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We prove that for a large class of generalized Randall-Sundrum type Il models the characterization of the
brane-gravity sector by the effective Einstein equation, Codazzi equation and the twice-contracted Gauss
equation is equivalent to the bulk Einstein equation. We give the complete set of equations in the generic case
of nonZ,-symmetric bulk and arbitrary energy-momentum tensors both on the brane and in the bulk. Among
these, the effective Einstein equation contains a varying cosmological “constant” and two new source terms.
The first of these represents the deviation fragnsymmetry, while the second arises from the bulk energy-
momentum tensor. We apply the formalism for the case of a perfect fluid on a Friedmann brane embedded in
a generic bulk. The generalized Friedmann and Raychaudhuri equations are given in a form independent of
both the embedding and the bulk matter. They contain two new functions obeying a first order differential
system, both depending on the bulk matter and the embedding. Then we focus on Friedmann branes separating
two nonidenticalinner or outey regions of Reissner—Nordstre-anti-de Sitter bulk space-times, generalizing
previous nonZ,-symmetric treatments. Finally the analysis is repeated for the Vaidya—anti-de Sitter bulk
space-time, allowing for both ingoing and outgoing radiation in each region.
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[. INTRODUCTION respect to some generitmelike or spacelike foliation We
carefully monitor the relationship of the tensor, vector and
Since the pioneering idea of Randall and Sundfainof  scalar projections of the Einstein equation with the system of
enriching four dimensional space-time with one noncompaceffective Einstein and Codazzi equations, widely employed
spatial dimension, cosmology has advanced towards nevd brane-world scenarios. We show that the latter system
types of extensions. Generalized Randall-Sundrum type Ishould be supplemented by the twice contracted Gauss equa-
models have in common a five dimensional space-timéion in order to assure the full equivalendé this context
(bulk), governed by the Einstein equations, and a four diwe mention a recent analydi7], which also underlines the
mensional brane, representing our physical world, on whichinsatisfactory feature of “truncating” the system of bulk
ordinary matter fields are confined. At low energies gravity isEinstein equations to brane equations.
also localized at the braré]; however this feature does not ~ Beginning with Sec. lll we have in mind the brane-world
always hold[2]. Generalizations of the original Randall- scenario. By use of the Lanczos-Sen-Darmois-Israel junction
Sundrum scenario are various and multiple, all allowing forconditions[18—21] we derive the generalized effective Ein-
matter with cosmological symmetry on the brgfReéedmann  Stein equation in a form closely resembling previous works
brane$ [3,4] (in this case the bulk is Schwarzschild—anti-de[22]:
Sitter space-timg5,6]). The assumption oZ, symmetric
embedding was also lifted in a series of papétd3], and o .
nonempty bulks have also been considered, with physically — G,,=— AGap+ K°Tap+ £*Sap— Eap+ Lap+ Pap. (1)
reasonable matter content, like null d@ig4,15, which can
be interpreted as the high frequerigeometrical opticsap-
proximation of unpolarized radiatiofeven gravitationa] ~ Among the source terms on the rhs we find the brane energy-
whenever the wavelength of the radiation is negligible com-momentum tensdF,,, the termS,,, quadratic in the energy-

pared to the curvature radius of the background. In the, - antum tensofrelevant at high energigznd gab’ the
present paper we present a formalism generic enough 0 8liectric part of bulk Weyl tensor. Our generic treatmeoes
low for all such types of extensions. Models allowingi&@-  equire thez, symmetry of the bulk across the brane and

tonic type scalar field in the bulk were also discuse, this leads to three important modifications. Fi€st, repre-

but will not be dealt with in the context of this paper, neither N tak the t id fthe b S
will the possibility of having different coupling constants on Sents an average ta en over € two sides ot the brane. Sec-

the two sides of the brarfa3]. Further generalization of our Ond, & new source teri.f appears. Third, there is a con-
formalism however, is straightforward. tribution included inA, WhICh transforms the cosmological
In Sec. Il we present the decomposition of the Einstein constant” into a function. Bulk energy-momentum is also
tensor in an arbitrary d+ 1)-dimensional space-time with allowed, resulting in théP,, source term and a second non-
constant contribution ta\. When allowing bulk matter, we

have in mind reasonable sources, like null dust or multi-

*Email address: Laszlo.Gergely@port.ac.uk; component null dust, which can model for example the

gergely@physx.u-szeged.hu cross-flow of gravitational radiation escaping the brane and
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Hawking radiation leaving the bulk black hése At the end  brane embeddings, the Friedmann equation for Vaidya—
of the section we give the generic form of the brane Bianchianti-de Sitter bul 14] is recovered.
identities. Throughout the paper a tilde distinguishes the quantities

The most interesting applications of the developed fordefined on thed+ 1)-dimensional space-time. The only ex-
malism would be for branes containing black holes and foiception is the normat to the leaves of the foliation. Its norm
branes containing perfect fluid and obeying cosmologicaiS N‘Nc=€==1 (e=1 stands for timelike and=—1 for
symmetries. Anisotropic cosmological brane-world modeBspac_elike foliations Latin in_dices_rep_resen_t ab_stract indices
can also be consider¢@3,24. running from O tod. Vector fields in Lie derlvgtlves are rep-

Among these in Sec. IV we discuss the case of maximallyesented by boldface characters. For exanj@ denotes
symmetric branes with perfect fluid. By employing the branethe Lie derivative along the integral lines of the vector field
Bianchi identities, we derive the generalized Raychaudhurfi/2. From section to section, as the paper converges toward
and Friedmann equatioris a form insensitive to both the its conclusion and the results derived apply to more specific
choice of the bulk matter and of the left and right embed-situations, the degree of generality decreases accordingly. Up
dings of the brane in the bulk'he price to pay is a cosmo- to Sec. IlIB everything holds for arbitrary. Up to and
logical function instead of a constant, and that the sourcécluding Sec. IV, the results are dimension-independent,
term usually quoted as dark radiation acquires a much=4 being imposed only in the application described in Secs.
broader interpretation. V and VI and in the Appendix. In Sec. VE distinguishes

An algorithm to solve in a hierarchical way the relevant between the outgoing or ingoing character of the radiation.
system of equations for a bulk containing a Friedmann brane
with a given perfect fluid is presented in the Appendix. The Il. THE EQUIVALENCE OF TWO (d+1)-DIMENSIONAL
equations refer tod=4. The algorithm is suited for the cases DECOMPOSITIONS
when noa priori choice of the bulk is performed, instead the
matter content of the bulk and the details of the embedding
are specified. There are constraints on both of these choices,
as detailed in the Appendix.

Section V dea_ls with Friedmann branes embedded in th%y
Reissner—Nordstro—anti-de Sitter bulk. In the case of a a A d g _ _
cosmological bulk with maximally symmetric spatial 3 sec- =0, - - -9c Gy, - - -9, One can define the projected cova-
tions (case without the chargewith the exception of the riant derivative and the projected Lie derivative of any tensor
static case, where exotic solutions are equally pos$itig — F21---2 4¢
a generalized Birkhoff theorem hold6], which states that ~ P°1--Ps
such a bulk is the 5D Schwarzschild—anti-de Sitter space-

The (d+ 1)-metricg,;, induces a metrig,,, on the leaves,

aab: Japt €NgNy . (2

co.apdy ... dg

introducing  the  projectors gii c/by .. .b
.Gy .. bg

time. We develop a formalism which is suitable for matching VaTSi B Z;Z 9:2 B ﬁi:gi_'_'_'g:VcTZ?_'_'_Z's, (3
inner and outer regions of the Reissner—Nordatranti-de

Sitter space-time, thus allowing for two, one or no charged /;~:|"al‘“a':gal‘"afdl"'dSZ:ﬁ'Cl"'Cf 4)
black hole. We give the energy-momentum tensor leading to Vibp.bg Fep..oby .. bV Ty g

the solution already employed J26] in the study of theZ, e a - .
symmetric embedding. Then by straightforward algebra wdf both the tensofT, """ ' and the vectol® are defined on
find the generalized Friedmann and Raychaudhuri equationghe leaves, the above equations areghgcompatible cova-

These were checked to reproduce all previous figisym-  riant derivative and Lie derivative on the lower-dimensional

metric results derived in the particular case of pure COSMOgace, respectively. W2 however is transverse to the leaves,

{he brand( 78], 7010 black hols mase and diferent cosmo- 1, PISCed L defvatve desgibes ransverse evolyon.
lk?gt'ﬁal Constfants on lt.het.thg'géfo 11 and allowing for space-time is characterized by the extrinsic curvakigg

Oln ggssv? V\?eers]tefjrgylzaag;gferés ;/n?btoticallyanti- de Siey |~ VaNb- Its trace will be denoted by. Itis immediate to see
bulk compatible with type Il fluid. Such a bulk is a generali- hat Kap is symmetric by noting that,=gVWx (B is an
zation of the charged Vaidya solution in the presence of &bitrary function; as the conditioy=const defines the
cosmological constant. If27] the charged Vaidya solution '€avesy is time fore=—1 and any coordinate transverse to
was employed to model evaporating charged black holedhe leaves foe=1). The extrinsic curvature obeys
Here first we derive the 5 dimensional solution, which agrees
with [14], generated by null dust and an electromagnetic 2Kap=LnGab- (5)
field on a cosmological background. The details of these A ) b= b
source terms were not given in the literature before. We thed h€ congruence® has its own curvaturé28] a”=n°vn
follow the generic prescription described in the Appendix=dga. For spacelike foliations this is the nongravitational
and we write down the generalized Friedmann and Rayacceleration of observers with velocity. With this we find
chaudhuri equations for this case. The generic results derived _
here are also new. In the particular caseZgf symmetric Vanp,=K,p+ €nyay . (6)
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For notational convenience we also introduce the tensors Concerning the tracefree pdtf} , it is commonly expressed
in terms of the Weyl tensdthe purely radiative contribution
Eab=KacKp— LoKapt Voaa— €apa,, (7 to gravity)

Fap=KKap—KacKE, 8 & = 2 - - =
ab ab Thacttb ® Cabcd= Rabedt mga[cgd]bR
together with their trace€ andF. Note thatE, carries the
information about the transverse evolutionkof, .
The (d+1)-dimensional Einstein tensor is equivalent
with the following set of projections:

2 - - - -
- m(ga[cRd]b_ GbrcRaja)- (14

Its “electric” part with respect tan? is defined as

- 1 -
9595Gca=Gab— €| Fap— Eap— 5 9an(F—2E) |, (9 - e R
: ¢ : * : 278 5ac: Cabcmbnd:glanjgzanijkl + —_gac
d(d—1)
9Sn9Gq=gSnR 4= V.KE— VK, (9b) o o
o e ~ g1 (€9agRic+ gacn M Rig). (15)
2n?n®G,,= — eR+F. (90)

Inserting the projections
These equations have the following meaning, proviGeg

. - . . . . ; nakn'R =

is determined by ad+ 1)-dimensional Einstein equation. 9an’gcN Rijui = Eac,

The tensor equatiofPa) determinegthroughE,;,) the evo- o

lution of K, normal to the foliation. Together with E¢5) — €0,0¢R)K =~ R+ Fac—Eqc,

they give the off-leave evolutions of the variableg,{ K ,p)

defined on the leaves. The vector equati@b) is the n'nRi, = — KpgKP9—E, (16)

Codazzi equation and represents a constraint on these vari-
ables. Similarly does the scalar equati®a). For spacelike we find
foliations the vector and scalar equations are the diffeomor-
phism and Hamiltonian constraints, respectively. These “in- (d—1)&p=[— €RaptFapt(d—2)Egp]™". (17
stantaneous constraints” become dynamical for timelike fo-_ =~
liations and the evolution equations form an elliptic, ratherEliminating R.,, from Egs.(11) and(17) leads to
than hyperbolic system.
In whgt follows we would like to set up an equivalent set Eapt ei(ggggécd)w: E;E (18)
of equations, most commonly employed in brane-world sce- d—-1
narios, e.g., suitable for timelike foliations. We would like to . . o
keep, however a strict account of the sets of equations which what follows, this equation containing the tracefree part of
are equivalent to each other in the two pictures. For thighe off-leave evolutionC,K,, will be regarded as the defini-

purpose first we decompose the tensor equa@aninto its  tion of &, Eliminating the off-leave derivative term from
trace Egs.(11) and (17) results in

= d-2 ~
269" Cap=(d=2)(—eR+F)=2(d-DE, (10 Eab— € g7 (9505Cca) 7= (— eRap+Fap) ™. (19

and trace-free parts . . . . .
Combining this trace-free equation with the scalar equation

B 6(g§ggécd)TF=(— Rupt Fap— Enp)TF, (11) (9¢) we obtain the effective Einstein equation on the leaves:
TF TF_ d-2 . 4= ¢, 972 cndi
where den_otes tracefree, e.g,,="fap—gap/d for any Gab:m(gagchd) + g Yaben‘n Geyg
tensorf ,, defined on the leaves.
The trace equatiofil0), properly combined with the sca- Jab
lar equation(9c) gives the twice contracted Gauss equation: +e|l Fap— 7F> —€&qp. (20)
—eR=—eR+F—2E. (120 Note that the trace of the effective Einstein equati2® and

o _ ) the scalar equatiof®c) coincide by construction. Therefore
Eliminating R from Egs. (9¢) and (12) gives E solely in  the second scalar equation is given by the trace of the origi-

terms of bulk tensors: nal tensor equatiof9a which, as we have seen, is equiva-
lent (modulo the trace of the effective Einstein equation
~ €~ . . _
E=nn’G,,+ -R. (13) E)q e(lig)er the twice-contracted Gauss equati@®) or to
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For spacelike foliations the usual way to think of the From Eqgs.(7), (8) and the second relatiofi6) we find
above system of equations is to choose variaplgandK ,,

satisfying the constraint®b) and(9c) on the leaves and let Lo Kap=— eg;g‘gRikwLZab, (21
them evolve via Eqs(5) and (9a). When the foliation is

timelike, another viewpoint is common. In the brane-world Zap= €Rap+ 2K, Kf — KK gp+ Vpara
scenario the central role is played by the effective Einstein

equation(20), in which the bulk matte(via the bulk Einstein TEpy. (22)

equation, the extrinsic curvature of the brarithe F termg The Einstei i .
and the electric part of the bulk Weyl tensor are all consid- € Einstein equation gives
ered sources for the brane gravity sector. While the extrinsic
curvature of the brane is determined by brane matter and 0LokR =2
brane tension through the junction mechanism, @mtheZ,
symmetric cosmological bulkhe longitudinal part of,, is
fixed by the vector equatiof22], nothing constraints the _ ~ =
behavior of the transverse part &f,, which remains arbi- €nergy-momentum tensor can be written &g =1II;
trary from a brane point of view. This feature is the source of+ 7; (1), with IT;, the regular part and,, the distributional
several difficulties, frequently formulated as the lack of apart on the layer, obeying,n'=0. Thus Eq.(21) becomes
temporalevolution equation fo€,y,. L
The off-braneevolution of&,, was deduced from the bulk J ~
Bianchi identities in Ref[22] (in the case of &, symmetric g Kab=— GKZ( Tab™ mgabr) o)+ Wap+Zap, (29
cosmological bulk It also follows from the above equations.
As &, is completely determined by the bulk matter, the in- o ke 1 ~
duced metric and the extrinsic curvature via Ef9), the Wap= _éKz(glangik_ d__lgabn>- (29
evolution of &, follows from the metric evolutior(5) and
the evolutlon. of the extrinsic curvature. Let us recall that theas poth z,,, and W,,, are finite, integration across the layer
latter was given by the tensor equati¢a). Should one  on an infinitesimal integration range gives the Lanczos equa-
choose a brane-world viewpoint, the situation is different:tjgn:
the effective Einstein equatiof20) together with Eq.(18)
gives only the traceless part ofK,,. The complementary ~ 1
equation is either the twice contracted Gauss equatignor AKgp= —€x ( Tab™ d__lgabT) ; (26)
Eq. (13), which both contairg?®L,K ,,. With this equation,
the bulk Bianchi identities emerge as a consequence. or equivalently
It is clear now that in the brane-world scenario the effec-
tive Einstein equation and the Codazzi equations do not pro- — ex?70=AK 1p— gapAK. 27
vide a complete characterization of gravity, but they should
be supplemented by the twice-contracted Gauss equaiion Here we have introduced the notatiavf ,,=f, —f_, for
the expressiol3) for E]. This set of equations is equivalent the jump of any tensof,, andAf for its trace.(By construc-
with the Einstein equation in thed(- 1)-dimensional space- tion, + means the region towards whichis pointing. We
time. emphasize, that the Lanczos equation is not affected by the
choice of the orientation of the normal because the change
in the orientation implies that both the and — regions and

o 1 ~
9u0kTik— a1 gabT) : (23

If | is the coordinate adapted to the normi d/dl, the

Ill. THE EFFECTIVE EINSTEIN EQUATION the sign of the extrinsic curvature are reversélle also
FOR NON-Z,-SYMMETRIC BULK introduce the mean valud,,=(f.,+f,.)/2. Obviously
A. The junction conditions Ag,p=0 andg,,=0Ja.p- Straightforward algebra then shows

Both in general relativity and in the brane world scenarios = = = = —
the possibility of a distributional matter source on a hyper- Fap=KapK =KacKp+ 0Fap,
surface is of interest. Such a hypersurface divides the space- .
time into two distinct regions. In both of these regions one of F=K2—KpK®+ 5F,
the systemd9) or (9b), (13) and (20) should be imposed
separately. Quantities defined on these domains will be dis- 2|k _ 1
tinguished by+ or — symbols. The passage from one zone Tab™ g1 Jan”
to the other is described in a coordinate-independent manner

by the junction condition$21] (see alsd6]). These condi- —

AFab: _ET(

(0
tions include the continuity of the induced metric across the FRavg—g ~2Ke@ |
hypersurfaceg,,=g,,, and the Lanczos equatidig], a
condition on the jump of the extrinsic curvature. It is AFZZE}ZKabrab, (28)
straightforward to deduce the latter equation from the equa-
tions derived in the preceding section. where we have denoted by
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IS 1 Jab . ~, d-2 d-2 ,
5Fab:_z TaCT(k;_mTTab (29) 6Fab_75F:K Sab+}\4(d_1) Tab_ 8(d_1) gab)\ .
33
the contribution which distinguishes the functional form ofH s d drati ioriTi - 33
F., from the one ofF ;. ereS,;, denotes a quadratic expressionTig,:
Let us now consider a region of space-time of a finite 1 1
. . . : c
thickness 2, Wh.ICh contains this temporal hypersurface. Sab:Z — T, To+ ﬁTTab
The set of equation&Ob) and (20) holds in any of the two
regions even in the limity—0. Their sum and difference Uab 1
[ _ TN cd 2
give 5 ( TeqT+ d—lT . (34
KGN T oq) = VoK~ VoK, (308 By defining the brane gravitational constant and the brane
cosmological “constant” through
A(ganllcq) = — €Vers, (30b) 4o
j B K= 4((1——1)7‘4)" (35
2k%(N*nPIl ) = — eR+F, (300
2 'S -
~ — kN L ~-.d-2 =
A(naanab) = EKabTabv (300 A=——<—K? (ncndHcd): (36)

2 d d

}zd__z (gggﬁﬁcd)TF=RlE—eElE+eZb, (309  we obtain the effective Einstein equatigh). Among the
d=1 source terms we find ,,, which is defined as
,d-2 d

~ = _ TF . —
g1 A0 e = ARy eA L. (300 Cav=RasK Ko~ 52 (K2 RaiK™), (37

The last four equations are the trace and trace-free parts of.., —r —. =
the sum and difference of the effective Einstein equations ir\lN.'th Lap andL its tracefree part and trace. Finallyy is
the two regions, respectively. From among them the last tw iven by the'pull-back of the bulk energy-momentum tensor
equations define the mean value and the jumgEgf (the 0 the brane:

trace-free part oE,). Let us recall that the trace is also - d—2 -

determined in both regions by E@.3), which in terms of the Pap=K>—— (ggggncd)TF. (38)
bulk energy-momentum tensor reads d-1

_ The first four terms of the right-hand sidBRHS) of the ef-
H+). (31) fective Einstein equation are well knowWB2]. They are the
cosmological term, the ordinary brane matter source term
(dominant at low energi@¢sa quadratic term in the brane
energy-momentuntrelevant at high energigsand the bulk
Dectric Weyl-curvature contribution. The only modification
up to here is the possibility of a varying cosmological “con-

stant” (it depends both on the projectic(rmcndﬁcd) of the
d-2——— = d-2 ———= bulk energy-momentum tensor and on the embedding of the
a1 (Qagpllca) '+ € d Gap(N°nIl¢g) brane. In addition to these there are two new terms. The first

of them,fl,f represents the imprint of the particular way the
time-evolving brane is bent into the bulk from both sides.
This contribution disappears in thé&,-symmetric casgas

well as the contributiorL to A). The last term;P,, arises
from the projection of the bulk energy-momentum tensor on
the brane, and is traceless by definition.

From now on we specialize to the brane-world scenarios, | terms ofA andT,,, Egs.(30d), (300 and(30f) can be
where a (I —1)-dimensional distributional source evolves in \yitten as

time and in consequence the hypersurface is temporal. Thus
we apply the above formulas fer=1. For the generic brane anbT] . )= — NK 4 T..Kab
energy-momentum tenseg,= — Agap+ Tap (Wherel is the ANl ap) = = MK+ TapK™ (393

brane tension and,, represents ordinary matter on the - .
brane we have A(gan“eg)=— VT3, (390

E” :}2( n2nPIl;, — -1

As it will be employed in the next subsection, we also give
the undecomposed form of the equation obtained by the su
of the effective Einstein equations on each didguivalent
to Egs.(300 and(30€]:

Gab:;z

ve Fanm %E—gb). 32

B. The effective Einstein equation
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_ T _ with u? representing itgl-velocity. Spatial isotropy and ho-
KTabt g—7Kab mogeneity impliesh,,VPa=h,,V’p=h,,V°p=0.
The quadratic tern§34) then becomes

d—2
d—-1

7<2 A(ggggﬁcd)TF:Agab+7<2

-2 _ o TF
d-1 : K4S p= KZK SUalpt| 5 +p a’h,p|. (44)

(399
We complete the bookkeeping of the source terms by intro-
Thus Egs.(303, (31), (1) and (39) are the complete set of ducing the effective nonlocal energy denslityarising from
equations in the generic case of naprsymmetric bulk and the totality of nonlocalkracefreeterms in the effective Ein-
arbitrary energy-momentum tensors both on the brane and istein equatior(1):
the bulk.
The Bianchi identity ind dimensions allows for the ex-

pression of the longitudinal part oab—flg—fab):

2

— — a
_Sab+qg+7)ab: KzU(Uaub-l- d__lhab). (45)

U is a generalization of the effective nonlocal energy density

Va(gab_tzg_aab) i[r;tgi)duced in the case af, symmetric, cosmological bulk
i T N e spel e syseno for e peret i
T g AT+ 2T A =(pm K eIk, (46
+ d_il(TabvaT— TVbT)}. (40) 7‘23:_iA(ggggﬁ°d)TF

— -2 a _ we
This equation has important cosmological implications, as Aapt k7 (pP)KUaUy = 2(p+ P)U(aKp)Ue
will be discussed in the next section. TF
pH(d—1)p—(d—=2)\ —
- -1 Kab| (47)

IV. PERFECT FLUID ON FRIEDMANN BRANE

Friedmann branes, obeying cosmological symmetries arghile Eq.(39h decouples into the following time and space
components:

characterized by the metric
- : a
Uab= — UaUp+a%(7)hyp, (41) A(Ucndﬂcd)zp+(d—1)a(P+ p), (48)

wherea(7) is the scale factor ant,, is a (d—1) metric
with constantcurvature(characterized by the curvature index
k=1,0,—1) of the maximally symmetric spatial slices with
constant 7. The timelike congruencei®=(d9/97)? obeys
udu,=—1 and h,,u?=0. It is not difficult to prove
u,VauP=uPV,u?=0. We denote by a dot the time derivative _ = T

with respect tor, which in the generic case is defined as thetries, U as well asL and (n°n“Il.), (both contributing to
Lie derivative in theu? direction, projected into the hyper- A) are pure time-functions, i.e., they have vanishing spatial
surface perpendicular to? (of constantr). Then, from the ~derivatives] The time projection of the Bianchi identityt0)

conditionh,,=0 we find gives

hapA (g*n°TTee) =0. (49)
By virtue of Egs.(45), (48) and(49) the space projection of

the Bianchi identity(40) trivially vanishes.[We also use in
the proof that in order to satisfy the cosmological symme-

K2

. a 1. —_—
1 U+d—U) = a[Kz(d—Z)(ncndﬂcd)+L]°
UCVChab= — ;(Vaub‘f' Vbua), (42) a

2 A(un9I.y). (50

1+ g
the trace of which implie&,u?=(d—1)a/a.
When there is a perfect fluid on the brane, it has therhe homogeneous part of the above equation integrates to

energy-momentum tensor
d

o) (51)

a

u=u
Tap=p(T)UaUp+p(7)@%h,p, (43 °

124011-6



GENERALIZED FRIEDMANN BRANES PHYSICAL REVIEW D68, 124011 (2003

whereU,a§ is an integration constant. Variation of the con- ~,[(d—2 A PN,
stantU, gives a first order ordinary differential equation: AKap=—« a-1 1P+ pP— -1 UaUp+ a-1 ahgp
) (56
ap|. . ~
K2<—°) Uo+A+x?[ 1+ P A(u®n9II,4y)=0. (520 remains a useful link between dynamical and geometrical
a A quantities defined on the brane.

We summarize the above results in the Appendix dor
[We have employed the definition df given in Eq.(36).]  =4. The algorithmic way the equations are grouped is meant
The solution of Eq(52) depends both on the bulk matter and to facilitate the search for nofi,-symmetric FRW brane-
on the details of the embedding of the brane in the bulk. world solutions. The equations governing off-brane evolution
Finally we compute the Einstein tensor: are also presented there.
In the following two sections we apply these generic
(d-2) 24k equations for thefive-dimensionalReissner—Nordstro—
Gap= (d—1) ——uuu, anti-de Sitter bulk and charged Vaidya—anti-de Sitter bulk,
2 a® both containing dour-dimensionaFriedmann brane. On the
two sides of the brane the bulk is characterized by different
mass and charge functions, also by different cosmological
constants. As the generalized Friedmann and Raychaudhuri
equations are given in a form invariant with respect to dif-
ferent choices of the bulk and the embeddings, only the

which is the last piece of information required in order to complementary set of equatiorid30a, (31), and (46)—(49)
write the effective Einstein equatiafl). Its nontrivial pro-  wil| change from case to case.

jections combine to give the generalized Friedmann and gen-

—[2aé+(d—3)(é2+k)]hab], (53)

eralized Raychaudhuri equations: V. REISSNER-NORDSTROM —ANTI-de SITTER BULK
.2 § The generalization of the 4-dimensional Reissner-
a“+k p Qo Nordstran solution to a cosmological context in 5 dimen-
— 2 2
(d=1)(d-2) a2 =2A+2k%p 1+ﬁ +2k UO(E) ' sions was discussed [26]. The metric
ds?=—f(r:;k)dt?+ R +r[dy?+H2(x;k)(d6?
a 2 p ; 2
(d—l)(d—2)a=2A—K d—3+(o|—2)X p +sirfad¢?)], (57)
d with
P 2 aO
+(d—-1) 1+x/p —(d=2)k“U, a2l siny, k=1,
(55) H(x;k)=1 X» k=0, (58

sinhy, k=-1

Apart from the dimension-carrying indeX at first glance
the above equations ariéentical with the corresponding
equations of4] and[3], obtained forZ, symmetric cosmo- Jab= — UaUp+ NaNp+r2hgp, (59)
logical bulk. Still, important differences arise from the non-
constant character of andUO’ given in the generic case by Where a time coordinate was introduced through the time-
Egs.(36) and(52). Another distinctive feature is that thg,  like vector
term cannot be interpreted any more as pure dark radiation. A 9 .9 .9
glance at Eqs(45) and(51) shows that it carries both radia- u=—=t—+r—, (60)
tive degrees of freedoitfrom the electric bulk Weyl tenspr o
as well as imprints of the bulk matter and of the particularwith unit negative norm, implying
way the brane is bent into the left and right bulk regions. o
Equation (52) defining the potential, is an integrability ft=(r2+f)12 (61)
condition, which can be equivalently derived by taking the ) o
time derivative of the generalized Friedmann equation, theVe have chosen the>0 root and a dot denotes derivatives
employing Eq.(48) to eliminatep and Eqs(54) and (55) to with respect tor. Then the unit ngrmal 1-form to both,,
eliminate all derivatives oé. andu, is determined up to a sign:

Let us recall, that the information on the gravitational e (_1\o( .
field is completed by Eqs(30a and (46) [these represent n==(=1)7(~rdt+vdr). 62
(d+1) constraints on the mean extrinsic curvature and bulkThe + sign refers to right-pointing normal. The final results
mattel, Eqgs.(48) and (49) (d constraints on the bulk mat- will not depend on this choice of the orientation. We have
ten, Eq. (47) determiningA&,, and Eq.(31) giving E*. inserted an additional sign—1)“ to allow theoutgoingco-
Also, the Lanczos equation ordinatey, defined by

can be also written as
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n==+(—1)"dy, (63)

to increase either in the right or left directions. We will
specify later the meaning of the exponent Finally the

1-form field u, is

u=—(r?+f)Ydt+adr=—dr. (64)

If the bulk contains an electromagnetic field characterized

by the potential 1-form

PHYSICAL REVIEW D68, 124011 (2003

+lz?f
4" 2%

muaub— (é.2+ f)l’zahab .

Kap=+(=1)°
(69

K,p on the two sides depends on the actual value of the
functionf and the sign ambiguity arises from the ambiguity
in the choice of the normal.

As we have not imposed th&, symmetry, at this point
we have to raise the question of whether inner or outer re-
gions of the Reissner—Nordstrne-anti-de Sitter space-time
will be glued together. We introduce a pair of indicgg |

A gdt 65) which take the value 1 for inner regions and O for outer
T2 regions. Then, according to our definitions
_ ) 7R right region,
its energy-momentum tensor will be o= _ (70
n.+1, leftregion.
~EM 392 ) Then the extrinsic curvatures on the two sides of the brane
T =r—6(uaub—nanb+r hap) - 66  are

Then the bulk Einstein equation for the metric ans@?)
with the source term

A
Kip= (B_:uaub_ Brahp

A
~ —_— = L4t _
leg=— Aap 75 (67 Kb i(E%L“a“b B18fa). i
is satisfied for where R,L. refer to.right and [eft regions, respectivgly, and
the following notations were introduced for conveniente (
~ o =R,L):
2m KA, o
f(rik)Zk—r—z—Tr +r_4' (68) A ..+1c9f| -
=a 274 (72
m andq being the mass and charge of the central black hole B,=(—1)™M(a2+f,)12 (73)

(or “stellar object,” in the absence of a horizoand A <0
the bulk cosmological constant. In principle, all of these con-Then, according to the definition of the jump and mean value
stants can take different values on the two sides of the branef the extrinsic curvature:

Thus we will drop the assumption @, symmetry and ob-

tain more generic results than [ia6]. Ar AL
If one passes from the coordinatesr] to (r,y), the AKap=— B_R+B_L Ually= (Br+Bi)ahyy),
position of the brane can be simply specifiedyasconst.
This choice is equivalent to the embedding relatians (AR AL
=t(7) andr=a(7). Therefore we replace (r) with (a,a). Kap=+ (B_R_ B_L>Uaub_(BR_ BL)ahg).

As for the embedding relatiot=t(7), we know only Eg. (74

(61). By construction,n is the normal andu the tangent

vector to the brane. Thus we take for the induced metric th&Ve also have

expression41). By this we have assumed that the bulk has —

the spatial symmetries of the brahe. &: _ Br—B.
The extrinsic curvature for such hypersurfaces is 3 a

Ar AL Br—B_

Br B, a

(75

Equations(Al) and (A3) are then satisfied, while E4A2)

'For such a brane and pure cosmological bulk a “generalizeog'ves
Birkhoff theorem” holds[6], stating that the bulk is the 5 dimen-
sional Schwarzschild—anti-de Sitter space-time, a particular case in
our treatment. However when the brane has the additional static
symmetry(Einstein brang the derivation of the above mentioned
“generalized Birkhoff theorem” is obstructed, and other bulk solu- This first order differential relation among the scale factor,
tions are possible, as shown [iB5]. pressure and density of the perfect fldlmking independent

p+3 (p+p)=0. (76)
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both of A andU,) guarantees that for a given equation of whereA is a true constant given as
statep(p), the density has the standard expression as func-
tion of the scale factor.

We actually do not have to carry out in full detail the
program described in the Appendix. This is because ouA comparison with Egs(A9) and (A10) gives the cosmo-
choices of the bulk and brane metrics already constrain thi®gical “constant” and the potentidl:
embedding, leading to the above extrinsic curvature. Then a o

A_Ao, K°0°  k*(Ag)?

2A0= K2+ K2A. (84)

CAB
da(p+N\)

shortcut would be to employ EqeA4) and(A12) in order to

expressa? and a algebraically.(As the sign ambiguity was 3 3 256 8af
verified to cancel out from all equations, from now on we

mean byA the differences between quantities taken from the

(p+3p—2\)(AB)?

R andL regions) First we find by pure algebra that 8aZ(p+\) (85
~ e~
§:_K_(p+>\)’ K_2 a 4:2_m_3K2q2_3;<2(Aq)2_ CAB
6 37 %a a*  2a° 8a’ 4a(p+\)
3AA+%%aC —3p+4))(AB)2
i (77 4 (7 SPTANER) (86)
K (p+N\) 8a“(p+\)
then The Friedmann equatiof82) and Raychaudhuri equation
L (83), after suitable conversion of notation, reduce to the cor-
a’+f_ k\ é( " ﬂ) N (AB)? 78 responding results dfL.3,6] in the caseg=0. When the cos-
a2 6 3 AN 432’ mological constant is the same in both bulk regionsi(
=0), earlier result$8] are recovered.
A K2\ k2 2p p In the Z,-symmetric limit we recover the Friedmann
26 6P 1+ N +3p| 1+ X) equation given if26]. In the absence of charge, the Fried-
mann and Raychaudhuri equations given[#] and [3]
. _CAB  3(p—M(4B) 79 emerge.
2a(p+A) 4a*(p+\) VI. CHARGED VAIDYA —ANTI-de SITTER BULK

By C we have denoted the source term in E44), multi-
plied by =, in the present case

60A .
=NV (80)

C:
a

By employing the definition of the metric functiqé8), and
Eqgs.(72), (80), we obtain

o 12a2Am—12x%qAq+ x2afAA
2k2a5(p+\)

: (81)

The generalization of the 4-dimensional charged Vaidya
solution [30] in a cosmological context was discussed in
[31]. We will do the same here in 5 dimensions. Let us start
with the bulk metric written in Eddington-Finkelstein type
coordinates,

ds?=—f(v,r;k)dv?+ 2edvdr
+rdy?+H2(x;k)(do*+sirfede?)], (87

where e=1 holds for an outgoingy coordinate (the v
=const lines are ingoing while e=—1 for ingoingv (v
=const lines outgoing It can also be written as

and the generalized Friedmann and Raychaudhuri equations

- ) aab: _uaub+nanb+r2habr (88)
act+tk Ay «%p p
a2 = ? T 1+ ﬁ where
L Jd .d .40
242 2 2 2 = —=p— 4 —
+2_m_;<q _ k*(Aqg) +(AB) | @2 U= ——=uv__+r--, (89
a* ab 4a° 4a?
has unit negative norm, implying
a Ay «? 2 2m  2k%q? S
5_?0_€ p 1+Tp +3p 1+§) T asq fo=er+(r2+f)¥2 (90)
~ We have again chosen the>0 root and a dot again denotes
2 2 _ 2
«(Ag) CAB 3(p—M)(AB) (83) derivatives with respect to. Then the unit normal 1-form to

2a’ 2a(ptN)  4a’(p+\)

both h,, andu, becomes
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n==+(—1)°(—rdo+odr). (91) We note that t_he differences with respect to t_hg_Reissner—
Nordstran—anti-de Sitter case arise in the definition of the
Finally the 1-form fieldu, is function A:
TPNT . . of ar
u=—(r?+f)Ydy + evdr=—dr. (92 2A|=2a+£—e|v,%, (102

We suppose that the bulk contains radiatigeometrical

S i and in an additional term contained By
optics limit: null dus} with energy-momentum tensor

6gA ~ 3A(Bv?
_bada  x_ (Bv?)

C = . 102
?gt?:%%. (93) a® 2k%a® (102
KT

Since, by virtue of Eq(98) the condition 2,3, +adf, /dv
HereB(v,r) determines the energy densitiyhas the dimen- =0 holds, the expressia81) for AB, as well as the gener-
sion of a linear density of masandl is a null 1-form: alized Friedmann eqyatio(BZ), are unchanged relative to
the Reissner—Nordstmo—-anti-de Sitter case. The Ray-

l=dv=v[*e(—1)°n—u]. (94)  chaudhuri equatioribesides containing a differer) ac-

quires two new terms on the right-hand side. These are
Such radiation is ingoing fore=1 and outgoing fore

=—1. In the bulk there is also an electromagnetic contribu- v? 3AB .
tion J 2/C=—ﬁ——~—A(Bv2). (103
on, a®  2«%a*(p+\)
~EM 30%(v) ) Then the cosmological “constant” and the potential in the
Tap = 6 (Ualp—NaNp+1hgp), (99 charged Vaidya—anti-de Sitter case are found immediately

from the ones characterizing the Reissner—Nordstro

generated by a null 5-potential anti-de Sitter case:

(A) A) +K (104
q(v) 3 -y ,
A= > l,. (96) 3 chV AdS 3 RN AdS
r
a 4
Then the bulk Einstein equation for the metric ans8@, (Uo)ehv ads=(Uo)rn ads— — P~ K.
with the source term K=\ 90
(105
Meg= —AQap+ ToP+ 5y, (97 [Remember thaA andU, on the RHS should be computed
. with C given by Eq.(102.] In the Z,-symmetric limit the
is solved by Friedmann equation reduces to the one givefl#i.
g Equations(Al) and (A3) are again satisfied, while Eq.
dm «?qdq (A2) this time differs from the ordinary continuity equation:
ef=———— (98
dU r2 dv .
. a )
+3=(p+p)==—Ale(—1)7Bv?
and p+3-(p+p) K2a3[( )7Bve]
1 ®*A 2 3 .
f(v,r;k)=k—— 2m(u)~|—K—r4—M . (99 == E €|(—1)’7'B|v|2.
r2 6 r2 k%ad I1=TR

(106)

The functi freel ifiable.
e functionsm(v) andg(v) are freely specifiable The global sigre;(—1)™ of the two terms in the sum above

The brane is given by the embedding relatiansv(7) . . L i o
Sl is negative for radiation leaving the brane and positive for
[thr_ough Eq.(90] andr=a(7), thus we replacer(r) with radiation arriving to the brane. For a given equation of state
(a,a) in the above formulas. By constructiamis the normal  p(p), this time the expressiop=p(a) is different from the
to the brane. The induced metric is E41) and the extrinsic  standard one. This is due to the fact that the brane radiates or

curvature becomes is irradiated; thus there is no brane-energy conservation.
(The Z,-symmetric, uncharged limit of the casg = 7r=1
23+ ﬂ _ El'}z‘?_f = ¢ = eg Was discussed ifil5].)
Jda Jdv . ; i@ 2
Kap=F(—1)° UUp— (a2+F)Y2ahy, | . Obviously, the expressiofv“ is needed for the last four

equations. Of course3 depends on the freely specifiable
(100  functionsm(v) andq(v), as given by Eq(98), while v is

2(a%+ )12
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determined by Eq<73) and(90). At this point it is useful to  holes or obeying cosmological symmetries. We have dis-
note, that there is no natural normalization condition for acussed the latter case here.
null vector, thereford can be freely rescaletl— ¢l at the When the brane has cosmological symmetries and a per-
price thatB— B/o? is also rescaled accordingly. Employing fect fluid, obeying the same symmetries, the effective Ein-
this freedom one can even shift all information about the nullstein equations decouple into generalized Friedmann and
dust into the null vector, by choosing= V3. Alternatively,  generalized Raychaudhuri equations. These were given in a
in the present case a simple way to proceed would be term insensitive to the particular embedding. Only the cos-
chooses=v ~! which has the consequence that the new lin-mological “constant” and the potentidll, depend on the
ear density of mass is details of the embedding and bulk matter. Whiecan be
) found algebraically, the potential, is determined by a first

a=puv’. (107 order ordinary differential equation. An algorithm was given

in the Appendix to study cosmology on such generalized

Then one can interpret in Egs. (103—(106) as a freely Eriedmann branes

specifiable parameter. This choice was followeq1f] With a definite choice of the bulk and embedding, the

However we will follow a third route, guided by the de- situation becomes even simpler, the integration of the first
sire to have freely imposable functions with obvious mean- pier, 9

ing on the brane. The arbitrary metric functiomgv) and order differential equatilon being replaped .by pure algebra.
q(v), due to the embedding relatior= v (7), can already be We have employed this advantage first in the case of a

interpreted from a brane point of view as arbitrary functionsR€issner—Nordstro—anti-de Sitter bulk, then for a charged
of time m(7) and q(7). Their time derivatives, defined as Vaidya—anti-de Sitter bulk. In both cases we have matched

across the brane inner-outer regions of the bulk space-times,
éinding the appropriate generalized Friedmann and Ray-
chaudhuri equations. The Raychaudhuri equation acquires
peculiar terms in the radiating case, which implies a non-
standard dependence of the density on the scale factor. Our
~2 ) equations allow for different mass and charge functions as

m=vdm/dv andq=vdg/dv, have again a natural interpre-

define a third linear density of mass by choosiag
=(v) Yas

y=Bv= 6( m— K_qu (108  well as bulk cosmological constants on the two sides of the
a brane. However the junction does not allow for different val-

i i , i ues ofk on the two sides, ak is the curvature index in the
and rewrite Eqs(103—(106) in terms ofy, Wh'Ch.haS M= induced metric, required to be continuous. If Maxwell equa-
mediate interpretation for a brane observer. Thearises  tions have to be satisfied in 5D, then the two charges have to
linearly in the termBuv?=yv and we obtain the following be equal in magnitude but of opposite si@2].
expression: The equations characterizing cosmological evolution both
in the charged and in the radiating case being given, the
arena opens for imposing constraints from experimental data
on the nonsymmetric character of the embedding as well. In
the low energy regimeg<<\), for example AB contributes

This can be expressed in termsfofB, y, Af, ABandAy  with the radiation-like term (3/2°\%)(AmAA/a%) to the

or equivalently in terms of average values and jumpsnpf Friedmann equation and it is expected that CMB-anisotropy
m, g, g and X. If this latter interpretation is chosen, an data will constrain its magnitude, thus implicitly the non-
interesting feature which emerges, is the occurrence @& an Z,-symmetric features of the bulk too.

term in both the Raychaudhuri and continuity equations. This While in the charged case only 3 cases should be consid-
can be avoided in the first choi¢®07), but then the relation ered(junctions of inner-inner, inner-outer and outer-outer re-

(109

- - Y 7B
ﬂ|U|2:aTI+E|(_1)7" £

betweena and the sedm/dv,dg/dv will contain it. giong, in the radiating case the direction of the radiation
flow further diversifies the situation, leading to a total of 10
VIl. CONCLUDING REMARKS cases to be discussed. Some of these will be ruled out by

] . N ) _energy conditions to be satisfied on the brane. Further subtle-
We have given a generic decomposition of the Einsteinjes of the radiating case include whether in the inner regions
equations, in which the tensorial, vectorial and scalar projecthere are radiating stellar objects, black holes or naked sin-

tions are equivalent to the effective Einstein, the Codazzi angy|arities (encountered in the 4D Vaidya solution as Well
the twice contracted Gauss equation. The junction conditiongyestigations into these issues are under way.

applied across a brane separating two nonidentical space-
times give rise to the final form of these equations. The ef-
fective Einstein equation contains a varying cosmological
constant, and extra terms beyond the standardymmetric
case, which characterize the nonsymmetric embedding and | am grateful to Roy Maartens for useful references, dis-
the bulk matter. cussions and comments on the manuscript and to Parampreet

The formalism can be applied for any situation. Of par-Singh for a remark. This work was supported by the Hungar-
ticular interest would be the cases of branes containing blacian Scholarship Board and OTKA Grant No. T034615.
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APPENDIX: DYNAMICS OF PERFECT FLUID
FRIEDMANN BRANES IN ARBITRARY BULK.
AN ALGORITHM

Let us consider the physically interesting casedef4.

PHYSICAL REVIEW D68, 124011 (2003

K2

6

p
1+=
A

p+3

w| >

5l

p
(1+2X <l
(A10)

ORI

For a Friedmann brane with perfect fluid, embedded in &JP (0 this point, only the mean value of the extrinsic curva-

non-Z, way into a bulk containing some energy-momentum
tensorll.y, we present here an algorithmic way of solving

the relevant equations.
Constraints on the bulk matter:

hapA (29Tl .4) =0, (A1)

- . a
A(Ucndﬂcd)=P+35(p+ p). (A2)

Once solved by some choice for the matter fields in the bulk,

we can pass to theonstraints on the embedding:
kg ) = VoK~ VK, (A3)

A(PPnPIT,p) = (p—N)K+(p+ P)UaupK2®,
(Ad)

ture has to be solved foStill, its jump contributed implic-

itly to the functional form of the generalized Friedmann and
Raychaudhuri equations.
Finally, in order to study theff-brane evolutionthe ex-
trinsic curvature is needed on both sides on the brane
2K = 2K o+ AK . (A11)
Thus we have to determine its jump from thanczos equa-
tion

3AK = — k[(2p+3p—N)UgUp+ (p+X)ahy].
(A12)

The evolution in the off-brane direction of the brane gravi-
tational variables is determined by

+ + + K =+
The mean value of the extrinsic curvature, once found, givesC,K;p,=K;cKp = g(gg@lgnc_d)TF
rise to the trace and tracefree parts of the extrinsic curvature

termL gy
L=KapK2—K?2, (A5)
TTF_ w_w w¢ L
Lap = KapK—Kac b+Zgaba (AB)
and therefore to theosmological constant
PN S AT
=5 7 (). (A7)

The first order differential equation determirtée unknown
potential Uy:

A(unI.4)=0. (A8)

4

o\ - p
2| S0 2 P
K(a) Uot+ A+ k| 14

Then A andU, can be inserted into the generalizeéded-
mann and Raychaudhuri equations

é2+k_A
a2 3

p
J’__
! 2\

+R2% + (A9)

LnGan=2K3p, (A13)
~2
= _1 g b+ +
—EanF 5 Aap— = B+ (Voaa— apaa)
(A14)
with
_ 22 ————
gab:E;E+ T (ggggncd)ﬂ:
NN a2
- K g UO Uaub+ ?hab y (A15)
27(2 c~dTT TF_".2 Wi
AgabzTA(gangcd) —K (p+p)KUan
— p+3p—2n— |TF
—2(P+D)U(aK§)Uc— TKab ;
(Al6)
+_ 72| ~anbTTE 1~+
E- =« n?n°Il ,— §H* , (A17)

and a®=n°V.nP an acceleration-like quantity, the curvature
of n?, which can be freely specified.
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