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Vaidya’s ‘‘Kerr-Einstein’’ metric cannot be matched to the Kerr metric

D. P. G. Cox*
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

~Received 9 January 2003; published 15 December 2003!

An attempt is made to match the Kerr metric with Vaidya’s description of a black hole in a cosmological
background. The attempt is unsuccessful and shows that the object at the center of Vaidya’s metric is certainly
non-Kerr like.
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I. INTRODUCTION

This work is motivated by the need for solutions of Ei
stein’s equation that might characterize a black hole in
background which is not asymptotically flat. Specifically,
class of space-times found by Vaidya@1# is investigated.
Vaidya’s Einstein-Kerr~VEK! metric has the two interestin
properties of either tending to a Kerr metric as the cosm
logical radius approaches infinity or tending to a Friedma
Lemaı̂tre-Robertson-Walker universe as the central m
vanishes. Nayaket al. @2# have successfully matched th
nonrotating case of Vaidya’s solution with a Schwarzsch
interior and an Einstein exterior. The physical properties
the composite space-time have subsequently been inv
gated@3#.

Here is an attempt to generalize the previous work by fi
trying to match the VEK space-time to a Kerr interior. Sad
this matching is not possible. This shows that the Vaidy
space-time does not represent ‘‘Kerr-in-Einstein.’’ Witho
some interior matching it does not represent a black hol
any useful sense because the equation of state is not p
cally acceptable in this region. This is a pity because poss
models of black holes in nonflat spaces are scarce de
their importance in physical situations. The purposes of
article are to serve as a caution for those who might try
matching and to present a first test for any solution t
might be a candidate for the interior region.

The overall strategy will be to assume that a matching
possible and seek a relationship between the param
spaces of the two metrics. Subsequent sections are arra
as follows: first the metrics are presented in the forms wh
are convenient for the problem; it is shown that the metr
can be matched in only one way at the limit of stationari
an examination of the first fundamental form shows that
acceptable relationship exists between the Kerr metric
Vaidya’s metric.

II. THE METRICS

The first step is to transform the Vaidya metric into
convenient form@4#,
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ds25~122mm!dt224mma sin2adtdb

2
D

D~122mm!1a2sin2a
dr22

D

12
a2

R2
sin2a

da2

2„~112mm!a2sin4a1D sin2a…db2,

where m5(R/D)sin(r/R)cos(r/R) and D5(R2

2a2)sin2(r/R)1a2cos2a. Herea is interpreted as the angula
momentum,m as the central mass andR as the cosmologica
radius parameter. It can be seen that this tends to the fam
Boyer-Lindquist version of Kerr~Eq. 2.13 in@5#!,

ds25S 12
2Mr̄

r̄ 21A2cos2u
D d t̄22

4Mr̄A sin2u

r̄ 21A2cos2u
d t̄df

2
r̄ 21A2cos2u

r̄ 21A222Mr̄
dr̄22~ r̄ 21A2cos2u!du2

2S ~ r̄ 21A2!sin2u1
2Mr̄A2sin4u

r̄ 21A2cos2u
D df2,

in the limit R→`. In this limit the coordinates (t,r ,a,b)
and parameters (m,a) of the VEK form become simply the
coordinates (t̄ , r̄ ,u,f) and parameters (M ,A) of the Kerr
metric.

In the VEK metric, the only place where the Ricci tens
vanishes is at the stationary limit~wheregtt50) and so this
is the only surface suitable for matching with a vacuum
lution such as Kerr. The stationary limit is atr 5r sl where

tanS r sl

R D5
mR1Am2R22@R22a2sin2a#a2cos2a

R22a2sin2a
5:q~a!.

Here the functionq(a) is introduced because it is muc
easier to work with than surds. The explicit appearance oa
can be removed by noting

a2cos2a5
2mRq2q2~R22a2!

11q2
,

a2sin2a5
a222mRq1q2R2

11q2
.
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Writing q85dq/da note that

q825
q„q~a22R2!12mR…~q211!2~a222mRq1q2R2!

@q~a22R2!1mR~12q2!#2
.

By substituting,dr2→R2q82(11q2)22da2, the following metric on the stationary limit 3-surface is obtained:

ds2522
a222mRq1q2R2

a~11q2!
dtdb22

~a222mRq1q2R2!~a22mRq1q2R2!

a2~11q2!2
db2

22
R5m3q~11q2!2

~R22a212mRq!~2qa21mRq21qR22mR!2
da2. ~1!
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Now go through the same steps with the Kerr metr
Here we use capitalM andA rather than the familiarmanda,
so that the parameters in the two metrics considered
clearly distinguishable. The stationary limit is wheregt̄ t̄
50, or where

r̄ sl5M1AM22A2cos2u5:Q~u!

say. WritingQ85dQ/du note that

Q825
~2MQ2Q2!~A222MQ1Q2!

M222MQ1Q2
.

Substituting dr̄2→Q82du2, we obtain the metric on the
3-surface,

ds2522
A222MQ1Q2

A
d t̄df

22
~A222MQ1Q2!~A22MQ1Q2!

A2
df2

22
M3Q

M222MQ1Q2
du2. ~2!

III. COVARIANT DESCRIPTION

The next procedure shows that if the metrics can
matched at the limit of stationarity, the coordinatesa andu
are essential and can be matched in only one way. Igno
for a moment the associations implied by the labelling, h
should the basis forms of the three-surfaces relate?

Both Eqs.~1! and ~2! are of the form

ds2522J sin2~x1!dx0dx222K~x1!sin2~x1!~dx2!2

2L2~x1!~dx1!2, ~3!

whereJ is the momentum parametera or A, the coordinates
are $xi%5$t,a,b% or $xI%5$ t̄ ,u,f% and K and L are given
functions for each metric. From Eq.~3! it is clear the three-
12400
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surface can be described as a foliation of timelike tw
surfaces of constantx1. In order to obtain covariant descrip
tions which we can compare, it is necessary to examine
Killing vectors. At any point the two-surfaces have a tange
space with a basis$]x0,]x2% composed of Killing vectors.
There might be a third Killing vector in this tangent space.
there were such a vector, basis vectors in the two-surf
found by the~three-dimensional version of the! classification
procedure described, for example, in Chap. 9 of@6#, could
only be covariantly determined up to a boost at each po
The quantityv in the following form of Eq.~3! parametrizes
this possible boost:

ds2522~Jvdx01Kvdx2!@v21sin2~x1!dx2#2~Ldx1!2.

In this expression, the one-forms containingv are the null
one-forms in the surfacex15const, and will therefore be
covariantly determined, up to the boost parameter, if the s
facesx15const themselves are covariantly determined. T
corresponding choice of basis vectors is then

H e0̂5
1

Jv
]x0,e1̂52

Kv

J sin2~x1!
]x0

1
v

sin2~x1!
]x2,e2̂5

1

L
]x1J .

In this triad the nonvanishing components of the Ricci ten
are

R2̂2̂5
2

L2
1

2 cos~x1!

L3sin~x1!

dL

dx1
,

R0̂1̂52
cos2~x1!

L2sin2~x1!
1

R2̂2̂

2
,

R1̂1̂52
2v2cos~x1!

L2sin3~x1!

dK

dx1
2

v2

L2sin2~x1!

d2K

d~x1!2

1
v2

L3sin2~x1!

dK

dx1

dL

dx1
. ~4!
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The invariant Ricci scalar depends only onx1

R5
2 cos2~x1!

L2sin2~x1!
2

4

L2
2

4 cos~x1!

L3sin~x1!

dL

dx1
.

Since the forms ofL in the metrics under consideration im
ply that this is not constant for any interval inx1, there is no
Killing vector with a component in thex1 direction and the
surfacesx15const are uniquely defined by the geometry
the orbits of the isometry group@i.e., the coordinatex1 used
above is in fact geometrically defined up tox1→ f (x1)].
Therefore the vectors]/]a and]/]u have the same signifi
cance as the vectors orthogonal to those surfaces, and
be parallel to one another: thusa5F(u) for some function
F. Restricting now our attention to the two-surfaces of co
stantx1, the noninvariance ofR1̂1̂ under change ofv shows
that there is no boost symmetry so we have only two Killi
vectors. Furthermore, the uniqueness of the surfacesx1

5const, and of null directions in a timelike plane, show th
the basis vectors chosen are uniquely geometrically de
mined up to the boostv. Hence we can use the invariance
R0̂1̂ andR2̂2̂ under boosts to show that cos2(x1)/L2sin2(x1) is
an invariant@from Eq. ~4!#. Evaluating this for the two met
rics implies that at the junction

gaatan2~a!5guutan2~u!, ~5!

which will be useful in determiningF(u).

IV. FIRST FUNDAMENTAL FORMS

This section completes the discussion of how the coo
nate systems of the two metrics must relate in the first f
damental forms of the metrics. The vectors]x2 in each case
must be identified because they are the unique Killing v
tors with closed circular orbits of period 2p in the two so-
lutions. Adopting the notation

Lxi
xI

5
]xI

]xi

this can be stated asLb
f51. The tangency of the two Killing

vectors to surfaces of constantx1 can also be put asL t
u

50, Lb
u 50.

If the matching is to work, the 3-surfaces must descr
the same embedded metric~or first fundamental form! and so
should be subject to the transformation law

gxixj5gxIxJLxi
xI

Lxj
xJ

.
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From this,

gbb52gt̄fLb
t̄ 1gff .

Since we requiregbb5gff and we cannot havegt̄f50 for
all values ofu then clearly,

Lb
t̄ 50.

Also

gtb5gt̄fL t
t̄1gffL t

f ,

so that

L t
t̄5

gtb2gffL t
f

gt̄f

.

Now

gtt5052gt̄fL t
fL t

t̄1gff~L t
f!2

becomes

05L t
f~2gtb2gffL t

f!.

Hence we must consider two cases. EitherL t
f50 and L t

t̄

5gtb /gt̄f or else L t
f52gtb /gff and L t

t̄52gtb /gt̄f .
However, in both cases, we find the equations

gab505gt̄f~La
t̄ 1La

fLb
t̄ !1gffLa

f ,

gta505gt̄f~L t
t̄La

f1L t
fLa

t̄ !1gffL t
fLa

f

imply that La
f5La

t̄ 50. The remaining equation is then

gaa5guu~La
u !2.

Together with Eq.~5! we obtaina56u1const, anda and
u both have range@0,p#. Without loss of generality we can
take a5u. To show that this cannot work, substitutea5u
into any of the above equations relating the nonzero me
coefficients. Usinggbb5gff I obtained the following quar-
tic in q:
~2M2a2A2R22M2a4A212A2R4a22a4R412M2a4R22A4R4!q422mR~a2A!~a1A!~2a2R21M2a212A2R2!q3

1@24A4m2R212M2a4R212M2a62M2a2A2R222a6R214A2R2a414A2m2R2a22a4m2R223M2a4A2

22A4R2a2#q222a2mR~a2A!~a1A!~2a212A21M2!q1a4~a2A!~a1A!~2a21A212M2!50
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having divided by an overall factor ofa2(11q2). By com-
paring the coefficient ofq and the constant term it is clea
thata25A2. Using this information, the coefficient ofq4 can
only vanish for the very special case ofR25a2. Since we are
only interested in relating the two parameter spaces, su
restriction means that the two metrics cannot be matche

V. CONCLUSIONS

The matching of Kerr with Vaidya’s VEK solution is cer
tainly not possible, but this does not preclude other inte
vacuum solutions. In the spherically symmetric subcase,
nonrotating VEK case studied in@2#, the only possible
vacuum interior is the Schwarzschild metric, since it is t
a,

tu

s

12400
a
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e

e

unique spherically symmetric solution of the vacuum E
stein’s equations. Kerr is the unique solution which is s
tionary, axisymmetric, nonsingular at the Killing horizon an
is asymptotically flat. However, a vacuum interior for VE
need not be asymptotically flat, and hence solutions ot
than Kerr could arise, i.e., there could be another station
axisymmetric vacuum which is a black hole, in the sense
possessing a Killing horizon and/or an ergosphere,
which does match VEK. The existence of some such inte
solution would certainly be of interest as the VEK spac
time itself becomes unphysical in between the limit of s
tionarity and the event horizon~for example the pressure o
the fluid becomes negative in this region!.
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