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Generalized Friedmann branes
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We prove that for a large class of generalized Randall-Sundrum type II models the characterization of the
brane-gravity sector by the effective Einstein equation, Codazzi equation and the twice-contracted Gauss
equation is equivalent to the bulk Einstein equation. We give the complete set of equations in the generic case
of non-Z2-symmetric bulk and arbitrary energy-momentum tensors both on the brane and in the bulk. Among
these, the effective Einstein equation contains a varying cosmological ‘‘constant’’ and two new source terms.
The first of these represents the deviation fromZ2 symmetry, while the second arises from the bulk energy-
momentum tensor. We apply the formalism for the case of a perfect fluid on a Friedmann brane embedded in
a generic bulk. The generalized Friedmann and Raychaudhuri equations are given in a form independent of
both the embedding and the bulk matter. They contain two new functions obeying a first order differential
system, both depending on the bulk matter and the embedding. Then we focus on Friedmann branes separating
two nonidentical~inner or outer! regions of Reissner–Nordstro¨m–anti-de Sitter bulk space-times, generalizing
previous non-Z2-symmetric treatments. Finally the analysis is repeated for the Vaidya–anti-de Sitter bulk
space-time, allowing for both ingoing and outgoing radiation in each region.
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I. INTRODUCTION

Since the pioneering idea of Randall and Sundrum@1# of
enriching four dimensional space-time with one noncomp
spatial dimension, cosmology has advanced towards
types of extensions. Generalized Randall-Sundrum typ
models have in common a five dimensional space-t
~bulk!, governed by the Einstein equations, and a four
mensional brane, representing our physical world, on wh
ordinary matter fields are confined. At low energies gravity
also localized at the brane@1#; however this feature does no
always hold @2#. Generalizations of the original Randal
Sundrum scenario are various and multiple, all allowing
matter with cosmological symmetry on the brane~Friedmann
branes! @3,4# ~in this case the bulk is Schwarzschild–anti-
Sitter space-time@5,6#!. The assumption ofZ2 symmetric
embedding was also lifted in a series of papers@7,13#, and
nonempty bulks have also been considered, with physic
reasonable matter content, like null dust@14,15#, which can
be interpreted as the high frequency~geometrical optics! ap-
proximation of unpolarized radiation~even gravitational!,
whenever the wavelength of the radiation is negligible co
pared to the curvature radius of the background. In
present paper we present a formalism generic enough t
low for all such types of extensions. Models allowing adila-
tonic type scalar field in the bulk were also discussed@16#,
but will not be dealt with in the context of this paper, neith
will the possibility of having different coupling constants o
the two sides of the brane@13#. Further generalization of ou
formalism however, is straightforward.

In Sec. II we present the decomposition of the Einst
tensor in an arbitrary (d11)-dimensional space-time wit
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respect to some generic~timelike or spacelike foliation!. We
carefully monitor the relationship of the tensor, vector a
scalar projections of the Einstein equation with the system
effective Einstein and Codazzi equations, widely employ
in brane-world scenarios. We show that the latter syst
should be supplemented by the twice contracted Gauss e
tion in order to assure the full equivalence.~In this context
we mention a recent analysis@17#, which also underlines the
unsatisfactory feature of ‘‘truncating’’ the system of bu
Einstein equations to brane equations.!

Beginning with Sec. III we have in mind the brane-wor
scenario. By use of the Lanczos-Sen-Darmois-Israel junc
conditions@18–21# we derive the generalized effective Ein
stein equation in a form closely resembling previous wo
@22#:

Gab52Lgab1k2Tab1k̃4Sab2 Ēab1L̄ab
TF1P̄ab . ~1!

Among the source terms on the rhs we find the brane ene
momentum tensorTab , the termSab quadratic in the energy
momentum tensor~relevant at high energies! and Ēab , the
electric part of bulk Weyl tensor. Our generic treatmentdoes
not require theZ2 symmetry of the bulk across the brane a
this leads to three important modifications. FirstĒab repre-
sents an average taken over the two sides of the brane.
ond, a new source termL̄ab

TF appears. Third, there is a con
tribution included inL, which transforms the cosmologica
‘‘constant’’ into a function. Bulk energy-momentum is als
allowed, resulting in theP̄ab source term and a second no
constant contribution toL. When allowing bulk matter, we
have in mind reasonable sources, like null dust or mu
component null dust, which can model for example t
cross-flow of gravitational radiation escaping the brane a
©2003 The American Physical Society11-1
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Hawking radiation leaving the bulk black hole~s!. At the end
of the section we give the generic form of the brane Bian
identities.

The most interesting applications of the developed f
malism would be for branes containing black holes and
branes containing perfect fluid and obeying cosmolog
symmetries. Anisotropic cosmological brane-world mod
can also be considered@23,24#.

Among these in Sec. IV we discuss the case of maxim
symmetric branes with perfect fluid. By employing the bra
Bianchi identities, we derive the generalized Raychaudh
and Friedmann equationsin a form insensitive to both the
choice of the bulk matter and of the left and right embe
dings of the brane in the bulk. The price to pay is a cosmo
logical function instead of a constant, and that the sou
term usually quoted as dark radiation acquires a m
broader interpretation.

An algorithm to solve in a hierarchical way the releva
system of equations for a bulk containing a Friedmann br
with a given perfect fluid is presented in the Appendix. T
equations refer tod54. The algorithm is suited for the case
when noa priori choice of the bulk is performed, instead th
matter content of the bulk and the details of the embedd
are specified. There are constraints on both of these cho
as detailed in the Appendix.

Section V deals with Friedmann branes embedded in
Reissner–Nordstro¨m–anti-de Sitter bulk. In the case of
cosmological bulk with maximally symmetric spatial 3 se
tions ~case without the charge!, with the exception of the
static case, where exotic solutions are equally possible@25#,
a generalized Birkhoff theorem holds@6#, which states that
such a bulk is the 5D Schwarzschild–anti-de Sitter spa
time. We develop a formalism which is suitable for matchi
inner and outer regions of the Reissner–Nordstro¨m–anti-de
Sitter space-time, thus allowing for two, one or no charg
black hole. We give the energy-momentum tensor leadin
the solution already employed in@26# in the study of theZ2
symmetric embedding. Then by straightforward algebra
find the generalized Friedmann and Raychaudhuri equati
These were checked to reproduce all previous non-Z2 sym-
metric results derived in the particular case of pure cosm
logical bulk: different black hole masses on the two sides
the brane@7–9#, zero black hole mass and different cosm
logical constants on the two sides@10,11# and allowing for
both types of generalizations@13,6,12#.

In Sec. VI we study a genericasymptoticallyanti-de Sitter
bulk compatible with type II fluid. Such a bulk is a genera
zation of the charged Vaidya solution in the presence o
cosmological constant. In@27# the charged Vaidya solution
was employed to model evaporating charged black ho
Here first we derive the 5 dimensional solution, which agr
with @14#, generated by null dust and an electromagne
field on a cosmological background. The details of the
source terms were not given in the literature before. We t
follow the generic prescription described in the Append
and we write down the generalized Friedmann and R
chaudhuri equations for this case. The generic results der
here are also new. In the particular case ofZ2 symmetric
12401
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brane embeddings, the Friedmann equation for Vaidy
anti-de Sitter bulk@14# is recovered.

Throughout the paper a tilde distinguishes the quanti
defined on the (d11)-dimensional space-time. The only e
ception is the normaln to the leaves of the foliation. Its norm
is ncnc5e561 (e51 stands for timelike ande521 for
spacelike foliations!. Latin indices represent abstract indic
running from 0 tod. Vector fields in Lie derivatives are rep
resented by boldface characters. For exampleL̃ṼT denotes
the Lie derivative along the integral lines of the vector fie
Ṽa. From section to section, as the paper converges tow
its conclusion and the results derived apply to more spec
situations, the degree of generality decreases accordingly
to Sec. III B everything holds for arbitrarye. Up to and
including Sec. IV, the results are dimension-independend
54 being imposed only in the application described in Se
V and VI and in the Appendix. In Sec. VI,e distinguishes
between the outgoing or ingoing character of the radiatio

II. THE EQUIVALENCE OF TWO „d¿1…-DIMENSIONAL
DECOMPOSITIONS

The (d11)-metricg̃ab induces a metricgab on the leaves,

g̃ab5gab1enanb . ~2!

By introducing the projectors gc1 . . . crb1 . . . bs

a1 . . . ard1 . . . ds

5gc1

a1 . . . gcr

argb1

d1 . . . gbs

ds, one can define the projected cov

riant derivative and the projected Lie derivative of any ten
T̃b1 . . . bs

a1 . . . ar as

¹aT̃b1 . . . bs

a1 . . . ar5gac1 . . . crb1 . . . bs

ca1 . . . ard1 . . . ds¹̃cT̃d1 . . . ds

c1 . . . cr , ~3!

LṼT̃b1 . . . bs

a1 . . . ar5gc1 . . . crb1 . . . bs

a1 . . . ard1 . . . dsL̃ṼT̃d1 . . . ds

c1 . . . cr . ~4!

If both the tensorT̃b1 . . . bs

a1 . . . ar and the vectorṼa are defined on

the leaves, the above equations are thegab-compatible cova-
riant derivative and Lie derivative on the lower-dimension
space, respectively. IfṼa however is transverse to the leave
the projected Lie derivative describes transverse evolut
The embedding of the leaves in the (d11)-dimensional
space-time is characterized by the extrinsic curvatureKab
5¹anb . Its trace will be denoted byK. It is immediate to see

that Kab is symmetric by noting thatnb5b¹̃bx (b is an
arbitrary function; as the conditionx5const defines the
leaves,x is time fore521 and any coordinate transverse
the leaves fore51). The extrinsic curvature obeys

2Kab5Lngab . ~5!

The congruencena has its own curvature@28# ab5nc¹̃cn
b

5gd
bad. For spacelike foliations this is the nongravitation

acceleration of observers with velocityna. With this we find

¹̃anb5Kab1enaab . ~6!
1-2
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For notational convenience we also introduce the tensor

Eab5KacKb
c2LnKab1¹baa2eabaa , ~7!

Fab5KKab2KacKb
c , ~8!

together with their traces,E andF. Note thatEab carries the
information about the transverse evolution ofKab .

The (d11)-dimensional Einstein tensor is equivale
with the following set of projections:

ga
cgb

dG̃cd5Gab2eFFab2Eab2
1

2
gab~F22E!G , ~9a!

ga
cndG̃cd5ga

cndR̃cd5¹cKa
c2¹aK, ~9b!

2nanbG̃ab52eR1F. ~9c!

These equations have the following meaning, providedG̃ab
is determined by a (d11)-dimensional Einstein equation
The tensor equation~9a! determines~throughEab) the evo-
lution of Kab normal to the foliation. Together with Eq.~5!
they give the off-leave evolutions of the variables (gab,Kab)
defined on the leaves. The vector equation~9b! is the
Codazzi equation and represents a constraint on these
ables. Similarly does the scalar equation~9c!. For spacelike
foliations the vector and scalar equations are the diffeom
phism and Hamiltonian constraints, respectively. These ‘
stantaneous constraints’’ become dynamical for timelike
liations and the evolution equations form an elliptic, rath
than hyperbolic system.

In what follows we would like to set up an equivalent s
of equations, most commonly employed in brane-world s
narios, e.g., suitable for timelike foliations. We would like
keep, however a strict account of the sets of equations w
are equivalent to each other in the two pictures. For t
purpose first we decompose the tensor equation~9a! into its
trace

2egabG̃ab5~d22!~2eR1F !22~d21!E, ~10!

and trace-free parts

2e~ga
cgb

dG̃cd!
TF5~2eRab1Fab2Eab!

TF, ~11!

where TF denotes tracefree, e.g.,f ab
TF5 f ab2 f gab /d for any

tensorf ab defined on the leaves.
The trace equation~10!, properly combined with the sca

lar equation~9c! gives the twice contracted Gauss equatio

2eR̃52eR1F22E. ~12!

Eliminating R from Eqs. ~9c! and ~12! gives E solely in
terms of bulk tensors:

E5nanbG̃ab1
e

2
R̃. ~13!
12401
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Concerning the tracefree partEab
TF , it is commonly expressed

in terms of the Weyl tensor~the purely radiative contribution
to gravity!

C̃abcd5R̃abcd1
2

d~d21!
g̃a[cg̃d]bR̃

2
2

d21
~ g̃a[cR̃d]b2g̃b[cR̃d]a!. ~14!

Its ‘‘electric’’ part with respect tona is defined as

Eac5C̃abcdn
bnd5ga

i njgc
knlR̃i jkl 1

eR̃

d~d21!
gac

2
1

d21
~ega

i gc
kR̃ik1gacn

inkR̃ik!. ~15!

Inserting the projections

ga
i njgc

knlR̃i jkl 5Eac ,

2ega
i gc

kR̃ik52eRac1Fac2Eac ,

ninkR̃ik52KbdK
bd2E, ~16!

we find

~d21!Eab5@2eRab1Fab1~d22!Eab#
TF. ~17!

Eliminating Rab from Eqs.~11! and ~17! leads to

Eab1e
1

d21
~ga

cgb
dG̃cd!

TF5Eab
TF . ~18!

In what follows, this equation containing the tracefree part
the off-leave evolutionLnKab will be regarded as the defini
tion of Eab . Eliminating the off-leave derivative term from
Eqs.~11! and ~17! results in

Eab2e
d22

d21
~ga

cgb
dG̃cd!

TF5~2eRab1Fab!
TF. ~19!

Combining this trace-free equation with the scalar equat
~9c! we obtain the effective Einstein equation on the leav

Gab5
d22

d21
~ga

cgb
dG̃cd!

TF1
d22

d
gabencndG̃cd

1eS Fab2
gab

2
F D2eEab . ~20!

Note that the trace of the effective Einstein equation~20! and
the scalar equation~9c! coincide by construction. Therefor
the second scalar equation is given by the trace of the o
nal tensor equation~9a! which, as we have seen, is equiv
lent ~modulo the trace of the effective Einstein equatio!
to either the twice-contracted Gauss equation~12! or to
Eq. ~13!.
1-3
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For spacelike foliations the usual way to think of th
above system of equations is to choose variablesgab andKab
satisfying the constraints~9b! and ~9c! on the leaves and le
them evolve via Eqs.~5! and ~9a!. When the foliation is
timelike, another viewpoint is common. In the brane-wo
scenario the central role is played by the effective Einst
equation~20!, in which the bulk matter~via the bulk Einstein
equation!, the extrinsic curvature of the brane~the F terms!
and the electric part of the bulk Weyl tensor are all cons
ered sources for the brane gravity sector. While the extrin
curvature of the brane is determined by brane matter
brane tension through the junction mechanism, and~in theZ2
symmetric cosmological bulk! the longitudinal part ofEab is
fixed by the vector equation@22#, nothing constraints the
behavior of the transverse part ofEab , which remains arbi-
trary from a brane point of view. This feature is the source
several difficulties, frequently formulated as the lack of
temporalevolution equation forEab .

Theoff-braneevolution ofEab was deduced from the bul
Bianchi identities in Ref.@22# ~in the case of aZ2 symmetric
cosmological bulk!. It also follows from the above equation
As Eab is completely determined by the bulk matter, the
duced metric and the extrinsic curvature via Eq.~19!, the
evolution of Eab follows from the metric evolution~5! and
the evolution of the extrinsic curvature. Let us recall that
latter was given by the tensor equation~9a!. Should one
choose a brane-world viewpoint, the situation is differe
the effective Einstein equation~20! together with Eq.~18!
gives only the traceless part ofLnKab . The complementary
equation is either the twice contracted Gauss equation~12! or
Eq. ~13!, which both containgabLnKab . With this equation,
the bulk Bianchi identities emerge as a consequence.

It is clear now that in the brane-world scenario the effe
tive Einstein equation and the Codazzi equations do not
vide a complete characterization of gravity, but they sho
be supplemented by the twice-contracted Gauss equatio@or
the expression~13! for E]. This set of equations is equivalen
with the Einstein equation in the (d11)-dimensional space
time.

III. THE EFFECTIVE EINSTEIN EQUATION
FOR NON-Z2-SYMMETRIC BULK

A. The junction conditions

Both in general relativity and in the brane world scenar
the possibility of a distributional matter source on a hyp
surface is of interest. Such a hypersurface divides the sp
time into two distinct regions. In both of these regions one
the systems~9! or ~9b!, ~13! and ~20! should be imposed
separately. Quantities defined on these domains will be
tinguished by1 or 2 symbols. The passage from one zo
to the other is described in a coordinate-independent ma
by the junction conditions@21# ~see also@6#!. These condi-
tions include the continuity of the induced metric across
hypersurface,gab

1 5gab
2 , and the Lanczos equation@18#, a

condition on the jump of the extrinsic curvature. It
straightforward to deduce the latter equation from the eq
tions derived in the preceding section.
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From Eqs.~7!, ~8! and the second relation~16! we find

LnKab52ega
i gb

kR̃ik1Zab , ~21!

Zab5eRab12KacKb
c2KKab1¹baa

2eabaa . ~22!

The Einstein equation gives

ga
i gb

kR̃ik5k̃2S ga
i gb

kT̃ik2
1

d21
gabT̃D . ~23!

If l is the coordinate adapted to the normal,n5]/] l , the

energy-momentum tensor can be written asT̃ik5P̃ ik

1t ikd( l ), with P̃ ik the regular part andt ik the distributional
part on the layer, obeyingt ikni50. Thus Eq.~21! becomes

]

] l
Kab52ek̃2S tab2

1

d21
gabt D d~ l !1Wab1Zab , ~24!

Wab52ek̃2S ga
i gb

kP̃ ik2
1

d21
gabP̃ D . ~25!

As bothZab andWab are finite, integration across the laye
on an infinitesimal integration range gives the Lanczos eq
tion:

DKab52ek̃2S tab2
1

d21
gabt D , ~26!

or equivalently

2ek̃2tab5DKab2gabDK. ~27!

Here we have introduced the notationD f ab5 f ab
1 2 f ab

2 for
the jump of any tensorf ab andD f for its trace.~By construc-
tion, 1 means the region towards whichn is pointing. We
emphasize, that the Lanczos equation is not affected by
choice of the orientation of the normaln, because the chang
in the orientation implies that both the1 and2 regions and
the sign of the extrinsic curvature are reversed.! We also
introduce the mean valuef̄ ab5( f ab

1 1 f ab
2 )/2. Obviously

Dgab50 andḡab5gab . Straightforward algebra then show

F̄ab5K̄abK̄2K̄acK̄b
c1dFab ,

F̄5K̄22K̄abK̄
ab1dF,

DFab52ek̃2F K̄S tab2
1

d21
gabt D

1K̄ab

t

d21
22K̄c(atb)

c G ,
DF52ek̃2K̄abt

ab, ~28!

where we have denoted by
1-4
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dFab52
k̃4

4 S tactb
c2

1

d21
ttabD ~29!

the contribution which distinguishes the functional form
F̄ab from the one ofFab .

Let us now consider a region of space-time of a fin
thickness 2h, which contains this temporal hypersurfac
The set of equations~9b! and ~20! holds in any of the two
regions even in the limith→0. Their sum and difference
give

k̃2~ga
cndP̃cd!5¹cK̄a

c2¹aK̄, ~30a!

D~ga
cndP̃cd!52e¹cta

c , ~30b!

2k̃2~nanbP̃ab!52eR1F̄, ~30c!

D~nanbP̃ab!5eK̄abt
ab, ~30d!

k̃2
d22

d21
~ga

cgb
dP̃cd!

TF5Rab
TF2eF̄ab

TF1e Ēab , ~30e!

k̃2
d22

d21
D~ga

cgb
dP̃cd!

TF52eDFab
TF1eDEab . ~30f!

The last four equations are the trace and trace-free par
the sum and difference of the effective Einstein equation
the two regions, respectively. From among them the last
equations define the mean value and the jump ofEab ~the
trace-free part ofEab). Let us recall that the traceE is also
determined in both regions by Eq.~13!, which in terms of the
bulk energy-momentum tensor reads

E65k̃2S nanbP̃ab
6 2

e

d21
P̃6D . ~31!

As it will be employed in the next subsection, we also gi
the undecomposed form of the equation obtained by the
of the effective Einstein equations on each side@equivalent
to Eqs.~30c! and ~30e!#:

Gab5k̃2Fd22

d21
~ga

cgb
dP̃cd!

TF1e
d22

d
gab~ncndP̃cd!G

1eS F̄ab2
gab

2
F̄2 ĒabD . ~32!

B. The effective Einstein equation

From now on we specialize to the brane-world scenar
where a (d21)-dimensional distributional source evolves
time and in consequence the hypersurface is temporal. T
we apply the above formulas fore51. For the generic brane
energy-momentum tensortab52lgab1Tab ~wherel is the
brane tension andTab represents ordinary matter on th
brane! we have
12401
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dFab2
gab

2
dF5k̃4FSab1l

d22

4~d21!
Tab2

d22

8~d21!
gabl

2G .
~33!

HereSab denotes a quadratic expression inTab :

Sab5
1

4 F2TacTb
c1

1

d21
TTab

2
gab

2 S 2TcdT
cd1

1

d21
T2D G . ~34!

By defining the brane gravitational constant and the br
cosmological ‘‘constant’’ through

k25
d22

4~d21!
k̃4l, ~35!

L5
k2l

2
2

L̄

d
2k̃2

d22

d
~ncndP̃cd!, ~36!

we obtain the effective Einstein equation~1!. Among the
source terms we findL̄ab , which is defined as

L̄ab5K̄abK̄2K̄acK̄b
c2

gab

2
~K̄22K̄abK̄

ab!, ~37!

with L̄ab
TF and L̄ its tracefree part and trace. FinallyP̄ab is

given by the pull-back of the bulk energy-momentum ten
to the brane:

P̄ab5k̃2
d22

d21
~ga

cgb
dP̃cd!

TF. ~38!

The first four terms of the right-hand side~RHS! of the ef-
fective Einstein equation are well known@22#. They are the
cosmological term, the ordinary brane matter source te
~dominant at low energies!, a quadratic term in the bran
energy-momentum~relevant at high energies!, and the bulk
electric Weyl-curvature contribution. The only modificatio
up to here is the possibility of a varying cosmological ‘‘co

stant’’ ~it depends both on the projection(ncndP̃cd) of the
bulk energy-momentum tensor and on the embedding of
brane!. In addition to these there are two new terms. The fi
of them,L̄ab

TF represents the imprint of the particular way th
time-evolving brane is bent into the bulk from both side
This contribution disappears in theZ2-symmetric case~as
well as the contributionL̄ to L). The last term,P̄ab arises
from the projection of the bulk energy-momentum tensor
the brane, and is traceless by definition.

In terms ofl andTab , Eqs.~30d!, ~30b! and~30f! can be
written as

D~nanbP̃ab!52lK̄1TabK̄
ab, ~39a!

D~ga
cndP̃cd!52¹cTa

c , ~39b!
1-5
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k̃2
d22

d21
D~ga

cgb
dP̃cd!

TF5DEab1k̃2F K̄Tab1
T

d21
K̄ab

1
d22

d21
lK̄ab22K̄ (a

c Tb)cGTF

.

~39c!

Thus Eqs.~30a!, ~31!, ~1! and ~39! are the complete set o
equations in the generic case of non-Z2-symmetric bulk and
arbitrary energy-momentum tensors both on the brane an
the bulk.

The Bianchi identity ind dimensions allows for the ex
pression of the longitudinal part of (Ēab2L̄ab

TF2P̄ab):

¹a~ Ēab2L̄ab
TF2P̄ab!

5
¹bL̄

d
1k̃2

d22

d
¹b~ncndP̃cd!2k2D~gb

cndP̃cd!

1
k̃4

4 S Tb
c2

T

d21
gb

cDD~gc
andP̃ad!1

k̃4

4 F2Tac¹[bTa]c

1
1

d21
~Tab¹

aT2T¹bT!G . ~40!

This equation has important cosmological implications,
will be discussed in the next section.

IV. PERFECT FLUID ON FRIEDMANN BRANE

Friedmann branes, obeying cosmological symmetries
characterized by the metric

gab52uaub1a2~t!hab , ~41!

wherea(t) is the scale factor andhab is a (d21) metric
with constantcurvature~characterized by the curvature inde
k51,0,21) of the maximally symmetric spatial slices wit
constant t. The timelike congruenceua5(]/]t)a obeys
uaua521 and habu

a50. It is not difficult to prove
ub¹aub5ub¹bua50. We denote by a dot the time derivativ
with respect tot, which in the generic case is defined as t
Lie derivative in theua direction, projected into the hyper
surface perpendicular toua ~of constantt). Then, from the
condition ḣab50 we find

uc¹chab52
1

a2
~¹aub1¹bua!, ~42!

the trace of which implies¹aua5(d21)ȧ/a.
When there is a perfect fluid on the brane, it has

energy-momentum tensor

Tab5r~t!uaub1p~t!a2hab , ~43!
12401
in

s

re

e

with ua representing itsd-velocity. Spatial isotropy and ho
mogeneity implieshab¹

ba5hab¹
br5hab¹

bp50.
The quadratic term~34! then becomes

k̃4Sab5k2
r

l Fr2 uaub1S r

2
1pDa2habG . ~44!

We complete the bookkeeping of the source terms by in
ducing the effective nonlocal energy densityU arising from
the totality of nonlocaltracefreeterms in the effective Ein-
stein equation~1!:

2 Ēab1L̄ab
TF1P̄ab5k2US uaub1

a2

d21
habD . ~45!

U is a generalization of the effective nonlocal energy dens
introduced in the case ofZ2 symmetric, cosmological bulk
@29#.

Next we specify the system~39! for the perfect fluid
energy-momentum tensor. Equations~39a! and ~39c! give

D~nanbP̃ab!5~p2l!K̄1~r1p!uaubK̄ab, ~46!

k̃2
d22

d21
D~ga

cgb
dP̃cd!

TF

5DEab1k̃2F ~r1p!K̄uaub22~r1p!u(aK̄b)
c uc

2
r1~d21!p2~d22!l

d21
K̄abGTF

, ~47!

while Eq. ~39b! decouples into the following time and spac
components:

D~ucndP̃cd!5 ṙ1~d21!
ȧ

a
~r1p!, ~48!

habD~gacndP̃cd!50. ~49!

By virtue of Eqs.~45!, ~48! and~49! the space projection o
the Bianchi identity~40! trivially vanishes.@We also use in
the proof that in order to satisfy the cosmological symm

tries, U as well asL̄ and (ncndP̃cd), ~both contributing to
L) are pure time-functions, i.e., they have vanishing spa
derivatives.# The time projection of the Bianchi identity~40!
gives

k2S U̇1d
ȧ

a
U D 5

1

d
@ k̃2~d22!~ncndP̃cd!1L̄# •

2k2S 11
r

l DD~ucndP̃cd!. ~50!

The homogeneous part of the above equation integrates

U5U0S a0

a D d

, ~51!
1-6
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whereU0a0
d is an integration constant. Variation of the co

stantU0 gives a first order ordinary differential equation:

k2S a0

a D d

U̇01L̇1k2S 11
r

l DD~ucndP̃cd!50. ~52!

@We have employed the definition ofL given in Eq.~36!.#
The solution of Eq.~52! depends both on the bulk matter an
on the details of the embedding of the brane in the bulk.

Finally we compute the Einstein tensor:

Gab5
~d22!

2 H ~d21!
ȧ21k

a2
uaub

2@2aä1~d23!~ ȧ21k!#habJ , ~53!

which is the last piece of information required in order
write the effective Einstein equation~1!. Its nontrivial pro-
jections combine to give the generalized Friedmann and g
eralized Raychaudhuri equations:

~d21!~d22!
ȧ21k

a2
52L12k2rS 11

r

2l D12k2U0S a0

a D d

,

~54!

~d21!~d22!
ä

a
52L2k2H Fd231~d22!

r

lGr
1~d21!S 11

r

lDpJ 2~d22!k2U0S a0

a D d

.

~55!

Apart from the dimension-carrying indexd, at first glance
the above equations areidentical with the corresponding
equations of@4# and @3#, obtained forZ2 symmetric cosmo-
logical bulk. Still, important differences arise from the no
constant character ofL andU0, given in the generic case b
Eqs.~36! and~52!. Another distinctive feature is that theU0
term cannot be interpreted any more as pure dark radiatio
glance at Eqs.~45! and~51! shows that it carries both radia
tive degrees of freedom~from the electric bulk Weyl tensor!,
as well as imprints of the bulk matter and of the particu
way the brane is bent into the left and right bulk region
Equation ~52! defining the potentialU0 is an integrability
condition, which can be equivalently derived by taking t
time derivative of the generalized Friedmann equation, t
employing Eq.~48! to eliminateṙ and Eqs.~54! and~55! to
eliminate all derivatives ofa.

Let us recall, that the information on the gravitation
field is completed by Eqs.~30a! and ~46! @these represen
(d11) constraints on the mean extrinsic curvature and b
matter#, Eqs.~48! and ~49! (d constraints on the bulk mat
ter!, Eq. ~47! determiningDEab and Eq. ~31! giving E6.
Also, the Lanczos equation
12401
n-

A

r
.

n

l

lk

DKab52k̃2F S d22

d21
r1p2

l

d21Duaub1
r1l

d21
a2habG

~56!

remains a useful link between dynamical and geometr
quantities defined on the brane.

We summarize the above results in the Appendix ford
54. The algorithmic way the equations are grouped is me
to facilitate the search for non-Z2-symmetric FRW brane-
world solutions. The equations governing off-brane evolut
are also presented there.

In the following two sections we apply these gene
equations for thefive-dimensionalReissner–Nordstro¨m–
anti-de Sitter bulk and charged Vaidya–anti-de Sitter bu
both containing afour-dimensionalFriedmann brane. On the
two sides of the brane the bulk is characterized by differ
mass and charge functions, also by different cosmolog
constants. As the generalized Friedmann and Raychaud
equations are given in a form invariant with respect to d
ferent choices of the bulk and the embeddings, only
complementary set of equations~30a!, ~31!, and ~46!–~49!
will change from case to case.

V. REISSNER–NORDSTRÖM –ANTI-de SITTER BULK

The generalization of the 4-dimensional Reissn
Nordström solution to a cosmological context in 5 dime
sions was discussed in@26#. The metric

ds̃252 f ~r ;k!dt21
dr2

f ~r ;k!
1r 2@dx21H 2~x;k!~du2

1sin2udf2!#, ~57!

with

H~x;k!5H sinx, k51,

x, k50,

sinhx, k521

~58!

can be also written as

g̃ab52uaub1nanb1r 2hab , ~59!

where a time coordinatet was introduced through the time
like vector

u5
]

]t
5 ṫ

]

]t
1 ṙ

]

]r
, ~60!

with unit negative norm, implying

f ṫ5~ ṙ 21 f !1/2. ~61!

We have chosen theṫ.0 root and a dot denotes derivative
with respect tot. Then the unit normal 1-form to bothhab
andua is determined up to a sign:

n56~21!s~2 ṙ dt1 v̇dr !. ~62!

The 1 sign refers to right-pointing normal. The final resul
will not depend on this choice of the orientation. We ha
inserted an additional sign (21)s to allow theoutgoingco-
ordinatey, defined by
1-7
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n56~21!sdy, ~63!

to increase either in the right or left directions. We w
specify later the meaning of the exponents. Finally the
1-form field ua is

u52~ ṙ 21 f !1/2dt1ȧdr52dt. ~64!

If the bulk contains an electromagnetic field characteriz
by the potential 1-form

A5
q

r 2
dt, ~65!

its energy-momentum tensor will be

T̃ab
EM5

3q2

r 6
~uaub2nanb1r 2hab!. ~66!

Then the bulk Einstein equation for the metric ansatz~57!
with the source term

P̃cd52L̃g̃ab1T̃ab
EM ~67!

is satisfied for

f ~r ;k!5k2
2m

r 2
2

k̃2L̃

6
r 21

q2

r 4
, ~68!

m andq being the mass and charge of the central black h
~or ‘‘stellar object,’’ in the absence of a horizon! and L̃,0
the bulk cosmological constant. In principle, all of these co
stants can take different values on the two sides of the br
Thus we will drop the assumption ofZ2 symmetry and ob-
tain more generic results than in@26#.

If one passes from the coordinates (t,r ) to (t,y), the
position of the brane can be simply specified asy5const.
This choice is equivalent to the embedding relationst

5t(t) andr 5a(t). Therefore we replace (r , ṙ ) with (a,ȧ).
As for the embedding relationt5t(t), we know only Eq.
~61!. By construction,n is the normal andu the tangent
vector to the brane. Thus we take for the induced metric
expression~41!. By this we have assumed that the bulk h
the spatial symmetries of the brane.1

The extrinsic curvature for such hypersurfaces is

1For such a brane and pure cosmological bulk a ‘‘generali
Birkhoff theorem’’ holds@6#, stating that the bulk is the 5 dimen
sional Schwarzschild–anti-de Sitter space-time, a particular cas
our treatment. However when the brane has the additional s
symmetry~Einstein brane!, the derivation of the above mentione
‘‘generalized Birkhoff theorem’’ is obstructed, and other bulk so
tions are possible, as shown in@25#.
12401
d

le
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Kab57~21!sF ä1
1

2

] f

]a

~ ȧ21 f !1/2
uaub2~ ȧ21 f !1/2ahab

G .

~69!

Kab on the two sides depends on the actual value of
function f and the sign ambiguity arises from the ambigu
in the choice of the normal.

As we have not imposed theZ2 symmetry, at this point
we have to raise the question of whether inner or outer
gions of the Reissner–Nordstro¨m–anti-de Sitter space-tim
will be glued together. We introduce a pair of indiceshR,L
which take the value 1 for inner regions and 0 for ou
regions. Then, according to our definitions

s5H hR , right region,

hL11, left region.
~70!

Then the extrinsic curvatures on the two sides of the br
are

Kab
R 57S AR

BR
uaub2BRahabD ,

Kab
L 56S AL

BL
uaub2BLahabD , ~71!

whereR,L refer to right and left regions, respectively, an
the following notations were introduced for convenienceI
5R,L):

AI5ä1
1

2

] f I

]a
, ~72!

BI5~21!h I~ ȧ21 f I !
1/2. ~73!

Then, according to the definition of the jump and mean va
of the extrinsic curvature:

DKab52F S AR

BR
1

AL

BL
Duaub2~BR1BL!ahabG ,

2K̄ab57F S AR

BR
2

AL

BL
Duaub2~BR2BL!ahabG .

~74!

We also have

2L̄

3
52

BR2BL

a FAR

BR
2

AL

BL
1

BR2BL

a G . ~75!

Equations~A1! and ~A3! are then satisfied, while Eq.~A2!
gives

ṙ13
ȧ

a
~r1p!50. ~76!

This first order differential relation among the scale fact
pressure and density of the perfect fluid~being independen

d

in
tic
1-8
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both of L and U0) guarantees that for a given equation
statep(r), the density has the standard expression as fu
tion of the scale factor.

We actually do not have to carry out in full detail th
program described in the Appendix. This is because
choices of the bulk and brane metrics already constrain
embedding, leading to the above extrinsic curvature. The
shortcut would be to employ Eqs.~A4! and~A12! in order to
expressȧ2 and ä algebraically.~As the sign ambiguity was
verified to cancel out from all equations, from now on w
mean byD the differences between quantities taken from
R andL regions.! First we find by pure algebra that

B̄52
k̃2a

6
~r1l!,

DB5
3DA1k̃2aC

k̃2~r1l!
, ~77!

then

ȧ21 f̄

a2
5

k2l

6
1

k2r

3 S 11
r

2l D1
~DB!2

4a2
, ~78!

Ā

a
5

k2l

6
2

k2

6 FrS 11
2r

l D13pS 11
r

l D G
1

CDB

2a~r1l!
1

3~p2l!~DB!2

4a2~r1l!
. ~79!

By C we have denoted the source term in Eq.~A4!, multi-
plied by 7, in the present case

C5
6q̄Dq

a6
1DL̃. ~80!

By employing the definition of the metric function~68!, and
Eqs.~72!, ~80!, we obtain

DB5
12a2Dm212k̃2q̄Dq1k̃2a6DL̃

2k̃2a5~r1l!
, ~81!

and the generalized Friedmann and Raychaudhuri equat

ȧ21k

a2
5

L0

3
1

k2r

3 S 11
r

2l D
1

2m̄

a4
2

k̃2q̄2

a6
2

k̃2~Dq!2

4a6
1

~DB!2

4a2
, ~82!

ä

a
5

L0

3
2

k2

6 FrS 11
2r

l D13pS 11
r

l D G2
2m̄

a4
1

2k̃2q̄2

a6

1
k̃2~Dq!2

2a6
1

CDB

2a~r1l!
1

3~p2l!~DB!2

4a2~r1l!
, ~83!
12401
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whereL0 is a true constant given as

2L05k2l1k̃2L̃̄. ~84!

A comparison with Eqs.~A9! and ~A10! gives the cosmo-
logical ‘‘constant’’ and the potentialU0:

L

3
5

L0

3
1

k̃2q̄2

2a6
1

k̃2~Dq!2

8a6
1

CDB

4a~r1l!

1
~r13p22l!~DB!2

8a2~r1l!
, ~85!

k2

3
U0S a0

a D 4

5
2m̄

a4
2

3k̃2q̄2

2a6
2

3k̃2~Dq!2

8a6
2

CDB

4a~r1l!

1
~r23p14l!~DB!2

8a2~r1l!
. ~86!

The Friedmann equation~82! and Raychaudhuri equatio
~83!, after suitable conversion of notation, reduce to the c
responding results of@13,6# in the caseq50. When the cos-
mological constant is the same in both bulk regions (DL̃
50), earlier results@8# are recovered.

In the Z2-symmetric limit we recover the Friedman
equation given in@26#. In the absence of charge, the Frie
mann and Raychaudhuri equations given in@4# and @3#
emerge.

VI. CHARGED VAIDYA –ANTI-de SITTER BULK

The generalization of the 4-dimensional charged Vaid
solution @30# in a cosmological context was discussed
@31#. We will do the same here in 5 dimensions. Let us st
with the bulk metric written in Eddington-Finkelstein typ
coordinates,

ds̃252 f ~v,r ;k!dv212edvdr

1r 2@dx21H 2~x;k!~du21sin2udf2!#, ~87!

where e51 holds for an outgoingv coordinate ~the v
5const lines are ingoing!, while e521 for ingoing v (v
5const lines outgoing!. It can also be written as

g̃ab52uaub1nanb1r 2hab , ~88!

where

u5
]

]t
5 v̇

]

]v
1 ṙ

]

]r
, ~89!

has unit negative norm, implying

f v̇5e ṙ 1~ ṙ 21 f !1/2. ~90!

We have again chosen thev̇.0 root and a dot again denote
derivatives with respect tot. Then the unit normal 1-form to
both hab andua becomes
1-9
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n56~21!s~2 ṙ dv1 v̇dr !. ~91!

Finally the 1-form fieldua is

u52~ ṙ 21 f !1/2dv1e v̇dr52dt. ~92!

We suppose that the bulk contains radiation~geometrical
optics limit: null dust! with energy-momentum tensor

T̃ab
ND5

3b~v,r !

k̃2r 3
l al b . ~93!

Hereb(v,r ) determines the energy density~it has the dimen-
sion of a linear density of mass! and l is a null 1-form:

l 5dv5 v̇@6e~21!sn2u#. ~94!

Such radiation is ingoing fore51 and outgoing fore
521. In the bulk there is also an electromagnetic contrib
tion,

T̃ab
EM5

3q2~v !

r 6
~uaub2nanb1r 2hab!, ~95!

generated by a null 5-potential

Aa5
q~v !

r 2
l a . ~96!

Then the bulk Einstein equation for the metric ansatz~87!,
with the source term

P̃cd52L̃g̃ab1T̃ab
ND1T̃ab

EM , ~97!

is solved by

eb5
dm

dv
2

k̃2q

r 2

dq

dv
~98!

and

f ~v,r ;k!5k2
1

r 2 F2m~v !1
k̃2L̃

6
r 42

q2~v !

r 2 G . ~99!

The functionsm(v) andq(v) are freely specifiable.
The brane is given by the embedding relationsv5v(t)

@through Eq.~90!# and r 5a(t), thus we replace (r , ṙ ) with
(a,ȧ) in the above formulas. By construction,n is the normal
to the brane. The induced metric is Eq.~41! and the extrinsic
curvature becomes

Kab57~21!sF 2ä1
] f

]a
2e v̇2

] f

]v

2~ ȧ21 f !1/2
uaub2~ ȧ21 f !1/2ahab

G .

~100!
12401
-

We note that the differences with respect to the Reissn
Nordström–anti-de Sitter case arise in the definition of t
function A:

2AI52ä1
] f I

]a
2e I v̇ I

2 ] f I

]v
, ~101!

and in an additional term contained byC:

C5
6q̄Dq

a6
1DL̃2

3D~b v̇2!

2k̃2a3
. ~102!

Since, by virtue of Eq.~98! the condition 2e Ib I1a2] f I /]v
50 holds, the expression~81! for DB, as well as the gener
alized Friedmann equation~82!, are unchanged relative t
the Reissner–Nordstro¨m–anti-de Sitter case. The Ray
chaudhuri equation~besides containing a differentC) ac-
quires two new terms on the right-hand side. These are

2K52
b v̇ 2̄

a3
2

3DB

2k̃2a4~r1l!
D~b v̇2!. ~103!

Then the cosmological ‘‘constant’’ and the potential in t
charged Vaidya–anti-de Sitter case are found immedia
from the ones characterizing the Reissner–Nordstro¨m–
anti-de Sitter case:

S L

3 D
chV AdS5

5S L

3 D
RN AdS5

1K, ~104!

~U0!chV AdS55~U0!RN AdS52
3

k2 S a

a0
D 4

K.

~105!

@Remember thatL andU0 on the RHS should be compute
with C given by Eq.~102!.# In the Z2-symmetric limit the
Friedmann equation reduces to the one given in@14#.

Equations~A1! and ~A3! are again satisfied, while Eq
~A2! this time differs from the ordinary continuity equation

ṙ13
ȧ

a
~r1p!5

3

k̃2a3
D@e~21!sb v̇2#

5
3

k̃2a3 (
I 5L,R

e I~21!h Ib I v̇ I
2 .

~106!

The global signe I(21)h I of the two terms in the sum abov
is negative for radiation leaving the brane and positive
radiation arriving to the brane. For a given equation of st
p(r), this time the expressionr5r(a) is different from the
standard one. This is due to the fact that the brane radiate
is irradiated; thus there is no brane-energy conservat
~The Z2-symmetric, uncharged limit of the casehL5hR51
5eL5eR was discussed in@15#.!

Obviously, the expressionb v̇2 is needed for the last fou
equations. Of course,b depends on the freely specifiab
functionsm(v) and q(v), as given by Eq.~98!, while v̇ is
1-10
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determined by Eqs.~73! and~90!. At this point it is useful to
note, that there is no natural normalization condition fo
null vector, thereforel can be freely rescaledl→s l at the
price thatb→b/s2 is also rescaled accordingly. Employin
this freedom one can even shift all information about the n
dust into the null vector, by choosings5Ab. Alternatively,
in the present case a simple way to proceed would be
chooses5 v̇21 which has the consequence that the new
ear density of mass is

a5b v̇2. ~107!

Then one can interpreta in Eqs. ~103!–~106! as a freely
specifiable parameter. This choice was followed in@15#.

However we will follow a third route, guided by the de
sire to have freely imposable functions with obvious me
ing on the brane. The arbitrary metric functionsm(v) and
q(v), due to the embedding relationv5v(t), can already be
interpreted from a brane point of view as arbitrary functio
of time m(t) and q(t). Their time derivatives, defined a
ṁ5 v̇dm/dv andq̇5 v̇dq/dv, have again a natural interpre
tation for an observer living on the brane. One can theref
define a third linear density of mass by choosings

5( v̇)21/2 as

g5b v̇5eS ṁ2
k̃2q

a2
q̇D , ~108!

and rewrite Eqs.~103!–~106! in terms ofg, which has im-
mediate interpretation for a brane observer. Thenv̇ arises
linearly in the termb v̇25g v̇ and we obtain the following
expression:

b I v̇ I
25ȧ

g I

f I
1e I~21!h I

g IBI

f I
. ~109!

This can be expressed in terms off̄ , B̄, ḡ, D f , DB andDg
or equivalently in terms of average values and jumps ofm,
ṁ, q, q̇ and L̃. If this latter interpretation is chosen, a
interesting feature which emerges, is the occurrence of aȧ
term in both the Raychaudhuri and continuity equations. T
can be avoided in the first choice~107!, but then the relation
betweena and the setdm/dv,dq/dv will contain it.

VII. CONCLUDING REMARKS

We have given a generic decomposition of the Einst
equations, in which the tensorial, vectorial and scalar pro
tions are equivalent to the effective Einstein, the Codazzi
the twice contracted Gauss equation. The junction conditi
applied across a brane separating two nonidentical sp
times give rise to the final form of these equations. The
fective Einstein equation contains a varying cosmologi
constant, and extra terms beyond the standardZ2-symmetric
case, which characterize the nonsymmetric embedding
the bulk matter.

The formalism can be applied for any situation. Of p
ticular interest would be the cases of branes containing b
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holes or obeying cosmological symmetries. We have d
cussed the latter case here.

When the brane has cosmological symmetries and a
fect fluid, obeying the same symmetries, the effective E
stein equations decouple into generalized Friedmann
generalized Raychaudhuri equations. These were given
form insensitive to the particular embedding. Only the co
mological ‘‘constant’’ and the potentialU0 depend on the
details of the embedding and bulk matter. WhileL can be
found algebraically, the potentialU0 is determined by a first
order ordinary differential equation. An algorithm was give
in the Appendix to study cosmology on such generaliz
Friedmann branes.

With a definite choice of the bulk and embedding, t
situation becomes even simpler, the integration of the fi
order differential equation being replaced by pure algeb
We have employed this advantage first in the case o
Reissner–Nordstro¨m–anti-de Sitter bulk, then for a charge
Vaidya–anti-de Sitter bulk. In both cases we have matc
across the brane inner-outer regions of the bulk space-tim
finding the appropriate generalized Friedmann and R
chaudhuri equations. The Raychaudhuri equation acqu
peculiar terms in the radiating case, which implies a no
standard dependence of the density on the scale factor.
equations allow for different mass and charge functions
well as bulk cosmological constants on the two sides of
brane. However the junction does not allow for different v
ues ofk on the two sides, ask is the curvature index in the
induced metric, required to be continuous. If Maxwell equ
tions have to be satisfied in 5D, then the two charges hav
be equal in magnitude but of opposite sign@32#.

The equations characterizing cosmological evolution b
in the charged and in the radiating case being given,
arena opens for imposing constraints from experimental d
on the nonsymmetric character of the embedding as wel
the low energy regime (r!l), for example,DB contributes
with the radiation-like term (3/2k̃2l2)(DmDL̃/a4) to the
Friedmann equation and it is expected that CMB-anisotro
data will constrain its magnitude, thus implicitly the no
Z2-symmetric features of the bulk too.

While in the charged case only 3 cases should be con
ered~junctions of inner-inner, inner-outer and outer-outer
gions!, in the radiating case the direction of the radiati
flow further diversifies the situation, leading to a total of 1
cases to be discussed. Some of these will be ruled ou
energy conditions to be satisfied on the brane. Further sub
ties of the radiating case include whether in the inner regi
there are radiating stellar objects, black holes or naked
gularities ~encountered in the 4D Vaidya solution as wel!.
Investigations into these issues are under way.
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APPENDIX: DYNAMICS OF PERFECT FLUID
FRIEDMANN BRANES IN ARBITRARY BULK.

AN ALGORITHM

Let us consider the physically interesting case ofd54.
For a Friedmann brane with perfect fluid, embedded in
non-Z2 way into a bulk containing some energy-momentu

tensorP̃cd , we present here an algorithmic way of solvin
the relevant equations.

Constraints on the bulk matter:

habD~gacndP̃cd!50, ~A1!

D~ucndP̃cd!5 ṙ13
ȧ

a
~r1p!. ~A2!

Once solved by some choice for the matter fields in the b
we can pass to theconstraints on the embedding:

k̃2~ga
cndP̃cd!5¹cK̄a

c2¹aK̄, ~A3!

D~nanbP̃ab!5~p2l!K̄1~r1p!uaubK̄ab.
~A4!

The mean value of the extrinsic curvature, once found, gi
rise to the trace and tracefree parts of the extrinsic curva
term L̄ab :

L̄5K̄abK̄
ab2K̄2, ~A5!

L̄ab
TF5K̄abK̄2K̄acK̄b

c1
L̄

4
gab , ~A6!

and therefore to thecosmological constant

L5
k2l

2
2

L̄

4
2

k̃2

2
~ncndP̃cd!. ~A7!

The first order differential equation determinesthe unknown
potential U0:

k2S a0

a D 4

U̇01L̇1k2S 11
r

l DD~ucndP̃cd!50. ~A8!

Then L and U0 can be inserted into the generalizedFried-
mann and Raychaudhuri equations:

ȧ21k

a2
5

L

3
1k2

r

3 S 11
r

2l D1
k2

3 S a0

a D 4

U0 , ~A9!
12401
a

k,

s
re

ä

a
5

L

3
2

k2

6 F S 112
r

l D r13S 11
r

l D pG2
k2

3 S a0

a D 4

U0 .

~A10!

Up to this point, only the mean value of the extrinsic curv
ture has to be solved for.~Still, its jump contributed implic-
itly to the functional form of the generalized Friedmann a
Raychaudhuri equations.!

Finally, in order to study theoff-brane evolution, the ex-
trinsic curvature is needed on both sides on the brane

2Kab
6 52K̄ab6DKab . ~A11!

Thus we have to determine its jump from theLanczos equa-
tion

3DKab52k̃2@~2r13p2l!uaub1~r1l!a2hab#.
~A12!

The evolution in the off-brane direction of the brane gra
tational variables is determined by

Lngab52Kab
6 , ~A13!

LnKab
6 5Kac

6 Kb
6c2

k̃2

3
~ga

cgb
dP̃cd

6 !TF

2 Ēab7
1

2
DEab2

gab

4
E61~¹baa2abaa!6,

~A14!

with

Ēab5L̄ab
TF1

2k̃2

3
~ga

cgb
dP̃cd!

TF

2k2S a0

a D 4

U0S uaub1
a2

3
habD , ~A15!

DEab5
2k̃2

3
D~ga

cgb
dP̃cd!

TF2k̃2F ~r1p!K̄uaub

22~r1p!u(aK̄b)
c uc2

r13p22l

3
K̄abGTF

,

~A16!

E65k̃2S nanbP̃ab
6 2

1

3
P̃6D , ~A17!

and ab5nc¹̃cn
b an acceleration-like quantity, the curvatu

of na, which can be freely specified.
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