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Vaidya’s “Kerr-Einstein” metric cannot be matched to the Kerr metric
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An attempt is made to match the Kerr metric with Vaidya’s description of a black hole in a cosmological
background. The attempt is unsuccessful and shows that the object at the center of Vaidya’s metric is certainly

non-Kerr like.
DOI: 10.1103/PhysRevD.68.124008 PACS nuniger04.70-s, 04.20.Jb, 97.60.Lf
. INTRODUCTION ds?=(1—2mu)dt?—4mua sirfadtdB
. . . . . D D
This work is motivated by the need for solutions of Ein- - 5 dr’—————da?
stein’s equation that might characterize a black hole in a D(1-2mu)+a’sirfa a®
L . . 1—- —sirfa
background which is not asymptotically flat. Specifically, a R2

class of space-times found by Vaidya] is investigated. - _ 5
Vaidya’s Einstein-Ker(VEK) metric has the two interesting —((1+2mp)a®sinta+D sirfa)dp?,

properties of either tending to a Kerr metric as the cosmo- Where 1= (RID)sin(/R)cost/R) and D= (R?

logical radius approaches infinity or tending to a Friedmann >
Lematre-Robertson-Walker universe as the central mass. )5|n2(r/R)+a cos'a. Hereais interpreted as the angular

momentumm as the central mass amas the cosmological
vamsheg. Nayalet al. [.2] h,ave su_ccessfully matched the radlus parameter. It can be seen that this tends to the familiar
nonrotating case of Vaidya’s solution with a Schwarzschild

oyer-Lindquist version of KerfEq. 2.13 in[5
interior and an Einstein exterior. The physical properties otB 4 g (Eq. [5).

gh;ecéc[)gposne space-time have subsequently been investi- ds2—( 2MT - AMTA siro -
Here is an attempt to generalize the previous work by first r#+A’cos6 r?+A’cos 6

trying to match the VEK space-time to a Kerr interior. Sadly 2+A2cos’-0

this matching is not possible. This shows that the Vaidya'’s ——— —dr2—(r2+ A%co£6)d 62

space-time does not represent “Kerr-in-Einstein.” Without r2+A2 2Mr

some interior matching it does not represent a black hole in
any useful sense because the equation of state is not physi-
cally acceptable in this region. This is a pity because possible
models of black holes in nonflat spaces are scarce despite
their importance in physical situations. The purposes of thign the limit R—oc. In this limit the coordinatest(r,«,)
article are to serve as a caution for those who might try th@nd parametersn,a) of the VEK form become simply the
matching and to present a first test for any solution thatoordinates {,r,6,¢) and parametersM,A) of the Kerr
might be a candidate for the interior region. metric.

The overall strategy will be to assume that a matching is In the VEK metric, the only place where the Ricci tensor
possible and seek a relationship between the paramet®anishes is at the stationary lintivhereg,,=0) and so this
spaces of the two metrics. Subsequent sections are arrang&dthe only surface suitable for matching with a vacuum so-
as follows: first the metrics are presented in the forms whicHution such as Kerr. The stationary limit is &t rg where
are convenient for the problem; it is shown that the metrics
can be matched in only one way at the limit of stationarity; rs|> ~ MR+ {m’R*—[R*—a’siraJa’cos a

R R?— a%sirfa

r°+A?)sirt 9+
G ) A2cog0

2MrA23|n49) 2

an examination of the first fundamental form shows that no R =:q(a).

acceptable relationship exists between the Kerr metric and
Vaidya’s metric. Here the functiong(«) is introduced because it is much
easier to work with than surds. The explicit appearance of
can be removed by noting
Il. THE METRICS

2mRa—g?(R?—a?)
’ - - o a’cofa=
The first step is to transform the Vaidya metric into a 1+¢2 '
convenient forni4],

2_ q 2p2
aZsifa= > 2mRa+ 'R

. 2 "
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Writing q’ =dg/da note that

,2:q(q(a2— R?)+2mR)(g%+1)%(a®— 2mRat+g%R?)
[a(a*~R»)+mR(1-g*)]? '

By substituting,dr’>—R?q’?(1+q?) ~2da?, the following metric on the stationary limit 3-surface is obtained:

a?—2mRag+ g°R? a?—2mRag+ g°R?)(a?—~ mRag+ g?R?
4Le -2 a+q dtd,8—2( - g°R)( a+q )d
a(1+qg? a’(1+9g?)?

EZ

R°m’q(1+q%)?
2__ 12 _ 2 2 __ Zda
(R?—a?+2mRg(—qga’+ mRE+gR?>—mR)

2, (1)

Now go through the same steps with the Kerr metric.surface can be described as a foliation of timelike two-
Here we use capit&ll andA rather than the familiamanda,  surfaces of constant. In order to obtain covariant descrip-
so that the parameters in the two metrics considered aréons which we can compare, it is necessary to examine the
clearly distinguishable. The stationary limit is whegg,  Killing vectors. At any point the two-surfaces have a tangent
=0, or where space with a basi$d,o,dy2} composed of Killing vectors.

There might be a third Killing vector in this tangent space. If
P 2_ a2 _. there were such a vector, basis vectors in the two-surface
ro=M+M*=A’cos'6=:Q(¢) found by the(three-dimensional version of thelassification
say. WritingQ’ =dQ/d# note that procedure described, for example, in Chap. J6if could
only be covariantly determined up to a boost at each point.
The quantityw in the following form of Eq.(3) parametrizes
e YA 2_ 2
QrZZ(ZMQ QH(A"=2MQ+Q ). this possible boost:

M2—2MQ+Q?

ds?=—2(JwdX’+ Kwdx?)[ o~ sirf(x})dx?]— (Ldx!)2.

Substituting dr2—Q’2d#?, we obtain the metric on the _ _ .
In this expression, the one-forms containiegare the null

3-surface, . 1 X
one-forms in the surface”=const, and will therefore be
A2— 2M O+ O2 covariantly determined, up to the boost parameter, if the sur-
d<2= —Zﬁdﬂj P facesx!=const themselves are covariantly determined. The
A corresponding choice of basis vectors is then
2__ 2 2_ 2
(A 2MQ+Q)2(A MQ+Q?) | o » Ko
€)==——0y0,81= — ————— 50
A 30" sine ()
M3
2 2 746", @) +L072€”:£(91
Ill. COVARIANT DESCRIPTION In this triad the nonvanishing components of the Ricci tensor

The next procedure shows that if the metrics can beare

matched at the limit of stationarity, the coordinatesnd 6 2 2 cogxt) dL

are essential and can be matched in only one way. Ignoring Ros=—=+ 51 1
. L : L= L°sin(x*) dx

for a moment the associations implied by the labelling, how

should the basis forms of the three-surfaces relate? cog(x})  Rss

Ryi=————+—,
Both Egs.(1) and(2) are of the form 01 L2sir?(x}) 2

ds?=—2J sirf(x})dx%dx?— 2K (x})sir?(x}) (dx?)?

2w?cogxt) dK 2 d?K
—L2(xY)(dx)?, 3 Rij= - 2o 08X e

CLZsi(xh) dxt LZsir(xY) d(x})?

whereJ is the momentum parametaror A, the coordinates

R — 2
are {x}={t,a,B} or {x'}={t,6,¢} andK andL are given 9 dK d_L
functions for each metric. From E) it is clear the three- L3sir?(x?) dx* dxt

4
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The invariant Ricci scalar depends only oh From this,

~2cod(x) 4 4cos{x1)d_L gEEZZ%A}gM,

U L2sirA(xY) L2 L3sin(xb) dxt

Since we requir@z=9,, and we cannot havg;,=0 for
Since the forms of in the metrics under consideration im- all values ofé then clearly,
ply that this is not constant for any intervali, there is no
Killing vector with a component in th&! direction and the
surfacesx!=const are uniquely defined by the geometry as
the orbits of the isometry group.e., the coordinate’ used Also
above is in fact geometrically defined up 1d— f(x%)].
Therefore the vectorg/da andd/d6 have the same signifi- _
cance as the vectors orthogonal to those surfaces, and must gtB:gmA{JrgMAf,
be parallel to one another: thus=F(6) for some function
F. Restricting now our attention to the two-surfaces of con-so that
stantx!, the noninvariance dRj; under change of shows
that there is no boost symmetry so we have only two Killing P
vectors. Furthermore, the uniqueness of the surfades Al= 91— Ggsi
=const, and of null directions in a timelike plane, show that ! Uts '
the basis vectors chosen are uniquely geometrically deter-
mined up to the boosb. Hence we can use the invariance of Now
Rsi andRs35 under boosts to show that é@€)/L2sir?(xY) is
an invariantfrom Eq.(4)]. Evaluating this for the two met- SAT o2
rics implies that at the junction 9u=0=201y AT A T 9gg(AL)

P
AY=0.

gaatanz( a) =g Hﬂtanz( 0) s (5) becomes

—A® — 4
which will be useful in determiningdr (). 0=A{ (2015~ 9yppAt)-

IV. FIRST FUNDAMENTAL FORMS Hence we must consider two cases. Eitht=0 and A
_ b_ t_

. . . . .=0iz/0ry Or else Af=20,53/94s and A;=—0s/0ty-
This section completes the_dlscussmn of h_ow the_ Coord'However, in both cases, we find the equations

nate systems of the two metrics must relate in the first fun-
damental forms of the metrics. The vect@xs in each case

must be identified because they are the unique Killing vec- gaBZOZQE/s(AEJFAiAEHQMAfa
tors with closed circular orbits of period®2in the two so-
luti . Adopting th tati t t
utions. Adopting the notation gm=0=§ﬁ¢(A{A‘§+A{/’A;)+g¢¢A{/’Aﬁ
| _

N X . b 1 L. . .

W= & imply that A?=A ,=0. The remaining equation is then
this can be stated a‘sgz 1. The tangency of the two Killing Joa= gao(AZ)z.
vectors to surfaces of constart can also be put ad/

— 0 _

=0, Az=0. . . Together with Eq(5) we obtaina= *+ 6+ const, andx and
If the matching is to work, the 3-surfaces must describey poth have rangg0,7]. Without loss of generality we can

the same embedded metfar first fundamental formand so  igke = 0. To show that this cannot work. substituie= 8

should be subject to the transformation law into any of the above equations relating the nonzero metric
Wl coefficients. Usingyzs=9,, | obtained the following quar-
Oxixi = OxlxdAsi Ay tic in o

(—M?a?A?R?>— M?2a*A?+ 2A%R*a?— a*R*+ 2M2a*R?>— A*RY g% — 2mR(a— A)(a+ A)(— a’°R?*+ M?a?+ 2A%R?)q°
+[ —4A*mM?R%+ 2M2a*R?+ 2M?a® — M2a’A%R?— 2a°R? + 4A%R%a* + 4A’m?R?a? — a*m°R?— 3M2a*A?
—2A%R%a%]g?—2a’mR(a—A)(a+A)(—a’+2A%+M?)g+a*(a—A)(a+A)(—a’+A%+2M?)=0
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having divided by an overall factor af’(1+q?). By com-  unique spherically symmetric solution of the vacuum Ein-
paring the coefficient off and the constant term it is clear stein’s equations. Kerr is the unigue solution which is sta-
thata?=A2. Using this information, the coefficient gff can  tionary, axisymmetric, nonsingular at the Killing horizon and
only vanish for the very special caseRf=a?. Since we are is asymptotically flat. However, a vacuum interior for VEK
only interested in relating the two parameter spaces, suchgeed not be asymptotically flat, and hence solutions other
restriction means that the two metrics cannot be matched. than Kerr could arise, i.e., there could be another stationary
axisymmetric vacuum which is a black hole, in the sense of
V. CONCLUSIONS possessing a Killing horizon and/or an ergosphere, and
The matching of Kerr with Vaidya's VEK solution is cer- which does match VEK. The existence of some such interior

tainly not possible, but this does not preclude other interioS0!ution would certainly be of interest as the VEK space-

vacuum solutions. In the spherically symmetric subcase, thBMe itself becomes unphysical in between the limit of sta-
nonrotating VEK case studied if2], the only possible tonarity and the event horizoffor example the pressure of

vacuum interior is the Schwarzschild metric, since it is thethe fluid becomes negative in this region
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