 horizon aty5j4 and behind it anS1

curvature singularity is hiding aty5j1. The regiony.j4 is
the ergoregion. The ergosurface atY50 is regular and has
topologyS23S1.

Locally, the rotating black ring is expected to look like
boosted black string, and indeed the near-singularity beh
ior of the boosted black string matches that of the black r
~up to numerical factors and distortion; see also Secs. IV
IV D !.

The physical quantities such as the Arnowitt-Des
Misner ~ADM ! mass, the angular momentum, and the s
face gravity are given for the black ring in@1#. Dimension-
6-2
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less quantities can be formed by multiplying the physi
quantities by suitable powers of the mass. For the ang
momentumJ and the horizon areaA we have

J2

M3
5

32

27p

~j42j2!3

~j32j2!~2j42j22j3!2
, ~2.8!

A 2

M3
5

2048p

27

~j32j2!~j42j3!

~2j42j22j3!2
. ~2.9!

We have used Eq.~2.5! to eliminatej1 from these expres
sions, and we setG5c51 throughout the paper. In Sec. IV
we compute the physical quantities for the charged bl
ring, and the mass and angular momentum for the neu
black ring can then be obtained by taking the transforma
parameterb to zero@see Eqs.~4.4! and ~4.5!#.

B. Exact result for the black ring

Plotting the dimensionless ratio of angular momentum
mass as function ofn, Emparan and Reall found thatJ2/M3

has a global minimum,

J2

M3
>k

32

27p
,

and they estimatedk'0.8437@1#. We reproduce the plot in
Fig. 1. In this section we determine the exact value ofk to be
k527/32. The black ring withJ2/M351/p is the solution
that maximizes the dimensionless measure of entro
A/M3/2.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.25

0.5

0.75

1

1.25

1.5

1.75

2

27π
32

J2

M3

ν

FIG. 1. As in Ref. @1#, we plot the dimensionless rati
(27p/32)J2/M3 versusn for 0,n,2/(3A3). The solid line is the
ratio for the black ring and the dashed line is the ratio for a Mye
Perry black hole with only one nonzero angular momentum. T
dotted lines represent the constant functions 1 and 27/32. Fo
black ring, (27p/32)J2/M351 at n'0.211645.
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The quantitiesJ2/M3 andA 2/M3 are given in Eqs.~2.8!
and ~2.9! in terms of the rootsj2 , j3, andj4 of the cubic
equation

nj32j21150. ~2.10!

We assume that 0,n,2/(3A3) in order for the equation to
have three distinct real roots. Forn52/(3A3), the rootsj3
and j4 coincide. Using standard methods for obtaining t
roots of a cubic equation, we find

j25
1

3n S 12cos
u

3
2A3 sin

u

3D ,

j35
1

3n S 12cos
u

3
1A3sin

u

3D ,

j45
1

3n S 112 cos
u

3D ,

where

u5cos21S 12
27

2
n2D . ~2.11!

We can now write the dimensionless ratio of angular m
mentum to mass in terms ofu as

27p

32

J2

M3
5

1

24F816A3 cscS 2u

3 D1sec2S u

3D G . ~2.12!

The global minimum of (27p/32)J2/M3 for the black ring
~see Fig. 1! is found by extremizing the right hand side o
Eq. ~2.12! with respect to u, and one finds thatu
53 cos21(2/A7) corresponds to the minimum in Fig. 1
Solving for n using Eq.~2.11! we get

n05
1

3
A2

3
1

20

21A7
'0.3377. ~2.13!

Evaluating Eq.~2.12! at n5n0 we find the minimum valuek
to be

k[
27p

32

J2

M3U
n0

5
27

32
50.84375,

giving the simple result

M3<pJ2 ~2.14!

for the black ring. It is peculiar that the valuek527/32—a
number produced by extremizing a function which depen
solely of the roots of the cubic equation~2.10!—cancels ex-
actly the factor 32/27 which comes from normalization of t
mass and angular momentum. It would be interesting to
derstand if there is any significance to this cancellation.

In terms ofu, the dimensionless ratio of the horizon ar
and the mass is

-
e
he
6-3
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A 2

M3
5

1024p

81
tanS u

3D FA32tanS u

3D G .
In the given range, this function has a global maximum
n5n0 given in Eq.~2.13!, and we find

A 2

M3U
n0

5
256p

27
.

In conclusion, the black ring withn5n0 is the black ring
with minimum angular momentum and maximum entro
for the mass given. AsJ increases,A decreases, for fixed
mass~see also Fig. 3 of@1#!.

We find that the value ofn for which (27p/32)J2/M3

51 is approximatelyn'0.211645~see Fig. 1!.1 One finds
that for 1/p<J2/M3<32/27p there are three distinct solu
tions with the same asymptotic valuesM and J: one is the
Myers-Perry spherical black hole withJf50; the two others
are black ring solutions differentiated, for instance, by th
entropies.

III. REVIEW OF HASSAN-SEN TRANSFORMATIONS

In the early 1990s it was shown@10–14# that in any string
theory the space of classical solutions that are independe
d of the spacetime coordinates has an O(d21,1)3O(d
21,1) symmetry@or O(d)3O(d) symmetry if thed dimen-
sions are all spatial#, where the first factor acts on the le
movers and the second factor acts on the right movers.

Hassan and Sen@3# showed that in heterotic string theor
the group of transformations can be extended so that
group acting on the right movers includes a subset of the
internal coordinates. If the signature of thed coordinates is
Lorentzian and the background gauge fields are neutral u
p of the U~1! generators of the gauge group, the group
transformations is O(d21,1)^ O(d1p21,1). These trans
formations can be used to generate new inequivalent cla
cal solutions from known classical solutions.

The symmetry can be realized explicitly for the low
energy effective action, but is valid to all orders ina8. Has-
san and Sen@3# applied the transformations to a magne
6-brane solution in ten dimensions to generate a new solu
of heterotic supergravity carrying independent electric a
magnetic charges as well as antisymmetric tensor fi
charge. Also, starting from the neutral Kerr black hole in fo
12401
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dimensions, Sen found a charged rotating black hole solu
with nontrivial dilaton, magnetic fields, and antisymmetr
tensor field@16#. Many other solutions have been generat
using these transformations.

We shall be interested in classical solutions inD space-
time dimensions, and hence 102D of the ten dimensions for
the heterotic string have been compactified; massless ex
tions from the compactification and higher-derivative ter
are not included in the effective action, which is given by

S5E dDxA2Ge2F

3S R(D)1¹mF¹mF2
1

12
HmnrHmnr2

1

8
FmnFmnD .

~3.1!

We consider only U~1! gauge fields, and just a single U~1!
component of the gauge fields has been included in the
tion ~3.1!. The antisymmetric 3-form fieldH includes the
U~1! Chern-Simons term,

Hmnr5~]mBnr1cyclic permutations!

2
1

4
~AmFnr1cyclic permutations!. ~3.2!

Throughout the metricGmn refers to the string frame metric
In D dimensions the Einstein metric is related to the str
metric byGmn

E 5e2[2/(D22)]FGmn .
We apply the Hassan-Sen transformations to classical

lutions that are independent of the time directionx0 and ~at
least! one spatial directionx1. The transformations of inter
est to us involve only the (x0,x1) part of the metric, which
we denote byĜab , a,b50,1, the 01 part of the antisymme
ric tensorB̂ab , and the gauge fieldsÂa . Given such a solu-
tion (Gmn ,F,Am ,Bmn), whereG andB are block diagonal—
i.e., Gai5Bai50 for all iÞ0,1—the transformed solution
(Ḡmn ,F̄,Ām ,B̄mn) is computed as follows. Define a 232
matrix K as

Kab52B̂ab2Ĝab2
1

4
ÂaÂb ~3.3!

and a 535 matrix M,
M5S ~KT2h!Ĝ21~K2h! ~KT2h!Ĝ21~K1h! 2~KT2h!Ĝ21Â

~KT1h!Ĝ21~K2h! ~KT1h!Ĝ21~K1h! 2~KT1h!Ĝ21Â

2ÂTĜ21~K2h! 2ÂTĜ21~K1h! ÂTĜ21Â
D , ~3.4!

1The value forn given in @1# had a minor typo.
6-4
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A CHARGED ROTATING BLACK RING PHYSICAL REVIEW D68, 124016 ~2003!
whereh5diag(21,1). In addition to the above assumptio
we assume for convenience thatÂ50 for the original solu-
tion. We haved52 andp51 and the symmetry on the spac
of solutions is O(1,1)̂ O(2,1). Writing VPO(1,1)
^ O(2,1) as

V5S S 0

0 RD ,

we can chooseR to be on the form

R5S cosha2 sinha2 0

sinha2 cosha2 0

0 0 1
D S cosha1 0 sinha1

0 1 0

sinha1 0 cosha1

D ,

~3.5!

wherea1 parametrizes boosts that mix the 0 direction w
the internal coordinate, anda2 parametrizes boosts in 0
space. The O~1,1! transformations are Lorentz boosts of t
solution in the 01 plane and we chooseS to be the identity
matrix.

The Hassan-Sen transformation acts on the solution
give

M̄5VMVT,

F̄5F1 lnAdet Ḡ/det G.

The (x0,x1) components of the new metric and the fieldsĀa

andB̄01 are given implicitly byM̄ and can be extracted usin
Eqs.~3.3! and~3.4! with G, K, andA replaced byḠ, K̄, and
Ā. All other field components are unchanged by the trans
mation. In the Appendix we give the explicit transforme
solution in terms of the original solutions.

Remark: Hassan-Sen transformations witha1Ä0

Let (G,F,B50) be a static solution satisfying the abo
assumptions. It is well known@17# that when applying a
Lorentz boost with parametera (dt→dt cosha1dzsinha
anddz→dt sinha1dzcosha) and thenT dualizing in the 1
direction, one obtains a new solution (G8,F8,B8) where the
linear momentum created by the boost is exchanged for aH
charge.2 Boosting the solution (G8,F8,B8) in 01 space with
the same parametera gives a new solution (G9,F9,B9), and
thenT dualizing again, we find that the resulting solution
exactly the Hassan-Sen-transformed solution (Ḡ,F̄,B̄) with
a150 anda252a. This also holds true if the original met
ric hasG01Þ0.

If G1151 identically for the original static solution
(G,F,B50), then the lastT duality transformation has no
effect: for G1151 the solution (G9,F9,B9)5(Ḡ,F̄,B̄)a150

is invariant underT duality. In Sec. V we give an example o
a self-T-dual charged black string.

2The fields are required to fall off appropriately at infinity.
12401
to
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IV. CHARGED BLACK RING

A. Solution

The rotating black ring solution~2.1! has three Killing
vectors corresponding to the coordinatest, c, and f. We
apply the Hassan-Sen transformation withb5a1/2 anda2
50 to the (t,c) part of the black ring solution~2.1! to find a
solution of the theory~3.1! with D55. The transformation is
given explicitly in the Appendix. The transformed solution

ds252
F~x!

F~y!h~x,y!2 S dt1A n

j1

j22y

A
cosh2bdc D 2

1
1

A2~x2y!2 F2F~x!S G~y!dc21
F~y!

G~y!
dy2D

1F~y!2S dx2

G~x!
1

G~x!

F~x!
df2D G , ~4.1!

with fields

e2F5h~x,y!, Btc5sinh2bA n

j1

F~x!~j22y!

AF~y!h~x,y!
,

At5
~x2y!sinh 2b

j1F~y!h~x,y!
, Ac52sinh 2bA n

j1

F~x!~j22y!

AF~y!h~x,y!
,

~4.2!

The functionsF andG are given in Eqs.~2.2! and

h~x,y!511
x2y

j1F~y!
sinh2b. ~4.3!

The analysis of the metric with respect to signature and re
larity works out exactly as for the neutral case. The coor
natesx andy are restricted to the regions~2.3! and the coor-
dinatesc and f are periodic with the periods given in Eq
~2.4!. We note that forx andy in the coordinate regions~2.3!,
the functionh in Eq. ~4.3! is strictly positive.

The asymptotic region is atx,y→j2. Sinceh→1 at in-
finity, the coordinate transformation~2.6! takes the
asymptotic metric to the form~2.7! after the appropriate res
calings. Thus the transformed metric is asymptotically fla

For j15j3, the coordinate transformation given in@1#
takes the solution given by Eqs.~4.1! and ~4.2! to the solu-
tion obtained by applying the Hassan-Sen transformation
the Appendix to the five-dimensional Myers-Perry black ho
with only one nonzero rotation parameter. This solution
the five-dimensional analogue of the charged rotating bl
hole in four dimensions found by Sen@16#. It can be gener-
alized to a charged solution with two independent angu
momenta by applying a Hassan-Sen transformation to
general five-dimensional Myers-Perry rotating black hole

In the following we assume thatj1.j3. Just as in the
case of the neutral black ring, regularity requiresj1 to be
given Eq.~2.5!.
6-5
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The transformed solution is regular aty→2`, so defin-
ing Y521/y we can extend the coordinate region to inclu
Y,0 just as for the neutral black ring. Aty5j4, the metric
componentgyy blows up while the fields stay finite. By
slight modification of the coordinate transformation (t,c)
→(v,x) given in @1# we obtain new coordinates for whic
the metric is regular aty5j4. The new coordinates—valid
for y.j1—are defined as

dx5dc1
A2F~y!

G~y!
dy,

dv5dt1A n

j1

~y2j2!A2F~y!

AG~y!
cosh2bdy,

so thet,c,y part of the metric becomes

dsvxy
2 52

F~x!

F~y!h~x,y!2 S dv1A n

j1

j22y

A
cosh2bdx D 2

1
F~x!

A2~x2y!2
@2G~y!dx212A2F~y!dxdy#.

The Killing vector (]/]t) vanishes atY50, so the region
y.j4 is the ergoregion. The determinantgttgcc2gtc

2 has a
zero aty5j4, and since we know that the metric is regul
here, the constant-(v,y) surface aty5j4 defines the even
horizon. There is no inner horizon. Both the ergosurface@de-
fined as the constant-(t,Y) surface atY50] and the horizon
are topologicallyS23S1. The curvature blows up aty5j1,
and the dilaton is singular there; this corresponds to a sp
like S1 curvature singularity in the metric.

B. Physical properties

Going to the Einstein metricGmn
E 5e22F/3Gmn and using

the next-to-leading order behavior of the asymptotic me
we compute the ADM mass and the angular momentum@2#

M5
3p

2A2

S 11
4

3
sinh2b D ~j12j2!

j1
2n~j32j2!~j42j2!

, ~4.4!

J5
2p

A3

~j12j2!5/2cosh2b

j1
3n3/2~j32j2!2~j42j2!2

, ~4.5!

which reduce to the values for the neutral ring forb→0.
Also, the black ring has an asymptotic electric U~1! charge
given by ~charges are normalized as in@17#!

Q5
1

16pES3 at `
e2F!F5

p~j12j2!sinh 2b

A2j1
2n~j32j2!~j42j2!

.

The dimensionless ratio of angular momentum and mas
given by
12401
e-

c

is

J2

M3
5

cosh4b

S 11
4

3
sinh2b D 3 F J2

M3G
b50

>
1

p

cosh4b

S 11
4

3
sinh2b D 3 ,

~4.6!

where we have used the result~2.14! for the lower bound on
J2/M3 for the neutral black ring, and the dimensionless ra
of charge to mass is

Q

M
5

2 sinh 2b

3S 11
4

3
sinh2b D . ~4.7!

We note that by takingb large we can makeJ2/M3 arbi-
trarily small while Q/M approaches a constant. Thus t
charge helps holding up the black ring, allowing us to ma
the angular momentum arbitrarily small. This was of cou
not possible for the neutral black ring.

Surprisingly, the ratioQ/M is independent ofn. In fact,
we notice that the right hand side of Eq.~4.7! is always less
than 1, so that for allb we have

uQu<M , ~4.8!

with equality in the limitb→`. Contrary to other solutions
with angular momentum and charge, this bound does
involve the angular momentum.

As a one-dimensional object in a five-dimensional asym
totically flat spacetime, the black ring can carry local—b
not global—fundamental string charge associated with
3-form field H. Using Eq.~3.2! we find thatH has only one
nonzero component

Htcy52

A n

j1
~j12x!2sinh2b

A@j11x sinh2b2y cosh2b#2

and it gives rise to the local fundamental string charge

qH5
1

16pE e2F!H5
sinh2b~j12j2!1/2

4Aj1n1/2~j42j2!
,

where the integral is over a 2-sphere parametrized byx and
f at a constantc cut around of the ring. In the limitb
→`, the dimensionless ratioqH

2 /M diverges.
From the leading order behavior of the fieldAc̃

5AcDc/(2p) at infinity we find the magnetic momentm of
the black ring. In spherical coordinates with radial coordin
r and a polar coordinateu we have, for larger,

Ac̃52
m̄ sin2u

r2
.

In analogy to the normalization of the charges, we norma
the magnetic moment asm5m̄A3 /(16p) where A3 is the
area of a unit 3-sphere. We find
6-6
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m5
p~j12j2!5/2sinh 2b

A3j1
3n3/2~j32j2!2~j42j2!2

.

The n dependence cancels inm/J so that the ratio depend
only on b. The gyromagnetic ratiog is defined asg
52mM /(QJ) and we find

g5

3S 11
4

3
sinh2b D

2 cosh2b
, ~4.9!

so thatg is independent ofn. We see from Eq.~4.4! that for
the charged black ring, theg factor can take values betwee
3/2 and 2. The same bounds have been found on the g
magnetic ratio for the string theory solution describing
dilatonic rotating charged black hole in a four-dimension
asymptotically flat spacetime@15#. It should, however, be
noted that there is an ambiguity in the normalization of
magnetic moment; changing the normalization ofm changes
the g factor.

The area of the event horizon is

A5
16p2

A3

~j12j2!~j42j1!3/2cosh2b

n3/2j1
3~j32j2!~j42j2!2~j42j3!

.

As a function ofb, the dimensionless ratioA/M3/2 is maxi-
mized for b50: for a given mass the neutral black rin
always has higher entropy than the charged black ring,
increasing the charge while keeping the mass fixed, the
rizon area decreases. This is qualitatively the same beha
as for a charged spherical black hole.

Associated with the horizon is a Killing vector field

]

]v
1

Aj1
1/2

n1/2~j42j2!cosh2b

]

]x
. ~4.10!

Outside the horizon where the original coordinates are va
the Killing vector field is given by

]

]t
1

An1/2j1~j32j2!

2~j12j2!1/2cosh2b

]

]c̃
.

Using the Killing field~4.10! we compute the surface gravit

k5
A~j42j3!n1/2j1

2~j42j1!1/2cosh2b
. ~4.11!

Near the singularity,y5j11e for small e.0, the metric
takes the form

ds2;1e~dv2dx!21dx21Aedxde1e2dV82
2 ,

where we have ignored numerical constants and thex depen-
dence@for example, the (x,f) part of the metric is only
topologically a 2-sphere#. For the fields we find, near th
singularity,

e2F;O~e21! and Btz ,At ,Az;O~1!.
12401
ro-

l

e

d
o-
ior

d,

We shall compare this behavior with the near-singularity
havior of the Hassan-Sen transformed boosted black st
~see Sec. IV D!.

C. Extremal limit

In the limit n→0 thej i ’s behave as

j1;
1

2n
1

n

4
, j2;211

n

2
, j3;11

n

2
, j4;

1

n
2n.

The ratio J2/M3 approaches zero whenb→`, but it di-
verges forn→0 ~see Fig. 1!. We find an extremal limit of the
charged black ring by taking the limitb→`, keepingl
[ne2b fixed. The extremal metric is

ds252
1

F11
l

2
~x2y!G2 S dt2

l~11y!

2A2A
dc D 2

1
1

A2~x2y!2 F ~y221!dc21
dy2

y221
1

dx2

12x2

1~12x2!df2G
and the fields are

e2F511
l

2
~x2y!, Btc52

l~11y!

2A2AF11
l

2
~x2y!G ,

At5
l~x2y!

11
l

2
~x2y!

Ac5
l~11y!

A2AF11
l

2
~x2y!G .

We now have21,x,1 andy,21, and the periodicities
are Dc5Df52p. The solution is asymptotically flat. Th
curvature blows up aty→2` and this is a null singularity
coinciding with the horizon.

The physical quantities for the extremal solution are

M5
pl

2A2
, J5

pl

25/2A3
, Q5

pl

2A2
,

qH5
l

8A2A
, m5

pl

25/2A3
, g52.

Note that the inequality~4.8! is saturated in the extrema
limit so that uQu5M . Also, for the extremal ringm5J and
the g factor is 2. By takingl large we can makeJ2/M3

arbitrarily small. The horizon area shrinks to zero; howev
taking the limit of the surface gravity~4.11! gives a constant,
k→A2A/l. This is similar to the behavior found in@15,18#
for slowly rotating and nonrotating dilatonic charged sphe
cal black hole solutions in string theory.
6-7
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Defining r 521/y and considering smallr .0 we find
that the near-horizon and singularity behavior is

ds2;2
4r 2

l2 S dt1
l

2A2Ar
dc D 2

1
1

A2
~dc21dr21r 2dV2

2!,

with

e2F;
l

2r
, At ,Az ,Btz→const.

We compare this with the near-singularity behavior of t
extremal limit of the charged boosted black string in S
IV D.

D. Charged boosted black string

The local behavior of the neutral rotating black ring is li
that of a boosted black string; hence we expect that
charged black ring behaves locally as a boosted black st
with similar charges and fields. We check this by compar
the near-singularity behavior of the charged black ring to t
of a charged black string obtained from the boosted bl
string by the Hassan-Sen transformation in the Appendix

The black string metric in five dimensions is the fou
dimensional Schwarzschild solution timesR,

ds252S 12
r 0

r Ddt21dz21S 12
r 0

r D 21

dr21r 2dV2
2 .

~4.12!

Applying a Lorentz boost to the solution~4.12! by taking
dt→dt cosha1dzsinha and dz→dt sinha1dzcosha, we
obtain the metric for the boosted black string:

ds252S 12
r 0cosh2a

r Ddt21
r 0sinh 2a

r
dtdz

1S 11
r 0sinh2a

r Ddz21S 12
r 0

r D 21

dr21r 2dV2
2 .

~4.13!

T dualizing the metric~4.13! gives the solution for the non
extremal fundamental black string~see Sec. V!. Now instead
apply the Hassan-Sen transformation of the Appendix to
~4.13!. The transformed solution is given by

ds252
r ~r 2r 0cosh2a!

@r 1r 0cosh2a sinh2b#2

3S dt2
r 0sinh 2a cosh2b

2~r 2r 0cosh2a!
dzD 2

1
r 2r 0

r 2r 0cosh2a
dz21S 12

r 0

r D 21

dr21r 2dV2
2 ,

e2F511
r 0cosh2a sinh2b

r
,

12401
.

e
g

g
t
k

q.

Btz52
r 0sinh 2a sinh2b

2@r 1r 0cosh2a sinh2b#
,

At5
r 0cosh2a sinh 2b

@r 1r 0cosh2a sinh2b#
,

Az5
r 0sinh 2a sinh 2b

2@r 1r 0cosh2a sinh2b#
.

The solution is regular atr 5r 0cosh2a and the coordinate
singularity atr 5r 0 can be removed by a coordinate tran
formation ~valid for r ,r 0cosh2a)

dv5dt1
Ar 0cosh2a/r 21

12r 0 /r

r 0sinh 2a cosh2b

2~r 2r 0cosh2a!
dr,

dw5dz1
Ar 0cosh2a/r 21

12r 0 /r
dr.

In these coordinates the metric becomes

ds252
r ~r 2r 0cosh2a!

@r 1r 0cosh2a sinh2b#2

3S dv2
r 0sinh 2a cosh2b

2~r 2r 0cosh2a!
dwD 2

1
r 2r 0

r 2r 0cosh2a
dw2

12~r 0cosh2a/r 21!21/2drdw1r 2dV2
2 ,

and it is regular atr 5r 0. The Killing vector]/]t becomes
null at r 5r 0cosh2a, and the determinantgttgzz2gtz

2 van-
ishes atr 5r 0; the regionr 0,r ,r 0cosh2a is the ergoregion
for the string andr 5r 0 defines the horizon. There is a cu
vature singularity atr 50.

The physical quantities can be calculated as in the pr
ous section. We find~the linear momentum is computed fo
lowing @17#!

m5
r 0

4
@11cosh2a cosh 2b#, Pz5

r 0

8
sinh 2a cosh2b,

q5
r 0

4
cosh2a sinh 2b, QH52

r 0

8
sinh 2a sinh2b,

and the surface gravity is

k5
1

2r 0cosha cosh2b
.

The near-singularity behavior of the solution is~ignoring nu-
merical constants!

ds2;1r ~dv1dw!21dw22Ardrdw1r 2dV2
2 ,

e2F;O~r 21!, Btz ,At ,Az;const.
6-8



io
e

i-
te

r

ion
p

M
a

u
c

ra
ng
e

di

-
-
gth

am-

ex-

a-

ight

k

A CHARGED ROTATING BLACK RING PHYSICAL REVIEW D68, 124016 ~2003!
Qualitatively, this agrees with the near-singularity behav
of the charged black ring. For the black ring, the 2-spher
distorted and so is theS1 around the ring.

E. Extremal limit

There is an extremal limit defined by takingb→` while
keepingl0[(r 0/4)e2b fixed. The extremal solution is

ds252
1

@11l0cosh2a/r #2 S dt2
l0sinh 2a

2r
dzD 2

1dz2

1dr21r 2dV2
2 ,

e2F511
l0cosh2a

r
, Btz52

l0sinh 2a

2@r 1l0cosh2a#
,

At5
2l0cosh2a

@r 1l0cosh2a#
, Az5

l0sinh 2a

@r 1l0cosh2a#
.

At r 50 there is a null singularity coinciding with the hor
zon. The near-singularity behavior for the extremal boos
string is

ds252
r 2

l0
2cosh4a

S dt2
l0sinh 2a

2r
dzD 2

1dz21dr2

1r 2dV2
2 ,

e2F5
l0cosh2a

r
, Btz ,At ,Az;const.

As expected, this agrees with the near-singularity behavio
the extremal charged black ring.

V. BLACK STRINGS WITH CHARGE

The most general five-dimensional black string solut
labeled by mass, angular momentum, electric charge
length, and fundamental string charge was analyzed by
hapatra in @19#. The solution was found by applying
Hassan-Sen transformation with generala1 and a2 to the
rotating black string vacuum solution obtained as the fo
dimensional Kerr solution times a flat direction. In this se
tion we consider a special case where the Hassan-Sen t
formation is applied to the neutral nonrotating black stri
and we find that in one extremal limit this solution describ
traveling waves in a fundamental string background.

Applying the Hassan-Sen transformation of the Appen
to the neutral black string~4.12!, we find a solution with the
metric

ds252
4r ~r 2r 0!2r 0

2b2

4~r 1 r̃ !2
dt21

r 0b

r 1 r̃
dtdz1dz2

1S 12
r 0

r D 21

dr21r 2dV2
2 ~5.1!
12401
r
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x

and with fields

e2F511
r̃

r
, Btz5

r 0b

2~r 1 r̃ !
, At5

r 0a

r 1 r̃
, Az50.

~5.2!

We have defined

a5sinha1 , b5cosha1sinha2 ,

r̃ 5
r 0

2
~cosha1cosha221!.

There is anS23R horizon atr 5r 0 and the metric~5.1! has
a curvature singularity atr 50. The fields are regular every
where, except atr 50 where the dilaton blows up. The solu
tion represents a charged black string with mass per len
m, electric charge per lengthq, fundamental string charge
QH , and linear momentumPz along the string, given by

m5~r 0/4!~11cosha1cosha2!, q5r 0a/4,

QH5Pz5r 0b/8.

Expressed in terms of the three independent physical par
etersm, q, andQH , we have

r 05
2

m
~m22q224QH

2 !,

so we must require

m2>q214QH
2 ~5.3!

for the solution not to be naked singular. There are two
tremal limits that saturate the inequality~5.3!; we study these
at the end of this section.

Consider now the solution for a black string with fund
mental string charge in five dimensions@17,20,21# given by

ds252
r 2r 08

r 1r 08sinh2a8
dt21

r

r 1r 08sinh2a8
dz2

1S 12
r 08

r D 21

dr21r 2dV2
2 ,

e2F511
r 08sinh2a8

r
,

Btz5
r 08sinh 2a8

2~r 1r 08sinh2a8!
, ~5.4!

and At5Az50. In the extremal limita8→` with r 08e
2a8

constant, this solution describes the fields outside a stra
fundamental string@20,22#.

The solution~5.4! can be obtained from the neutral blac
string ~4.12! by first applying a Lorentz boost and thenT
dualizing to exchange the linear momentum withH charge
@17,20,21#.
6-9
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Applying a Lorentz boost with boost parametera8 to the
solution ~5.4! we obtain a solution describing a boost
black string withH charge. As discussed in Sec. III this
exactly the same solution as the transformed solution in E
~5.1! and ~5.2! with a150, a252a8, andr 05r 08 , and it is
invariant underT duality.

Returning to the solution given in Eqs.~5.1! and~5.2! we
find that the inequality~5.3! can be saturated by takinga1
→` with a2 fixed or vice versa. We consider both cases
the following.

A. Extremal limit I

The inequality~5.3! is saturated by takinga2→` while
keepinga1 andR[ 1

4 r 0ea2 constant. In this limit the electric
field vanishes, and theB field and the dilaton behave just a
the fields for a straight fundamental string@17,20,21#, but
whereas the fundamental string is boost invariant along tz
direction, this solution is not.

Introducing null coordinatesu5(1/A2)(z1t) and v
5(1/A2)(z2t) the Einstein metric for this extremal solutio
can be written

dsEinstein
2 5S 11

M

r D 21/3S 2dudv1
2M

r
du2D

1S 11
M

r D 2/3

~dr21r 2dV2
2!,

where M5R cosha1. This matches exactly the travelin
wave solutions found by Garfinkle@23#. Thus the solution
describes constant spherically symmetric traveling wa
along a fundamental black string.

B. Extremal limit II

Taking a1→` while keepinga2 and R8[ 1
4 r 0ea1 con-

stant gives another extremal solution with charges that s
rate the inequality~5.3!. This extremal solution is given by
the metric

ds252
r 22K2

~r 1M !2
dt21

2K

r 1M
dtdz1dz21dr21r 2dV2

2 ,

where nowM5R8cosha2 andK5R8sinha2, and the fields

e2F̄511
M

r
, Btz5

K

r 1M
, At5

2AM22K2

r 1M
, Az50.

The physical mass per length ism5M /2, the electrical
charge per length isq5 1

2 AM22K2, and the fundamenta
string chargeQh5K/4 equals the linear momentumPz along
the string.

VI. DISCUSSION

We have constructed a charged black ring solution to fi
dimensional heterotic supergravity and studied its propert
The solution is labeled by mass, angular momentum,
electric charge, and it also carries local fundamental str
12401
s.

s

u-

-
s.
d
g

charge. We found that the lower bound on the dimension
ratio J2/M3 could be arbitrarily small, because the char
would help supporting the ring from collapsing.

As mentioned in Sec. IV A, the solution given by Eq
~4.1! and ~4.2! describes a charged rotating black ring f
j1.j3 and a charged rotating black hole forj15j3. The
latter can also be obtained by applying the Hassan-Sen tr
formation of the Appendix to the five-dimensional Myer
Perry black hole with one of the rotation parameters se
zero. For a givenb, the ratiouQu/M is fixed, and one can
then use the parametern to set the value ofJ2/M3. This
holds for both the charged black ring and the charged sph
cal black hole solutions. The behavior ofJ2/M3 as a function
of n is as for the neutral black ring~see Fig. 1!, just rescaled
by ab-dependent factor. Hence there exists a range of va
of J2/M3 such that there are three distinct solutions with t
same asymptotic charges: one is the Hassan-Sen transfo
the Myers-Perry black hole with just one nonzero angu
momentum, and the two others are black ring solutions~one
has greater horizon area than the other!. This is an extension
of the nonuniqueness result of Ref.@1# to charged solutions
of low-energy heterotic string theory.

The charged black hole found here can be generalized
applying a Hassan-Sen transformation to the general fi
dimensional Myers-Perry black hole with two independe
rotation parameters.

For the charged black ring we found a curious relations
between the mass and the charge:uQu<M . The inequality is
saturated in the extremal limit, encouraging that the extre
solution may actually be supersymmetric. This requires f
ther investigation.

The stability of the black ring solutions is an open que
tion. The black rings resemble thin black strings, in partic
lar for small n, so one may expect to find a classic
Gregory-Laflamme instability mode@24#. If it exists, such an
instability mode would generate ripples in the horizon, a
due to the rotation the ripples would radiate away and o
would expect the ring to collapse to a rotating black hole

Very recently, Hong and Teo@25# presented a new form o
the C metric, and they expressed the neutral black ring m
ric ~2.1! in terms of these new coordinates. Some express
in this paper simplify when the coordinates of Hong and T
are used; in particular, the calculation of the exact value
the lower bound ofJ2/M3 simplifies drastically.
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APPENDIX: HASSAN-SEN-TRANSFORMED SOLUTIONS

In this appendix we give explicit expressions for solutio
obtained by the Hassan-Sen solution generating techn
reviewed in Sec. III.
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Transformation of a static metric

Let (Gmn ,F) be a static solution independent of the tim
directionx0 and the spatial directionx1 with no gauge fields
and no antisymmetric tensor fields. The transformations c
sidered here involve only the (x0,x1) part of the metric. We
assume that the metric is block diagonal: i.e.Gai50 for all
iÞ0,1 anda,b50,1. The transformed solution is then give
by the metric

Ḡ005
4

X~G!
$cosh2a1sinh2a2G00

21~11G00!
2

1G11
21@~11G11!1cosha2~12G11!#

2%,

Ḡ015
4 sinha2

X~G!
$cosha1G00

21~11G00!

3@~12G00!1cosha1cosha2~11G00!#

1G11
21~12G11!@~11G11!1cosha2~12G11!#%,

Ḡ115
4

X~G!
$G00

21@~12G00!1cosha1cosha2~11G00!#
2

1sinh2a2G11
21~12G11!

2%,

where

X~G!5G00
21G11

21$~12G00!@~11G11!

1cosha2~12G11!#1cosha1~11G00!

3@~12G11!1cosha2~11G11!#%
2,

the dilaton

F̄5F1 lnA 16

G00G11X~G!
,

the gauge fields

Ā05
2 sinha1~11G00!@~11G11!1cosha2~12G11!#

AG00G11X~G!
,

Ā15
2 sinha1sinha2~11G00!~12G11!

AG00G11X~G!
,

and an antisymmetric tensor field

B̄015
sinha2

AG00G11X~G!
@~12G00!~12G11!

1cosha1~11G00!~11G11!#.

Even when the original solution is asymptotically flat, t
transformed metric is not necessarily so. However, if
12401
n-

e

original solution is asymptotically flat such thatG00→21

and G11→1 at infinity, thenḠ00→21, Ḡ01→0, and Ḡ11

→1 at infinity, so the transformed solution is also asympto
cally flat.

If G1151 identically, thenḠ1151 identically and there

will be no magnetic U~1! field, Ā150. Note that U~1! gauge
fields are generated only ifa1Þ0 and that an antisymmetri

tensor field is generated only ifa2Þ0. Also, Ḡ01 vanishes
for a250.

Transformation of a stationary metric „a2Ä0…

Let (Gmn ,F) be a solution satisfying the conditions from
Appendix A 1 only that now we allow for an off-diagona
term G01Þ0. Settingb5a1/2 anda250, the transformed
solution is

Ḡ005
G00

@11~11G00!sinh2b#2
,

Ḡ015
G01cosh2b

@11~11G00!sinh2b#2
,

Ḡ115
G00

21G01
2 cosh4b

@11~11G00!sinh2b#2
1G00

21det Ĝ,

F̄5F2 ln@11~11G00!sinh2b#,

B̄0152
G01sinh2b

11~11G00!sinh2b
,

Ā05
~11G00!sinh 2b

11~11G00!sinh2b
,

Ā15
G01sinh 2b

11~11G00!sinh2b
.

For G0150, this is just thea250 case of the previous sec
tion.

If the original solution is asymptotically flat withG00→
21 andG01→0 at infinity, then the new solution is asymp
totically flat, and the matter fields approach zero at infini
6-11
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