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Action principle formulation for the motion of extended bodies in general relativity
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We present an action principle formulation for the study of the motion of an extended body in general
relativity in the limit of a weak gravitational field. This gives the classical equations of motion for multipole
moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole
moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference
experiments due to the coupling of all multipole moments.
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The study of the motion of extended bodies possessing While the action is used in classical physics only as a tool
multipole moments in a gravitational field has a long historyto obtain the equations of motion, the action is directly ob-
[1]. The starting point was the Einstein-Infeld-Hoffmg2]  servable in quantum physics as the phase of the wave func-
derivation of the geodesic equation for a point test particlajon. Therefore, the phase shift produced by the coupling of
from the gravitational field equation and the conservationmultipole moments with the gravitational field can in prin-
law for a stress energy tensor. The test particle approximaciple be measure@he action giving an algorithm to calcu-
tion breaks down if the body’s extension in space is nNoNyate various multipole phase shiftdNeutron interferometry
negligible compared to the radius of curvature of the backygyided the first instance where the effect of the earth’s
ground field and also when the back reaction due to the body,\itational field on the phase of the neutron wave function
on the background field cannot be ignored. In this article, we; - observed10]. Interesting gravitational analoga1] of

are concerned with the former aspect. This is particularly, ;

. . : the topological Aharanov-Bohiil2] and Aharanov-Casher
motivated by the fact that astrophysical bodies such as plan- .
ets and stars are extended and should in a realistic analygi%?ihli]h%hzz%::"xz r;])?:elgeiltsc; ?gfgail)irsonqovsvﬁ?c;h yields in a

be treated as such. The interaction of covariant generaliza- : )
tion of Newtonian multipole moments with the gravitational simple and elegant way the corrections to the geodesic equa-

field will be given by their coupling to Riemann curvature tion up to all multipoles of the extended body. The equations

and its derivatives. This would appear as a modification tdf motion for multipoles simply follow from variation of our
the geodesic equation. action. As a demonstration of our formalism we obtain for

The modification to the geodesic for a spinning body isthe first time corrections to the geodesic equation up to the
given by the Mathisson—Papapetrou equatid], which ~ covariant generalization of Newtonian octupole moment.
may be extended to a particle with intrinsic spf]. Subse- ~Moreover, our action gives the quantum phase shifts in in-
quent to the treatment of spinning bodies, various authorterferometry due to the coupling of all multiple moments to
have obtained the corrections up to the covariant generalizdbe gravitational field. Our formulation of action principle for
tion of Newtonian quadrupole momefi&—8]. A comprehen-  an extended body may facilitate and prompt further investi-
sive study of the problem including comparison of variousgations in the important and emerging area of interface be-
approaches and results is carried out by Dig@hbut, to our ~ tween guantum and gravitational realifs]. Particularly,
knowledge, no one has obtained corrections to the geodestBe 0ngoing experiments in atonfit6], molecularf17], and
equation arising due to the coupling of covariantized higherBose—Einstein condensate interferomgtt$| hold promise
order Newtonian multipole moments with gravitational field. for experimentally testing the new gravitational phase shifts
More importantly a procedure to derive equations of motionthat will be obtained in the present article.
of extended bodies, with arbitrary multipole moments, We envision an extended rigid body as a thin world tube
through an action principle has not been obtained during thé space-time and its thickness is small compared to the scale
past 65 years in which the equations of motion in a gravita®Ver which curvature varies. We would further assume that
tional field have been studi¢@]. In the absence of a general there are no external or internal forces acting on this body
principle to obtain the action made up of terms uniquelyapart from the gravitational field in which it is propagating.
attributed to couplings of all multipole moments, such a taskn the thin world tube we choose a reference world liz€)(
is very difficult. This is precisely what we wish to do in the having the 4-velocityu”=dz*/ds=(1,0,0,0) and define

following. multipole moments with respect to it on a spacelike hyper-
surface. The multipole moments of orden 2re defined as
(8]
*Deceased.

"Electronic address: nkd@iucaa.ernet.in

Ky .. KpuV— K1 Kn. | — L V\ O
*Electronic address: param@iucaa.ernet.in t f OX™ ... OX gTH Wz, @)

0556-2821/2003/682)/1240144)/$20.00 68 124014-1 ©2003 The American Physical Society



ANANDAN, DADHICH, AND SINGH PHYSICAL REVIEW D 68, 124014 (2003

where 8x“=x*—z*, T*" is the energy-momentum tensor, ~ The quadrupole term leads @d;¢| " =3dd;hogl,"
and the integration is over the spacelike hypersurface identi= —Rg;q;|,1"". We thus haved;d;hgg A100= — 2Rgigj| A",
fied by the unit normal vector fiel*. The above multipole which through conversion into a covariant leads to
moments are defined in a class of coordinate systems that are

related by linear transformations in order that the expression Napul t#74P= = 2R g0l A 1 UUP, (6)
(1) is covariant. But once they are defined this way, ) o
t¥1*kn” can be transformed to any arbitrary coordinate S,ys_vvhere the covariant quadrupole tengéf'=1"#. Similarly,
tem as a tensor. All the relativistic equations in the presenth® octupole term leads to

letter are covariant with respect to the above linear transfor- h
mations, if not with respect to general coordinate transforma-

tions. whereO#*"? is the fully symmetric covariant octupole tensor.

Since what we do must be consistent with the Nemoniarkquations(S)—(?) are the key relations which would unam-

theory in the appropriate Ii_mit, we _shaII now establish thebiguously provide the connection between covariant multi-
relation between the covariant multipole moments of order ole moments with their Newtonian analogs.

2n and the covariant generalizations of the ant|symmetr|é) In the Newtonian approximation the phase shift in quan-

i i] i if . . o . .
spin tensosS?, the_ symmetric quadrupole moment tenkor tum mechanical interference due to the gravitational field is
and the symmetric octupole moment ten€8¥ in Newton-

aﬁ,MVU|ZtMVUaB: _2Ra,u.ﬁv,0'|zo'uya—uauﬁa (7)

ian gravity. We write the Newtonian potential energyof 1
the body with mass density(x) in terms of the potential d=— % udt
¢(X) expanded in a Taylor series around the central world
line, 1 . 1.
= g( J’ md)dt‘F J dl(?i(f)dt‘F f El”(?ié'jd)dt

. 1.
U=J p(X)p()d*x=me(2) +d' 3 ¢|,+ 5110104l ®

1 ijk
+ | g0 opdt -

1
+go”kaiajak¢|z+.-~, 2

whereU is given by the expansion in using E®). The first

_ term of Eq.(8) corresponds to the phase shift observed in the
where the massm=[p(x)d3x, the dipole momentd  Collela—Overhauser—WernédCOW) experiment[10], and

= [p(x) ox'd®x, the quadrupole moment 1" the subsequent dipole and quadrupole terms are corrections
=[p(x)ox'xId®x, and the octupole momentO'  to it. The higher-order multipole contributions to the phase
= [p(x) ox' 6x) 6x¥d3x, with 6x'=x'—7Z'. In view of Eq.(1),  shift may also be obtained from this expansion. In general
we identifyt'®=d!, t1%9=]1l {k00=Qllk The spin tensor relativity this phase shift is obtained by letting the path or-
(orbital angular momentumin the Newtonian limit is de- dered operator resulting from the covariant generalization of
fined asS'=2fpéxl'v1ld3x, wherev'=dx//dt. The spin this Newtonian phase shift act on the initial wave function.
tensor then satisfiedS!/dt=2pliull—2fpoxl'alpd®x,  Using Egs.(2) and(5)—(7) and noting that in the linear field
whereu'=dZ/dt and the momenturp' = [ p(x)v'd®x. Us-  limit w?,;S°,=h,, ,S**, wherew?,, are Ricci rotation co-
ing a Taylor expansion of the potential, and choosintp be  efficients, this path ordered operator is given by

the center of mass so thdt=0, the spin propagation equa-

ti to the octupole term b i 1 1
10N up 1o the ocCtupole term pecomes g=7?exr{ _ gJ’ ( —m+ Ewabﬁsabuﬁ_ ERa;LBVI aByry?
g S =2plul =219 g ], — OVl oo bl (3) 1 By
“35 Raupr;pQ  Puku’+ - - |ds|. (9)

Converting this spin tensor into a covariant leads to ) ) )
In the special case whet&? andO“#* are zero, this result is

=0 vl (4)  in agreement with the gravitational phase shift for intrinsic
spin[5].
In the weak field limit, the metric ig,,= »,,+h,, with We shall now obtain this expression in the weak field

h,,<1. In the Newtonian limigo,=1+2¢, which implies  limit of general relativity starting from the action principle.

¢ =hy/2. Thus the dipole term in Eq2) leads to the cova- Choose a coordinate system such that along the reference
riant formt““ﬂhaﬁlﬂh, wheret“*# includes the spin tensor. world line g,,=7,,. We would here like to recall that the
We shall now choose the reference world line to be the cenextended body under consideration is rigid and subject to
ter of mass so thad'=0. We consider only matter distribu- only external gravitational force and no other for¢esternal

tions for which[19] or interna). In that case the monopole moment corresponds
to the masgm) of the body with whole matter concentrated
trre=grlrye), (5) on the reference world line, and ignoring the back reaction
on the background gravitational field we write=p,u®.
whereS*” satisfiesS*”u,=0. The higher-order multipole moments are defined by consid-
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ering the metric perturbations as one moves away from thepp N N .
reference world line*. For simplicity we restrict perturba- 5o = Roau| 5 U S+ 5 (174U | = U1 PUNY Ry
tions of the metric to the first ord¢20], and later covarian-

tize the equation of motion by changing ordinary derivative 1

to covariant derivative. The action + 3V ViR p,u“ 0" tud)
Szf \/—_g£d4x=f J—_g£|g# - d4x+(f J=gLd*x _EV R, UVR(O’”"U”‘)- (14)
v twy 3 PR Ds
_f \/__9£|g _d%|. (10) Equation(14) is generally covariant and thus is valid in ev-
wr™ Tuv ery coordinate system. Since the dipole moment couples to
_ ) o Riemann curvature, it is expected that the quadrupole should
The first term is the kinetic energy term, couple to its first derivative and the octupole to its second
derivative. However, there is a coupling of the quadrupole
J \/—_g/JIg _, dix=- f p, uds. with Riemann curvature in the second term and a coupling of
N the octupole with the first derivative of Riemann curvature in

the last term, which suggests that should be suitably re-
So, defined[21], as p}=p,— Ry .U’ = 3V,R,,,,0*"PU,
which would then yield the expected form

)
S=—f pau“ds+f 5gwg(\/—g£)d4x+...

Dp* 1 1
v g __ AgQuv [upallBy¥]
L Ds 2RUM,,U S+ 2V(,Rcmﬁvu | u
=—f p, utds+ Ef 89, N—gT#d+---. (11 1
+ 5 Vo VoRaup,ut “OMPUAL (15)

Note 89,,=9,,— 17,,=h,, and hence it can be written as

89,,=hy0.0l,6X7+ 30, ;.| ,0x78xP+ - .. where we have This is the equation of motion for a body possessing dipole,
h,.(z)=0. In the present weak field limit, we neglect all quadrupole, and octupole moments in a gravitational field.
terms that are quadratic or higher order in metric perturbaThe spin propagation equatigi3) can also be covariantly
tions. Substituting forsg,,, in Eq. (11) and using Eqs(1) generalized to

and (5)—(7), we finally obtain

1 BSQB:2p[auﬁ]_2R[0‘#w’_u[ﬂ-|ﬂ]][‘/u0’]
S=—j p, u“ds+ EJ Nep, S uPds Ds

. . - R[awg;pu[uoﬁl] plvyol, (16)
- §J RQ#BVI“BU"U”dS— Ef Raﬂpy,poaﬁpu”u”ds which on the redefinition of momentum vector foqm to
p% modifies as follows:
(12)
D
up to octupole(all derivatives are evaluated a#). In the §SQB=ZD*[QUM+2(R“WUU[B|””"U(’]
linear field limit, sincetwaﬁ,ﬂsf‘“:wabﬁsab, hence the accu-
mulation of infinitesimal phases arising from EG2) is the —RA,  uterHiryely —2Rle | yleAlllvye]
same as that obtained from the path ordered operatof9Eq.
in this limit. _ORla L luoBllelyyel 17
We now obtain the equation of motion by extremizing the 3w '

action (6S=0) and requiring that coordinate variations van- o ) By
ish at end points of the path. This leads to the equation of© Simplify the notation we would further defing*

motion :=— 3ul# By andGreFov .= — ulrOAloy”l and then fi-
nally obtain
P | 2t & (1Mu”) M Dp} 1 1
Ho  Roapw Su e u 5 'vo,uqa o _ AQuv aPv
ds 2 ds 2 ds _DS = ERU}\’U’VU SHY+ EJM B VU'R,U«CVBV
1
=R pUH1 Y PUN + 2R g, U OHP U 1 .
3 + EVPVCFRLYM,BVG me ﬁ! (18)
1
- =R —(O“””u“). (13) D 4 5
3 whids 2 qub—pprlayhl_ TRla  jBluve_ > Rla Blupve
DsS 2p*tu 3R wvod 3R wvo;pG .
In a coordinate system in whidh,; ,=0, Eq.(13) gives (29
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Thus we have obtained for the first time the correction toto the multipoles. We hope that the new gravitationally in-
propagation equations upto the coupling of covariant generduced phase shifts would be measured in future interferom-
alization of Newtonian octupole moment with the back-etry experiments based on atomic, molecular, and Bose-
ground gravitational field. These equations agree with théinstein condensatefl6—-1§. Our novel algorithm also
earlier results obtained up to quadrupB&but the force due Yields modifications to the geodesic equation, which, with
to the octupole moment is a new result. Our procedure caRresent day high precision astronomical observations yield-

be easily generalized to obtain further corrections from dué9 r_nultipole moments Of plan_etary or stellar bodies, can be
to all higher multipole moments. applied to obtain aberrations in their orbits. It would be in-

This is a very simple and elegant method of deriving theteresting to relax the other aspect of test body character, i.e.,

equation of motion for an extended body incorporating the© longer igno_re the back reaction, and then study the motion
coupling of multipole moments of arbitrary order with the in full generality.

gravitational field. And above all we have found the action We thank J. Ehlers and C. W. Misner for informative dis-
for such a body which we have also used to compute theussions. P.S. thanks the Council for Scientific and Industrial
gravitational phase shifts in its quantum wave function dueResearch for grant number 2-34(B8E.U-II.
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