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Action principle formulation for the motion of extended bodies in general relativity
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We present an action principle formulation for the study of the motion of an extended body in general
relativity in the limit of a weak gravitational field. This gives the classical equations of motion for multipole
moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole
moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference
experiments due to the coupling of all multipole moments.
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The study of the motion of extended bodies possess
multipole moments in a gravitational field has a long histo
@1#. The starting point was the Einstein-Infeld-Hoffman@2#
derivation of the geodesic equation for a point test part
from the gravitational field equation and the conservat
law for a stress energy tensor. The test particle approxi
tion breaks down if the body’s extension in space is n
negligible compared to the radius of curvature of the ba
ground field and also when the back reaction due to the b
on the background field cannot be ignored. In this article,
are concerned with the former aspect. This is particula
motivated by the fact that astrophysical bodies such as p
ets and stars are extended and should in a realistic ana
be treated as such. The interaction of covariant genera
tion of Newtonian multipole moments with the gravitation
field will be given by their coupling to Riemann curvatu
and its derivatives. This would appear as a modification
the geodesic equation.

The modification to the geodesic for a spinning body
given by the Mathisson–Papapetrou equation@3,4#, which
may be extended to a particle with intrinsic spin@5#. Subse-
quent to the treatment of spinning bodies, various auth
have obtained the corrections up to the covariant genera
tion of Newtonian quadrupole moment@6–8#. A comprehen-
sive study of the problem including comparison of vario
approaches and results is carried out by Dixon@8#, but, to our
knowledge, no one has obtained corrections to the geod
equation arising due to the coupling of covariantized high
order Newtonian multipole moments with gravitational fie
More importantly a procedure to derive equations of mot
of extended bodies, with arbitrary multipole momen
through an action principle has not been obtained during
past 65 years in which the equations of motion in a grav
tional field have been studied@9#. In the absence of a gener
principle to obtain the action made up of terms uniqu
attributed to couplings of all multipole moments, such a ta
is very difficult. This is precisely what we wish to do in th
following.
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While the action is used in classical physics only as a t
to obtain the equations of motion, the action is directly o
servable in quantum physics as the phase of the wave f
tion. Therefore, the phase shift produced by the coupling
multipole moments with the gravitational field can in pri
ciple be measured~the action giving an algorithm to calcu
late various multipole phase shifts!. Neutron interferometry
provided the first instance where the effect of the eart
gravitational field on the phase of the neutron wave funct
was observed@10#. Interesting gravitational analogs@11# of
the topological Aharanov-Bohm@12# and Aharanov-Cashe
@13,14# phase shifts have also been proposed.

In this paper we present a formalism which yields in
simple and elegant way the corrections to the geodesic e
tion up to all multipoles of the extended body. The equatio
of motion for multipoles simply follow from variation of ou
action. As a demonstration of our formalism we obtain f
the first time corrections to the geodesic equation up to
covariant generalization of Newtonian octupole mome
Moreover, our action gives the quantum phase shifts in
terferometry due to the coupling of all multiple moments
the gravitational field. Our formulation of action principle fo
an extended body may facilitate and prompt further inve
gations in the important and emerging area of interface
tween quantum and gravitational realms@15#. Particularly,
the ongoing experiments in atomic@16#, molecular@17#, and
Bose–Einstein condensate interferometry@18# hold promise
for experimentally testing the new gravitational phase sh
that will be obtained in the present article.

We envision an extended rigid body as a thin world tu
in space-time and its thickness is small compared to the s
over which curvature varies. We would further assume t
there are no external or internal forces acting on this bo
apart from the gravitational field in which it is propagatin
In the thin world tube we choose a reference world line (zm)
having the 4-velocityum5dzm/ds5(1,0,0,0) and define
multipole moments with respect to it on a spacelike hyp
surface. The multipole moments of order 2n are defined as
@8#

tk1 . . . knmn5E dxk1 . . . dxknA2gTmnwadSa , ~1!
©2003 The American Physical Society14-1
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where dxm5xm2zm, Tmn is the energy-momentum tenso
and the integration is over the spacelike hypersurface ide
fied by the unit normal vector fieldwa. The above multipole
moments are defined in a class of coordinate systems tha
related by linear transformations in order that the express
~1! is covariant. But once they are defined this wa
tk1•••knmn can be transformed to any arbitrary coordinate s
tem as a tensor. All the relativistic equations in the pres
letter are covariant with respect to the above linear trans
mations, if not with respect to general coordinate transform
tions.

Since what we do must be consistent with the Newton
theory in the appropriate limit, we shall now establish t
relation between the covariant multipole moments of or
2n and the covariant generalizations of the antisymme
spin tensorSi j , the symmetric quadrupole moment tensorI i j ,
and the symmetric octupole moment tensorOi jk in Newton-
ian gravity. We write the Newtonian potential energyU of
the body with mass densityr(x) in terms of the potentia
f(x) expanded in a Taylor series around the central wo
line,

U5E r~x!f~x!d3x5mf~z!1di] ifuz1
1

2
I i j ] i] jfuz

1
1

6
Oi jk] i] j]kfuz1•••, ~2!

where the massm5*r(x)d3x, the dipole momentdi

5*r(x)dxid3x, the quadrupole moment I i j

5*r(x)dxidxjd3x, and the octupole momentOi jk

5*r(x)dxidxjdxkd3x, with dxi5xi2zi . In view of Eq.~1!,
we identify t i005di , t i j 005I i j , t i jk005Oi jk . The spin tensor
~orbital angular momentum! in the Newtonian limit is de-
fined asSi j 52*rdx[ iv j ]d3x, where v i5dxi /dt. The spin
tensor then satisfiesdSi j /dt52p[ iuj ]22*rdx[ i] j ]fd3x,
whereui5dzi /dt and the momentumpi5*r(x)v id3x. Us-
ing a Taylor expansion of the potential, and choosingzi to be
the center of mass so thatdi50, the spin propagation equa
tion up to the octupole term becomes

d

dt
Si j 52p[ iuj ]22I k[ i] j ]]kfuz2Okr[ i] j ]]k] rfuz . ~3!

Converting this spin tensor into a covariant leads to

Smn5tmn02tnm0. ~4!

In the weak field limit, the metric isgmn5hmn1hmn with
hmn!1. In the Newtonian limitg005112f, which implies
f5h00/2. Thus the dipole term in Eq.~2! leads to the cova-
riant form tmabhab,muz , wheretmab includes the spin tensor
We shall now choose the reference world line to be the c
ter of mass so thatdi50. We consider only matter distribu
tions for which@19#

tmna5Sm(nua), ~5!

whereSmn satisfiesSmnun50.
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The quadrupole term leads to] i] jfuzI
i j 5 1

2 ] i] jh00uzI
i j

52R0i0 j uzI i j . We thus have] i] jh00uzt
i j 00522R0i0 j uzI

i j ,
which through conversion into a covariant leads to

hab,mnuzt
mnab522RambnuzI

mnuaub, ~6!

where the covariant quadrupole tensorI mn5I nm. Similarly,
the octupole term leads to

hab,mnsuztmnsab522Rambn,suzO
mnsuaub, ~7!

whereOmns is the fully symmetric covariant octupole tenso
Equations~5!–~7! are the key relations which would unam
biguously provide the connection between covariant mu
pole moments with their Newtonian analogs.

In the Newtonian approximation the phase shift in qua
tum mechanical interference due to the gravitational field

F52
1

\E Udt

52
1

\ S E mfdt1E di] ifdt1E 1

2
I i j ] i] jfdt

1E 1

6
Oi jk] i] j]kfdt1••• D , ~8!

whereU is given by the expansion in using Eq.~2!. The first
term of Eq.~8! corresponds to the phase shift observed in
Collela–Overhauser–Werner~COW! experiment@10#, and
the subsequent dipole and quadrupole terms are correc
to it. The higher-order multipole contributions to the pha
shift may also be obtained from this expansion. In gene
relativity this phase shift is obtained by letting the path o
dered operator resulting from the covariant generalization
this Newtonian phase shift act on the initial wave functio
Using Eqs.~2! and~5!–~7! and noting that in the linear field
limit va

bbSb
a5hab,mSam, whereva

bb are Ricci rotation co-
efficients, this path ordered operator is given by

g5P expF2
i

\E S 2m1
1

2
va

bbSa
bub2

1

2
RambnI abumun

2
1

6E Rambn;rOabrumun1••• DdsG . ~9!

In the special case whereI ab andOabr are zero, this result is
in agreement with the gravitational phase shift for intrins
spin @5#.

We shall now obtain this expression in the weak fie
limit of general relativity starting from the action principle
Choose a coordinate system such that along the refer
world line gmn5hmn . We would here like to recall that the
extended body under consideration is rigid and subjec
only external gravitational force and no other forces~external
or internal!. In that case the monopole moment correspon
to the mass~m! of the body with whole matter concentrate
on the reference world line, and ignoring the back react
on the background gravitational field we writem5paua.
The higher-order multipole moments are defined by cons
4-2
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ering the metric perturbations as one moves away from
reference world linezm. For simplicity we restrict perturba
tions of the metric to the first order@20#, and later covarian-
tize the equation of motion by changing ordinary derivat
to covariant derivative. The action

S5E A2gLd4x5E A2gLugmn5hmn
d4x1S E A2gLd4x

2E A2gLugmn5hmn
d4xD . ~10!

The first term is the kinetic energy term,

E A2gLugmn5hmn
d4x52E pauads.

So,

S52E pauads1E dgmn

d

dgmn
~A2gL!d4x1•••

52E pauads1
1

2E dgmnA2gTmnd4x1•••. ~11!

Note dgmn5gmn2hmn5hmn and hence it can be written a
dgmn5hmn,suzdxs1 1

2 hmn,sruzdxsdxr1••• where we have
hmn(z)50. In the present weak field limit, we neglect a
terms that are quadratic or higher order in metric pertur
tions. Substituting fordgmn in Eq. ~11! and using Eqs.~1!
and ~5!–~7!, we finally obtain

S52E pauads1
1

2E hab,mSmaubds

2
1

2E RambnI abumunds2
1

6E Rambn,rOabrumunds

~12!

up to octupole~all derivatives are evaluated onzm). In the
linear field limit, sincehab,mSma5va

bbSa
b, hence the accu

mulation of infinitesimal phases arising from Eq.~12! is the
same as that obtained from the path ordered operator, Eq~9!,
in this limit.

We now obtain the equation of motion by extremizing t
action (dS50) and requiring that coordinate variations va
ish at end points of the path. This leads to the equation
motion

dps

ds
5RslmnS 1

2
ulSmn1

d

ds
~ I lmun! D1

1

2
hns,m

d

ds
Smn

2Rslmn,rumI n(rul)1
1

3
Rambs,nruaOmr(nub)

2
1

3
Ramsn,r

d

ds
~Omnrua!. ~13!

In a coordinate system in whichhab,m50, Eq. ~13! gives
12401
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Ds
5RslmnS 1

2
ulSmn1

D

Ds
~ I lmun! D2umI n(rul)¹rRslmn

1
1

3
¹n¹rRambsuaOmr(nub)

2
1

3
¹rRamsn

D

Ds
~Omnrua!. ~14!

Equation~14! is generally covariant and thus is valid in e
ery coordinate system. Since the dipole moment couple
Riemann curvature, it is expected that the quadrupole sho
couple to its first derivative and the octupole to its seco
derivative. However, there is a coupling of the quadrup
with Riemann curvature in the second term and a coupling
the octupole with the first derivative of Riemann curvature
the last term, which suggests thatpa should be suitably re-
defined @21#, as ps* 5ps2RslmnI lmun2 1

3 ¹rRsmnaOmnrua,
which would then yield the expected form

Dps*

Ds
5

1

2
RslmnulSmn1

1

2
¹sRambnu[mI a][ bun]

1
1

6
¹r¹sRambnu[aOm]r[nub] . ~15!

This is the equation of motion for a body possessing dipo
quadrupole, and octupole moments in a gravitational fie
The spin propagation equation~3! can also be covariantly
generalized to

D

Ds
Sab52p[aub]22R[a

mnsu[mI b]][ nus]

2R[a
mns;ru[mOb]] r[nus] , ~16!

which on the redefinition of momentum vector formpa to
pa* modifies as follows:

D

Ds
Sab52p* [aub]12~Ra

mnsu[bI m][ nus]

2Rb
mnsu[aI m][ nus] !22R[a

mnsu[mI b]][ nus]

2
5

3
R[a

mns;ru[mOb]] r[nus] . ~17!

To simplify the notation we would further defineJmabn

ª23u[mI a][ bun] andGmabsn
ª2u[mOa]b[sun] and then fi-

nally obtain

Dps*

Ds
5

1

2
RslmnulSmn1

1

6
Jmabn¹sRmabn

1
1

6
¹r¹sRambnGamrnb, ~18!

D

Ds
Sab52p* [aub]2

4

3
R[a

mnsJb]mns2
5

3
R[a

mns;rGb]mrns.

~19!
4-3
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Thus we have obtained for the first time the correction
propagation equations upto the coupling of covariant gen
alization of Newtonian octupole moment with the bac
ground gravitational field. These equations agree with
earlier results obtained up to quadrupole@8# but the force due
to the octupole moment is a new result. Our procedure
be easily generalized to obtain further corrections from d
to all higher multipole moments.

This is a very simple and elegant method of deriving
equation of motion for an extended body incorporating
coupling of multipole moments of arbitrary order with th
gravitational field. And above all we have found the acti
for such a body which we have also used to compute
gravitational phase shifts in its quantum wave function d
of
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to the multipoles. We hope that the new gravitationally
duced phase shifts would be measured in future interfer
etry experiments based on atomic, molecular, and Bo
Einstein condensates@16–18#. Our novel algorithm also
yields modifications to the geodesic equation, which, w
present day high precision astronomical observations yi
ing multipole moments of planetary or stellar bodies, can
applied to obtain aberrations in their orbits. It would be i
teresting to relax the other aspect of test body character,
no longer ignore the back reaction, and then study the mo
in full generality.

We thank J. Ehlers and C. W. Misner for informative di
cussions. P.S. thanks the Council for Scientific and Indust
Research for grant number 2-34/98~ii !E.U-II.
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